
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 20, 2017

MQ-2 A Tool for Prolog-based Model Querying

Acretoaie, Vlad; Störrle, Harald

Published in:
Joint Proceedings

Publication date:
2012

Link back to DTU Orbit

Citation (APA):
Acretoaie, V., & Störrle, H. (2012). MQ-2 A Tool for Prolog-based Model Querying. In Joint Proceedings: Co-
located Events at the 8th European Conference on Modelling Foundations and Applications (ECMFA 2012) (pp.
328-331). Technical University of Denmark (DTU).

http://orbit.dtu.dk/en/publications/mq2-a-tool-for-prologbased-model-querying(b6da2416-57f4-4950-8457-11bb3bf53cec).html


MQ-2: A Tool for Prolog-based Model Querying

Vlad Acretoaie and Harald Störrle

Department of Informatics and Mathematical Modeling,
Technical University of Denmark

Richard Petersens Plads, 2800 Lyngby, Denmark
s100988@student.dtu.dk,hsto@imm.dtu.dk

Abstract. MQ-2 integrates a Prolog console into the MagicDraw1 mod-
eling environment and equips this console with features targeted specif-
ically to the task of querying models. The vision of MQ-2 is to make
Prolog-based model querying accessible to both student and expert mod-
elers by offering powerful query features and a tight integration with the
host modeling environment.

1 Motivation

MQ-2 is designed to support the model querying approach described in [1, 2] and
its successor, the Visual Model Query Language (VMQL) [3]. The main impetus
behind the development of MQ-2 has been the feedback gathered in follow-up
interviews with participants to a paper-based usability study of VMQL [3]. A
consensus has emerged among interviewees concerning the high impact of tool
support on the usability of any model querying approach. MQ-2 leverages this
observation and brings VMQL one step closer to its goal of becoming a fully
usable model querying solution targeted at student and expert modelers.

The remainder of this paper is organized as follows. Section 2 introduces
the querying approach supported by MQ-2, Section 3 provides an overview of
MQ-2’s architecture and Section 4 proposes a demonstration plan.

2 Querying

Consider the use case diagram in Fig. 1, inspired by the Library Management
System (LMS) test scenario (see Sec. 4). In order to perform queries on this
diagram, it must first be transformed from its XMI representation into the Prolog
fact database also shown in Fig. 1, with model element IDs highlighted in blue in
both the diagram and its Prolog representation. This database consists of facts of
the form me(type-id, [tag-value], ...]), where type is a model element’s
metaclass, id is an arbitrary unique identifier, tag is an atom representing one of
the model element’s properties, and value is the value for this property. There
is a one-to-one mapping between model elements and Prolog facts.

Once a model’s Prolog representation is created, it can be queried from any
Prolog console. For instance, the query

1 https://www.magicdraw.com/



Librarian

<<include>>

1
2

7
3

4

56

UD

:-module('Source Model',[me/2]).

    me(model-0,[annotation-id(1),ownedMember-ids([1,3,4,7]),name 'LMS',

                visibility-public]).

    me(useCase-1,[ownedMember-ids([2]),name-'Lend medium',

                  visibility-public]).

    me(include-2,[visibility-public,addition-id(7)]).

    me(actor-3,[name-'Librarian',visibility-public).

    me(association-4,[ownedMember-ids([5,6]),visibility-public,

                      navigableOwnedEnd-ids([6,5]),memberEnd-ids([6,5])]).

    me(property-5,[visibility-private,type-id(1),association-id(4)]).

    me(property-6,[visibility-private,type-id(3),association-id(4)]).

    me(useCase-7,[name-'Scan medium',visibility-public]).

Lend medium Scan medium

Source Model

Fig. 1. A use case diagram (top) and its encoding as a Prolog fact database (bottom)

me(useCase-Id,Attrs), member(name-’Lend medium’,Attrs).

returns all model elements of metaclass useCase having the value ’Lend medium’
for their name meta-attribute. It also binds the returned model elements’ iden-
tifiers to the Id variable and their list of meta-attributes to the Attrs variable.
In short, the query finds the Lend medium use case. Its execution is facilitated
by the integration of a Prolog console into MagicDraw provided by MQ-2.

The MQ-2 console offers several model querying specific features not available
in a generic Prolog console, as specified in Table 1.

Table 1. MQ-2 console features

Transforming models to Prolog fact databases.

Pre-consulted library predicates.

Showing query results sequentially or all at once.

Showing query results in the MagicDraw Search Results Tree.

Highlighting query results in diagrams where they appear.

Highlighting selected console text in relevant diagrams.

However, queries formulated using the me predicate directly are cumbersome
to formulate. To compensate for this, MQ-2 implements several library predicates
introduced in [1, 2] (see Fig. 2). Using library predicates, retrieving the Lend
medium use case can be accomplished more intuitively via the get me predicate:

get me(model, name-’Lend medium’, useCase-Id, ).



get_me(MODEL, TAG-VAL, METACLASS-ID, VAL)

Matches all elements of MODEL containing the TAG-VAL meta-attribute pair.

match(SOURCE_MODEL, QUERY_MODEL, BINDINGS)

Returns bindings between QUERY_MODEL and SOURCE_MODEL.

match(SOURCE_MODEL, QUERY_MODEL, CONSTRAINTS, BINDINGS)

Returns bindings between QUERY_MODEL and SOURCE_MODEL considering a list of VMQL constraints.

Fig. 2. Sample MQ-2 library predicates

The match predicate allows formulating queries using the host modeling lan-
guage. It returns a list of bindings between elements of the query and source
models, and optionally accepts a list of VMQL constraints. For instance, the
distinct constraint specifies that no two query model elements may be bound
to the same source model element. A complete list of VMQL constraints is avail-
able in [3]. A future goal for MQ-2 is to support the specification of constraints
directly on the query model as comments endowed with the <vmql> stereotype.

3 Architecture

The proposed framework for Prolog-based model querying consists of a host mod-
eling tool (currently MagicDraw) including the MQ-2 plug-in, an SWI-Prolog2

installation, and the Java Prolog Bridge (JPL)3 library (see Fig. 3). The host
modeling tool acts as a model repository and a front-end for interacting with
MQ-2, while SWI-Prolog acts as a query execution engine. MQ-2 itself is a
plug-in extending the UI of the host modeling tool and providing built-in Prolog
modules that implement functionality such as model matching. This architecture
enables MQ-2 to remain easily portable to other host modeling tools.

MagicDraw
MQ-2

Plug-in

J

P

L
SWI-Prolog

Fig. 3. MQ-2 deployment with MagicDraw as host modeling tool

A screenshot of MQ-2 is presented in Fig. 4. It features the MQ-2 Prolog
console and toolbar on the bottom of the screen. The diagram pane shows the
diagram introduced in Sec. 2, and the console query retrieves the Lend medium
use case. As a result, this use case is highlighted in green on the diagram pane.

2 http://www.swi-prolog.org/
3 http://www.swi-prolog.org/packages/jpl/



Fig. 4. Screenshot of MagicDraw featuring the MQ-2 plug-in

4 Demonstration Plan

MQ-2 will be showcased on a UML design model created by a group of students
in the context of the Requirements Engineering course taught at a Master’s level
at the Technical University of Denmark. The model specifies the requirements for
an LMS used by a local library for the purpose of managing its book inventory,
loans, librarians, and readers. This usage scenario has been selected in view of
the fact that MQ-2 is envisioned to be used by students taking the same course
in the next academic year, providing arguably the best feedback as to whether
MQ-2 meets its design goal of acting as a usable model querying tool.

The tool demonstration will include transforming the source model into a
Prolog fact database, querying individual model elements, and querying model
fragments containing VMQL constraints. The various query result display meth-
ods provided by MQ-2 will also be highlighted.

References

1. Störrle, H.: A logical model query interface. In: Intl. Ws. Visual Languages and
Logic (VLL’09), pp.18–36. CEUR (2009).

2. Störrle, H.: A PROLOG-based Approach to Representing and Querying UML Mod-
els. In: Intl. Ws. Visual Languages and Logic (VLL’07), pp.71–84. CEUR (2007).

3. Störrle, H.: VMQL: A Visual Language for Ad-Hoc Model Querying. J. Visual Lan-
guages and Computing 22(1), 3–29 (2011).


