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Preface

The work described in this Ph.D. thesis was carried out at the Center for Microbial
Biotechnology, Technical University of Denmark, from March 2008 to March 2012, under the
joint supervision of Associate Professor Uffe H. Mortensen and Kiran Raosaheb Patil, Group
Leader at the European Molecular Biology Laboratory in Heidelberg, Germany (EMBL). From
September 2010 to the end of the Ph.D. | have been a visiting Ph.D. student at the Patil group,
Computational Biology Unit, EMBL. The Portuguese governmental institution responsible for
financing and evaluating the scientific research activities, Fundagdo para a Ciéncia e a
Tecnologia, ensured financial support throughout the 4 years (ref. SFRH/BD/41230/2007). Travel
expenses and conferences have been additionally supported by Otto Mgnsteds Fund (Denmark)
and SYSINBIO — Systems Biology as a Driver for Industrial Biotechnology, Coordination and

Support Action (call FP7-KBBE-2007-1).

The multidisciplinary nature of my Ph.D., which will become apparent to the reader from the
beginning of this thesis, was a feature that immediately cached my attention when Kiran firstly
proposed it to me in 2007. My Ph.D. started with a very appealing project for improving a yeast
vanillin cell factory through metabolic engineering. Despite the successful outcome of this
project, | recognized that many aspects which are considered as “fundamental research” assume
a determinant role in applied situations. It became clear to me that if we really aim at
engineering the metabolism of a cell, there are still a vast amount of “fundamental principles”
that we need to uncover, so we achieve a level of knowledge that enables fully controlled
manipulation of metabolic features. Therefore, the last project | accomplished for my Ph.D.
embraces a much more basic question; rather than engineering a cell, | would like to be able to
better predict cellular fate in the metabolic context. While running between the pipettes at the
lab bench and the C++ programs | started to develop in my computer, | realized that being able
to understand the mathematical aspects underlying model formulation, while having the
opportunity to perform the experiments which tackle the hypothesis thereby derived, enables a
unique sensation of freedom and inspiration. Experimental and modeling approaches to study
biology may demand very distinct cognitive skills, but they complement each other in such
rewarding manner, that, to my experience throughout the last 4 years, | can say it was totally

worth. At last, | hope | was able to transcribe my enthusiasm into words while writing this thesis.

Ana Rita Brochado, April 2012

Heidelberg. Germany.
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Synopsis

Genome-scale metabolic models are increasingly used for simulation of cellular phenotypes as
reflected in their metabolic physiology, such as growth rate, metabolite secretion and usage of
metabolic pathways. In particular, they offer a privileged opportunity to investigate genotype to
phenotype relationships for gene deletion mutants, as the deletion of a gene can generally be
translated to the absence of the corresponding reaction in the metabolic network. Experimental
evidence for the predictive power of genome-scale metabolic models, comprising the metabolic
network and the modeling approach, is commonly limited to gene essentiality analysis.
Extrapolation of the current modeling tools for covering the deletion of multiple genes, which
are relevant from both fundamental and applied perspective, is largely unclear. The work herein
presented focused on the experimental evaluation and development of new tools for prediction
of cellular phenotypes from a metabolic physiology perspective, i.e. prediction of metabolic
phenotypes. The baker’s yeast Saccharomyces cerevisiae was chosen to carry out the work
presented in this thesis, motivated by the availability of extensive knowledge about its
physiology, its suitability for industrial applications and a vast collection of molecular biology, as

well as of high-throughput data generation technologies.

Experimental assessment of the predictive power of the yeast genome-scale metabolic network
and established modeling approaches was done in the context of metabolic engineering. The
yeast genome-scale metabolic model was used to design a strategy for increasing heterologous
vanillin production in S. cerevisiae by applying OptGene, a simulation framework for finding gene
deletions towards maximization of productivity. The choice of minimization of metabolic
adjustment (MoMA) over flux balance analysis (FBA) for maximization of growth as biological
objective highly influenced the simulation results for strain design. Up to 2-fold improvement of
vanillin production was observed upon physiological characterization of the mutants obtained
following MoMA biological objective, confirming that metabolic proximity towards the reference

strain can successfully describe the behavior of metabolic networks upon single gene deletion.

In a following study, the metabolic flux through the vanillin biosynthetic pathway was found to
be limited by the activity of one of the pathway enzymes. Moreover, such limitation was
exclusively observed in one of the mutants previously obtained through in silico guided
metabolic engineering, for which cofactor and precursor availability was increased. This result
demonstrates the fundamental importance of accounting for the entire metabolic network while

modulating the metabolic flux of a single pathway. In this context, regulatory circuits often



modulate the expression of several genes or even entire pathways, rendering regulatory genes
attractive targets for metabolic engineering. Integration of regulatory information with genome-
scale models is still in its infancy, partially due to incomplete knowledge and characterization of
regulation mechanisms. Within this work, HAP4, a transcription factor involved in glucose
repression, was overexpressed in the vanillin producing yeast, based on previous observations
that it leads to mutants with increased respiratory capacity. As a consequence of higher
availability of ATP, the production of vanillin increased by 30%. In addition to other studies, this
example confirms that manipulation of regulatory targets, in this case by gene overexpression,
can cause the re-adjustment of fluxes distributed around important metabolic branches.
Furthermore, this study demonstrates not only the need for development of new computational
tools accounting for regulatory targets for metabolic engineering, but also the need for better
understanding the relationship between gene transcription changes and the resulting alteration

of metabolic fluxes.

Predicting the phenotype of perturbed metabolic networks is essential for using stoichiometric
models for metabolic engineering, as well as to infer gene functions from the phenotype of
deleted mutants. Cumulative genetic perturbations embody a large potential for both applied
and fundamental research, as they might reveal functional association between the involved
genes. The accuracy of phenotype prediction of mutants carrying multiple genetic perturbations
is currently poorly assessed, mainly due to lack of large-scale systematic experimental studies.
To this end, the recently available map of genetic interactions for S. cerevisiae offers the
possibility for extending the validation of stoichiometric models to include the accuracy of
metabolic phenotype prediction of double deletion mutants, as well as the accuracy of
prediction of genetic interactions. The last part of this thesis presents a computational tool for
simulation of metabolic phenotypes, termed Minimization of Metabolites Balance — MiMBI,
which focuses on the formulation of objective functions, particularly of those concerning
simulation of perturbed metabolic networks. Numerous established objective functions were
found to be sensitive to the stoichiometric representation of the biochemical reactions,
especially visible for cumulative gene deletions. MiMBI allows formulating objective functions
describing established and newly suggested biological principles in a robust manner. MiMBI was
used to predict and analyze the yeast genetic interaction network and it largely outperformed
previously established simulation algorithms for predicting the phenotype of perturbed
metabolic networks, namely IMoMA. Moreover, MiMBI and FBA were used in combination for

interpreting the metabolic rerouting induced by double gene deletions, illustrating how different

vi



biological principles can be used to provide useful mechanistic insights about operation modes

of metabolic networks.

Overall, the work presented in this thesis demonstrates how genome-scale metabolic models
can be used for exploring genotype to phenotype relationships, from both experimental and

theoretical perspectives.
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Resumo em Portugués

Os modelos metabdlicos a escala gendmica sdo cada vez mais utilizados para simulagdo de
fendtipos na perspectiva de fisiologia microbiana, nomeadamente para a simulacdo de taxa de
crescimento, secre¢cdo de metabolitos e utilizagdo de vias metabdlicas (aqui denominado
“fendtipo metabdlico”). Em particular, estes modelos proporcionam uma oportunidade
privilegiada para investigar a relagdo gendtipo-fendtipo em mutantes com genes eliminados,
dado que a supressdo de um gene pode ser facilmente traduzida para a auséncia da reacgdo
correspondente na rede metabdlica. A avaliagdo do poder preditivo dos modelos metabdlicos a
escala gendmica é actualmente basea, na sua maioria, em evidéncias experimentais relativas a
andlise de genes essenciais. A extrapolagdo das ferramentas de modelagdo actuais para cobrir a
previsdo de fendtipos resultantes de eliminagdo de multiplos genes, interessantes tanto numa
perspectiva fundamental como aplicada, permance, em grande parte, por explorar. O trabalho
aqui apresentado centrou-se na avaliagdo experimental e no desenvolvimento de novas
ferramentas computacionais para previsdo de fendtipos numa perspectiva de fisiologia
metabdlica, ou seja, previsdo de fendtipos metabdlicos. Dada a disponibilidade de amplo
conhecimento sobre a sua fisiologia, a sua adequagdo para aplicagGes industriais e um vasto
conjunto de tecnologias disponiveis para biologia molecular e geragdo de dados a escala

gendmica, motivou a escolha de Saccharomyces cerevisiae para este estudo.

A capacidade preditiva da rede metabdlica a escala gendmica da levedura foi
experimentalmente availada neste projecto no contexto de engenharia metabdlica, assumindo a
minimizagdo de ajuste metabdlico (MoMA) de mutantes com um gene eliminado em relagdo a
estirpe de referéncia. Este modelo foi utilizado para projectar uma estratégia de melhoramento
de produgdo heteréloga de vanilina em S. cerevisiae, que ap6s implementada resultou no dobro
da produgdo. O algoritmo OptGene foi utilizado para seleccionar os genes a eliminar, tendo em
conta a maximizagdo de produtividade. Estes resultados confirmam a proximidade metabdlica
de mutantes apds a eliminagdao de um gene em relagdo a estirpe de referéncia como principio de

simulagdo adequado.

Num segundo estudo, constatou-se que o fluxo metabdlico da via biossintética da vanilina
estava condicionado pela actividade de uma das enzimas da via. Tal limitagdo foi exclusivamente
observada num dos mutantes previamente obtidos com base no modelo metabdlico a escala
genodmica, realgando a importancia de ter em conta a rede metabdlica na sua totalidade, mesmo

quando o fluxo de uma Unica via metabdlica estd em questdo. Neste contexto, os genes



internevientes em cascatas de regulagdo sdo também alvos atractivos para a engenharia
metabdlica, ja que estes afectam a expressdo de varios genes, ou mesmo de vias metabdlicas
completas. Na realizagdo deste trabalho a produgdo de vanilina foi intensificada pela
superexpressdo do gene HAP4, um factor de transcrigdo envolvido nos circuitos regulatérios
para a repressdo por glucose em S. cereviaise. Embora a inclusdo de circuitos de regulacdo em
modelos metabdlicos esteja ainda no inicio do seu desenvolvimento, este resultado evidencia os
potenciais beneficios da inclusdo de proteinas reguladoras na modelagdo de metabolismo,

nomeadamemte como alvos plausiveis para engenharia metabdlica.

A previsdo de fendtipos resultantes de multiplas perturbagdes genéticas é de grande interesse
ndo s para investigacdo aplicada, mas também para a investigagdo cientifica de cardcter
fundamental, j& que os efeitos cumulativos da eliminagdo de multiplos genes podem revelar
associagBes funcionais entre os genes envolvidos. A Ultima parte deste trabalho descreve uma
nova ferramenta computacional desenvolvida para formulagdo de fungBes objectivo a utilizar na
simulagdo de fenétipos metabdlicos, particularmente dedicada a simulagdo de fendtipos apds
eliminagdo de um ou mais genes. O novo algoritmo foi demoniado Minimization of Metabolites
Balance — MiMBI. O MiMBI foi utilizado para prever e analisar a recentemente publicada rede de
interacgGes genéticas de levedura, tendo em grande parte superado os algoritmos existentes.
Adicionalmente, o MiMBI foi utilizado em combinagdo com um algoritmo ja estabelecido (FBA)
para a interpretagdo do reencaminhamento metabdlico induzido pela eleminagdo de dois genes,
ilustrando como diferentes principios bioldgicos podem ser utilizados para fornecer informagdes

mecanisticas sobre modos de operagdo de redes metabdlicas.



Dansk Sammenfatning

Genom-skalerede metabolske modeller bliver hyppigere og hyppigere brugt til at simulere
cellulzere feenotyper, for eksempel til beskrivelse af den metabolske fysiologi, vaekst rate,
metabolit sekretion og brug af metabolske reaktionsveje. Isaer tilbyder de en attraktiv mulighed
for at underspge sammenhangen mellem genotype og faenotype for mutanter, hvor et gen er
blevet elimineret, idet denne mangel ofte vil resultere i fravaeret en specifik reaktion i cellens
metabolske netvaerk. Eksperimentel evidens til stgtte for genom-skalerede modellers evne til at
forudsige metabolske sendringer er hovedsageligt begraenset til at forudsige om et gen er
essentielt eller ej. En udvidelse af dette koncept til at omfatte, hvad der sker, hvis flere gener
elimineres kan i gjeblikket ikke ggres seerlig praecist, selv om sadanne forudsigelser ville vaere
seerdeles relevante for projekter indenfor bade grund- og anvendt forskning. Forskningsarbejdet,
der praesenteres i denne rapport, fokuserer pa eksperimental evaluering og udvikling af nye
vaerktgjer, som muligggr at forudsige cellers fenotype ud fra et metabolsk fysiologisk
perspektiv, det vil sige, til forudsigelse af feenotyper. Bagegeer, Saccharomyces cerevisiae, blev
valgt som modelorganisme for dette stadium, idet den er industriel relevant og idet der er
akkumuleret en enorm maengde viden om dens fysiologi, og idet der er udviklet mange nyttige

genetiske, molekylaerbiologiske og ”high throughput” veerktgjer.

Eksperimentel validering af genom-skalerbare netvaerks og modellers evne til at forudsige
feenotyper blev udfgrt med fokus pa “metabolic engineering” opgaver. Den genom-skalerbare
metabolske model for gaer blev brugt til at designe en strategi for heterolog produktion af
vanillin i S. cerevisiae. Ved at fglge en in silico designet strategi som blev foresldet af
computerprogrammet OptGene og algoritmen “minimization of metabolic adjustment” (MoMA)
som malfunktion, blev der opnaet en fordobling af udbyttet. | et efterfglgende studium blev det
pavist, at det metabolske flux gennem vanillin syntesevejen var begraenset af aktiviteten af et af
enzymerne i syntesevejen. Denne begransning blev udelukkende set i en af de mutanter, der
blev skabt som funktion af den in silico guidede strategi naevnt ovenfor, hvilket viser
ngdvendigheden af at ggre rede for hele det metabolske netvaerk, nar fluxet igennem en enkelt
biosyntesvej skal @ndres. | denne sammenhang er regulatoriske gener attraktive mal for
"metabolic engineering”, fordi de kan @ndre udtrykket af mange gener eller hele biosyntesveje
via en enkelt genetisk andring. | denne rapport bliver det demonstreret, hvordan vanillin
produktionen yderligere kan forgges ved at overudtrykke genet HAP4, der koder for en

transkriptionsfaktor involveret i glukose repression. Selvom inkludering af regulatoriske kredslgb

Xi



i metabolske modeller stadig er i sin barndom, sa viser dette resultat, at disse med fordel kan
udnyttes i “metabolic engineering” strategier. At kunne forudsige de faenotyper, der vil opsta
som funktion af kumulerende mutationer vil kunne bidrage til at forstd sammenhangen mellem
mange gener og deres funktioner, og har derfor et stort potentiale som kan bruges bade i grund-
og i anvendt forskning. Den sidste del af denne rapport angriber denne problemstilling og
beskriver udviklingen af et nyt computerbasere beregningsvaerktgj, der kan simulere metabolske
feenotyper, kaldt MiMBL, og som fokuserer pa at formulere malfunktioner, isser dem der
indvirker pa forskudte metabolske netvaerk. MiMBL blev brugt til at forudse og analysere det
samlede netvaerk af genetiske interaktioner i geer som for nylig er blevet offentliggjort, og det
viste sig, at forudsigelserne ved brug af MiMBL generelt var bedre end dem, der blev opnaet
med andre lignende veerktgjer som for eksempel IMOMA. MiMBL og FBA blev ogsa brugt i
kombination til at fortolke @ndringer i det metabolske kredslgb induceret forarsaget af
deletionen af to gener, hvilket illustrerer hvordan forskellige biologiske principper kan blive

brugt til at opna brugbar mekanistisk indsigt i hvordan det metabolske netveaerk fungerer.
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Nomenclature

List of Abbreviations

3DSD 3-dehydroshikimate dehydratase

3DSH 3-dehydroshikimate

ACAR Aryl Carboxilic Acid Reductase

acet acetate

ATP Adenosine Triphosphate

BPCY Biomass Product Coupled Yield

COBRA Constraint-Based Reconstruction and Analysis
DW Dry weight

eth ethanol

FBA Flux Balance Analysis

GLPK GNU linear programing kit

gly glycerol

GRAS Generally Recognized as Safe

hsOMT Homo Sapiens O-methyltransferase

IMoMA linear Minimization of Metabolic Adjustment
MiMBI Minimization of Metabolites Balance

MoMA Minimization of Metabolic Adjustment
NADPH Nicotinamide adenine dinucleotide phosphate
NMR Nuclear Magnetic Resonance

oD Optical Density

PAC Protocathechuic acid

PAL Protocathechuic aldehyde

PCR Polymerase chain reaction

PPTase Phosphopantetheinyl transferase

ROOM Regulatory On/Off Minimization of metabolic flux changes
SAM S-adenosylmethionine

TCA Tricarboxylic acid

UDP-glc UDP-glucose

VG vanillin B-D-glucoside

wT Wild Type
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List of Symbols

A gene deletion

™ gene overexpression

u specific growth rate, h

Mmax maximum specific growth rate, h™*

Ysmetar  Yield of metabolite Metab on substrate S, mgyetan/8s

I'Vietab Specific uptake or production rate of metabolite Metab, mmolyetan/(8ow-h)

X Biomass, gow/I

R? Reward-Risk-Ratio

S Stoichiometric matrix

v vector of all fluxes

Vi flux of reaction i, mmol/(gpw.h)

tm turnover of metabolite m, mmol/(gow.h)

[S] factor for linear scaling of matrix S

€ epistasis

ub upper bound

Ib lower bound

N set of reactions

M set of intracellular metabolites

Ol stoichiometric coefficient of metabolite m in reaction i
min minimization, in the context of linear optimization
max maximization, in the context of linear optimization

B optimal basis matrix

Ci objective function coefficient of variable v;

EI. reduced cost of variable v;

Cs vector of the objective coefficients of basic variables
® Scaling matrix
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Chapter 1: Introduction and Thesis Outline

Understanding how the cell reads and processes the information maintained within the genome
so it displays a given phenotype, is one of the most challenging questions faced in biology. The
presence of a gene does not imply that this gene is continuously expressed. Expressing it to
constant levels, also does not guarantee that it affects the phenotype equally over time or under
different environmental conditions. There are several layers of regulation which allow the cell to
translate its genotype into a phenotype. An integrated approach for studying cellular systems is
expected to enable a better understanding of how this relationship occurs. Systems biology
focuses on elucidating the structure and dynamics of such cellular systems, rather than studying
individual cellular components, such as a given gene or protein. A cellular state is characterized
by a set of expressed genes, a set of synthesised proteins, a set of available metabolites and so
on, yet this does not reveal structural or dynamic cellular organization. Uncovering the complex
and coordinated interactions between cellular components is fundamental for understanding
functional biological systems. For instance reactions must occur between metabolites to form a
metabolic network allowing the utilization of external resources and building of new cells. Many
of these reactions are catalyzed by individual proteins (enzymes), involving interaction between
proteins and metabolites, but also by protein complexes, implying interaction between proteins.
Additionally, important regulatory mechanisms also engage interaction between cellular
components, such as allosteric regulation, transcriptional regulation or signal transduction.
Dynamic coordination of all cellular processes arising from such interactions ultimately enables

the cell to translate its genotype to the phenotype.

Metabolism is arguably the subcellular system which is closest to the phenotype, as observable
phenotypic traits, such as growth, have a very tight association with metabolic features, for
instance provision of energy and cellular building blocks. Cellular metabolism has been studied
for several years within Biochemistry and a comprehensive collection of metabolic reactions
have been characterized. The rapid development of molecular biology techniques allowed
further characterisation of biochemical reactions by helping to uncover gene-to-enzyme
associations. Yet, as much as metabolism can be considered a well characterized subcellular
system, in many cases phenotype still cannot be predicted from genotype, especially in cases
involving changes in the expression of multiple genes. High confidence prediction of cellular
phenotypes, as reflected in their metabolic physiology, by using genome-scale metabolic models

is commonly confined to prediction of gene essentiality. With the increasing availability of
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molecular biology tools and high-throughput characterization of cellular phenotypes,
computational approaches which facilitate a systematic and integrative approach for associating

phenotypic traits to genotypic features are in demand.

The aim of my thesis was to investigate genotype to phenotype relationships in a systematic
manner, through stoichiometric simulation of metabolic phenotypes by using genome-scale
metabolic models. Predicting the behaviour of the metabolic network in the absence of a
reaction is considered to be a proxy for predicting the phenotype of the corresponding gene
deletion mutant, therefore large-scale metabolic models provide excellent platforms for
investigating genotype-phenotype relationships. Saccharomyces cerevisiae was chosen as a
biological system, because of its status as a eukaryotic model organism, for which there is
extensive knowledge and technology available. In the present work, stoichiometric modeling of
the yeast genome-scale metabolic network was used for studying genetic interactions, as well as
for providing guidance for a metabolic engineering strategy for increasing heterologous vanillin
production. Both applications are based on predicting the phenotype based on known genetic

modifications (Fig. 1.1).

Chapter 3
Metabolic engineering d

Guidance for experiments

OO

HOMNOK

Sots ¢
Metabolic

POK modeling C?

Genotype Phenotype

e

Data interpretation
+-_ Genetic Interactions d
Chapter 5

Figure 1.1: Genome-scale metabolic modeling for investigating genotype to phenotype relationships. Different
genetic modifications (genotypes) are represented by different colours, yellow or red, as well as their corresponding
phenotype. The wild type is represented in gray, while the combination of the yellow and red genetic modifications is
represented in green. Stoichiometric modeling was used to provide guidance for metabolic engineering (top arrow)
and for analysing genetic interactions, where the simulation results were used to suggest possible modes of operation
of the metabolic network, while facilitating a methodical analysis of the functional association between genes (bottom
arrow).
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For metabolic engineering, prediction capability of a multitude of phenotypic traits is usually
desired upon deletion of a gene(s) (reaction(s)), including growth and production yield of the
compound of interest. For analysis of genetic interactions, the phenotypic trait most commonly
measured is growth, due to the simplicity of its quantitative assessment for a large number of
mutants. Although stoichiometric modeling is used in both cases for predicting the phenotype of
gene deletion mutants, different uses of the simulation results are illustrated by the different
applications. For metabolic engineering, stoichiometric modeling was used to provide guidance
for experimental work. For analysing genetic interactions, the simulation results were used to
suggest possible modes of operation of the metabolic network, while facilitating a methodical

analysis of the functional association between genes (Fig. 1.1).

Chapter 2 provides state-of-the-art concepts and a literature survey about Systems Biology,

Metabolic Engineering and Genome-Scale Metabolic Modeling.

Chapter 3 illustrates a case study of application of the yeast genome-scale metabolic model
towards the improvement of a vanillin cell factory. Vanillin is one of the most widely used
flavouring agents, and it is mainly obtained via chemical synthesis from petrol based substrates.
Environmental concerns raised the urge for an alternative, and de novo vanillin biosynthesis
from glucose in S. cerevisiae was previously demonstrated. Prior to engineering the cell factory
towards increased vanillin production, product toxicity to the host is decreased by supplying the
cell factory with an additional enzymatic step catalyzing vanillin glycosylation. A metabolic
modelling guided strategy to improve the assembled cell factory is then presented and
implemented. The results indicate the relevance of accounting for the entire metabolic network
for increasing the flux through the pathway of interest, by the manipulation of genes which are

metabolically distant from the target compound.

While taking a global engineering approach for strain improvement, it is assumed that the flux
through the pathway of interest is controlled by the availability of precursors and cofactors,
rather than by enzyme activity. However, metabolic control resides in a subtle balance between
the contributions of both factors and a shift can take place upon altering one of them. Indeed, in
Chapter 4 it is shown that, after global engineering for vanillin production, conversion of
pathway intermediates to the final product is limited by the availability of one of the pathway
enzymes. Importantly, it is demonstrated that such enzyme limitation arises exclusively when
combined with a global engineering approach, supporting the need of a holistic view of
metabolism for successful metabolic engineering. The advantages of such integrative perception

of cellular processes for metabolic engineering are further explored by engineering the
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regulatory circuit for glucose repression, with the goal of simultaneously modulating several

metabolic fluxes towards additional vanillin production.

Chapter 5 presents a new computational tool for metabolic modelling, focused on the
formulation of objective functions. Several objective functions currently used to describe
biological principles for stoichiometric modelling are shown to be susceptible to stoichiometric
representation of biochemical reactions. A number of examples are used to illustrate how this
affects phenotype simulation results for different purposes, namely for estimating internal flux
distribution, as well as for predicting the behaviour of perturbed metabolic networks, e.g. by
deleting one or more genes. A new approach for formulation of biological principles is
presented, Minimization of Metabolites Balance - MiMBI, and several examples are given for
formulation of other biological principles using MiMBI methodology. Particular focus is given to
prediction of metabolic phenotypes for perturbed networks, because this feature is on the basis
of many relevant conclusions and applications driven from genome-scale metabolic modelling. A
prominent example is the prediction of genetic interactions, which are revealed from phenotypic
behaviour of gene deletion mutants and often emerge from functional relationship between the

deleted genes.
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Chapter 2: Systems Biology, Genome Scale Metabolic Modeling

and Metabolic Engineering of S. cerevisiae - Acts and Facts

Summary

A holistic view of the cell is fundamental for gaining insights into genotype to phenotype
relationships. Systems Biology is a discipline within Biology, which uses such holistic approach by
focusing on the development and application of tools for studying the structure and dynamics of
cellular processes. Metabolism is an extensively studied and characterised subcellular system,
for which several modeling approaches have been proposed over the last 20 years. Nowadays,
stoichiometric modeling of metabolism is done at the genome scale and it has diverse
applications, many of them for helping at better characterizing genotype to phenotype
relationships. Metabolic Engineering is one of the fields in which the complete understanding of
such relationship would have a striking impact, since phenotype prediction based on genotype is
fundamental for rationally engineering metabolic networks. This chapter aims at providing the
reader with relevant state-of-the-art information concerning Systems Biology, Genome-Scale
Metabolic Modeling and Metabolic Engineering. Particular attention is given to the yeast

Saccharomyces cerevisiae, the eukaryotic model organism used thought the thesis.
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Systems Biology

During the last 20 years, Biology went through a fundamental change of focus from individual
genes and proteins to cellular processes and interactions between the cellular components [1,
2]. Knowing all the genes, proteins and metabolites (components) existing within the cell at a
given stage is not sufficient to understand how the cell operates. How these components
interact, what phenotypic traits they trigger and how do they enable the cell to respond to
environmental changes, is fundamental to understand a functional system. Such holistic
approach to study biological systems has been termed Systems Biology, as suggested by Ideker
et al. in 2001 [3] and Kitano in 2002 [4]. The aim of Systems Biology is studying “the structure
and dynamics of cellular and organismal function”. It implies the integration of different data-
types resulting from high-throughput measurements of cellular processes in order to understand

the functional principles of biological systems [3, 4].

Given its holistic nature, Systems Biology is a very close interplay between Biology,
Computational Biology and Technology [1]. Advances in technology are fundamental for
automatization of experiments, e.g. the synthetic genetic array - SGA [5, 6], as well as for
acquiring new types of biological data, ranging from pioneering DNA sequencing [7] to the
contemporary challenge of metabolome analysis [8]. Computational biology contributes with
tools for modeling and data analysis, primarily to understand the biological principles
underplaying the data, as well as for guiding experiments [1, 4]. Biology holds the questions to
be asked and experimental expertise, ranging from molecular biology of a simple bacterium to

the understanding of brain function or human diseases.

An ‘omics’ briefing

Systems Biology becomes progressively more quantitative, so as to draw meaningful conclusions
from genome-wide/large datasets. The generation and study of such large datasets is generally
referred as ‘omics’ data. Genomics, together with Functional Genomics, focus on identification
of genes and entire genome sequences, as well as assignment of gene functions. Recently, the
availability of new high-throughput sequencing technologies and consequent decreased price of
genome sequencing, lead to the development of Comparative Genomics [9] and Metagenomics
[10]. On the path of understanding genotype to phenotype relationship, a comprehensive
assessment of gene expression patterns through quantification of RNA molecules is the subject
of Tanscriptomics [11-13]. Because regulation occurs at several layers of the central dogma (Fig.

2.1) [14, 15], such as post-transcriptional modifications and protein degradation, correlation
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between gene expression and protein concentration is not always observed [16]. Proteomics
focus on the quantification of protein concentrations. Mass spectrometry-based methods have
been recently established and, so far, they are the most comprehensive methods for proteome
quantification [17, 18]. Metabolomics and Fluxomics are, among the previously mentioned data-
types, those that are closer to the cellular phenotype. Metabolomics aims at quantifying all
measurable intracellular and extracellular metabolites (e.g. carbohydrates, lipids, amino acids),
as well as their changes over time or under different environmental/genetic conditions. On the
other hand, Fluxomics involves the quantification of rate of the metabolic reactions at the
network scale, ultimately leading to a comprehensive characterization of the functional state of
the metabolic network. Although different in terms of implied functional information, these two
fields are closely related by the fact that they both involve (relative) quantification of
(intra)cellular metabolites. Also here, mass-spectroscopy and NMR are the preferred detection

methods, often associated with a chromatographic pre-separation of the extracts [19].
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Figure 2.1: Systems Biology tools for understanding genotype to phenotype relationships.

More than quantification of metabolites, Fluxomics aims at inferring the rate of reactions
between metabolites, thereby tracing what metabolic pathways are active under the given
conditions. C isotope labeled substrates (e.g. glucose) are commonly used, since the use of
different metabolic pathways often results in different isotope labeling patterns [20]. This
approach is also called metabolic flux analysis (MFA) and it is very useful for elucidating pathway

bottlenecks and regulatory mechanisms within metabolic networks [21-23]. While
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Transcriptomics, Proteomics and Metabolomics focus on characterizing cellular components and
their states, Fluxomics and Phenomics characterize cellular functional states and generally
referred as Interactome (Fig. 2.1) [24]. The list of comprehensive data collection and analysis
continues to expand and more specialized fields are appearing, such as Lipidomics, Localizomics,

Glycomics, Phosphoproteomics and others (reviewed in [24, 25]).

Integrating and interpreting high-throughput data

The cellular phenotype results from the interplay of many cellular components, such as several
genes, proteins and metabolites [2, 26]. Thus, comprehensive studies for extending our
knowledge about cellular function often involve the integration an interpretation of different
high-throughput data-types. For example, Usaite et al. reported the reconstruction of the yeast
SNF1 kinase regulatory network and its central role in energy metabolism by using a combined
analysis of transcriptome, proteome and metabolome [27]. In another example, Nagaraj and
colleagues reported the mapping of a human cancer cell line using transcriptome and proteome
[28]. In order to cope with increasing high-throughput data generation, computational biology
has major tasks to perform, not only the establishment and maintenance of data repositories,
but also the provision and update of visualization software for several different types of data,
and, most importantly, the development of cutting-edge algorithms for data integration,
interpretation and guidance of experiments [24, 29, 30]. Aiming at improving cooperation
among different fields in Biology, standardization of the information is an absolute requirement.
To this end, the Systems Biology Markup Language (SBML), an XML-based format, was

developed for representation of biological networks [31].

Saccharomyces cerevisiae

Saccharomyces cerevisiae is a unicellular eukaryote classified in the kingdom of Fungi. It is a 5-10
um diameter ovoid-shaped budding yeast, its life cycle alternates between haplophase and
diploidphase and both can exist in stable cultures. This yeast has been used for brewing, backing
and wine fermentation since 6000 BC. However, it was not until the 19" century that it became
object of study, when Louis Pasteur and others firstly associated fermentation with yeast
metabolism. The species was named after its ability to ferment sugars - “Saccharomyces”,
meaning sugar fungus, and to produce beer - “cerevisiae”, from “cerveja” in Portuguese or

“cerveza” in Spanish [32, 33].
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Briefing on yeast physiology and central carbon metabolism

Much of what is known today about S. cerevisiae is due to its biotechnological applications since
many years. This yeast naturally produces ethanol and carbon dioxide in aerobic conditions and
high sugar concentration, also known as overflow metabolism or Crabtree effect [34]. Although
energetically unfavorable, alcoholic fermentation is the main source of energy production in
high sugar conditions, while the tricarboxylic acids (TCA) cycle and oxidative phosphorylation are
rather less active [34—36]. In aerobic batch conditions, a first exponential phase of growth occurs
when glucose is consumed to form biomass and fermentation products, with a biomass yield on
glucose of ~3.6 gpw/C-mol [34]. After glucose depletion, the culture typically experiences a short
lag phase (diauxic shift) and restarts to grow on the available carbon sources resulting from
fermentation, mainly ethanol, although glycerol and acetate are also commonly found. The
second exponential growth phase is characterized by a slower growth rate (~0.087 h™* compared
to ~0.34 h™ exponential growth rate on glucose), but higher biomass yield, ~10.5 gow/C-mol, due
to the occurrence fully respiratory metabolism [34]. Similarly, fully respiratory growth on glucose
is achieved in continuous cultivation (~15 gpw/C-mol), where glucose is kept at low
concentration and the dilution rate (and hence growth rate) is below the critical value for onset
of fermentation [34, 37]. As in most of the living organisms, central carbon metabolism in yeast
provides all the necessary building blocks for biosynthesis of macromolecules: 1) hexose-
monophosphates, needed for polysaccharides and pentose-phosphates for nucleic acids; 2)
triose-phosphates, needed for glycerol of phospholipids; 3) pyruvate, the main branch point
between respiro-fermentatitive metabolism, required for amino acids biosynthesis as well as for
4) Acetyl-CoA, needed for fatty acids; 5) oxaloacetate and 6) 2-ketoglutarate, major building

blocks for several amino acids [34].

Glucose metabolism in S. cerevisiae has been extensively studied, as glycolysis is usually the
pathway carrying the highest flux in the metabolic network [34]. In fact, in the presence of
glucose, most of the genes responsible for utilization of alternative carbon sources, as well as for
respiration and gluconeogenesis, are repressed due to a phenomenon known as “carbon
catabolite repression” or simply “glucose repression” [38—42]. The presence of glucose on the
medium is sensed either by membrane-anchored sensor proteins or by hexose transporters
(responsible by hexose uptake), which trigger a signaling cascade ultimately responsible for
transcriptional repression/activation of several genes [38, 39]. Two signaling pathways work in

synergy; glucose induction pathway and glucose repression pathway (Fig 2.2).
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Figure 2.2: Simplified representation of the main regulatory pathways for glucose repression in S. cerevisiae. The
glucose repression pathway (yellow) is responsible for repressing of genes involved in (or activating) the uptake of
alternative carbon sources (e.g. GAL4, SUC2), gluconeogenesis, respiration and TCA cycle (e.g. HAP4).The glucose
induction pathway (blue) is mainly responsible for the de-repression of hexose transporters, HXT1-HXT16 (Adapted
from [43]).

The glucose induction pathway is mainly responsible for the de-repression of hexose
transporters, mediated via the membrane receptors Snf3 and Rgt2 leading to Mth1 and Std1
degradation and consequent Rgtl hyper-phosphorylation, and therefore inability to repress the
hexose transporters (HXT1-HXT16) [44]. The glucose repression pathway is mainly responsible
for repressing genes coding for enzymes involved in the TCA cycle, electron transport chain,
gluconeogenesis and consumption of alternative carbon sources. Once inside the cell, glucose is
phosphorylated by Hxk2, the Snfl complex is inactivated and Migl is no longer phosphorylated
and thereby it represses several genes by binding their promoter regions [44]. Given its similarity
to higher eukaryotic systems including humans, as well as its relevance for biotechnology
applications, glucose repression in yeast has received much attention, especially the regulatory

proteins Snfl, Hxk2, Mig1/Mig2 and the transcriptional activator Hap4 [27, 43—-45].

An eukaryotic model organism

A continuously growing and highly interactive scientific community contributed to a great extent
to the establishment of Saccharomyces cerevisiae as a eukaryotic model organism. One of the
most important achievements in yeast genetics was the pioneering possibility to perform genetic
manipulations through transformation, during the 1970’s [46, 47]. In 1996, S. cerevisiae was the
first eukaryote with its complete genome sequence available, as a result of an EU-funded
consortium [48]. By then, from the ~6000 structurally annotated genes, a small fraction had
characterized biological function (30%). Nowadays, the genes with unknown function in yeast

range from 10 to 15% [33, 49]. The availability of the genome sequence made possible to
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perform large-scale studies, thus yeast became a preferred organism for establishing several
high-throughput assays, as well as for libraries construction; gene expression started soon being
studied with microarray technology [50], as well as the first protein-protein interactions
networks also started to be uncovered [51]. In 2002, a yeast deletion library was constructed,
where nearly all the open reading frames were deleted [52]. In 2003, a comprehensive library of
green fluorescent tagged proteins (GFP) was assembled in order to study protein cellular
localization [53]. During the same year, the first of a series of genome-scale reconstructions of
the S. cerevisiae metabolic network was published [54]. Again, this was the first of its kind

among eukaryotes.

As consequence of a continuous development of novel technological resources, the number of
high-throughput studies using yeast continues to increase. One of the most recent examples is
the assembly of a comprehensive double gene deletion library and the corresponding genetic
interactions, by Constanzo et al. [55, 56]. A genetic interaction (also called epistatic interaction)
occurs when the combination of gene deletions results in a phenotype different than expected
based on the individual gene deletion phenotypes [57-59]. When the observed phenotype for a
double deletion mutant is worse than expected, it is said to be a negative or aggravating
interaction between the two genes. If the opposite happens, it is a positive or alleviating
interaction. Genetic interactions are often the outcome of associated gene functions, and
therefore highly contribute to better understand genotype to phenotype relationship. The study
by Constanzo et al. uncovered the interaction profile of ~75% of the yeast annotated genes.
Similar biological processes were found to cluster together and functional cross-connections
between all bioprocesses (pleiotropy) were observed. In a subsequent work, Szappanos et al.
expanded the genetic interactions dataset to include the interaction profiles of 80% of the
metabolic genes and performed an integrated data analysis using a genome-scale model of yeast
metabolism [60]. They investigated the connection between degree of genetic interaction and
pleiotropy within metabolism, a feature also observed in the dataset by Constanzo et al..
Ultimately, they introduced a machine-learning method to reconcile empirical interaction data
with the model predictions, in order to improve the predictive power of the metabolic model.
Within my thesis, the genetic interactions dataset focused on metabolism was used to validate a
new algorithm for predicting cellular phenotype using the yeast genome-scale metabolic model,
while simultaneously aiming at gaining new insights about modes of operation of the metabolic

network.
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Profiting from accumulated knowledge over the years, and due to conserved protein sequences
and functions across species up to higher eukaryotes, S. cerevisiae provides useful insights in
several disciplines of Biology and Medicine, ranging from Biochemistry and Evolution to Aging
and even complex Neurological Disorders studies [26, 61, 62]. Many of the generated resources
useful for yeast research are accessible from dedicated databases and repositories, some of

them presented in Table ST2.1.

Industrial applications

Since the 1970’s, when vyeast geneticists introduced direct genetic engineering by
transformation, a complete new dimension was added to biotechnology of S. cerevisiae. This
would allow not only improving current knowledge about yeast products and physiology, but
also the possibility to extend the genetic repertoire of the cell factory in order to obtain desired
features, such as expanding substrate and product ranges [33]. Together, the practical
knowledge about yeast physiology and biochemistry obtained over the years and the genome
sequencing project, further enhanced its potential for industrial application. In fact, S. cerevisiae
presents several advantages for applications in industry: it holds the GRAS (Generally Recognized
as Safe) status from the American Food and Drug Administration; its genetic engineering toolbox
is highly optimized; extensive knowledge about physiology and biochemistry; relatively easy
scaling-up of industrial processes; tolerance to low pH (3 to 5), high sugar and ethanol
concentration, thereby decreasing the risk for bacterial contamination; ability to grow

anaerobically and aerobically; ability to utilize a wide range of sugars [63].

Nowadays, a broad variety of compounds are obtained from S. cerevisiae; not only
pharmaceutical proteins, as human insulin, hepatitis and papillomavirus vaccines, but also fine
and commodity chemicals and biofuels [19, 64]. While protein production potential by this yeast
can be limited by its inability of accurately achieve the desired glycosylation patterns, production
of small molecules is continuously gaining popularity among industry and academia [64, 65]. As a
matter of fact, the fossil based natural resources are becoming scarce, and at the same time
they directly or indirectly provide most of the fuels, fine and commodity chemicals worldwide.
Biotechnology presents an attractive alternative, since microorganisms can be used to convert

renewable sources, e.g. plant biomass, to valuable chemicals [64, 66].

Figure 2.3 shows several examples of added-value compounds which have been, or can
potentially be, produced in S. cerevisiae. Among the represented compounds, native molecules

such as and glycerol and fumarate are currently used as commodity chemicals. Biofules are also
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strongly represented; ethanol, native to yeast and by far the dominating biofuel, but also other
biomolecules with better physicochemical properties, such as propane-1,2-diol, isobutanol and
2/3-Methyl-1-butanol. The extensive list of fine chemicals contains polyketides (6-methylsalicylic
acid), isoprenoids and sesquiterpenes (farnesol, valencene, artemisinic acid), carboxylic acids
and aldehydes (vanillin), polyunsaturated fatty acids (PUFAs), among others [67—76]. These are
chemically very diverse molecules, typically found as secondary metabolites of fungi, bacteria or
plants, and have several applications as pharmaceutical ingredients, flavouring and preserving
agents to be used in perfume and food industries [19, 64]. With a currently increasing capability
for screening for novel compounds, many other molecules are to come [19, 77]. Despite their
chemical diversity, most of the compounds can be obtained from intermediates of the central
carbon metabolism, such as pyruvate and acetyl-CoA or from amino acid biosynthesis, such as
aromatic amino acids and isoleucine, leucine and valine super family (Fig. 2.3). Tuning the
distribution of the metabolic fluxes around these key branches of the metabolic network could,
in principle, favour the synthesis of all the products obtained from the same native precursor.
Additional network rewiring would be required for specific energy and cofactor supply for each
of the products. Retrofitting of the metabolic network towards desired cellular properties has

been termed Metabolic Engineering [78, 79], as described in detail in the next section.

Metabolic Engineering

Many added-value biomolecules are naturally found in a panoply of microbial or plant hosts.
However they are usually present in trace amounts, which impair the economical viability of a
potential biotech application [19, 77]. In 1991, J. Bailey and G. Stephanopoulos proposed, in two
independent publications, what today is a field in biological sciences, Metabolic Engineering [78,
79]. Metabolic engineering was defined as “the improvement of cellular activities by
manipulations of enzymatic, transport and regulatory functions of the cell with the use of
recombinant DNA technology” [79]. This way, they propose the retrofitting of the metabolic
network towards the desired feature in a rational and targeted manner. Indeed, in order to
improve the yield and productivity of the desired product, knowledge-oriented strategies are
required often involving 1) improving precursor metabolites and cofactors supply, 2) up-
regulation of genes involved in product export routes or 3) redesign of metabolic pathway, so

feedback inhibitions and competing pathways are avoided, among others [19].
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One of the most prominent examples of successful metabolic engineering is the production of
the antimalarial drug precursor, artenimisinic acid, in S. cerevisiae [73]. The strategy required the
heterologous expression of two enzymes for synthesizing artenimisinic acid from farnesyl
pyrophosphate, an intermediate of the mevalonate pathway, essential for obtaining ergosterol.
Additionally, de-regulation of the mevalonate pathway was performed by overexpressing several
pathway genes, in order to increase the precursor supply for artenimisinic acid [73]. Other
examples of successful metabolic engineering are higher alcohols production by E. coli [80],
sesquiterpenes and biofules production by S. cerevisiae [76, 81]. Applications of metabolic
engineering are not limited to increase product range and yield. Several attempts for
engineering microbes for expanding substrate range are underway, due to the absolute
requirement of avoiding resource competition between food and chemicals production [63, 64,
82]. Substrates such as waste cheese whey and agricultural by-products (corn-cob, bagasses and
lignocellulosic plant stocks) represent possible options, yet they usually comprise a diversity of
sugars which are not naturally metabolized by conventional microorganisms [64, 83]. Thus,
several efforts have been put into expanding S. cerevisiae range of substrate utilization, e.g.

cellulose [84], L-arabinose [85], lactose [86], galactose [62] and xylose [87, 88].

Metabolic engineering cycle

The process to obtain microbial cell factories engages a sequence of design, construction and
analysis, often applied in a cyclic manner (Fig. 2.4) [89]. Over the last decade, advances in
Synthetic and Systems Biology generated new resources and technologies extremely useful for
metabolic engineering [19, 90]. Nowadays, the concept of metabolic engineering for strain
improvement is expanded from “rational metabolic engineering” to include “evolutionary
engineering” and “reverse metabolic engineering”, with implication on different stages of the

strain improvement process [19, 90].

The first stage while establishing a cell factory is the decision about what workhorse to select.
Several factors must be considered, such as whether the host is, or not, a native producer, its
response to different substrates, toxicity of the compound and pathway intermediates,
availability of genetic engineering tools, availability of vast knowledge about physiology and cell

biology (important for further engineering) and suitability to the fermentation process [77].
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Figure 2.4: Metabolic engineering cycle. Improving cell factories involves three consecutive steps, design,
construction and analysis. Each circle corresponds to one step. Design employs computational tools and comparative
‘omics’ in order to find target for genetic manipulation. Construction employs genetic and protein engineering, as well
as synthetic biology tools for introducing the desired modifications. Adaptive evolution can be used as a global
approach to evolve the cell factory under the appropriate selective pressure, so the desired phenotype is favored.
Analysis employs strain characterization and systems biology tools for obtaining a complete readout of the engineered
phenotype. Computational biology plays a fundamental role, often applied for integrated data analysis.

The design phase might be the first stage of the cycle, when one aims at producing a
heterologous compound, or a more advanced step, when the host already produces the desired
metabolite and the goal is to improve its productivity [89]. The design of cell factories for
heterologous production of valuable compounds benefits from Synthetic Biology tools for
assembly of new metabolic pathways [91]. In silico tools allowing the simulation of novel
pathways, such as the Biochemical Network Integrated Computational Explorer (BNICE), are
especially helpful for providing guidance for experimental work [92]. Alternatively, when the aim
is to improve an existent pathway, the question is how to retrofit the entire metabolic network
so it can support high product yields. Several options can be employed here; one possibility is to
take a rational approach involving a genome-scale metabolic model and available algorithms to
find gene targets to be manipulated, thereby increasing the production [93, 94]. This approach is
discussed in detail in the next section. Otherwise, one can take an organism which has the
desired phenotype, carry out different high-throughput analysis and perform reverse
engineering to implement the relevant findings on the selected strain. The organism with the
desired features might be a native producer, or it may also be found while screening a mutant

library, or even a mutant obtained through adaptive evolution [95-98].

The construction step is the implementation of the designed strategy. Synthetic biology and

protein engineering are the excellence fields, providing the most sophisticated tools for
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engineering the cells. Depending on the strategy to be implemented, different tools might be
applied for constructing the improved cell factory. Some of them focus on targeted effects, such
as control of gene expression and protein activity, while other approaches are rather global,
such as adaptive evolution or global transcription machinery engineering [19, 90]. Quantitative
control of gene expression levels is the most established approach and it can be achieved in a
number of different ways. One option is to control of the gene copy number, which can be
accomplished by providing a plasmid or by genomic integration (or deletion) of the target gene.
Instead, the native promoter of the target gene can also be swapped with another promoter of
interest. Both approaches for controlling gene expression largely benefit from promoter
libraries, generated either from native [99] or synthetic promoter regions [100-102]. Finally,
riboregulators, such as antisense RNA or short interfering RNAs (siRNA) can also be used to
efficiently regulate gene expression by post-transcriptional control [103—105]. The increasing
availability of fast cloning techniques, such as the Gateway system [106] or USER cloning [107,
108], highly facilitate the construction step, since they allow the assembly of fairly big DNA
constructs, while being relatively cheap and uncomplicated techniques. Rather than controlling
gene expression, increasing efficiency of an enzyme, either by increased enzyme activity or
selectivity (e.g. change of the cofactor usage), constitutes another option for improving cell
factories. Protein and enzyme engineering research areas contribute with different options; 1)
rational design by site-directed mutagenesis based on existing knowledge and computational
design, and 2) directed evolution achieved through random mutagenesis based on error-prone

PCR or DNA shuffling [109, 110].

Global approaches are useful if fine-tuning of multiple genes is required. Multiple Gene
Promoter Shuffling — MGPS and global Transcription Machinery Engineering — gTME, are two
examples [111, 112]. Modulating the spacial organization of enzymes, either by using a protein
scaffold or by directly fusing of the proteins of interest, is an alternative option also to be used
for increasing the metabolic flux through a given pathway [113, 114]. Al last, adaptive evolution
can be used as a global approach to evolve the cell factory, if the appropriate selective pressure

can be applied and the desired phenotype is favored [62].

The analysis step aims at evaluating the cell factory and it always follows the strain construction
and precedes the next design step. In order to assess the quality of the cell factory, fully
characterization of the obtained mutant is needed. This usually involves physiological
characterization of the strains, if possible, in well controlled conditions [89]. The analysis of

mutant phenotypic traits has improved enormously within the last 10 years, since it highly
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benefits from Systems Biology tools, such as transcriptome, proteome, metabolome and
interactome [19, 90]. If the selected construction strategy implied random genetic mutations,
e.g. random mutagenesis or adaptive evolution, genome (re)sequencing will also take part in the
analysis [97]. Computational tools very much contribute to the data analysis, since models are
helpful for data integration and interpretation, especially when multiple types of data are in use
[93]. The algorithm for identification of reporter metabolites is a pioneering example of
integration of gene expression data with the genome-scale metabolic network topology in order
to find the metabolites around which the most significant transcriptional changes occur [115].
The analysis step is fundamental for a good following strategy design step in the case of further
improvement, yet it may be also the last step of the strain improvement, when the desired

features are obtained [89].

Genome-Scale Metabolic Modeling

In order to fully characterize a given cellular state, one would profit of knowing all the genes
being transcribed, as well as all the proteins and metabolites existing within the cell given
certain conditions. Yet, as already mentioned above, how all these components interact is
fundamental to fully understand biological systems. To this end, metabolism is a privileged
subcellular system, since interactions between enzymes and substrates/products have been
extensively collected and characterized over several years [34, 93]. Metabolic pathway
reconstruction has been around for reasonably long time, and availability of complete genome
sequences, from the late 1990’s, prompted the assembly of complete metabolic networks, the
so called genome-scale metabolic network reconstructions [93, 116]. Such reconstructions
essentially contain a set of stoichiometric equations representing the biochemical reactions of
the cell, as well as detailed information about reaction reversibility and cofactor usage.
Furthermore, as many of the reactions have known association with genes, these models

provide an excellent opportunity for studying genotype to phenotype relationships [93].

Briefing on genome-scale metabolic models reconstruction

Historically, the initial application of genome-scale metabolic models was to provide
understanding of the characteristics of microbial pathogens, so the first model available was for
Haemophilus influenza [117]. Since then, several organisms had their network reconstructed,
including E. coli [118], among other bacteria, S. cerevisiae [54], the first eukaryote, Arabidopsis

Thaliana [119], the first plant, and even Homo sapiens [120]. To date, more than 60 species have
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genome-scale metabolic reconstructions available and an especially dedicated knowledgebase —
Biochemical Genetic and Genomic (BiGG) — is assembled [121]. Since whole genome sequencing
prices continue to decrease and an automated pipeline for metabolic network reconstructions is
already available, many more genome scale reconstructions are to come [122]. Kim and co-
workers (2011) provide a comprehensive timeline of genome-scale models reconstructed since

1999 until 2011 [116].

Methods for building genome-scale metabolic reconstructions have been established and
extensively reviewed [116, 123, 124]. There are three important steps; 1) initial network
reconstruction is carried out based on the functional annotated genome sequence followed by
2) extensive literature search for collecting biochemical evidence from several different sources
including databases, text books and scientific articles. As much information as possible is
collected about enzymes and reactions characteristics, such as EC number, localization,
associated gene(/s) and reaction reversibility, so as to obtain a well curated reconstruction. 3)
The reconstruction is converted into a mathematical model (described in the next section) that
can be analysed through constraint based approaches and validated using experimental data on
cell physiology. Although network reconstruction has been extensively standardized, new
relevant information about the organisms is constantly arising, especially concerning organisms
with extensive research communities, such as S. cerevisiae or E. coli. Thereby, several updated
and, in some cases, manually curated high-quality models are usually available for such
organisms. S. cerevisiae is an outstanding example with 10 different models available, including a
consensus model obtained by a community effort towards standardization of this resource [125,

126].

Applications of genome-scale models

The applications of the genome-scale metabolic models are continuously increasing and they are
often conveniently divided into different categories, such as: contextualization of high-
throughput data, directing hypothesis-driven discovery, network properties analysis, study of
multi species relationships, evolution of metabolic networks and guidance for metabolic
engineering. Several reviews focusing on genome scale models applications are recently

available [93, 116, 126], thus only few examples will be referred here.

Numerous studies are available where the metabolic network is used to interpret high-
throughput data in an integrative fashion [27, 115, 127, 128]. Zelezniak et al. used network

topology analysis to elucidate transcriptional regulatory signals of Type 2 Diabetes [129]. Other
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examples suggest the use of genome-scale models for finding drug targets [130, 131]. Recent
applications have appeared suggesting the use of such models for studying microbial
interactions [132-134]. At last, genome-scale models are extensively used for designing

metabolic engineering strategies [81, 135, 136], also the subject of Chapter 2 of the thesis.

Predicting the distribution of metabolic fluxes

While some applications (e.g. network properties or contextualization of high-throughput data)
often use stoichiometric models as scaffold for analysis, focusing on the network topology,
others make use of the predictive capabilities of the models for estimating cell physiology and
internal flux distributions (e.g. metabolic engineering). Therefore, these quantitative approaches

require a proper mathematical description of the metabolic network and its operation modes.

Already in the 1970’s, Metabolic Control Analysis aimed at elucidating the parameters
responsible for the control of metabolic fluxes [137, 138]. Flux control is determined by the
kinetic parameters of the enzymes, as well as by the thermodynamic constraints of each
reaction. Therefore, kinetic modeling of metabolism requires extensive knowledge about
enzyme parameters, which should, ideally, be collected at conditions similar to those in vivo.
Unfortunately, this is not the case for most of the available data, mostly because of lack of
knowledge for reproducing the intracellular environmental conditions. It was not until 2010 that
efforts have been put together to characterize the intracellular pH, as well as the concentration
of several salts, so standard conditions for measuring kinetic parameters could be established
[139-141]. Yet, dynamic modeling of metabolism would also require information about allosteric
regulation and post-translational modifications of the enzymes, which still remain highly

uncharacterized [142].

In contrast, Metabolic Flux Analysis (or Metabolic Network Analysis) became popular in the
1990's, initially using models describing the central carbon metabolism, and it aims at
elucidating the metabolic flux distribution based on reaction stoichiometry, metabolite exchange
rates and thermodynamic constraints [21, 126, 143]. This approach for modeling cellular
metabolism relies on mass conservation and thermodynamic constrains at a steady state,
thereby it does not require extensive knowledge about reaction kinetics. The metabolic model is
represented as a system of linear equations (Fig. 2.5A). The stoichiometric coefficients are
represented in the stoichiometric matrix, where the number of rows corresponds to the number
of intracellular metabolites, and each column corresponds to a reaction (Fig. 2.5B). Because the

metabolic networks usually contain more reactions than metabolites (more linearly independent
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variables than constraints), the system is frequently underdetermined and many solutions are
possible. There are two major categories for solving such linear system, thus predicting what
metabolic pathways are active under certain environmental and genetic conditions: pathway-
based approaches and optimization-based approaches [144]. Pathway-based approaches
explore the entire reactions space by using one of the four methods currently established:
extreme pathways [145], elementary flux modes [146], extreme currents [147] and minimal
generators [148] (reviewed in [149, 150]). Given the combinatorial nature of the underlying
solution space, application to large-scale metabolic networks, as genome-scale models, is still
limited [151]. Therefore, optimization-based approaches, which use the same mass balance and
thermodynamic constrains, can be applied in order to find the active flux distribution by using a

pre-defined objective function.
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Figure 2.5: Fundamentals of optimization based approaches for simulation of cellular phenotype. A) The metabolic
network, which contains all stoichiometric relationships between metabolites (circles), as well as reversibility
information concerning all the reactions (arrows). U1 represents the reaction for substrate uptake (red). Reaction B
(green) connects all the metabolites required for growth. Reaction R9 (purple) represents a metabolite which is
known to be secreted (blue circle). B) The stoichiometric matrix contains all the stoichiometric coefficients. Each row
corresponds to one metabolite, while each column corresponds to one reaction. The steady state assumption after
applying mass balance constraints to each intracellular metabolite implies that there is no variation of the metabolites
concentration over time (column of zeros). C) The stoichiometric matrix, together with the thermodynamic
constraints, as well as information about metabolites uptake and secretion constraint the solution space. D) An
objective function is established and maximization/minimization of the objective function yields to the optimal
internal flux distribution (yellow).
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Flux Balance Analysis (FBA) was initially proposed by Varma and co-workers in 1993, and it was
the first optimization-based method established for estimating active flux distributions [152,
153]. The problem was implemented by using a linear programming formulation (LP [154]), and
solved for maximizing growth, hypothesised as metabolic objective function (Fig. 2.5D) [152,
153]. Reactions reversibility information is used for upper and lower bounds to constraint the
flux of the reactions (variables), and the exchange rates between the cell and the extracellular
broth, e.g. glucose uptake and ethanol production rates, are also taken into account for further

constraining the solution space (Fig. 2.5C).

max ve,, .
st. S-v=0
v <y, < VieN
Ve Sa
Vo 2b

eth =

Where Veoren represents the flux through the reaction converting all required metabolites into
biomass (biomass equation), S represents the stoichiometric matrix, v is the vector containing
the fluxes, v,-“’ and v,-“b correspond to the lower and upper bounds applied to reaction i, vy
represents the glucose (or other substrate) uptake rate, which is experimentally determined (a).
If no more information is given, e.g. experimentally determined fluxes, the upper and lower
bounds are defined by the reaction reversibility. For reversible reactions both upper and lower
bounds are considered to be unbounded (+/- infinity). In the case of irreversible reactions, the

lower bound is set to zero (Fig. 2.5B).

This approach proved to be very useful, especially for predicting gene essentiality and, to some
extent, the flux distribution for microbes growing under optimal conditions [155, 156].
Nowadays, FBA is vastly used for metabolic modeling and there are several reviews on the
method [157, 158]. New methods were established based on FBA, such as dynamic FBA, for
estimating metabolic distributions over a time-course [159], rFBA, for including regulatory
constraints [160], iFBA, which includes regulatory constraints over a time-course [128],
FBAWMC, which includes molecular crowding as additional constraints [161], among many
others (reviewed [94]). The COBRA toolbox is a specialized Matlab package for constraint-based

reconstruction and analysis of genome scale models [162, 163].
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Designing and selecting objective functions for metabolic modeling

While using optimization-based approaches, the outcome of the simulations is totally dependent
on the objective function to be used, therefore it is very important that the selected objective
function is suitable for the problem [154]. The design of objective functions, properly
formulating the desired biological principles, has been a topic of discussion over time.
Computational tools have been proposed to address this question, e.g. ObjFind [164],
GrowMatch [165] and BOSS [166]. Moreover, Schuetz and colleagues experimentally tested
several hypothesis applicable to E. coli growing under different experimental conditions, e.g.
maximization of growth, maximization of ATP yield or minimization of overall intracellular flux
[167]. Their findings suggest that there is no universal objective function which applies to all the
conditions and systems, implying that the biological principles governing cellular metabolism

under different conditions might also be different.

The principle underlying the objective function first selected for FBA, maximization of growth,
implies that the organisms are optimized for maximal growth, coherent with evolutionary
theories [152, 153]. On the other hand, many approaches to answer biological questions lay on
perturbation of the system and evaluation of the outcome. For instance, a widely spread
method for assigning gene function is to delete the gene and look for missing features [52, 55].
Thus, if metabolic modeling is to be used for understanding such mechanisms, other objective
functions must be used instead of maximization of fitness, since deleting a gene may impair the
assumption of “fully adapted behaviour” [168]. Predicting the behaviour of perturbed metabolic
networks is extremely relevant for basic research, as simulation of gene deletions, but also for
applied fields, e.g. metabolic engineering, where the aim is to select the genetic perturbation

leading to specific cellular features [79].

In 2003, Segre and co-workers proposed Minimization of Metabolic Adjustment (MoMA) as
biological principle to simulate the behaviour of perturbed metabolic networks [168]. In contrast
to FBA, MoMA relies on the premise that the mutant flux distribution will be as similar as
possible to that of the wild-type. It was originally formulated as a quadratic programming
problem [169] for minimization of quadratic distance between the flux distribution of the wild-
type and the mutant [168]. A linear programming formulation for MoMA has also been
proposed, IMoMA, and it is has been shown to have comparable results [162]. MoMA was
reported to outperform FBA in some applications, namely related to the prediction of single
gene deletion phenotypes and their internal flux distributions [168, 170], metabolic engineering

[81] and microbial community analysis [132]. It is important to mention that the quality of the
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wild-type flux distribution to be used as reference is crucial for obtaining meaningful results with
MoMA. Such reference flux distribution is often obtained by using FBA while, desirably, extra
information from 3C based flux analysis can be used to impose additional constraints on the
metabolic network. At this stage, minimization of intracellular flux (another objective function)
can also be used in order to minimize mathematical artifacts, such as closed loops of fluxes that
do not bring net change, and further improve the reference flux distribution [170]. At last, for
predicting the phenotype of perturbed metabolic networks, Regulatory On/Off Minimization of
metabolic flux changes — ROOM, has also been proposed [171]. With a similar biological
hypothesis to MoMA, ROOM aims at minimizing the number of significant flux changes with
respect to the wild type, but it applies a Mixed Integer Linear Programming (MILP [154])

formulation, as opposed to minimizing the total distance between the flux vectors.

Metabolic modeling for guiding metabolic engineering

As previously mentioned, retrofitting the metabolic network by rewiring metabolic fluxes is
fundamental for obtaining increased production of the desired compound, and thereby
sustainable cell factories [19, 90]. However, the high connectivity-degree of metabolic networks,
often related to the usage of cofactors, such as ATP and NADH, weakens the potential of
intuitive solutions for the problem [172]. Furthermore, an optimized cell factory requires a fine-
tuned balance of allocation of cellular resources between the production of biomass and of the
desired compound [21, 89, 173]. To this end, genome-scale metabolic models can be applied in
order to provide guidance for metabolic engineering, while finding target genes for genetic
manipulation. The implementation of such problem is not trivial; if a linear programming routine
is applied for maximizing the production of a given metabolite, the optimal solution does not
lead to biomass formation in most of the cases, therefore the solutions are often not biologically
meaningful. In 2003, the first platform developed towards finding target genes, deletion of
which would lead to improved vyield of a desired compound, while the biological objective
function is still satisfied, was proposed by Burgard et al. [174]. OptKnock uses an elegant
approach for finding the genes that, when deleted, would couple the production of the desired
compound to biomass formation. In genome-scale metabolic modeling context, a gene deletion
is formulated by setting the upper and lower bounds of the corresponding reaction to zero. By
using a bi-level (or nested) optimization, they suggested the maximization of the production of
the desired metabolite (design objective), subject to maximization of growth (biological
objective, Fig. 2.6A). The number of genes to be deleted is a parameter decided prior to

simulation and it depends on the product and producing host; deletion of several genes is often
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required, due to the robustness of metabolism [172, 175, 176]. Given the number of genes to be

deleted, OptKnock is guaranteed to find the targets leading to the highest production (global

optimal solution) [174]. Patil et al. put forward another platform for finding metabolic

engineering targets based on Darwinian evolutionary principles, OptGene [177]. They propose

the use of a genetic algorithm, which goes through rounds of mutations, crossing and selection

in order to find the best candidate, given a fitness function (Fig. 2.6B). The fitness function is also

of particular novelty within this algorithm, because such framework enables the use of non-

linear functions as objective. A proxy for productivity is suggested by the authors, which is

obtained by multiplying the growth flux by the flux leading to the product of interest, Biomass-

Product Coupled Yield - BPCY. As a genetic algorithm cannot guarantee to find the optimal

solution for the problem, the number of generations or the fitness function can be used as

stopping criteria for OptGene [177].
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Figure 2.6: OptKnock and OptGene optimization frameworks for guiding Metabolic Engineering. A) Bi-level
optimization structure of OptKnock (in [174]). B) OptGene schematic overview (adapted from [177]).

Several other algorithms with different/improved characteristics are available nowadays;

OptStrain, which finds optimal reactions to be deleted from, as well as to be added to, the

metabolic network in order to improve the phenotype [178]. OptForce, which finds reaction

targets for deletion or overexpression in order to achieve a desired phenotype [98]. OptORF,

which aims at finding optimal metabolic and regulatory perturbations to design metabolic

engineering strategies [179]. An open-source software platform for in silico metabolic

engineering, termed OptFlux, focused on providing the user with some of these frameworks, as

well as different options for alternative objective functions, is already available [180].

Alternatively, the latest version of the COBRA Toolbox (v2.0) also includes some of these

algorithms [163].

Even though several in silico tools for guidance of metabolic engineering are available, obtaining

improved cellular features through rational design is still a challenge. For instance, though

optimization problems are guaranteed to provide an optimal solution, this does not imply
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uniqueness [154]. Given the existence of several alternative pathways within metabolism, some
of these pathways may satisfy the same requirements for the objective function, thereby they
are also alternative solutions. Identifying the uniqueness of a solution can be accomplished by,
e.g. maximizing and minimizing all fluxes under the given set of constraints (flux variability
analysis), while identifying all optimal solutions may be accomplished by implementing a MILP
routine or by elementary mode analysis [146, 176, 181]. Flux variability analysis should always
be taken into account while using genome-scale models, especially for metabolic engineering, in
order to guarantee that the selected targets will lead to improved cellular features,
independently of the uniqueness of the solution. RobustKnock is an extension of OptKnock and
it aims at finding optimal set of gene deletions for improved production, while guaranteeing that

non-unique solutions (solutions presenting alternative pathways) are avoided [182].

Fine-tuning of metabolic networks often involves the reduction, suppression and/or
amplification of fluxes. While deletion of a reaction is a binary problem, therefore relatively
simple for in silico formulation, reduction or amplification of fluxes implies knowing the
amplitude of the variation. More importantly, once a reaction if found as a target for
amplification (or reduction), e.g. by OptForce, a quantitative relationship between reaction
amplification (or reduction) and gene overexpression (or downregulation) should be known in
order to accurately predict the effect of the genetic manipulation [98]. Because of complex
mechanisms of regulation, the attempts to verify linear correlations between gene expression
and flux changes have failed so far, suggesting the prevalence of non-linear relationships [183].
Further characterization of the cellular regulatory mechanisms is expected to contribute to
better characterize such non-linear relationships. Moreover, this would allow more accurate
quantitative prediction of genetic manipulations, useful for metabolic engineering, but also for

expanding our understanding of genotype to phenotype relationships.

At last, incorporation of regulatory constraints in metabolic models is expected to greatly
influence the outcome of predictions. As mentioned before, some frameworks for including
transcriptional networks within phenotype simulations are already available [160], as well as a
simulation platform for including regulatory genes as targets for metabolic engineering, OptORF
[179]. Despite providing better predictive power in some cases [160], these frameworks are
limited due to lack of extensive knowledge about regulatory mechanisms from a qualitative, but
mostly from a quantitative perspective. Regulatory networks mostly present non-linear
behaviour and, also here, finding a solution for combining non-linear approaches with the

established linear optimization tools would be of great interest for the scientific community.
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Conclusions

Metabolism is one of the most well characterized subcellular systems, as biochemical reactions
occurring within the cell have been studied and assembled in metabolic pathways over the
years. A large fraction the genes coding for enzymes, referred as metabolic genes, are
functionally annotated. Yet, prediction of phenotype based on genotype is, in many cases, still
not possible. A holistic approach of cellular systems is needed to completely understand how
phenotype arises from the genotype, and genome-scale stoichiometric models represent a
suitable computational framework for simulating and studying such relationships. Better
characterization of biological features, such as regulation, are expected to expand the range of

application and quality of genome-scale models.

Availability of extensive knowledge and dedicated technology for genetic manipulation and high-
throughput data generation conferred S. cerevisiae its current status of a eukaryotic model
organism. Additionally, this yeast is largely used for production of food and beverages and,
thereby, it is well established among industrial applications. Combined, these attributes make S.
cerevisiae a preferred host for metabolic engineering. This chapter illustrated the current
applications of yeast as a model organism and as cell factory. The importance of applying

stoichiometric genome-scale modeling for metabolic engineering was also emphasized.
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Chapter 3: Metabolic Engineering for Vanillin Production in S.

cerevisiae. Part 1 - Metabolic Modeling for Strain Improvement

This chapter is based on the publication:

“Improved vanillin production in baker’s yeast through in silico design”. Ana Rita Brochado,
Claudia Matos, Birger L Mgller, Jgrgen Hansen, Uffe H Mortensen, Kiran Raosaheb Patil.
Microbial Cell Factories 9:84 (2010)

Abstract

Vanillin is one of the most widely used flavoring agents, originally obtained from cured seed
pods of the vanilla orchid Vanilla planifolia. Currently vanillin is mostly produced via chemical
synthesis. A de novo synthetic pathway for heterologous vanillin production from glucose has
recently been implemented in baker’s yeast, Saccharomyces cerevisiae. In this study we aimed at
engineering this vanillin cell factory towards improved productivity and thereby at developing an

attractive alternative to chemical synthesis.

Expression of a glycosyltransferase from Arabidopsis thaliana in the vanillin producing S.
cerevisiae strain served to decrease product toxicity. An in silico metabolic engineering strategy
of this vanillin glucoside producing strain was designed using a set of stoichiometric modeling
tools applied to the yeast genome-scale metabolic network. Two targets (PDC1 and GDH1) were
selected for experimental verification resulting in four engineered strains. Three of the mutants
showed up to 1.5 fold higher vanillin B-D-glucoside yield in batch mode, while continuous culture
of the Apdc1 mutant showed a 2-fold productivity improvement. This mutant presented a 5-fold
improvement in free vanillin production compared to the previous work on de novo vanillin

biosynthesis in baker’s yeast.

Use of constraints corresponding to different physiological states was found to greatly influence
the target predictions given minimization of metabolic adjustment (MoMA) as biological
objective function. In vivo verification of the targets, selected based on their predicted metabolic
adjustment, successfully led to overproducing strains. Overall, we propose and demonstrate a

framework for in silico design and target selection for improving microbial cell factories.
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Background

Vanillin is a plant secondary metabolite and the main constituent of natural vanilla - one of the
most important flavoring agents. The annual market for vanillin exceeds 16,000 tons, although
only 0.25% of this originates from cured seed pods of the vanilla orchid, Vanilla planifolia. The
remaining demand for vanillin is fulfilled by chemical synthesis from lignin or fossil
hydrocarbons, in particular guaiacol [1]. Sustainable and environmental friendly routes have
been proposed for obtaining vanillin through bioconversion of eugenol and ferulic acid by
bacteria or fungi [2—4]. Alternatively, an attractive option was recently reported by Hansen et al
(2009), who demonstrated de novo vanillin biosynthesis from glucose in baker’s and fission
yeasts [5]. The native metabolic precursor for this de novo pathway is 3-dehydroshikimate (3-
DHS), an intermediate of the shikimate pathway for aromatic amino acids biosynthesis. To
convert 3-dehrydroshikimate into vanillin, four genes encoding the required four enzymatic
activities were obtained from different organisms, Podospora pausiceta, Nocardia sp.,
Escherichia coli and Homo sapiens (Fig. 1) [5]. Inspired by the fact that metabolic engineering has
been successfully applied to improve the yield of e.g. sesquiterpenes [6], ethanol [7, 8],
artemisinic acid [9] and succinic acid [10] production in Saccharomyces cerevisiae, we
hypothesized that vanillin production could also be improved by implementing a metabolic
engineering strategy [11]. An immense collection of systems biology tools, in addition to well-
established technologies for genetic manipulation, renders S. cerevisiae a very amenable
organism for metabolic engineering [12-14].

Glucose

ATP ADP
! H,O

NADPH NADP
\l/ *  sAM  SAH UDP-glucose
3.DHS A pac 215 paL ST vanilin Le vanillin B-D-
{ id
! 3DSD ACAR hsOMT ver elicosice
V PPTase
Aromatic -
amino acids Cytoplasm
* Extracellular
\/ v broth

Figure 3.1: Schematic representation of the de novo VG biosynthetic pathway in S. cerevisiae (as designed by
Hansen et al [5]). Metabolites are shown in black, enzymes are shown in black and in italic, cofactors and additional
precursors are shown in red. Reactions catalyzed by heterologously introduced enzymes are shown in red. Reactions
converting glucose to aromatic amino acids are represented by dashed black arrows. Metabolite secretion is
represented by solid black arrows where relative thickness corresponds to relative extracellular accumulation. 3-DSH
stands for 3-dedhydroshikimate, PAC stands for protocathechuic acid, PAL stands for protocatechuic aldehyde, SAM
stands for S-adenosylmethionine. 3DSD stands for 3-dedhydroshikimate dehydratase, ACAR stands for aryl carboxylic
acid reductase, PPTase stands for phosphopantetheinyl transferase, hsOMT stands for O-methyltransferase, and UGT
stands for UDP-glycosyltransferase. Adapted from Hansen et al. [5].
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The aim of this study was to design and construct an improved S. cerevisiae vanillin cell factory
guided by genome-scale metabolic modeling. In silico metabolic engineering algorithms were
used to identify target reactions in the metabolic network, knockout of which would lead to
improved vanillin production. A set of knockouts that maximizes the flux towards a desired
metabolite must be searched for, while the overall flux distribution is determined by the cellular
objective function (e.g. maximization of biomass yield). This problem was formulated by Burgard
et al. (2003) as a bi-level optimization algorithm termed OptKnock [15]. OptKnock can be applied
in case of a linear design objective, such as maximizing flux towards a desired metabolite [15].
Optimization of non-linear objective functions, such as productivity, is also of great interest for a
variety of metabolic engineering problems. OptGene, an extension of OptKnock, allows
maximization of non-linear objective functions, while at the same time accounting for non-linear

constraints on the metabolic network [16].

The most widely used approach for calculating flux distribution is flux balance analysis (FBA),
where a given flux (or a linear combination of chosen fluxes) is used as the objective function
[17]. For microorganisms, biomass maximization is generally accepted as a cellular objective
function while simulating flux distributions [18, 19]. FBA has been successfully applied to predict
gene essentiality [20, 21], end point of adaptive evolution experiments [22] and optimal
metabolic states under given environmental conditions [19]. However, a mutant strain that is
not subjected to evolutionary pressure might have a disturbed metabolic network and the
principle of optimality for growth may not be prevailing. To address this question, the algorithm
Minimization of Metabolic Adjustment (MoMA) has been suggested by Segré et al. (2002),
where it is advocated that the cellular objective for a mutant strain is to minimize its metabolic
distance from the wild type flux distribution [23]. Mathematically, metabolic adjustment of a
mutant is defined as the Euclidean distance between the reference and the mutant flux
distribution vectors. In MoMA approach, it is crucial to have a physiologically meaningful wild
type flux distribution, as it will strongly influence the predicted phenotype [23]. Within this
study, the S. cerevisiae genome-scale stoichiometric model iFF708 [21] was used to identify and
select target reactions for maximizing vanillin production by using OptGene [16]. MoMA [23]
was used as the biological objective function with wild type flux distributions spanning three
major modes of yeast metabolic physiology. The model-based metabolic engineering strategy
was tested experimentally by strain construction and characterization. These research efforts

resulted in three mutant yeast strains with significantly increased vanillin production.
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Results and Discussion

Vanillin B-D-glucoside production in S. cerevisiae

Vanillin is toxic to many living organisms. In case of S. cerevisiae, growth defect is significant with
concentrations as low as 0.5 g/l [5]. Tackling the problem of vanillin toxicity is therefore an
important pre-requisite for building an economically viable vanillin cell factory. An elegant
solution is glycosylation of vanillin, which is observed in the natural producer Vanilla planifolia
[25, 26]. This strategy was successfully implemented by Hansen et al. (2009) in
Schizosaccharomyces pombe [5]. The glycosylation step implies reducing the maximum
theoretical yield from 486 mg,.n/ggc changes to 293 mgy,n/gg.. Nevertheless, given the toxicity
and low solubility of vanillin, reaching high titers is not a favourable option. Extracellular
concentration of vanillin B-D-glucoside (VG) up to 25 g/l has been shown not to affect growth,

therefore it is more suitable for commercial production.

In S. pombe, heterologous expression of UGT72E2, a gene encoding a plant family 1
glycosyltransferase from Arabidopsis thaliana, resulted in 80% conversion of vanillin to vanillin
B-D-glucoside [5]. Within this study, UGT72E2 was expressed in the vanillin producing S.
cerevisiae strain VAN286, obtained from Hansen et al. [5]. The resulting strain, VGO, produced
significantly more VG than vanillin (> 100 mg/I versus < 7 mg/l), indicating efficient conversion of

vanillin into VG.

In silico design

The yeast genome-scale metabolic model iFF708 [21] was used to provide guidance for a
metabolic engineering strategy for improving the vanillin B-D-glucoside cell factory. The
existence of large number of alternative flux routes (pathways) within the metabolic network
requires the use of experimental constraints in order to obtain physiologically meaningful flux
distributions. This is even more so in the case of MoMA, where predictions of mutant flux
distributions will be highly dependent on the solution provided for the wild type (or reference)
flux distribution [23]. Different metabolic states of S. cerevisiae are characterized by different
nutrient uptake rates, different metabolite production rates and different biomass yields.
Therefore, it is to be expected that different constraints (corresponding to different metabolic

states) may lead to different suggestions for the metabolic engineering targets.
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Reference metabolic states

S. cerevisiae uses two major pathways for generating energy necessary for growth: glycolysis and
oxidative phosphorylation (respiration). In the presence of oxygen and high glucose
concentration, typically observed in batch conditions, glycolysis is highly active and ethanol
formation is observed, also called overflow metabolism. The co-existence of fermentation and
respiration leads to significantly lower biomass yield than purely respiratory metabolism, due to
carbon channeling towards ethanol [26, 27]. However, if glucose concentration (or glucose
uptake rate) is bellow a critical threshold, the flux through glycolysis is reduced, most of the

energy is obtained from respiration and higher biomass yield on glucose is observed [26, 28, 29].

Different metabolic scenarios spanning different yeast life-styles were used for obtaining the
reference flux distribution for MoMA simulations. Reference 1, representing fully respiratory
metabolism, is characterized by no ethanol formation and low glucose uptake rate. Reference 2
was simulated for respiro-fermentative metabolism, characterized by high glucose uptake rates,
alcoholic fermentation and less active respiration. Reference 3 corresponds to VGO flux
distribution predicted by using FBA and physiological constraints obtained in this study from
chemostat cultivations at a dilution rate of 0.1 h™. This reference was introduced in order to
have a biological meaningful flux distribution of the reference strain concerning the production
of vanillin related compounds, as the vanillin biosynthetic pathway is predicted to have no flux is

while maximizing growth, unless constrained.

Assessment of in silico predictions

Simulations were performed using OptGene for maximization of Biomass Product Coupled Yield
(BPCY), a proxy for productivity [16], by deletion of up to six reactions. Improved vanillin B-D-
glucoside production was not predicted when using maximization of biomass production as
biological objective, while the use of MoMA [23] suggested interesting targets even after a single
reaction deletion. Among a variety of possible target reactions, biomass and vanillin B-D-
glucoside yield are generally related with an inverted trend; when predicted biomass yield is

high, predicted product yield is modest and vice-versa (Fig. 3.2A).
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Figure 3.2: Comparison of targets predicted by OptGene for improved VG productivity. A — Biomass versus VG yield
is represented for each knockout mutant phenotype obtained after OptGene simulation using three different
reference flux distributions for MoMA. Experimental yields observed for VGO are represented by the red empty
triangle and bar. B/C/D — The predicted VG yield (mol/molg) obtained for each knockout mutant after OptGene
simulation using Reference 1/2/3 is given by the length of the coloured bars. For each reference flux distribution, the
R® score was estimated for each of the mutants was calculated and normalized to the mutant presenting the highest
value: MA,,//MA . *¥100. 100% represents the mutant with highest R® score for a given flux distribution. Candidate
80%PDC is not a knockout in silico mutant, rather its PDC reaction is constrained to 80% of the upper bound.

Target selection for experimental validation must strike a good balance between improved
vanillin B-D-glucoside production and a reasonable prediction for biomass yield. Herein,
metabolic adjustment (as defined by Segre et al., 2002 [23]) was used as an additional factor to
rank each of the candidate target sets. Our hypothesis is that smaller metabolic adjustments are
more likely to be achieved in vivo than large adjustments. This was taken into account by
introducing a new metric for ranking in silico predicted mutants, viz., the Reward-Risk-Ratio (R3),

defined as the ratio between BPCY (reward) and metabolic adjustment (risk).

R BPCY
metabolic adjustment

Depending on the reference flux distribution used for MoMA, different reactions were suggested
for deletion (Fig. 3.2 B-D). A number of reactions, for example GDH1, were identified while using
more than one reference flux distributions. Yet they are differently ranked using R?,
demonstrating that the best targets in one physiological scenario are not necessarily the best

targets in another. The results of the prediction analysis suggest that VG production is favoured
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at those physiological conditions leading to respiro-fermentative metabolism as compared to
exclusively respiratory metabolism. Diverting ethanol flux towards formation of VG is predicted
to compel less metabolic adjustment than diverting flux from biomass constituents. Indeed,
several candidates found using the references 2 and 3 are predicted to have lower ethanol
formation than the reference. Furthermore, the biomass yield predicted for all the suggested
mutants using reference 3 is slightly higher than for the reference, again at the expense of

ethanol formation.

Target selection

The targets for in vivo implementation were selected based on their R® score under different
simulation conditions in combination with manual evaluation of their suitability for gene
deletion. Literature and database search included the possible existence of iso-enzymes,
experimentally observed single gene deletion phenotypes and the assessment of the importance
of regulatory links to other processes [30]. Based on this analysis, two gene candidates, PDC1
(Pyruvate decarboxylase) and GDH1 (Glutamate dehydrogenase), were selected for strain

construction and characterization.

The Gdhl catalyzed reaction was predicted for deletion when using respiratory or respiro-
fermentative metabolism, therefore it was selected for further work, despite its prediction for
large metabolic adjustment. GDH1 encodes an NADPH-dependent glutamate dehydrogenase
involved in ammonium metabolism through glutamate biosynthesis, which is reported to
provide 85% of the cellular nitrogen sources [31]. Ammonium metabolism has been extensively
studied in S. cerevisiae and in particular, deletion of GDH1 was previously used as a metabolic
engineering strategy for improving ethanol and sesquiterpenes production [6, 8, 32]. Even
though it was not a priority target considering our R® score due to high metabolic adjustment,
prior work reported that deletion of GDH1 leads to increased NADPH pool, which may favour the
conversion of PAC to PAL by ACAR.

Pyruvate is a key metabolite in S. cerevisiae metabolism and the branch point between
respiratory and fermentative metabolism. Pyruvate decarboxylases (PDCs) have a crucial
significance for fermentation, since they catalyze the conversion from pyruvate to acetaldehyde,
an intermediate towards ethanol formation [33]. The S. cerevisiae genome harbours three PDC
structural genes (PDC1, 5 and 6), one regulatory gene (PDC2) and two other genes with potential
contribution towards PDC activity (PDC3 and 4) [33, 34]. Complete suppression of pyruvate
decarboxylase activity (pdc1d, pdc5A & pdc6A) creates a mutant which is unable to grow on

glucose as sole carbon source [34, 35]. By in silico analysis, PDC was found as a target to increase
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the formation of VG considering both respiratory and respiro-fermentative reference flux
distributions for MoMA, but not when VGO data was used to constrain the network.
Furthermore, complete absence of pyruvate decarboxylase activity under highly fermentative
conditions (as reference 3) was predicted to result in zero growth, as lack of PDC activity would
require a very large metabolic adjustment. This in silico observation is in good agreement with
the experimental observation that a PDC negative mutants are not able to grow while utilizing
glucose [34, 35]. Remains to be clarified to what extent partial reduction of PDC activity, e.g. by
deletion of one of the structural genes would influence VG production. In silico analysis was
carried out by constraining PDC flux to 80% of the flux observed in the reference strain. This
simulation predicted positive growth, as well as higher VG production in comparison to other
targets such as GDH1 (Fig. 3.2C and D). Among the three PDC structural genes, PDC1 was
selected for deletion in vivo as there is experimental evidence that its removal results in ~30%

reduction of total pyruvate decarboxylase activity [35].

Strain construction and characterization

Following the selection of the two target genes, two single gene deletion mutants, gdhlA and
pdclA, were constructed from strain VGO, resulting in strains VG1 and VG2, respectively. To test
whether simultaneous deletion of PDC1 and GDH1 would have a positive synergistic effect on VG
accumulation, mutant VG3, with both deletions, was also obtained. The strains were initially

characterized in batch cultures in well-controlled bioreactors, using minimal medium.

Table 3.1: Physiological parameters for the reference and metabolically engineered strains in batch cultivation.

Strains  Engineered Genotype Hmax You© Ys econ” Ysay'
VGO 0.14 0.10 0.23 0.05
VG1 gdhlA 0.10 0.07 0.25 0.03
VG2 pdciA 0.20 0.14 0.23 0.07
VG3 pdcl Agdh1A 0.11 0.10 0.27 0.05
VG4 pdc1 AgdhlA 1 GDH2 0.17 0.17 0.25 0.07

“Maximum specific growth rate, h.

®Overall yield of biomass on substrate, gDW.ggk'1

“Overall yield of ethanol on substrate, Beth-Belc

d . B

Overall yield of glycerol on substrate, gg),.ggic

The biomass overall yield in glucose (Ysx) was calculated based on all the biomass obtained after glucose and ethanol
consumption. Ethanol and glycerol yields were calculated based on production only in the glucose consumption
phase.

Mutant VG2 (pdc14) showed an overall increased fitness compared to the reference strain (VGO)
as documented by its 43% higher maximum specific growth rate and 40% higher biomass yield

on glucose (Ysx, Table 3.1). On the other hand, mutant VG1 (gdh1A) showed reduced strain
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fitness, illustrated by reduced pn.x and Ysx. The adverse fitness effects of strain VG1 were
partially relieved by deletion of PDC1 (strain VG3), as verified by slightly improved pm.x and Ys
(Table 3.1).

In agreement with previous reports, our results confirm the deleterious effect of GDH1 deletion,
most likely due to a reduced nitrogen assimilation rate [36]. In the absence of GDH1, the GS-
GOGAT system (co-action of two enzymes, a glutamate synthase, GLT1, and a glutamine
synthase, GLN1) and the glutamate dehydrogenase, coded by GDH2, are responsible for
ammonia assimilation [37-39]. Both alternatives use NADH instead of NADPH, thus explaining
the high metabolic adjustment predicted for the GDH1 in silico mutants (Fig. 3.2B and C). In
comparison with Gdh1, lower activity has been reported for both of the alternative systems.
Consequently, overexpression of the enzymes involved in the alternative pathways is a required
step in order to recover the cellular fitness [40]. We proceeded experimentally with GDH2
overexpression as the use of the GS-GOGAT system has the disadvantage of using an important
cellular resource — ATP. The resulting strain VG4 (pdcl AgdhlA 1 GDH2) showed a significantly
improved cellular fitness compared to VG3 with similar py. and Ysx to those observed for VG2
and better than those obtained with VGO. At these experimental conditions, none of the
introduced mutations seem to affect ethanol production, except GDH1 deletion, which induces a

slight increase in the substrate yield of ethanol (Table 3.1).

180 ’—& ”“"‘ - .
160 — v

10.0 -
80 -
6.0
4.0
2.0
0.0

VGO VGl VG2

VG3 VG4

~

:g' 14.0

: 12.0 L

3 mPAC
2 mPAL
3 VG
5

>

Figure 3.3: Vanillin B-D-glucoside yield observed for the reference strain (VGO) and metabolically engineered
mutants (VG1-4) in batch cultivations. Substrate overall yield for vanillin B-D-glucoside (Ys vs, Mgye/8gc),
protocatechuic acid (Ys pac, Mgpac/Bgic) and protocatechuic aldehyde (Ys pa, Mgpal/ggic) Obtained for the reference and
engineered strains in batch culture. Pie charts are presented to illustrate relative distribution of PAC, PAL and VG for
each strain.
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Strain VG1 showed the lowest total yield of vanillin related compounds, most likely as
consequence of the general decreased fitness observed of this strain (Fig. 3.3). The other three
engineered strains displayed better performance than VGO concerning VG production (Fig. 3.3).
Single deletion of PDC1 (strain VG2) increased VG vyield by 52%, as well as the total yield of all
vanillin related compounds by 30%. Despite the adverse effect of GDH1 deletion, double
deletion of PDC1 and GDH1 (strain VG3) yielded 15% increase in VG production. Strain VG4 has
over 55% increased VG yield. Accumulation of several intermediates from the vanillin pathway
was observed for all mutants, particularly protocatechuic acid (PAC) and protocatechuic

aldehyde (PAL), which accounted for more than 50% of the total products formed (Fig. 3.3).

Respiratory vs fermentative metabolism for VG production

The extent to which VG production is affected by the presence or absence of alcoholic
fermentation is still unknown. In chemostat cultivation, glucose concentration is kept at low
levels and, below the critical dilution rate, glucose uptake rate is low enough to ensure exclusive

respiratory metabolism, thus no ethanol is formed [26, 28, 29].

VGO, the reference strain, and the best performing mutants in batch cultivations (VG2 and VG4)
were selected for further characterization in glucose-limited chemostat cultures at a dilution
rate of 0.1 h™. VG2 showed increased fitness as demonstrated by a higher biomass yield (Ysy)
accompanied by a slightly decreased glycerol yield, as compared to VGO (Table 3.2). Under these
conditions, VG2 shows 40% higher VG yield on glucose than VGO. In contrast, VG4 displayed a
considerable decrease in Ysy, while ethanol and glycerol production were significantly increased
(Table 3.2). The VG production by this strain remained very similar to that of the reference

strain.

The lower glucose uptake observed for VG2 decreases the overflow metabolism, and
subsequently smaller rates of ethanol, glycerol and acetate formation by this strain (Table 3.2).
The opposite trend is verified for mutant VG4, indicating higher overflow metabolism.
Accordingly, a significantly increased production of ethanol (1.5-fold) and glycerol (4-fold) was

observed (Table 3.2).
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Table 3.2: Physiological parameters for the reference and metabolically engineered strains in chemostat cultivation
at dilution rate 0.1 h™.

Strain VGO VG2 VG4
Engineered Genotype pdclA pdc1 AgdhlA 1GDH2
Ysx (Eow-Egic ) 0.151 + 0.008 0.159 + 0.003 0.115 + 0.005
Ys eth (Beth-Eeic ) 0.283 +0.005 0.290 + 0.008 0.32+0.01

Ys gy (MEay-aic ) 3.4+03 2.1+04 1149

¥ acet (MBacer-Beic ) 73+03 76403 442

Ys pac (MEpac-Eeic ) 272 235403 15.5+0.3
Yspar (MEparEeic ) 742 9+2 7.2+0.2

Ysve (MBye-Berc ) 4+1 56+1 4.16 +0.07
ro(mmolgc.gow -h™) 3.9+0.2 35403 48+0.2
Feth(MMOleeh-8ow -0 ™) 4303 3.9+03 6.1+0.4
rar(Mmolgy.gow .h ™) 0.026 + 0.003 0.014 + 0.004 0.10+0.08
Facet(MMOlzcer.8ow -h ™) 0.086 + 0.006 0.079 + 0.006 0.05 + 0.003
Foac(mmnoleac.gow ~h™?) 0.12 +0.01 0.10+0.01 0.087 +0.03
roa(mmolpar.gow ~h™) 0.036 + 0.008 0.040 + 0.007 0.045 +0.003
rvs(mmolye.gow ~h™) 0.009 + 0.003 0.011 +0.002 0.012 +0.001

Substrate vyields for biomass (X), ethanol (eth), glycerol (Gly), acetate (Ace), protocathechuic acid (PAC),
protocathechuic aldehyde (PAL) and vanillin B-D-glucoside (VG) on glucose (glc) are represented by Ys x (or metabolite)-
Specific glucose uptake rate is represented by rs. Specific production rate for ethanol, glycerol, acetate, PAC, PAL and
VG are represented by retanolite- Triplicates of all chemostats were performed.

VG2 exhibits a higher conversion of PAC into the products of the later steps in the vanillin
pathway (Fig. 3.4A). Strain VG4, despite the severe impact of the overflow metabolism on its
biomass yield on glucose, displays the highest conversion of PAC into downstream metabolites,
particularly PAL (Fig. 3.4A). As hypothesized during target selection, this mutant is likely to have
higher availability of NADPH, due to the engineered reduced demand for this cofactor for

ammonium metabolism.
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Figure 3.4: Vanillin B-D-glucoside yield observed for the reference strain (VGO) and metabolically engineered
mutants (VG1-4) in continuous cultivations. A - Biomass specific production rate (mgmglab.gdw'l.h'l) for protocatechuic
acid (PAC), protocatechuic aldehyde (PAL) and VG in glucose limited chemostat cultivation at dilution rate of 0.1h-. B
- Substrate specific yield (Ys vetaby » MBmetab/Egic) for PAC, PAL and VG for strains VGO and VG2 in glucose limited
chemostat cultivation at different dilution rates — 0.1 h-l(Top) and 0.015 h-l(*, Bottom).

The predominantly respiro-fermentative metabolism observed for all engineered strains implies
that their critical dilution rate, indicative of respiratory capacity, is very low. By gradually
decreasing the dilution rate in a glucose-limited chemostat, we verified that the critical dilution
rate for both VG2 and VGO was below 0.015 h™. Such a low respiratory capacity could be the
result of combined effects of product/by-products toxicity and the background of the strain. By
employing this experimental setup, ethanol production rate was as low as 0.130 mmolewn/(ggw-h)
for VGO and 0.065 mmolew/(ggw-h) for VG2, while the rate of glucose uptake was 0.37 and 0.30
mmolg|cggw'1.h'1, respectively. The VG concentration in the fermentation broth of VG2 was 500
mg/l, (32 mgye/gqc), a two-fold increase compared to that of VGO, which produced 250 mg/I (15
mMgys/8qc) (Fig. 3.4B). These results confirm that VG2 has better respiratory capacity than the
reference strain VGO and lowering the overflow metabolism results in higher VG yield. For both
strains, the observed conversion of PAL into VG is more efficient at low dilution rates, suggesting
that low overflow metabolism is linked to increased precursor and/or cofactors supply, enabling

higher VG productivity.

Analysis of the experimental results

In an attempt to better understand the metabolic flux changes at the whole network level, and
therefore the basis for the observed improved vanillin B-D-glucoside production, the flux

phenotypes of VGO, VG2 and VG4 were simulated by using FBA [17]. The experimental results
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obtained from the chemostat cultures, i.e. glucose uptake rate and biomass, ethanol, acetate,
glycerol and CO, production rates, were added as constraints to the metabolic model. The
bounds for reaction GDH1 were set to zero. As deleting PDC1 does not imply that pyruvate
decarboxylase activity will be zero, the choice of constraints for the PDC1 deletion is not
straightforward. To circumvent this issue, and to account for different glucose uptake rates of
the mutants, the upper bound for PDC flux was identified in each condition. Subsequently, the
phenotypes were simulated with upper bound for PDC constrained to 80% of the previously

found upper bound.

Flux variability analysis

The flux distributions obtained with FBA are guaranteed to be optimal, but not necessarily
unique due to the existence of a large number of alternative routes. This renders the
transformation of the experimentally determined levels of the products obtained into
intracellular fluxes, a difficult task. Nevertheless, stoichiometric simulations provide an estimate
of the possible range of flux values for every reaction in the network. Fluxes which are unique
will have the same maximum and minimum possible values. The flux ranges of all reactions of
VG2 and VG4 were calculated and compared with those of VGO, resulting in different categories
as illustrated in Fig. 5. The first category consists of those reactions for which flux is infeasible at
steady-state, i.e. blocked reactions. Among the remaining reactions (~570), only 50 have unique
flux values for all the strains. Almost all of these reactions belong to category a, i.e. with no
change between the reference strain and the tested mutants. As chemostat experiments at the
same dilution rate were used for all strains, the flux of reactions directly coupled to biomass
biosynthesis also fall in this category. Examples include reactions from lipid, nucleotide and

amino acid metabolism.
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Figure 3.5: Flux variability analysis. Reactions were classified based on the comparison of their flux variability range
between the reference VGO and the mutants VG2 and VG4. A - The scheme on the left-hand side illustrates the flux
variability ranges defining the six different categories (Blocked and a to e). Flux variability range for the reference
strain (VGO) is represented in gray, and the mutant in black. The distribution of VG2 and VG4 reactions among
different categories are presented in the bar chart, yellow and red, respectively. B - The reactions from mutant VG2
belonging to categories b and c are further classified accordingly to their metabolic function.

Categories b and ¢ contain the majority of the reactions (~70%) for VG2 and VG4, yet the
distribution among the two categories is not alike for the two mutants. For the strain VG4, most
of the reactions fall in category b, a larger variability range than observed for the reference
strain, as expected due to its higher glucose uptake rate. In the case of VG2, there is an even
distribution of reactions between the categories b and c (reactions with smaller variability range
than the reference). VG2 exhibits a decreased glucose uptake rate as compared to the reference,
therefore reactions from glycolysis belong to category c. However, as its biomass yield is similar
to the reference, equivalent quantity of energy must be available. In strain VG2, several
reactions from the tricarboxylic acid (TCA) cycle and gluconeogenesis fall in category b, reflecting
its improved respiratory capacity. A more active respiration in this strain is further confirmed by
the in silico predicted increased oxygen uptake rate. Even though this reaction is found in

category c (with decreased flux range), its lower bound is higher in VG2 than in VGO.

The remaining reactions present flux variability ranges with partial or no overlap between the

reference strain and the mutants. These reactions were grouped in category d, where the
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mutant flux upper bound is higher than the reference flux upper bound, and category e where
the mutant flux lower bound is lower than the reference flux lower bound. Together, categories
d and e comprise the reactions with the clearest differences between the mutants and the
reference. These include reactions related to product formation (e.g. biosynthesis of S-
adenosylmethionine — the methyl-group donor in the vanillin pathway) and glucose uptake

(which was experimentally determined), as well as reactions from the ammonia metabolism.

Metabolite-centric analysis

Despite the increased VG production, strain VG2 exhibits a decreased flux through the aromatic
amino acid biosynthesis pathway from which the vanillin precursor is derived. Likewise, this
strain shows a reduced total flux through the VG pathway. The same trend was found for the
VG4 strain, implying that the metabolic network is being adjusted for increased PAL and VG
production at the expense of a reduction of the total carbon flow into aromatic amino acids until
the VG biosynthesis branch. In fact, the reaction after which the production is increased is the
conversion from PAC to PAL. This reaction uses NADPH and ATP, two of the most highly

connected metabolites and cofactors that are competed for by growth requirement.

To systematically explore the usage of cofactors and other metabolites in the engineered strains,
the turnover of these metabolites can be calculated by summing all the fluxes which are
producing (or consuming) them [41]. As the unique values of all the fluxes are unknown due to
alternative optima inherent to FBA of metabolic networks, the minimum metabolite turnover
was calculated by solving a linear programming (LP) problem for the minimization of metabolite
turnover (see Methods for details). This LP formulation guarantees to find the minimum
turnover of a given metabolite that ensures the observed phenotype. The direction of
optimization, i.e. minimization, not only avoids the unbound cyclic fluxes around the metabolite
under question, but also confers with the biological hypothesis of minimal resource allocation by
the cell in terms of enzyme expression. Minimum metabolite turnover denotes how much flux
needs to pass through a given metabolite, although the distribution of this flux among possible
reactions may not be unique in all cases. Nevertheless, the turnover calculated in this way
provides a lower bound on the flux through a metabolite that can be used in complementation

with flux variability analysis.
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Figure 3.6: Minimum turnover of selected metabolites from the central carbon metabolism and from the VG
biosynthetic pathway (including cofactors). Metabolites from the central carbon metabolism: glucose-6-phosphate,
erythrose-4-phosphate, pyruvate and ethanol; Metabolites from the VG biosynthetic pathway (ATP, NADPH, SAM and
UDP-glucose). Metabolites for which minimum turnover was calculated are represented by filled circles, metabolites
for which no minimum turnover was calculated are represented by open rings. Reactions are represented as arrows.
Qualitative variation of the minimum turnovers relatively to the reference (VGO) is shown by the arrows next to each
metabolite; yellow corresponds to VG2 while red corresponds to VG4.

Besides NADPH and ATP, the minimum turnover of some other relevant metabolites was also
calculated (Fig. 3.6). The minimum turnover for PAC is lower in the strains VG2 and VG4 than for
VGO; while for PAL and VG the opposite trend is verified, in agreement with the flux variability
analysis. An increase in the glucose uptake rate will result in an increase in glycolysis and
pentose phosphate pathway, which is reflected in the increased minimum turnover of pyruvate
and erythrose-4-phosphate in the VG4 strain. On the other hand, the VG2 strain exhibits a
decreased glucose uptake rate and consequently less flux through glycolysis and pentose
phosphate pathway. The same trends apply to ATP, implying that most ATP available in strain
VGO is being produced from glycolysis. NADPH, S-adenosylmethionine and UDP-glucose
minimum turnovers are increased for both simulated phenotypes, reflecting the increased flux
through ACAR, hsOMT and UGT leading to PAL and VG. The analysis above provides insight into
the intracellular flux changes and pinpoints metabolites that play a role in the engineered

strains.
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Conclusions and Future Perspectives

The framework presented in this study comprises of i) in silico target prediction that accounts for
the available physiological information; ii) systematic ranking of the targets based on the
predicted metabolic adjustments; iii) in vivo verification through genetic engineering and
fermentation; and iv) reaction/metabolite centric analysis of the experimental results. Our
results demonstrate the applicability of in silico modeling tools for overproduction of a product
from a multistep heterologous pathway in a eukaryotic system. Three vanillin B-D-glucoside
overproducing strains were successfully designed and constructed during this study. Low dilution
rate continuous cultivation of an overproducer resulted in notably high titer of vanillin B-D-

glucoside — 500 mg/I, 5-fold higher than the 45 mg/I reported by Hansen and co-workers [5].

The yeast genome-scale model was used throughout this study, from the strain design to the
analysis of the physiological data resulting from the fermentation studies of the constructed
mutants. The in silico strategy used herein revealed the sensitivity of target predictions towards
the choice biological objective function, as well as towards the flux distribution used for
reference of simulation while using MoMA. To this end, it was crucial to use basic physiological
knowledge for simulating different relevant yeast phenotypes. In silico analysis of fluxes
variability and metabolites turnover of the overproducing strains suggested that the
modification imposed on the metabolic network led to increased cofactor availability for vanillin

B-D-glucoside production.

The observed discrepancy between model predictions and experimental observations
concerning the production yield of vanillin B-D-glucoside (experimental ~3 versus predicted 10
mmolys/molg. in batch conditions) is most likely linked to limited kinetic and regulatory
information. The need for accounting for regulatory information is even more apparent when
considering an isoenzyme as metabolic engineering target. Quantitative prediction of flux
distributions following downregulation (similar to deletion of an isoenzyme) or overexpression
of genes is still in its infancy. Advances towards integration of regulation in metabolic models
require additional knowledge on the relationship between changes in gene expression and
metabolic fluxes, as well as flux simulation tools that can integrate such information. Moreover
regulation at both transcriptional and metabolic level is of particular relevance for vanillin
production as the shikimate pathway for aromatic amino acids biosynthesis is tightly regulated

in yeast [42]. As an example, Luttik et al. were able to increase the total flux through this
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pathway by 4.5-fold in S. cerevisiae through alleviation of the DAHP synthase feed-back

inhibition mechanisms [43].

Due to considerable accumulation of intermediates of the vanillin pathway observed in this
study, identification and overexpression of an eventual rate limiting enzyme within the
biosynthetic pathway may serve to enhance conversion of pathway intermediates into the final
product. Further enhancing the respiratory capacity of the vanillin producing strains is also

expected to increase vanillin B-D-glucoside production, as illustrated within this study.

Methods

Model simulations

Five new reactions were introduced in the Saccharomyces cerevisiae stoichiometric model [21]
to convert 3-dehydroshikimate, a natural intermediate in aromatic amino acids biosynthesis,
into vanillin B-D-glucoside (VG). Furthermore all the intermediates in the pathway were allowed
to be secreted, based on the experimental evidence. FBA simulations were performed using
linear programming library GLPK (ftp://ftp.gnu.org/gnu/glpk/), while MoMA simulations were
performed using quadratic programming library OOQP [44].

Strategy design to improve VG production in S. cerevisiae was performed by using OptGene with

Biomass-Product Coupled Yield (BPCY) as design objective function [16].

Minimization of metabolite turnover

Metabolite turnover or flux-sum is the sum of all incoming or outgoing fluxes around a particular

metabolite under pseudo-steady state conditions [42,46]. Let ®; denote metabolite turnover of

metabolite i and its mathematical definition is given by D, :%Z‘Sikvk , where S; represents

k

the stoichiometric coefficient of metabolite i in reaction k and v, is the flux of reaction k. By
calculating the sum of all absolute flux values through (in and out) a given metabolite eliminates
further concern about reactions reversibility. Furthermore, given the steady state assumption,

the metabolite turnover will be half of the calculated sum.
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Due to existence of alternative optimal FBA solutions within genome-scale models, minimum of
metabolite turnover was calculated, given predetermined exchange fluxes (including growth),

using a linear programming formulation as follows:

min®;

s.t.
Zsijvj =0
J

a;<v;<p;bra;adf; eRand a; < B, (Flux capacity constraints, including uptake and secretion reactions)

Plasmids and strains

The strain Saccharomyces cerevisiae VAN286 obtained by Hansen et al. was used as the
background strain in this work. In order to produce vanillin, this strain must be transformed with
a plasmid containing the gene EntD from Escherichia coli, coding for a PPTase. This enzyme is
indispensable for post-translational activation by phosphopantetheinylation of ACAR in S.
cerevisiae [5]. All the strains constructed during this study (Table 3.3) were transformed with the

plasmid containing EntD prior to cultivation in order to produce VG.

Cloning UGT72E2 in S. cerevisiae VAN286

The integrative plasmid pARB021 containing the gene UGT72E2 from Arabidopsis thaliana
coding for a UDP-glucosyltransferase was obtained by replacing the URA3 marker by the HIS3
marker in plasmid pJH665 with the restriction enzyme Xmal. Restriction enzymes and buffers
from New England Biolabs were used and the conditions for restriction followed manufacture
instructions. The HIS3 gene was PCR amplified using the primers His3_Fw and His3_Rev (Table
ST3.1), the plasmid pWJ1213 [47] was used as template DNA and amplification was achieved
using Phusion™ Hot Start High-Fidelity DNA Polymerase (Finnzymes Oy, Espoo, Finland). GFX™
PCR DNA and Gel Band Purification Kit (GE Healthcare) were used for DNA purifications and
ligation was performed with T4 DNA ligase (New England Biolabs). The plasmid was treated with
Antarctic Phosphate (New England Biolabs) in order to avoid recirculation. The ligation mixture
was deactivated and transformed into chemo-competent DH5a E. coli cells. Ampicillin resistance
was used as E. coli selection marker and plasmid extraction was performed using a GenElute HP
Plamsid Miniprep Kit (Sigma-Aldrich). The plasmid ARB021 was verified by restriction analysis
and sequencing of the PCR amplified HIS3 marker with the primers MarkSeq_Fw and
MarkSeq_Rev from Table ST3.1 (StarSEQ, Mainz, Germany). The correct plasmid was then

restricted with Sph/ and transformed into the yeast TP/1 promoter locus of VAN286, thus
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creating the strain VGO, producing VG from glucose. High efficiency yeast transformation

method was used to construct the yeast strains [48].

Table 3.3: Yeast strains and plasmids used in this study.

Yeast Strain

Relevant genotype

Reference

MATa his3D1 leu2D0 met15D0 ura3DO adh6::LEU2 bgll::KanMX4 PTPI1::3DSD Hansen et al.
VAN286
[AurC]::HsOMT [NatMX]::ACAR [HphMX] 2009 [5]
MATa his3D1 leu2D0 met15D0 ura3D0 adh6::LEU2 bgll::KanMX4 PTPI1::3DSD
VGO This study
[AurC]::HsOMT [NatMX]::ACAR [HphMX]::UGT72E2 [HIS3]
MATa his3D1 leu2D0 met15D0 ura3D0 adh6::LEU2 bgll::KanMX4 PTPI1::3DSD
VG1 This study
[AurC]::HsOMT [NatMX]::ACAR [HphMX]::UGT72E2 [HIS3] gdh1
MATa his3D1 leu2D0 met15D0 ura3D0 adh6::LEU2 bgll::KanMX4 PTPI1::3DSD
VG2 This study
[AurC]::HsOMT [NatMX]::ACAR [HphMX]::UGT72E2 [HIS3] pdc1
MATa his3D1 leu2D0 met15D0 ura3D0 adh6::LEU2 bgll::KanMX4 PTPI1::3DSD
VG3 This study
[AurC]::HsOMT [NatMX]::ACAR [HphMX]::UGT72E2 [HIS3] pdcl1 gdh11
MATa his3D1 leu2D0 met15D0 ura3D0 adh6::LEU2 bgll::KanMX4 Pqp;::3DSD
VG4 [AurC]::HsOMT [NatMX]::ACAR [HphMX]::UGT72E2 [HIS3] pdcl gdhl GDH2::Ppg-  This study
GDH2
Selection
Plasmid Gene content Plasmid type Reference
marker
. Hansen et al.
pJH589 EndD (E. coli) CEN-ARS (S. cerevisiae) URA3 (5]
5
. Hansen et al.
pJHE65 UGT72E2 (Arabidopsis thaliana) CEN-ARS (S. cerevisiae) URA3
[5]
pARB021 UGT72E2 (Arabidopsis thaliana) Integration (S. cerevisiae) HIS3 This work
b Recyclable URA3  (Kluyveromyces
pWJ1042 CEN-ARS (S. cerevisiae) Reid et al. [46]
lactis)
PPGK1-GDH2®  Ppgi-GDH2 (S. cerevisiae) Integration (S. cerevisiae) KanMX3 Nissen et al. [8]

Model guided strain construction

PDC1 and GDH1 gene deletions, as well as GDH2 overexpression were achieved by gene

targeting through homologous recombination of bipartite PCR fragments, using URA3 gene from

Kluyveromyces lactis as a marker [49]. The marker was flanked by direct repeats that allowed

restoring of uracil auxotrophy by plating the cells in agar medium containing 5-Fluoroorotic acid

(5-FOA) after each genetic manipulation [50].
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The primers used for amplifying the up and downstream regions flanking the PDC1 and GDH1
gene (approximately 500 bp each) are listed in Table ST3.1, as well as the primers used to
amplify K. lactis URA3 flanked by direct repeats from the plasmid pWJ1042 [46]. Strain VG1 was
obtained by deleting the gene GDH1 in the strain VGO. Strain VG2 was obtained by deleting the
gene PDC1 also in the strain VGO. Strain VG3 was obtained by deleting gene GDH1 in the strain
VG2. The deletions were verified by analytical PCR using the primers PDC1_Ver_FW and
PDC1_Ver_REV for PDC1 deletion, and GDH1_Ver_FW and GDH1_Ver_REV for GDH1 deletion
(Table ST3.1). Strain VG4 was obtained from VG3 by swapping the native GDH2 promoter by the
strong constitutive promoter of the gene PGK1, as previously reported by Nissen et al. [8]. A 500
bp fragment upstream the GDH2 open reading frame (ORF) used for homologous recombination
was obtained from VG3 genomic DNA with the primers GDH2(UP)_Fw and GDH2(UP)_Rev (Table
ST3.1). The downstream fragment used for homologous recombination was amplified from the
plasmid pPGK1-GDH2 [8] with the primers PGK1_GDH2(Dw)_Fw and PGK1_GDH2(Dw)_Rev listed
in Table ST3.1. 1479 bp of the PGK1 promoter region were used to substitute the GDH2 original
promoter, while the initial 500 bp of the GDH2 OFR were used to ensure accurate targeting. The
promoter swapping was verified by analytical PCR with the primers PGK1lverif and Gdh2verif
(Table ST3.1), amplifying 420 bp of the PGK1 promoter to 1300 bp of GDH2.

Media Composition

A defined minimal medium as described by Verduyn et al. (1992) with 20 g/I glucose as sole
carbon source was used for cell cultivation [51]. The medium composition used for batch and
continuous cultivation in well controlled bioreactors was as follows: 5.0 g/I (NH,),S0,, 3.0 g/l
KH,PQ,4, 0.5 g/l Mg,S0,, 2.0 ml/l trace metal solution, 1.0 ml/l vitamins solution, 0.05 ml/I
antifoam 204 (Sigma-Aldrich A-8311) and 80 mg/I L-methionine. Trace metal solution contained
3 g/L FeS0,.7H,0, 4.5 g/L ZnS0O,.7H,0, 4.5 g/L CaCl,.6H,0, 0.84 g/L MnCl,.2H,0, 0.3 g/L
CoCl,.6H,0, 0.3 g/L CuS0,.5H,0, 0.4 g/L NaMo00,.2H,0, 1 g/L HsBO;, 0.1 g/L Kl and 15 g/L
Na,EDTA.2H,0. Vitamins solution included 50 mg/I d-biotin, 200 mg/| para-amino benzoic acid,
1.0 g/l nicotinic acid, 1.0 g/l Ca-pantothenate, 1.0 g/l pyridoxine HCL, 1.0 g/I thiamine HCl and 25

mg/| m-inositol.

The pH was adjusted to 5 by addition of 2N NaOH prior to autoclavation, the glucose was
autoclaved separately and methionine and vitamins solutions were sterile filtered (0.2 um pore-

size Ministart®-Plus Sartorius AG, Geottingen, Germany) and added after autoclavation.
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Batch cultivations

Batch cultivations were executed in well-controlled, aerobic, 2.2 B Braun Biotech Biostat B
fermentation systems with a working volume of 2 L (Sartorius AG, Geottingen, Germany). Proper
mixing conditions were ensured by two disk-turbine impellers rotating at 800 RPM and 4 baffles.
The pH was automatically controlled at 5 by addition of 2N NaOH. The temperature was kept

constant at 30 °C. The air flow rate was 1 vvm (volume air per volume of broth per minute).

Prior to inoculation, 100 ml precultures were cultivated in 500 ml baffled shake-flasks at 30 °C
until ODgog nm 5 in an orbital shaker (150 RPM). Minimal medium as described above was used to
grow the precultures with 20 g/l glucose. The bioreactors were inoculated to an initial ODggg nm

ranging from 0.5 to 0.7.

Continuous cultivations

Aerobic, carbon limited continuous cultivations were carried out in 2.2 B Braun Biotech Biostat B
fermentation systems (as described above for batch cultivations) with a constant working
volume of 1.5 L. The temperature was kept at 30 °C, the pH was maintained at 5 by addition of
2N NaOH, the stirring speed was 600 RPM and the air flow was 1 vvm. Minimal medium with 20
g/ glucose was used to feed the bioreactors at a constant dilution rate of 0.1 h™. The volume
was kept constant at 1.5 | by controlling the level of broth inside the vessel. Steady state
conditions were assumed after at least 5 residence times and CO, and biomass concentrations

were constant.

Off-gas analysis

For both cultivation modes (batch and continuous), off-gas passed through a condenser to
minimize evaporation loss during the fermentation and filter sterilized before carbon dioxide
and oxygen were quantified in a Briel & Kjeer 1308 acoustic gas analyzer (Briel & Kjaer, Naerum,

Denmark).

Biomass determination

Samples were maintained at 4 °C post sampling and the biomass concentration was monitored
by optical density at 600 nm (ODgpg nm) and dry cell weight. ODgog nm Was measured throughout all
the fermentation in a Shimadzu UV mini 1240 spectrophotometer (Shimadzu Europe GmbH,

Duidberg, Germany). The samples were diluted with distilled water in order to obtain
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measurements in the linear range of 0 to 0.6 ODgy »m. Dry cell weight was determined by
filtering a known volume of fermentation broth with pre-dried 0.45 um pore-size nitrocellulose
filters (Sartorius AG, Geottingen, Germany), which were subsequently washed with a 3x sample
volume 0.9 % NaCl saline solution. The filters were then dried for 20 minutes at 150 W in a
microwave oven and kept in a desiccator while cooling for at least 2 h. The filters where finally

weighted using an analytical balance.

Glucose and external metabolites analysis

The fermentation samples were immediately filtered using a 0.45 um pore-size syringe-filter
(Sartorius AG, Geottingen, Germany) and stored at -20 °C until further analysis. Glucose, ethanol,
glycerol, pyruvate, succinate and acetate were determined by high performance liquid
chromatography (HPLC) analysis using an Aminex HPX-87H ion-exclusion column (Bio-Rad
Laboratories, Hercules, CA). The column temperature was kept at 60 °C and the elution was
performed using 5 mM H,SO, with flow rate of 0.6 ml/min. Metabolites detection was
performed by a RI-101differential refractometer detector (Shodex) and an UVD340U absorbance

detector (Dionex) set at 210 nm.

Extracellular vanillin, vanillin B-D-glucoside (VG), protocatechuic acid (PAC), protocatechuic
aldehyde (PAL) and vanillic acid were quantified by high performance liquid chromatography
(HPLC) using Agilent 1100 series equipment with a Luna C18 column (Phenomenex). A gradient
of methanol (+ 1% tetra-fluoroacetic acid) and water (+ 1% tetra-fluoroacetic acid) at a flow rate
of 0.3 ml/min was used as mobile phase. The column was kept at 300 bar and 30 °C. Metabolite

detection was performed using a UV diode-array detector set at 280 and 310 nm.
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Chapter 4: Metabolic Engineering for Vanillin Production in S.

cerevisiae. Part 2 - Pathway and Regulatory Engineering

Part of this chapter was used for the manuscript:

Overexpression of O-methyltransferase leads to improved vanillin production in baker’s yeast
only when complemented with model-guided network engineering. Ana Rita Brochado and

Kiran R. Patil. Submitted.

Abstract

Vanillin is one of the most used flavoring agents worldwide. A yeast cell factory for vanillin
production in its more soluble form, vanillin 3-D-glucoside, was previously assembled and we
recently reported an in silico based metabolic engineering strategy for improved vanillin
production. Accumulation of several pathway intermediates was observed and promoting their
conversion to the final product is the following step towards further strain improvement. The
metabolic flux through the vanillin biosynthetic pathway is controlled by i) the availability of
precursor and cofactors and ii) the enzyme activity of the pathway enzymes. In order to ensure a
maximum outcome of the network engineering strategy previously implemented for boosting
cofactors supply, limitation of the enzyme activity at the pathway level must not occur. The
dominant effects between the local and global aspects are, however, hard to estimate a priori.
The present study aims at deciphering if the metabolic flux towards vanillin is controlled by
pathway enzyme availability or by global aspects, such as cofactor supply. Herein, we detect and
optimize the expression of the rate limiting enzyme of the vanillin biosynthetic pathway.
Additionally, attempting to further increase the ATP availability for vanillin biosynthesis, we
suggest alleviating the yeast glucose repression phenomenon. Following the mentioned
strategies, hsOMT and HAP4 overexpression resulted in 60% increase in vanillin 3-D-glucoside,

with a final concentration of 400 mg/I in the fermentation broth.
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Background

Vanillin, or 4-hydroxi-3-metoxibenzaldehyde, is the main compound responsible for vanilla
aroma, one of the flavoring agents most widely used. Given its chemopreventive properties,
vanillin can be used as antimicrobial and antioxidant agent. Several recent studies also suggest
vanillin to be used for cancer treatment, as a metastasis suppressor [1-3]. Natural vanillin
originates from the seed pod of the vanilla orchid, Vanilla planifolia. Approximately 40,000
manually pollinated flowers are required to produce 1 kg of vanillin; thereby naturally produced
vanillin is not enough to fulfill the worldwide demand. Only about 0.25% of the annual vanillin
market is obtained from natural sources, while the remaining demand is fulfilled by chemical
synthesis from lignin or fossil hydrocarbons (in particular guaiacol) [1, 4]. Bioconversion of ferulic
acid and eugenol by bacteria and fungi has been proposed as an environmental friendly process
[5-9]. Alternatively, a de novo vanillin biosynthetic pathway from glucose was developed in
yeast Saccharomyces cerevisiae [4]. The native metabolic precursor for de novo vanillin
biosynthesis in yeast is 3-dehydroshikimate (3DHS), an intermediate of the shikimate pathway
for aromatic amino acids biosynthesis (Fig 3.1). Three enzymes, a 3-dedhydroshikimate
dehydratase (3DSD), an aryl-carboxylic acid reductase (ACAR) and an O-methyltransferase
(hsOMT), catalyze the conversion from 3DHS to vanillin. In order to obtain a functional pathway,
ACAR post-translational activation is performed by a heterologous phosphopantetheinyl

transferase (PPTase), from E. coli, C. glutamicum or N. farcinica [4].
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Figure 4.1: De novo vanillin B-D-glucoside biosynthesis in S. cerevisiae. A simplified metabolic map of the yeast
central carbon (gray) and amino acid metabolism (blue) containing relevant reactions for the vanillin biosynthetic
pathway (yellow) is shown. Metabolites are represented by filled circles in the case of central and amino acid
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metabolism, and by their chemical structures in the case of vanillin biosynthetic pathway. Circles with multiple
connecting lines represent highly connected metabolites. Reactions are represented by the connecting lines. Dashed
yellow lines represent the synthesis of isovanillin, an undesired by-product. Italicized names refer to genes, while the
other names refer to metabolites. The gene deletions (red crosses) and overexpressions (green arrows) correspond to
a global engineering strategy carried out in previous work [10]. PAC, PAL and VG stand for protocatechuic acid,
protocatechuic aldehyde and vanillin B-D-glucoside respectively. 3DSD, ACAR, hsOMT and UGT stand for 3-
dehyroshikimate dehydratase, aryl-carboxylic acid reductase, O-methyltransferase and UDP-glycosyltransferase,
respectively.

In a previous work [10], we achieved five-fold increase in vanillin production, in its less toxic and
more soluble form, vanillin B-D-glucoside, based on a genome-scale modeling approach for
designing metabolic engineering strategies [11-13]. Minimization of metabolic adjustment [14]
was used as cellular biological objective function and OptGene [15] was used as modeling
platform to identify genes within the yeast metabolic network [16], deletion of which would
increase vanillin production. The strategy suggested by the modeling exercise was to, i) delete
one of the pyruvate decarbolxilases (PDC1), ii) delete the most active glutamate dehydrogenase
(GDH1) and iii) ensure sufficient nitrogen uptake by overexpressing the less used GDH2 (Fig. 4.1).
These modifications resulted in increased respiratory capacity of the cell, as well as shifted the
cofactor usage of nitrogen uptake from NADPH to NADH. Both cofactors, ATP and NADPH, are
required for the vanillin biosynthetic pathway to convert protocatechuic acid (PAC) in

protocatechuic aldehyde (PAL) [4].

Nevertheless, apart from vanillin $-D-glucoside, several by-products were also accumulated in
the fermentation broth, including intermediates of the vanillin biosynthetic pathway. At the
most, vanillin B-D-glucoside accounts for approximately 25 % (mol/mol) of the total vanillin
related compounds produced. Thus, decreasing the by-product formation will ultimately lead to
increase the vanillin yield up to 4-fold, as well as decreased accumulation of potentially toxic
compounds on the fermentation broth. The aim of the present study is to explore whether the
metabolic flux through the vanillin biosynthetic pathway is regulated by enzyme availability at
the pathway level, or by cofactors supply. To this end, we suggest i) detecting and optimizing the
expression of rate limiting enzymes of the vanillin biosynthetic pathway and ii) alleviating the
yeast glucose repression phenomenon in order to increase the ATP availability for vanillin
production (through increased respiration). Towards the first goal, we tested two extra PPTases
(from Aspergillus nidulans and Nocardia sp.), tackling the possibility that they would better
activate ACAR in S. cerevisiae. Afterwards, we evaluated the effects of overexpressing ACAR and
hsOMT on vanillin B-D-glucoside production. Finally, we assessed the effect of alleviating the

glucose repression of respiration through Hap4 overexpression.
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Results and Discussion

Different PPTases for ACAR post-translational activation lead to altered vanillin 3-D-

glucoside production

Enzymes requiring activation by phosphopantetheinylation are not abundant in S. cerevisiae,
therefore this microorganism displays a rather reduced repertoire of PPTases. It is also known
that this class of enzymes can be highly organism specific, since PPTases accomplishing similar
function across closely related organisms might not be able to activate both target enzymes [4,
17]. Hansen et al. [4] observed that only three, out of eleven tested bacterial PPTases, were able
to activate ACAR in S. cerevisiae. Given that ACAR activity is highly influenced by the PPTase, we
heterologously expressed two additional PPTases and studied their impact on vanillin 3-D-
glucoside production; i) npgA from Aspergillus nidulans, which was previously reported to be
functional in S. cerevisiae by successfully activating a polyketide synthase [18] and a non-
ribosomal peptide synthase [19] and ii) npt from Nocardia sp., which was reported to be the
PPTase activating ACAR in the native host [20]. Both genes were codon optimized and expressed
in the reference strain VGO (Table 4.2) from low-copy-number-replicating plasmids (CEN-ARS)
under the yeast TP/1 promoter (Methods). Furthermore, two of the PPTases previously used by
Hansen et al. (entD from E. coli and PPTcg-1 from C. glutamicum) were also heterologously

expressed for comparison.
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Figure 4.2: Impact of heterologous expression of different PPTases in ACAR activation in S. cerevisiae. Concentration
of vanillin-related metabolites (vanillin B-D-glucoside (VG), vanillic acid, protocatechuic acid (PAC) and protocatechuic
aldehyde (PAL)) in the fermentation broth (90 h in microtiter plates cultivation) for strain VGO expressing four
different PPTases. Results for the strain without PPTase are shown as a control.
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ACAR catalyzes the conversion from PAC (protocatechuic acid) to PAL (protocatechuic aldehyde),
as well as from vanillic acid to vanillin (Fig. 4.1). As expected, nor PAL neither vanillin are
produced if there is no heterologous PPTase expression (negative control, Fig. 4.2). All PPTases
seem to efficiently convert PAC to PAL, as PAL is accumulated in the extracellular broth.
Nevertheless, the yeast strain carrying the gene entD (E. coli) showed the highest vanillin 3-D-
glucoside production (~100 mg/l) and, therefore, this was the selected PPTase for further work.
The genes npt and npgA had very similar effects on vanillin 3-D-glucoside production, and not so
far from the best candidate, entD. If, at certain stage of further strain improvement, ACAR is

found to be limiting step, these two genes might be taken into consideration once again.

hsOMT catalyses the rate-limiting step for de novo vanillin -D-glucoside biosynthesis

in S. cerevisiae

In our previous study we showed that the conversion of pathway intermediates to vanillin -D-
glucoside was incomplete even after a successful round of strain improvement by engineering
the cell for increased cofactors and energy supply (strain VG4, Table 4.2) [10]. Typically, around
50% of the vanillin-related compounds accounts for PAC, suggesting that either ACAR or hsOMT
(which catalyze the conversion from PAC into downstream pathway intermediates, Fig. 4.1)
might be limiting the flux though the pathway. Consequently, to decipher whether one or both
enzymes are limiting the metabolic flux towards vanillin, we overexpressed each gene by
chromosomal integration of a second copy in the globally engineered strain VG4 (Methods,

Table 4.2, and Scheme 3.1).

While overexpressing ACAR appears to have no significant effect of vanillin 3-D-glucoside
production (strain VG4-Al), the effect of overexpressing hsOMT is clear at the metabolite level
(strain VG4-01), with 30% increase of vanillin 3-D-glucoside production (Fig. 4.3). The raise in
vanillin B-D-glucoside production was accompanied by a decrease of accumulation of both

intermediates, PAC and PAL, attesting the increased hsOMT activity in strain VG4-01.
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Figure 4.3: Effect of ACAR and hsOMT overexpression on vanillin B-D-glucoside production in S. cerevisiae.
Concentration of vanillin-related metabolites on the fermentation broth (70 h cultivation in microtiter plates) for
strains VG4, VG4-A1 (ACAR overexpressed), VG4-01, VG4-02 and VG4-01-02 (hsOMT overexpressed).

Exploring if stronger overexpression could further increase vanillin 3-D-glucoside production, a
third copy of hsOMT was integrated in strain VG4-01, leading to strain VG4-01-02 (Table 4.2).
Herein, the genomic integration site was selected based on the data from Bai et al. (2009) which
systematically characterized genomic integration sites for heterologous gene expression in S.
cerevisiae [21]. As the transcription levels vary between different chromosomal regions,
selecting the appropriate integration site allows adjusting the expression level for the inserted
gene [21-24]. We selected the integration site YPRCA15 (#20) among the 24 sites characterized
by Bai et al. (2009), because it showed the highest gene expression levels. Additionally, we chose
TEF1 promoter sequence (also a strong constitutive promoter) instead of TP/1, to avoid further
increasing the competition for the same transcription factors; TP/1 is already used for activation
of all the genes from the vanillin biosynthetic pathway. We also constructed strain VG4-02
(Table 4.2) by inserting a second copy of hsOMT in strain VG4 at YPRCA15 locus, so we could
compare both overexpression strategies (VG4-O1 vs VG4-02). Strain VG4-02 produced around
13% more vanillin B-D-glucoside than strain VG4-O1 (Fig. 4.3), indicating that integration at
YPRCA15 locus together with TEF1 promoter is a better strategy for higher gene expression in
strain VG4, compared to Met15 locus together with TPI1 promoter, used for VG4-O1. This result
also indicates that hsOMT expression level in strain VG4-O1 might still be limiting vanillin
production. Simultaneous genomic integration of the two additional copies of hsOMT (strain
VG4-01-02) resulted in the same titer as the one verified for strain VG4-02. This led us to
conclude that overexpression of hsOMT from YPRCA15 locus under TEF1 promoter is sufficient

for relieving the flux limitation through the vanillin pathway imposed by hsOMT.
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Notably, all the strains having hsOMT overexpressed show a significant decrease in PAL
accumulation, which is explained by the fact that hsOMT is catalyzing the conversion from PAL
to vanillin. On the other hand, a rather counter-intuitive trend is verified for PAC, which
increases when hsOMT is overexpressed from YPRCA15 locus. From previous experiments we
observed that PAC accumulation takes place mostly when the cells are exponentially growing on
glucose (as opposed to ethanol), as well as we often observed a positive correlation between
biomass and PAC concentration (data not shown). Indeed, both strains overexpressing hsOMT

from YPRCA15 locus have increased biomass formation, compared to VG4 (Fig. 4.4A).
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Figure 4.4: Effect of deletion of YPRCA15 locus on the growth of strain VG4. A) Final biomass concentration
(measured by ODgyg nm) Of strains VG4 and VG4-02 obtained after 70 h cultivation in microtiter plates. B) The growth
of strains VG4 and VG4-A2 was followed over time using Enzyscreen (Methods). This experiment was carried out
without expressing the PPTase, therefore no PAL, vanillin or vanillin $-D-glucoside are produced in these conditions.

Such strong effect on biomass yield is, most likely, the outcome of a combination of different
factors. Nevertheless, we hypothesize that major contributions can come from having additional
protein activity and consequent changes in the pool of by-products, as well as from the choice of
overexpression locus itself. Although Bai et al. [21] mention that expressing a reporter gene form
YPRCA15 locus did not significantly altered growth, we hypothesise that this might not be the
case for the vanillin producing strains. Moreover, their study was carried out in a different strain
background, which can be another source of variation [21]. We further explored the integration
site related effects by constructing a control strain using the same strategy as used for VG4-02,
but the gene, promoter and terminator were omitted (VG4-A2, Table 4.2). Strains VG4 and VG4-
A2 were grown prior to expression of the PPTase, so most of the vanillin related compounds
were not produced. This way, we try to minimize the effects of cellular resources spent on the
vanillin pathway, as well as effects coming from the accumulation of several different vanillin
related compounds (only PAC and vanillin acid are produced). The control strain was found to
have altered growth kinetics comparing to VG4, particularly evident while consuming glucose
(Fig. 4.4B). Preliminary strain characterization suggests faster growth on glucose, as well as

higher biomass yield on this substrate. More comprehensive conclusions would require better
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strain characterization, namely to grow the control strain in vanillin producing conditions, so the
effects of harboring the active pathway would also be taken into account. Nevertheless, these
results do not contradict the fact that hsOMT is a rate-limiting enzyme for vanillin production,
since in all hsOMT overexpressed strains, higher vanillin 3-D-glucoside-to-PAL ratio is observed,

independently of the overexpression strategy.

Another important aspect is that all the hsOMT overexpressed strains showed a significant
increase in an unidentified compound, as detected in the chromatographic analysis. Production
of this unknown compound was found to be strongly affected by hsOMT overexpression, so we
speculate that the unidentified substance might be vanillic acid in its glucosylated form.
Alternatively, hsOMT might lead to the formation of the by-product isovanillic acid, which would
subsequently be reduced to isovanillin, in a reaction catalyzed by ACAR (Fig. 4.1). Accordingly,

the unidentified compound can also be isovanillin, isovanillic acid or their glycosylated forms.

The results obtained so far indicate that the bottleneck of the pathway is no longer the hsOMT
enzyme activity. In order to assess whether the control for the flux though the vanillin pathway
moved from hsOMT to ACAR, we overexpressed ACAR in strain VG4-02, again by genomic
integration from Met15 locus (Table 4.2). We found that ACAR overexpression did not further

increase vanillin 3-D-glucoside.

Overexpression of hsOMT leads to improved vanillin production in baker’s yeast only

when complemented with model-guided network engineering

Overexpressing genes belonging to the pathway of interest for obtaining the desired product is a
commonly used metabolic engineering strategy [25-27]. On the other hand, global metabolic
network approaches, which target the metabolic network nodes distant from the pathway of
interest, have also been shown to be effective. Ultimately the most efficient solution is, as we
herein show, the complementary usage of both approaches [28, 29]. The two approaches are
closely interrelated; global approaches often aim at boosting the pathway of interest through
the supply of cofactors and precursors, while rather local approaches focus on relieving the flux
through the pathway from enzyme limitations. Thus, whether a global strategy is pre-required

for the success of a local strategy, or vice-versa, is difficult to estimate a priori.

Following the same strategy as before, we overexpressed hsOMT from YPRCA15 locus in strain

VGO (Table 4.2, Methods) and measured vanillin 3-D-glucoside production.
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Figure 4.5: Overexpression of hsOMT leads to improved vanillin production only when complemented with model-
guided network engineering. Concentration of vanillin-related metabolites on the fermentation broth of strains VGO
and VG4 before (gray) and after (blue) overexpression of hsOMT.

Figure 4.5 shows that overexpression of hsOMT in VGO does not increase vanillin 3-D-glucoside
production, reinforcing that the cofactor and energy supply for vanillin biosynthesis is of primary
importance, compared to the level of expression of the enzymes from vanillin biosynthesis
pathway. Furthermore, the best cell factory is obtained when both strategies are combined,
strain VG4-02, resulting in a final titer of ~380 mg/l of vanillin B-D-glucoside. Also here,
increased PAC accumulation for strain VG0-O2 is explained by increased biomass yield on

glucose due to the integration locus.

Engineering glucose repression in S. cerevisiae leads to improved vanillin B-D-glucoside

production

Tackling the problem of further increasing the availability of cofactor and energy supply for
vanillin B-D-glucoside production, we propose to alleviate glucose repression in batch
cultivation. When glucose concentration is above a given threshold, many genes involved in
respiration, gluconeogenesis and utilization of non-glucose carbon sources are expressed at low
levels or not at all, while alcoholic fermentation is highly active [30—32]. Comparing to alcoholic
fermentation, respiration is much more efficient from the energetic perspective [32, 33]. This
makes it an attractive solution for increasing vanillin production, which requires ATP. To this
end, the activation of many enzymes is required and manipulating a regulatory circuit represents
an elegant option. Glucose repression in yeast takes place mainly via two regulatory pathways:
the induction pathway, ultimately responsible for derepressing hexose transporters, and the

repression pathway, responsible for repressing most of the genes involved in respiration, among
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other cellular processes [30, 34]. Among the repressed genes, there is the Hap2/3/4/5p
regulatory complex, which activates transcription of genes coding for enzymes of the TCA cycle,
as well as for the respiratory chain. It has been previously confirmed that overexpression of
HAP4, coding for one of the subunits of the complex, activates several TCA cycle genes, as well
as, respiratory genes in high glucose concentration (batch conditions) [33, 35]. Hereby, we
hypothesize that HAP4 overexpression will increase the respiration-to-fermentation ratio and

thereby increase the ATP availability to produce vanillin f-D-glucoside.
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Figure 4.6: Overexpression of HAP4 increases the production of vanillin §-D-glucoside. A) Fermentation profile of
biomass (ODggo nm), glucose, ethanol and vanillin B-D-glucoside during aerobic batch cultivation in microtiter plates of
strain VG4-01. B) Fermentation profile of biomass (ODgy nm), glucose, ethanol and vanillin 3-D-glucoside during
aerobic batch cultivation in microtiter plates of strain VG4-01-H2. C) Concentration of vanillin-related metabolites

corresponding to the time-point with the highest concentration of vanillin -D-glucoside, for strains VG4-O1 and VG4-
01-H2.

Overexpression of HAP4 was accomplished by genomic integration of a second copy of the HAP4
in YPRCA15 locus, under TEF1 promoter, in strain VG4-01 (VG4-01-H2, Table 4.2). In agreement
with previous studies [33, 36], overexpressing HAP4 led to an increased biomass yield and
decreased ethanol formation (Fig. 4.6A&B). The final concentration of vanillin 3-D-glucoside on
the fermentation broth of the strain VG4-0O1-H2 was ~400 mg/|, approximately 30% higher than
that of VG4-O1 (Fig. 4.6C). PAL concentration in the fermentation broth is also increased,

74



Ph.D. Thesis, Ana Rita Brochado

suggesting that alleviation of the glucose repression indeed contributed to better conversion

from PAL to PAC, where ATP and NADPH are used as cofactors.

Overview of metabolic engineering strategies towards improving vanillin -D-glucoside

production

The improved biomass production observed for strain VG4-01-H2 is not independent of the
integration locus, as discussed before. A similar strategy for obtaining a control strain should be
followed here in the future, in order to confirm the exact contribution of HAP4 to the observed
phenotype. Nevertheless, the production of vanillin related compounds obtained with strain
VG4-01-H2 can be also compared to that of VG4-02, where integration site related effects on
biomass are equal and hsOMT is overexpressed as well, although from a different locus (Fig.

4.7).

OPAC
~iPAL

Proxy for metabolite yield
on biomass
v

VG4 VG4-01 VG4-02 VG4-01-H2

Figure 4.7: Overview of metabolic engineering strategies towards improving vanillin B-D-glucoside production. A
proxy for metabolite yield on biomass, based on ODggo nm, is Used to compare strain VG4, VG4-01, VG4-02 and VG4-
01-H2.

A general overview of all the metabolically engineered mutants shows that overexpression of
hsOMT from the Metl5 locus leads to the highest vanillin $-D-glucoside production from
biomass (Fig. 4.7). However, biomass production is 2-fold higher when hsOMT or HAP4 are
overexpressed from YPRCA15 locus, thereby this strategy is, overall, more effective for
converting glucose into vanillin B-D-glucoside. Independently of the integration site, hsOMT
overexpression is highly beneficial for converting PAL into downstream compounds of the
vanillin pathway. Additional HAP4 overexpression further increases vanillin [3-D-glucoside
production, strain VG4-01-H2 presents the highest vanillin f-D-glucoside titer obtained among
all the mutants, ~400 mg/l. This strategy also results in a pronounced change in the profile of

vanillin related compounds, with a 3-fold increase of PAL concentration. As previously discussed,
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this suggests that, after hsOMT overexpression, cofactors like ATP probably became, once again,
the bottleneck for converting PAC into PAL in strain VG4-02. Also supporting this hypothesis is
the fact that ACAR overexpression did not change the vanillin related compounds production
profile (strain VG4-A1-02). Further studies could include investigating the recurrent limitation of
the hsOMT enzymatic step, focusing on both, boosting enzyme activity and cofactor supply (S-

adenosylmethionine).

Conclusions and Future Perspectives

The present study aimed at improving a vanillin B-D-glucoside S. cerevisiae cell factory by
boosting the conversion of vanillin pathway intermediates to the final product. Identification of
hsOMT, which catalysis the conversion of PAL into vanillin, as the rate-limiting step of the vanillin
biosynthetic pathway and its consequent overexpression led to 30% improvement of vanillin 3-
D-glucoside production. Additionally, we performed regulatory engineering, by overexpressing
HAP4, with the goal of increasing the respiration-to-fermentation ratio, so that less ethanol
would be produced and more ATP would be available for the vanillin biosynthetic pathway. This
genetic modification yielded further increase in vanillin B-D-glucoside production. The final
concentration in the fermentation broth was ~400 mg/| in batch cultivation, corresponding to
~20 mgye/gq, considerably higher than ~15 mgys/gg., previously reported for similar conditions
[10]. Most importantly, higher accumulation of PAL in the fermentation broth was again
observed, which suggests higher ATP availability for the vanillin biosynthetic pathway. Further
strain characterization, such as chemostat cultivation or measurement of the respiratory
quotient (RQ) in batch cultivation, could confirm higher respiratory capacity of this strain.
Transcriptome analysis would be useful for carefully examining transcription levels of relevant
genes, possibly affected by the overexpression of the transcription factor HAP4. C isotope
labeled fluxome analysis would also be of great interest for further characterizing the observed
phenotype. Such data would also offer a chance of performing an integrated analysis with the
yeast genome-scale model and find targets for the next metabolic engineering round. On a
perspective of increasing enzyme specificity, protein engineering could be very valuable to
reduce/eliminate by-product formation, namely vanillic acid and isovanillin related compounds

[13,37].

In conclusion, this study showed that accounting for the local pathway effects for metabolic
engineering is of much higher value when it is combined with global approaches, which involve

whole metabolic network, as well as regulatory effects. Although algorithms for including such
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targets are already starting to appear, e.g. OptORF [38], this research field still in its infancy.
Further efforts on characterizing regulatory networks are expected to provide valuable insights

for integrating regulatory circuits with metabolic models [38, 39].

Methods

Strains and Plasmids

Common molecular biology protocols

Restriction enzymes and buffers were obtained from New England Biolabs and the conditions for
restriction followed manufacture instructions. GFX™ PCR DNA and Gel Band Purification Kit (GE
Healthcare) was used for DNA purification. Ligation was performed with T4 DNA ligase (New
England Biolabs) prior to plasmid transformation into chemo-competent DH5a E. coli cells.
Ampicillin resistance was used as E. coli selection marker and plasmid extraction was performed
using a GenElute HP Plamsid Miniprep Kit (Sigma-Aldrich). PCR amplification was performed
using Phusion™ Hot Start High-Fidelity DNA Polymerase (Finnzymes Oy, Espoo, Finland) to
obtain all the DNA fragments, except for amplification of fragments for USER cloning. In such
cases, PfuX7, a mutant Pfu DNA polymerase designed for advanced uracil-excision, was used
instead [40]. All the primers used for this study were acquired from Sigma Aldrich and are listed

in Table ST4.1.

USER cloning was performed as previously described [41] with minor modifications. The USER
vectors (containing a USER cassette) were digested with Pacl, followed by digestion with the
appropriate nicking endonuclease, Nt.BbvCl. Purified digested vector (0.1 pmol) was mixed with
1 pmol purified PCR products (total concentration of the 3 PCR fragments, equimolar) and
incubated with 1 U USER enzyme (New England Biolabs) for 20 min at 37°C, followed by 20 min
at 25°C. 10-pl of the reaction mix was directly used to transform chemically competent E.

coli cells.

S. cerevisiae heterologous DNA expression was achieved by using low-copy-number-replicating
plasmids, CEN-ARS, for the PPTases genes and chromosomal integration for the remaining
genes. The yeast transformation protocol was performed as described by Gietz et al. [42].
Chromosomal integration was achieved by gene targeting through homologous recombination
of linear DNA fragments, which was either a digested vector, or bipartite PCR fragments. MET15

or URA3 from Kluyveromyces lactis [43] were used as selection markers. The URA3 marker used
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for chromosomal integration was flanked by direct repeats that allowed restoring of uracil

auxotrophy by plating the cells in agar medium containing 5-Fluoroorotic acid (5-FOA) after each

genetic manipulation [44].

PPTase-coding genes subcloning and expression in S. cerevisiae VGO strain

Plasmids pJH589, pJH592, pARB118 and pARB117 (Table 4.1) were used for heterologous

expression of the PPTase-coding genes entD, PPTcg-1, npgA and npt (respectively) in strain VGO

(Table 4.2). The backbone plasmid is identical for all the genes, including the yeast auxotrophic

marker (URA3) and the promoter responsible for transcriptional activation of the genes (P+pp1), in

order to reduce variability.

Table 4.1: Plasmids used in this study.

X i Selection
Plasmid Gene content Plasmid type Reference
marker

pJHBE65 UGT72E2 (Arabidopsis thaliana) CEN-ARS (S. cerevisiae) URA3 Hansen et al. [4]

pRS426 n.a. Episomal (S. Cerevisiae) URA3 Christianson et al. [45]
Recyclable URA3 (Kluyveromyces . X

pWJ1042 i CEN-ARS (S. Cerevisiae) URA3 Reid et al. [46]
lactis)

pJH589 endD (E. coli) CEN-ARS (S. cerevisiae) URA3 Hansen et al. [4]

pJH592 PPTcg-1 (C. Glutamicum) CEN-ARS (S. Cerevisiae) URA3 Hansen et al. [4]

PESC-npgA- ; . . .

pcbAB npgA (Aspergillus nidulans) CEN-ARS (S. Cerevisiae) URA3 Siewers et al. [19]
npt (Nocardia sp.), synthetic codon

pJ204-npt e .a. n.a. DNA-2-Go™
optimized
ACAR (Nocardia sp.), synthetic X =

pJHE74 . Integration (S. cerevisiae) ~ HphMX Hansen et al. [4]
codon optimized
hsOMT (Homo sapiens), synthetic X .

pJH543 . Integration (S. Cerevisiae) ~ NatMX Hansen et al. [4]
codon optimized

pARB118 npgA (Aspergillus nidulans) CEN-ARS (S. Cerevisiae) URA3 This study

t (Nocardia sp.), synthetic cod

pARB117 e ,( 'ocar ia sp.), synthetic codon CEN-ARS (S. Cerevisiae) URA3 This study
optimized

pARBO14 endD (E. Coli) Integration (S. Cerevisiae)  URA3 This study

PARBO10 n.a. Integration (S. Cerevisiae) ~ URA3 This study

pPARBO30 n.a. Integration (S. Cerevisiae) ~MET15 This study
ACAR (Nocardia sp.), synthetic X . X

PARB032 o Integration (S. Cerevisiae) ~ MET15 This study
codon optimized
hsOMT (Homo sapiens), synthetic ) - .

pARBO33 . Integration (S. Cerevisiae) ~MET15 This study
codon optimized

PARBU2000  Pacl/Nt.BbvCl USER cassette [41] Episomal (S. Cerevisiae) n.a. This study
600 bp fragments flanking the
. . . . L. Recyclable X

pARBU2101 integration site YPRCA15 (S. Episomal (S. Cerevisiae) URAZ® This study
cerevisiae) [21]
hsOMT (Homo sapiens), synthetic . . Recyclable i

pARBU2131 . Episomal (S. cerevisiae) N This study
codon optimized URA3

L . L Recyclable X
PARBU2191  HAP4 (S. cerevisiae) Episomal (S. Cerevisiae) URA3 This study

? URA3 from Kluyveromyces lactis flanked by direct repeats for restoration of uracil auxotrophy [43].
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Table 4.1 contains all the plasmids used and obtain in this study. Plasmid pARB118, containing
the gene npgA from Aspergillus nidulans, was obtained from pJH665 by replacing the gene
UGT72E2 by npgA, using the restriction endonucleases Xbal and Kpnl. The vector was treated
with Antarctic Phosphatase (New England Biolabs) after restriction with Xbal in order to create a
blunt end, and only then restricted with Kpnl. The gene npgA was obtained by PCR amplification
with primers O1_f and O2_r, using pESC-npgA-pcbAB as template. Plasmid ARB117, containing
the gene npt from Nocardia sp. (codon optimized) was obtained from plasmid pJH665 by
replacement of the gene UGT72E2. Xbal and Kpnl were used to restrict pJ204-npt (DNA-2-Go™)
in order to obtain the DNA fragment containing the gene, which was cloned in the restricted and

purified vector pJH665 using the same enzymes.

ACAR, hsOMT and HAP4 subcloning and overexpression in vanillin [-D-glucoside producing S.

cerevisiae strains

Plasmid pARB014 was obtained from pJH589 by restriction with Fsel and recircularization of the
purified vector without CEN-ARS. Plasmid pARB010 was obtained from pARB014 by restriction
with Not/ and recircularization of the purified vector without the Pqp;—entD-Tp; fragment.
pARBO30 was obtained by replacing the URA3 marker for S. cerevisiae in pARBO10 by the marker
MET15, using Ascl. MET15 (incl. native promoter, 450 bp, and terminator, 215 pb) was obtained
by PCR amplification from CEN.PK 113-7D genomic DNA using primers O5_f and O6_r. pARB032
and pARB033 were obtained by inserting a fragment containing Pp;—ACAR-Trp; and Prp—
hsOMT-Trp1, respectively, on purified pARB030 after restriction with Notl. The fragments
containing Pp;—ACAR—T1p; and Prp1—hsOMT-Trp; were obtained by Not/ restriction of pJH674
and pJH543 [4], respectively.

pARBU2000 contains a Pacl/Nt.BbvCl USER cassette [41] and it was the basic USER vector
constructed and used in this study. It was obtained by restricting pRS426 with Xbal followed by
recircularization in order to remove the URA3 original S. cerevisiae marker. The intermediate
vector was restricted with Not/ in order to insert the fragment containing the Pacl/Nt.BbvCl
USER cassette. The Pacl/Nt.BbvCl USER cassette (restricted with Not/) was kindly provided by
Bjarne G. Hansen. pARBU2101 was obtained by USER cloning the URA3 recyclable marker (K.
Lactis) between the flanking regions of S. cerevisiae integration site #20 from Bai et al.
(YPRCA15) [21]. The URAS3 recyclable marker was obtained by PRC amplification using primers
UO1_fand UO2_r, and pWJ1042 [46] as template. The YPRCA15 flanking regions were obtained
by PRC amplification using primers UO3_f, UO4_r, UO5_f and UO6_r, and CEN.PK 113-7D

genomic DNA as template. Note that primer UO5_f was designed such that the USER cassette is
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recovered while the fragments are correctly assembled on the plasmid. pARBU2131 and
pARBU2191 were obtained by USER cloning the promoter region of TEF1 (400 bp) and the
terminator region of CYC1 (200 bp) flanking the genes hsOMT and HAP4, respectively, on
PARBU2101. Pgry, Tever and HAP4 DNA fragments were obtained by PRC amplification using
primers UO7_f and UO8_r, UO9_f and UO10_r and UO11_f and UO12_r, respectively while using
CEN.PK 113-7D genomic DNA as template. hsOMT fragment was PCR amplified from pARB033
using primers UO13_f and UO14_r. pARBU2131 and pARBU2191 can be used for expressing
hsOMT and Hap4 from plasmid (multi-copy), as well as PCR template for obtaining the fragments
for chromosomal integration (bipartite method) of the genes. In this work, we followed the
second approach; the primers used to obtain the PCR fragments for chromosomal integration of

hsOMT and HAP4 were UO3_f, 010_r and 09_f, UO6_r.

Strains VGO and VG4 by Brochado et al. [10] were used as background for the yeast strains

obtained during this study. Table 4.2 lists all the strains, as well as their relevant genotype.

Table 4.2: Yeast strains obtained in this study.

Vanillin pathway

Strain® Relevant genotype overexpressed genes
VGO met15A0::MET15

VG4 pdc1 gdhl GDH2::Pex1-GDH2 met15A0::MET15

VG0-02 met15A0::MET15 yprcA15::hsOMT hsOMT
VG4-01 pdc1 gdhl GDH2::Pegx1-GDH2 met15A0::Prp-hsOMT[MET15] hsOMT
VG4-02 pdc1 gdhl GDH2::Pesx1-GDH2 met15A0::MET15 yprcA15::Pree-hsOMT hsOMT

VG4A pdc1 gdhl GDH2::Ppx1-GDH2 met15A0:: Prp-ACAR[MET15] ACAR
VG4-A1-02 pdc1 gdhl GDH2::Ppx1-GDH2 met15A0:: Prpii-ACAR[MET15] yprcA15:: Preri-hsOMT ACAR & hsOMT
VG4-01-02 pdc1 gdhl GDH2::Pesx1-GDH2 met15A0:: Prp-hsOMT[MET15] yprcA15:: Prepi-hsOMT hsOMT
VG4-01-H2  pdcl gdhl GDH2::Pegc1-GDH2 met15A0:: Pron-hsOMTIMET15] yprcA15:: Preey-HAPA hsOMT & HAP4
VG4-A2 pdcl gdh1 GDH2::Peexy-GDH2 met15A0::MET15 yprcA15

VG0-42 met15A0::MET15 yprcA15

2 All strains are derivatives from strain VGO from Brochado et al. [10]. Only the relevant phenotype, not common to all
the strains, is show in the table. Methionine prototrophy was restored in all the strains by gnomic integration of gene

MET15 in its original locus.

Scheme 3.1 contains an overview of all the strains obtained in this study. hsOMT overexpressed
strains are represented in blue, ACAR overexpression is represented in green. Combined
overexpression of hsOMT and ACAR is represented in red, while the combined overexpression of
hsOMT and HAP4 is represented in yellow. Strains not containing additional overexpression of

any of the genes form the vanillin biosynthetic pathway are represented in gray.
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VGO is the reference strain used for this study (gray, Scheme 3.1). VG4 was previously
engineered for improved vanillin production and it lacks the genes PDC1 and GDH1, while GDH2
is overexpressed. hsOMT overexpressed strain VG4-O1 was obtained from VG4 by chromosomal
integration of the liberalized vector ARB033 (Narl). Strains VG0-02, VG4-02 and VG4-01-02
(dark-blue) where obtained from strains VGO, VG4 and VG4-01, respectively, by chromosomal
integration of a bipartite substrate containing the recyclable URA3 marker, as well as hsOMT
under Prg. Therefore, these strains are also hsOMT overexpressed, but the genomic integration
site (YPRCA15) and promoter differs from those of VG4-O1. The uracil auxotrophy of these
strains was re-established after isolation in 5-FoA [43]. Note that this is a fundamental step,
since vanillin B-D-glucoside production requires the expression of a PPTase, which occurs from a
low-copy-number plasmid with URA3 as selective marker. ACAR overexpressed strain VG4A
(green, Scheme 1) was obtained from strain VG4 by chromosomal integration of liberalized
vector ARB032 (Narl). ACAR and hsOMT overexpressed strain VG4-A1-02 (red, Scheme 1) was
obtained from VG4A by chromosomal integration of a bipartite substrate (recyclable URA3
marker and hsOMT under P ) similarly to VG4-02. hsOMT and HAP4 overexpressed strain VG4-
01-H2 (yellow, Scheme 1) was obtained from VG4-0O1 by chromosomal integration of a bipartite

substrate containing the recyclable URA3 marker and HAP4 under Pqg;.

VG4-01-02
pdcl1 gdhl 1 GDH2
VG4-01
VGo-02 dc1 gdhl 1NGDH2 o
pacl g
veo ThsoMT AhsOMT VG4-01-H2
Ref pdc1 gdhl 1"GDH2
eference
vGa VG4-02 MNhsOMT NHAP4
dc1 gdhl 1NGDH2
pdcl1 gdhl 1N GDH2 pactg T
MhsOMT
VG4-Al VG4-A1-02
pdcl gdhl 1 GDH2 pdc1 gdhl 1 GDH2
MACAR MACAR 1" hsOMT

Scheme 3.1: Overview of the yeast strains obtained during this study. VGO and VG4 (gray) are the reference and previously
metabolically engineered strains, respectively. The relevant genotype of the strains is represented bellow the name (gray, in the
cases of genetic modifications carried out in previous work). Letters A, H and O represent the overexpressed genes ACAR, HAP4 and
hsOMT, respectively. Numbers 1 and 2 following A, H and O correspond to integration sites MET15 and YPRCA15, respectively. VG4-
01 (light-blue) and VG4-01-02 (dark-blue) have hsOMT overexpressed from the MET15 locus. VG0-02, VG4-02, VG4-01-02 (dark-
blue) and VG4-A1-02 (red) have hsOMT overexpressed from the YPRCA15 locus. VG4-Al (green) and VG4-A1-O2 (red) have ACAR
overexpressed from the MET15 locus. VG4-01-H2 (yellow) is has Hap4 overexpressed from the YPRCA15 locus.
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Media composition

Lysogeny broth (LB) medium was used to grow Escherichia coli cells for cloning purposes. The
medium composition is as follows: 10 g/L of tryptone, 5 g/L of yeast extract and 10 g/L of NaCl.
The medium pH was adjusted to 7.5 with NaOH/HCI 2N, before autoclavation and sterile filtered
ampicillin was added to a final concentration of 100 mg/L, when needed, after autoclavation. For

solid medium, 20 g/L agar was added prior to autoclavation.

YPD medium was used to grow S. cerevisiae cells for cloning purposes. The medium composition
is as follows: 10 g/L of yeast extract, 20 g/L of peptone and 20 g/L of glucose (glucose was

autoclaved separately). For solid medium, 20 g/L agar was added prior to autoclavation.

Synthetic complete (SC) dropout media, SC URA- and SC Met-, were used as selective media to
grow S. cerevisiae for cloning purposes. The SC medium composition is as follows: 6.7 g/I of
yeast nitrogen base without amino acids, 40 mg/| of adenine sulphate, 20 mg/I of L-arginine, 100
mg/| of L-aspartic acid, 100 mg/| of L-glutamic acid, 20 mg/| of L-histidine, 60 mg/| of L-leucine,
30 mg/I of L-lysine, 20 mg/| of L-methionine, 50 mg/| of L-phenylalanine, 375 mg/| of L-serine,
200 mg/| of L-threonine, 40 mg/I of L-tryptophan, 30 mg/| of L-tyrosine, 150 mg/| of L-valine, 20
mg/| of L-uracil and 20 g/| glucose. SC URA- and SC Met- media lack uracil and methionine,
respectively. Glucose was autoclaved separately. The pH was adjusted to 5.8 prior to

autoclavation. For solid medium, 20 g/L agar was added prior to autoclavation.

A defined minimal medium as described by Verduyn et al. (1992) [11] with 20 g/| glucose as sole
carbon source was used for S. cerevisiae cultivation in batch cultivation in 24-well microtiter
plates [47]. The medium composition is as follows: 7.5 g/l (NH,),S0O,4, 14.4 g/l KH,PO,, 0.5 g/l
Mg,S0,, 2.0 ml/l trace metal solution, 1.0 ml/I vitamins solution, 0.05 ml/I antifoam 204 (Sigma-
Aldrich A-8311) and 100 mg/I L-methionine when needed. Trace metal solution contained 3 g/L
FeS0,.7H,0, 4.5 g/L ZnS0,.7H,0, 4.5 g/L CaCl,.6H,0, 0.84 g/L MnCl,.2H,0, 0.3 g/L CoCl,.6H,0,
0.3 g/L CuS0,.5H,0, 0.4 g/L NaM00,.2H,0, 1 g/L H3BOs, 0.1 g/L Kl and 15 g/L Na,EDTA.2H,0.
Vitamins solution included 50 mg/I d-biotin, 200 mg/| para-amino benzoic acid, 1.0 g/I nicotinic
acid, 1.0 g/l Ca-pantothenate, 1.0 g/I pyridoxine HCL, 1.0 g/l thiamine HCl and 25 mg/l m-
inositol. The pH was adjusted to 6 by addition of 2N NaOH prior to autoclavation, the glucose
was autoclaved separately and methionine and vitamins solutions were sterile filtered (0.2 um

pore-size Ministart®-Plus Sartorius AG, Geottingen, Germany) and added after autoclavation.
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Microtiter plates batch cultivation

S. cerevisiae cell cultivation was carried out in white, flat-bottom, 24-well microtiter plates
(Cornig Inc., NY) covered by a sterile sandwich-lid with a black rubber inner layer (Enzyscreen,
The Netherlands) to prevent contamination. The cultures were grown in minimal medium, initial
ODeggo nm Of 0.1 in a total volume of 900 ul per well, using Growth Porfiler 1152 (Enzyscreen, The

Netherlands), shaking frequency of 200 rpm, with controlled temperature at 30 °C.

Biomass determination

Samples were maintained at 4 °C post sampling and the biomass concentration was monitored
by optical density at 600 nm (ODggg nm)- ODsoo nm Was measured throughout all the fermentation
in a Shimadzu UV mini 1240 spectrophotometer (Shimadzu Europe GmbH, Duidberg, Germany).
The samples were diluted with distilled water in order to obtain measurements in the linear

range of 0 to 0.6 ODggo nm

Glucose and external metabolites analysis

The fermentation samples were filtered using a 0.45 um pore-size syringe-filter (Sartorius AG,
Geottingen, Germany) and stored at -20 °C until further analysis. Glucose, ethanol, glycerol,
pyruvate, succinate and acetate were determined by high performance liquid chromatography
(HPLC) analysis using an Aminex HPX-87H ion-exclusion column (Bio-Rad Laboratories, Hercules,
CA). The column temperature was kept at 60 °C and the elution was performed using 5 mM
H,S0,4 with flow rate of 0.6 ml/min. Metabolites detection was performed by a RI-101differential

refractometer detector (Shodex) and an UVD340U absorbance detector (Dionex) set at 210 nm.

Extracellular vanillin, vanillin B-D-glucoside (VG), protocatechuic acid (PAC), protocatechuic
aldehyde (PAL) and vanillic acid were quantified by high performance liquid chromatography
(HPLC) using Agilent 1100 series equipment with a Luna C18 column (Phenomenex). A gradient
of methanol (+ 1% tetra-fluoroacetic acid) and water (+ 1% tetra-fluoroacetic acid) at a flow rate
of 0.3 ml/min was used as mobile phase. The column was kept at 300 bar and 30 °C. Metabolite

detection was performed using a UV diode-array detector set at 280 and 310 nm.
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Chapter 5: Minimization of Metabolite Balance Explains

Genetic Interactions within the Yeast Metabolic Network

This chapter is based on the manuscript:

“Minimization of Metabolite Balance explains complex genetic interactions within the yeast
metabolic network”. Ana Rita Brochado, Sergej Andrejev, Costas D. Maranas and Kiran R. Patil.

Sumbitted.

Abstract

Genome-scale metabolic networks provide a comprehensive structural framework for
integrative data analysis as well as for metabolic modeling. The solution space for the metabolic
flux state of the cell is typically very large and optimization-based approaches are often
necessary for identifying the active metabolic state under specific environmental conditions. The
objective function to be used is problem dependent and one of the most relevant parameters
for successful modeling. Although linear combination of selected fluxes is widely used for
formulating metabolic objective functions, we found that the mathematical implementation of
these optimization problems is context dependent owing to the non-uniqueness of the
stoichiometric coefficients scaling. We hereby propose a new method, Minimization of
Metabolite Balance (MiMBI), which allows consistent formulation of the desired biological
principles, thereby providing robust predictions for gene essentiality and genetic interactions.
We demonstrate how MiMBI can be used together with existing algorithms to provide

mechanistic insights into the yeast genetic interactions network.
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Introduction

The fundamental role of metabolism within a living cell has become a focal point of study in
many disciplines, such as cell biology, physiology, medicine and synthetic biology. The assembly
of all reactions and metabolites into a genome-scale metabolic network provides a
comprehensive structural framework for integrative data analysis [1, 2], as well as for
quantitative modeling of cellular metabolism [3—6]. As the solution space for the metabolic flux
state of the cell is typically very large, constraint based optimization approaches are often
applied for simulating metabolic fluxes. In essence, these approaches search for an optimal flux
distribution that maximizes or minimizes an appropriate biological objective function while
satisfying the mass balance and metabolite exchange constraints. Among these, Flux Balance
Analysis [7] is a widely used simulation tool that utilizes a linear programming formulation for
maximization of growth (synthesis of biomass constituents) as biological objective function. FBA
has been applied with various degrees of success, albeit mostly for “wild-type” or unperturbed
metabolic networks [8, 9]. In addition to FBA, different frequently used objective functions were
reviewed and tested against experimental data by Schuetz et al. [10], including minimization of
overall intracellular flux, maximization of biomass or ATP yield, among others. In case of
genetically or environmentally perturbed networks, Minimization of Metabolic Adjustment
algorithm - MoMA [11] - has been reported to better represent the biological observations [11—
14]. The hypothesis underlying MoMA is that the fluxes in a perturbed cell (e.g. a mutant) will be

redistributed so as to be as similar as possible to the wild-type.

The biological principles exemplified by simulation tools for both wild-type and perturbed
networks are undeniably fascinating, which is confirmed by their numerous applications —
including prediction of genetic interactions [2, 15, 16], metabolic engineering [13, 14, 17] and
microbial community modeling [18]. Several of the commonly used objective functions rely on
the use of linear combination of fluxes, e.g., MoOMA or maximization of ATP production (Table
5.1). We found that the mathematical formulation of this class of problems (i.e. where linear
combination of fluxes is part of the objective function) is sensitive to the representation of the
reaction stoichiometry with results strongly dependent on the adopted scaling of the
stoichiometric coefficients. We find that this non-uniqueness in prediction may confound the
interpretation of the intended biological objective function. The stoichiometric representation of
any reaction is subjective, often scaled to have coefficient of 1 for one of the reactants/products.
Importantly, as the modeling problem involves hundreds of reactions, there is no unique

possible stoichiometric representation of the metabolic network.
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We motivate the need for rethinking the problem formulation for metabolic modeling by
illustrating how the current methods lead to incoherent biological predictions when alternatively
representing the reaction stoichiometry. Tackling a proper problem formulation, we propose a
new methodology for metabolic modeling — Minimization of Metabolite Balance (MiMBI), which
accounts for reaction stoichiometry in the objective function by mapping the flux space into the
metabolite space. As intended, MiMBI shows robust predictions independently of the
stoichiometry representation. We demonstrate the biological relevance of the new formulation
with increased power for predicting genetic interactions in the metabolic network of S.
cerevisiage. In a recent study reporting a large genetic interactions dataset covering the S.
cerevisiage metabolic network [2], FBA was found to have limited capability for predicting the
experimentally observed interactions, partially due to the lack of regulatory information. Within
this study we successfully challenged MiMBI to accomplish the task of extending the range of
genetic interactions that can be predicted. By combining the results from MiMBI and FBA we
obtain novel insights into the operating mechanisms underlying genetic interactions within

metabolic networks.

Results and Discussion

Minimization of sum of fluxes

Minimization of the sum of intracellular flux is a routinely used objective function for estimating
intracellular fluxes [10, 19, 20]. By using the iFF708 S. cerevisiae genome-scale metabolic model
[21], we illustrate how the use of this objective function leads to inconsistent predictions when
using different, but equivalent, reaction stoichiometry. iFF708 was a model of choice for this
illustration as it is one of the highly curated yeast models that is most suitable for predicting
intracellular flux distributions. On the other hand, for studying large scale genetic interactions in
yeast we will use the more recent and comprehensive model /AZ900 (also manually curated)
which allows us to analyse a larger part of the dataset. Linear scaling of all stoichiometric
coefficients of a given reaction (e.g. multiplication by a scalar 8, Methods) preserves the
stoichiometry and ought not to affect the simulation outcome for a correct problem
formulation. However, in this case, scaling of a single reaction (RPI1) results in diverting the
carbon flow from glycolysis to pentose phosphate pathway, which is one of the most important

metabolic branch points (Figs. 4.1 and S1). This deviation was verified not to be consequence of
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alternative optima of the same mathematical solution (Fig. S4.1), thus representing divergent

biological solutions.
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Figure 5.1: Minimization of overall intracellular flux leads to divergent predictions for flux distribution when using
alternative stoichiometry representations. Shown are predicted fluxes through key pathways within the S. cerevisiae
central carbon metabolism, using alternative stoichiometric representation of reaction RPI1 (BRPI1, Methods). Bgp; is
represented on the x-axis, while fold-change of fluxes relatively to 8=1 is represented on the y-axis. A representative
reaction from each of the pathways was selected to illustrate the flux re-arrangement; FBA1 for glycolysis, ZWF1 for
pentose phosphate pathway, CIT1 for tricarboxilic acid cycle and NID1 for oxidative phosphorylation. Note that 6=1 is
an arbitrary reference, as the stoichiometric representation of any reaction is subjective, often scaled to have

coefficient of 1 for one of the reactants/products.

In order to understand the nature of the problem leading to the susceptibility of the solution
towards alternative representation of the stoichiometric matrix, we used a toy-model (Fig. 5.2a).
As a case study, minimization of metabolic adjustment was chosen as a biological principle and
formulated as minimization of Manhattan Distance (most commonly used formulation of
MoMA, termed IMoMA [22]). In the wild-type toy-model, flux goes from A to D via R5. The goal
is to predict flux distribution in the mutant lacking R5. The biological principle of minimization of
metabolic adjustment dictates rewiring of the flux through R6. However, IMOMA found
contradictory optimal solutions, i.e. solutions that re-route the flux via R2-R3-R4 or R6,
depending on the stoichiometric representation of R6 (Fig. 5.2b). Insight into the cause of this
behavior can be gained by analyzing the optimal objective function values, i.e. distances, as
function of B¢ (Fig. 5.2d). Decreasing B (i.e. increasing 1/65¢) implies higher numerical value of

the flux through R6, hence higher contribution of R6 to the distance. Consequently, after a
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certain value of B, the activation of the longer R2-R3-R4 pathway more than compensates the
use of R6. The two solutions are not alternative optima, as the objective function value (i.e.
distance) neither remains constant nor linearly scales with Bzs. Such non-linear dependency of
the objective function value on the scalar 6z violates the requirement of a correct problem
formulation. The analytical proof is presented in the Methods section and shows that the
optimality condition for the linear programming problem after scaling is not guaranteed to be
satisfied. Notably, widely used FBA-like problems (max/minimization of a single flux as objective
function) are perfectly robust concerning scaling of the stoichiometric coefficients. As a single
flux is used objective function, the relative values of all the remaining fluxes (which depend on
the stoichiometry representation) does not influence the optimal solution to be found (for

theoretical proof, see Supplementary notes).

a b
1
A4 — ©
2
— g) <
| /TN
. Ew o 2
.m. § (=) ‘L N
VAR
0 2 4 6
1/Bre
v
R2 flux R flux
¥ IMOMA —=  -o-
MiMBI
c d
’ 8 < ./. ®
min Z|t:,”—fm| Vme M § ™ /
® .
B o o
© J
E_.|f
£
=
i o
min Z'v:wfv, Vie N 0 2 4 8
i
1/8gq
IMOMA —e—  MiMBI

Figure 5.2: A toy-model illustrating how, and why, alternative stoichiometry representations influence simulation of
minimization of metabolic adjustment by using IMoMA or MiMBI. a) Toy-model: R1 to R7 and A to D represent
reactions and metabolites, respectively. In the wild-type, or reference, flux goes from A to D via R5. R6 and R2-R3-R4
are two alternative pathways for flux re-distribution after deletion of R5. b) Flux through reactions R2 (full symbols)
and R6 (open symbols) obtained after simulation with IMoMA (blue) and MiMBI (yellow) using alternative
representations of reaction R6 (given by different 65, Methods). c) Formulation of objective functions for IMOMA and
MiMBI (Methods). d) Optimal objective function value (distance) obtained for minimization of metabolic adjustment
using IMoMA (blue) and MiMBI (yellow) as function of Bge.

The mathematical caveat illustrated above means that the contribution of the desired biological

objective function towards the obtained solution is inseparable from that of the artifacts of
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stoichiometry representation. Importantly, in large metabolic networks the effects of
stoichiometric representation of reactions are cumulative. As shown in the following, this
problem can be solved by proper normalization of the objective function variables with respect
to stoichiometric representation of the reactions. To achieve such normalization, we devised
two approaches, normalized IMoMA (normIMoMA) and Minimization of Metabolite Balance
(MiMBI). In normIMoMA, each variable in the objective function is normalized by its value in the
wild-type flux distribution. Albeit being simple, this normalization method has three major
drawbacks: i) many reactions often have null fluxes in the wild-type, thus posing a problem for
normalization (Methods, Supplementary notes and Fig. S4.2); ii) it requires a reference flux
distribution to obtain the normalization factors, making it inappropriate to formulate objective
functions such as minimization of overall intracellular flux; and iii) the influence of each flux on
the metabolic adjustment would be exclusively due to its fold change, not taking into account
that reactions carrying higher fluxes could have a stronger impact on the predicted flux

distribution, as implied in the original concept of minimization of metabolic adjustment.

Minimization of Metabolites Balance - MiMBI

To obtain a biological meaningful and mathematically robust normalization, we propose
Minimization of Metabolite Balance (MiMBI) as a new method for metabolic modeling. The
objective function in MiMBI is formulated as a linear combination of metabolite turnovers (ty).
The turnover of a metabolite is the sum of all fluxes producing (or consuming) it, multiplied by
the corresponding stoichiometric coefficients (Methods). The objective function for
minimization of metabolic adjustment is reformulated to include metabolite turnovers instead of
fluxes (Fig. 5.2c). Because the stoichiometric coefficients are taken into account while calculating
ty, MiMBI is robust to the linear scaling of the stoichiometric matrix, analytical proof of which is
presented in the Methods section. In case of the toy-model (Fig. 5.2a, d), this robustness is
illustrated by the invariant nature of the objective function as well as the flux distribution. Note
that the flux through R6 linearly scales with Bz, while the turnover of all metabolites is
conserved. The normalization implied in MiMBI formulation is suitable for addressing a variety of
biological questions involving different objective functions, such as minimization of overall flux
(by using a null vector for wild-type flux distribution) or maximization of ATP vyield (by

maximizing the ATP turnover for a given substrate uptake rate), among others (Table 5.1).
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Table 5.1: Formulation of different biological objective functions using MiMBI.

Biological objective
function

Previous objective
function

Description

MiMBI objective
function

Description

Minimization of
metabolic
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1993, Price et al,
2004)

biomass flux

biomass turnover

*Note: Typically, biomass production within metabolic models is formulated as one equation accounting for all the

biomass constitutes. As there is usually only one equation producing biomass, the flux of such reaction equals the

biomass turnover. Therefore, for simulating such biological objective, the original formulation — FBA — and MiMBI are

completely equivalent.

While mapping the flux space into the metabolite space for the objective function formulation,

as we do for MiMBI, it is possible that, for a few cases, alternative flux distributions are found

around a given metabolite. We therefore introduce a second optimization step that reinforces

the proximity to the reference flux distribution. This is achieved by using a normIMoMA routine

where the optimal objective function value found in the first MiMBI optimization step is used as

an additional constraint (Methods). Nevertheless, highly connected metabolites ensure a degree

of network connectivity, which is sufficient for decreasing the number of situations where

alternative flux distributions around the same metabolite are picked by MiMBI. Indeed, we did
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not find any case in the simulations performed for this study where growth prediction was
altered in the second optimization step. An example case where the second optimization step
will be more relevant is simulations involving export of metabolites, where the choice of a
particular transporter (as in the reference flux distribution) among several alternative options is

desired.

In order to estimate to what extent the lack of normalization of stoichiometric coefficients
within the objective function influences the biological interpretation of simulation results, we
used IMoMA for simulating gene knockouts in the S. cerevisiae genome-scale metabolic model
iFF708 [21]. In case of simulations for triple gene knockouts, more than 200,000 triplets were
found such that their predicted phenotype switched from lethal to non-lethal (or vice-versa) for
two synonymous matrix representations (Table ST5.1). From a biotechnological perspective,
predictions from genome-scale modeling have direct influence on the choice of gene targets
selected for metabolic engineering. By using IMoMA, we identified metabolic engineering
strategies (by simulating all possible combinations of knockout of (up to) three genes, Methods)
for production of two different compounds in yeast: succinate — a native product, and vanillin-
glucoside — a heterologous product. Not only a significant fraction of mutants had divergent
predictions for product yield when using two alternative stoichiometric matrices, but also
several highly ranked strategies in one case were low priority targets in the other (Fig. 5.3a, b, c).
Moreover, we also observed that the number of predicted synthetic lethal pairs differed by
more than two-fold when using alternative stoichiometric matrix representations (Table ST5.2).
These inconsistencies have immediate implications on the consequent biological interpretation,
as well as on the experimental design, and can be successfully overcome by using MiMBI (Fig.

5.3d, Table ST5.3).
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Figure 5.3: Stoichiometry representation impacts the design of metabolic engineering strategies depending on the
nature of the objective function formulation. Shown is the comparison of predicted succinate and vanillin-glucoside
yields for triple gene knockout mutants obtained with two alternative stoichiometric matrices (S, and S;, Methods).
Number of mutants diverging in their IMoMA-predicted a) succinate and b) vanillin-glucoside yields for the two
alternative representations of stoichiometry. The x-axis represents the percentage of deviation of product formation
by the mutants relative to S,. ¢) Comparison of ranks of IMoMA-predicted metabolic engineering strategies for
improving succinate and vanillin-glucoside production, obtained by using S, and S;. d) Comparison of ranks of MiMBI-
predicted metabolic engineering strategies for improving succinate and vanillin-glucoside production, obtained by
using Spand S;.

Predicting genetic interactions using MiMBI

To what extent MiMBI contributes for increasing biological understandings gained from the
application of optimization-based metabolic modeling? We used one of the most recent and
comprehensive S. cerevisiae models, iAZ900 [26], to run simulations for single and double gene
knockouts and challenged MiMBI to predict the epistasis scores of all significantly interacting
non-essential gene pairs reported by Szappanos et al. [2]. Genetic interaction networks are
valuable resources towards deciphering the complex genotype-phenotype relationship. A
genetic interaction between two genes occurs when the phenotype displayed by a double
deletion mutant is different than the one expected based on the phenotype of the single
mutants. Accordingly, two genes can display positive, negative or non-epistatic interaction. In
order to capture most of the biological variability contained in the experimental dataset, we
propose the use of two different objective functions, maximization of growth (FBA) and

minimization of metabolic adjustment (MiMBI). FBA is ought to cover situations where
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maximization of growth is the cellular objective, while MiMBI will account for regulatory effects
inherent to the wild type flux distribution. FBA is a conservative method for finding genetic
interactions compared to MiMBI, since the parameter used to define and measure genetic
interactions is also the objective of optimization, i. e., growth. Within the metabolic network,
often there are several optimal solutions theoretically satisfying maximum biomass formation. In
case of a single/double gene deletion mutant where an alternative optimal pathway exists, FBA
will always find such an alternative solution, even though it may not be biologically plausible due
to regulatory constraints, and, thereby may miss potential genetic interactions. On the other
hand, MiMBI will help in capturing more refined regulatory effects where the loss of growth is a

side effect of minimizing the flux rerouting relative to the wild type.

The subset of experimental genetic interactions involving non-essential genes from the yeast
metabolic model contains 17419 interactions (939 positive, 1806 negative and 14674 non-
epistatic interactions) connecting 520 genes (Methods). Around 84 % of these interactions are
non epistatic. Importantly, both MiMBI and FBA are able to capture > 97 % of non-epistatic pairs,
meaning that the metabolic model and both simulation algorithms are accurately predicting the
majority of the interactions within the dataset. Nevertheless, the remainder 16 % of the
interactions, which we subsequently explore, holds the most interesting information concerning

functional gene relationships.

In order to assess the performance of the different algorithms, we carried out a sensitivity versus
precision analysis. Precision was calculated as the fraction of experimentally validated
interactions among all predicted interactions, while the sensitivity represents the fraction of the
experimentally validated interactions captured by the analysis (Methods). A computational
epistasis cutoff (e...0rr, Methods) was used to call a particular interaction to be epistatic (either
positive (€ > g.ofr) OF Negative (€ < - Equoff)) OF NOn-epistatic (|€]|< €cuorf). The performance of
both algorithms (MiMBI, FBA and IMoMA) is summarized as ROC (partial receiver operating
characteristic) curves for both, positive and negative epistasis (Fig. 5.4 a, b). The sensitivity and
precision of the FBA predictions obtained in this study are within the same range as previously
reported by Szappanos et al. [2]. MiMBI shows less precision than FBA in case of both positive
(~20 %, ~30 % respectively) and negative interactions (~50 %, ~60 % respectively), but its
sensitivity is considerably higher in both cases (~9 %, ~4 % for positive, Fig. 5.4a; ~5 %, ~3 % for
negative, Fig. 5.4b), which reflects the conservative nature of FBA in predicting genetic
interactions. Notably, for the entire range of genetic interaction cutoffs, MiMBI sensitivity is

twice as high as IMoMA and similar trend is observed for precision (Fig. 5.4 a, b). As previously
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reported by Szappanos and co-workers, IMOMA does not improve FBA predictions. Such
behavior further emphasizes that a proper mathematical formulation of the biological principle

(objective function) has a major impact on the ability to interpret in vivo observations.
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Figure 5.4: Comparison of the performance of MiMBI, IMOMA and FBA for predicting genetic interactions in S.
cerevisiae. a, b) The accuracy of prediction of the algorithms was assessed by comparing the sensitivity and precision
of their predictions (partial receiver operating characteristic ROC curves) for positive (a) and negative (b) interactions.
Sensitivity reflects the fraction of experimentally validated interactions captured by the algorithm while precision is
experimentally validated interactions among all predicted interactions.

We chose a strict interaction cutoff (]|e.wr|= 0.013) for further analysis of the predicted
interactions (Fig. $4.6). For this cutoff, the correctly predicted genetic interactions map contains
142 interactions (73 positive and 69 negative) connecting 86 genes (Fig. 5.5a). MiMBI not only
captures all interactions, except one, predicted by FBA, but also contributes with 48 additional
interactions (~34 % of all accurate predictions). MiMBI predictions thus span almost all of those
from FBA (Fig. 5.5b), which we attribute to the fact that many metabolites within the metabolic
model are directly contributing to biomass formation. Consequently, if the turnover of most
metabolites is kept constant upon gene deletions, the biomass turnover (growth) will also
remain constant. On the other hand, FBA is not able to capture many genetic interactions found
by MiMBI (Fig. 5.5b). These will involve mutants where the loss of fitness upon gene deletion is
caused by the change from an in vivo well-tuned pathway to an alternative pathway containing
different metabolites or enzymes. For many of such cases, there are alternative pathways that
sustain the same growth as the reference and FBA is ought to find such solutions, regardless of
the magnitude of the turnover adjustment that is required for the cell. Because of this feature,
MiMBI is capable of capturing a part of the regulatory constraints on the operation of cellular

metabolism, which IMoMA failed to convey (Fig. 5.5b).
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Figure 5.5: Understanding genetic interactions by using MiMBI. a) S. cerevisiae genetic interaction network
accurately predicted using MiMBI and FBA. Genetic interactions (edges) predicted by both algorithms together and
independently are represented in the map (FBA — dashed line, MiMBI — dotted line, both — full line). Positive and
negative interactions are distinguished by colour (yellow and blue, respectively) and the opacity of the edges
illustrates the network distance between the two genes (nodes) involved in the interaction. Opacity increases as the
distance between the genes decreases. Gray nodes represent genes which display both, positive and negative
interactions. A gray circle is used to enclose isoenzymes when one of them was found to interact with other genes in
the metabolic network. b) Venn diagram showing the overlap of accurately predicted interactions by FBA, MiMBI and
IMoMA. ¢, d) Distribution of the network distances between genetic interacting genes captured by FBA (c) and MiMBI
(d). As MiMBI accounts for the majority of FBA predicted interactions, exclusive MiMBI interactions are represented in
order to illustrate the ability of MiMBI to capture genetic interaction of further distant genes with the network.

The regulatory constraints imposed by MiMBI assume even stronger relevance in the case of
positive interactions, where MiMBI exclusively accounts for almost 50% of the all the
successfully predicted interactions (Fig. 5.5a). In fact, FBA’s ability of predicting positive
interaction is limited, as the maximum predicted biomass formation of a double deletion mutant

would never be higher than the highest predicted for the two single mutants. If a single deletion
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mutant has the maximum predicted fitness of 1 (meaning that the fitness of the mutant is the
same as that of the wild-type), positive interactions involving the deleted gene will be impossible
to predict. As FBA is bound to find the optimal solution that provides the highest growth, single
mutants with maximum fitness are much more often predicted than the ones found by MiMBI,
where minimal adjustment of the metabolic network is preferred over maintaining maximum
growth. Indeed, MiMBI predicts decreased single mutant fitness for twice more gene knockouts
than FBA (~38.4 vs 18.1 %). Consequently, MiMBI also displayed an improved capacity to predict
both positive and negative epistasis involving the same gene. More than 80 % of the genes
display this feature in vivo. Interestingly, 30 % of the genes involved in MiMBI predicted epistasis
interact both positively and negatively, while FBA predicts that only 14 % of the genes do so (Fig.
5.5a).

MiMBI predicts genetic interactions between metabolically distant genes

MiMBI was also able to capture interactions between more distant genes within the metabolic
network (a measure for pleiotropy). To measure this feature, we calculated the network
distance between each pair of genes predicted to interact (Methods). MiMBI captured
interactions between genes that are significantly more distant as opposed to FBA (~40% more
distant for negative epistasis, p-value = 0.022; ~10% more distant for both positive and negative
epistasis, p-value = 0.089; Fig. 5.5¢, d). Inspection of the flux rerouting and metabolite turnover
changes revealed MiMBI’s ability to finely adjust (or maintain homeostasis) the use of highly

connected metabolites (e.g. cofactors).

Genetic interactions and isoenzymes

When it comes to double gene deletion events, isoenzymes are a rather interesting class to
study, since the deletion of two enzymes often have a drastic effect on the cellular phenotype.
Indeed, in the experimental dataset, ~¥36.3 % of the isoenzyme gene pairs displays negative
interaction. In silico, almost 20 % of the negative interactions contained in the interaction map
hereby predicted (Fig. 5.5a) are between isoenzymes. On the other hand, only by excluding
isoenzymes, potential interactions occurring between one gene within a group of isoenzymes
and other genes within the metabolic network can be captured. Furthermore, if such
interactions are ought to be explained by metabolic means, this will only be the case if the
deletion of one isoenzyme is not compensated by other isoenzyme. In vivo, most of the single
deletion of genes coding for isoenzymes contained in the dataset (> 85%) are reported to have

maximum fitness, thereby indicating that if these genes will display genetic interactions they will
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be due to other mechanisms than flux rerouting, e.g. regulatory function. The remaining 15 % of
the genes coding for isoenzymes, which potentially lack in vivo compensation of enzyme activity,
participate in around 10 % of the total positive and negative interactions. In order to explore
whether such interactions could be associated to a metabolic fluxes re-distribution, we
performed additional simulations with total suppression of the reactions carried out by these
isoenzymes. Half of these reactions were found to be in silico essentials for growth, therefore no
interactions involving these genes could be predicted. A more detailed approach would be
needed to study such interactions, for example by simulating decreased enzyme activity.
Nevertheless, four additional negative and one positive interactions were accurately predicted

(Fig. 5.5a).

Using MiMBI and FBA for understanding genetic interactions

Use of MiMBI not only allowed us to expand the range of genetic interactions predicted by FBA,
but also the combined use of these two complementary algorithms enabled finding of relevant
interactions where only one or both of the simulation principles apply. For example, the
interaction between PGK2 and GDH2, exclusively captured by MiMBI, is due to balancing of
NADH and glutamate, two of the most connected metabolites in the network. As there are
alternative pathways for fulfilling NADH and glutamate requirement (despite implying higher
metabolic adjustments), FBA could not capture this interaction. A similar effect is observed for
the negative interaction between isoenzymes SER3 and SER33. In the absence of both genes,
FBA predicts the needed supply of serine to be totally fulfilled by rerouting the metabolic fluxes
via the glyoxylate shunt and threonine biosynthesis. On the other hand, MiMBI predicts that the
supply of serine will be shared between the two alternative pathways, but the rescue cannot be
complete, because the corresponding metabolic adjustment costs overweighs the growth. This
prediction is in very good agreement with the experimental verification that the double mutant
growth is impaired and can be restored by adding glycine to the medium, which is the

intermediate for serine synthesis via glyoxylate or threonine [27].

We demonstrated that the use of optimization-based algorithms that are stoichiometry
representation independent is fundamental for biological applications. These include metabolic
engineering, gene essentiality and genetic interaction predictions. We anticipate that the
biological relevance of consistent problem formulation will be even more apparent when
simulating cells with complex biological objective functions such as human tissues. A proper
problem formulation is therefore of primary importance. To this end, we developed a new,

consistent method for metabolic modeling — MiMBI — which we thus used to perform a
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systematic study of the yeast genetic interaction network. Our results show that the combined
use of different objective functions is of primary importance in order to achieve a more
complete understanding of the operating principles behind complex biological phenomena such
as genetic interactions. We were able to almost double the accurately predicted genetic
interactions by using MiMBI, emphasizing the impact of flux regulation within the metabolic

network.

Methods

Yeast genome-scale metabolic models

The Saccharomyces cerevisiae genome-scale stoichiometric model /FF708 [21] was used to study
the impact of scaling the stoichiometric matrix on the simulation results when using sum of
fluxes in the objective function. The metabolic network was pre-processed so as to remove
reactions that carry no flux under the simulated conditions (i.e. blocked reactions). Isogenes —
genes coding for isoenzymes — were retained. Genes/reactions deemed to be essential by FBA
were not considered for knockout simulations within this study, since the prediction of their
knockout does not alter when using other algorithms or alternative stoichiometric matrices. Flux
Balance Analysis [7] was used to simulate wild-type flux distribution when required, together

with the constraints based on experimental data.

For analyzing the predictions of the intracellular flux distribution, the iFF708 model was
constrained with physiological data for a wild-type strain grown in batch cultivation under
aerobic conditions [28] and simulations were performed using minimization of overall
intracellular flux. In the case studies for determining the impact of alternative stoichiometry
representation on the model predictions for growth, genetic interactions and succinate
production, the network was constrained in agreement with the experimental conditions as
described by Szappanos et al. [2]. In the vanillin case study, the vanillin-glucoside heterologous
pathway according to Brochado et al. [14] was introduced in the metabolic network and
physiological data from the same study was used to obtain the necessary constraints. The target
selection for metabolic engineering was done by simulating the deletion of all possible
combinations (up to 3 genes) of (FBA-) non-essential genes. Following the simulations, the
metabolic engineering strategies were ranked based on yield on carbon source (glucose) of the

product of interest (vanillin or succinate).
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The S. cerevisiae model iAZ900 [26] was used to accomplish the genetic interactions study.
Genes coding for blocked reactions as well as false essentials predicted from single gene
deletion simulations were removed from the analysis, thereby reducing the errors due to
misprediction of single-mutant fitness. The metabolic network was constrained in agreement

with the experimental conditions as described by Szappanos et al. [2].

All algorithms developed and used in this study were formulated as Linear Programming (LP)
optimization problems and implemented in C++ using GLPK (http://www.gnu.org/s/glpk/). All
simulations were performed on IBM BladeCenters running CentOS Linux (64bit). Detailed
description of the LP formulations used for solving FBA, minimization of overall intracellular flux

and minimization of metabolic adjustment (IMoMA) are provided in Supplementary methods.

Normalized IMoMA

Normalized IMoMA was formulated as follows:

: 1 wT . wT
mmz Vi~V VieN:v;, #0
i Vi ‘
st. S-v=0
vl <y <y VieN

Where N is the set of all reactions, M is the set of all intracellular metabolites, S is the
stoichiometric matrix and v; is a flux for reaction i. WT stands for wild-type (or reference), v and

v;"* are the lower and upper bounds for the flux of reaction .

Minimization of metabolites balance — MiMBI

Metabolite turnover is defined as the sum of all fluxes producing (or consuming) it, multiplied by
the stoichiometric coefficients:
t,=>a,v, VmeM,N,cN
ieN,,
N, is the subset of N producing or consuming metabolite m and a,,,; is the stoichiometric
coefficient of metabolite m in reaction i. Note that a,,; is always a positive number in the

definition above, irrespective of m being a substrate or a product.

MiMBI was formulated as two sequential linear programming problems, as follows:
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1* optimization:
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Alternative stoichiometry representations

Alternative stoichiometry representations were obtained by multiplying a given reaction (or a
set of reactions) by a scalar 0 (or a set of scalars). For any reaction r: ay,.Y + ag,X = ac-Z, an

equivalent representation is given by:

Oo, Y +0a, X — O, Z ve>0

where Y, X and Z represent the metabolites participating in the reaction r and ay, ayx, az
represent the corresponding stoichiometric coefficients. Note that when the stoichiometry of
reaction r is scaled by 6, the corresponding flux value will be scaled by 1/6 for the same optimal
solution. For illustrating the impact of linear scaling of the reactions stoichiometry on the
internal flux distribution, the reaction RP/1 of iFF708 model was divided by the scalar 6. For
illustrating the impact of using alternative stoichiometry representations on the design of
metabolic engineering strategies, two synonymous stoichiometric matrices were used: i) the
original matrix from the yeast model (S;) and ii) an equivalent matrix (S;) where the
stoichiometric coefficients of the reactions SERxtO, PDC6, FUR1, GAP1_21, PNP1_1, and CYSxtO
were divided by 100, 100, 0.1, 0.01, 100 and 0.1, respectively. A third equivalent matrix (S,) was
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generated by dividing the coefficients of a single reaction (PGK1) by 0.1. The results of the

comparison between S, and S; are presented in Fig. S4.5.

Impact of scaling stoichiometry on the optimal solution — Analytical evidence

The impact of scaling the constraints of a given linear programming problem depends on
whether such changes guarantee the optimality conditions after the scaling. Consider the

problem:

min z cv;

ieN
st. S-v=>b
v, 20

Where ¢, is the cost coefficient of variable v,in the objective function. Here, a linear
combination of non-normalized fluxes is used in the objective function, similarly to e.g.

minimization of intracellular flux and IMoMA. Assuming that B is an optimal basis matrix for the

problem, the following optimization condition is satisfied:

¢, =¢;=¢,'B’S,

¢, 20, VjeN
where j is the index of variable v in matrixS, cTis the reduced cost of the variable Vi, ¢ is
the objective function coefficient ofv]., ¢y is the vector containing the objective coefficients of
basic variables and Sjis the j" column of matrix § [29]. Linear scaling the problem by the matrix
® will result in the following reduced cost for each variable:
¢, =¢;—¢;'(B0,)'0,S,
Where @ is a nxn positive diagonal matrix (scaling matrix) and Hjj is the scaling factor for the j
column of matrix §. In the cases of entries 9// #1 the corresponding columns of §are
accordingly scaled. Analogously, ®  is the scaling matrix corresponding to the basic variables.

Unless all entries of ® are identical,
30N ¢, —c,'(BO,)'0,5, <0  VjeN

Therefore the optimality condition is not guaranteed.
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Corollary 1: When all (diagonal) entries of ® are identical (uniform scaling matrix), and

therefore equal to 917 , the optimality condition is simplified to

— v~ =l -l
Cio=C;—C3'0, B0,
a1

where®, " =—1

The optimality condition can thus be guaranteed only when the matrix Sis uniformly scaled.
Note that due to the nature of the biological problem, the genuine representation of § might
not be known, thereby ® cannot be guaranteed to be a uniform scaling matrix. More
importantly, for metabolic modeling purposes (where flux units and ranges are problem
dependent), it is nevertheless undesirable that the solution is sensitive to non-uniform scaling

and thus context dependent.

Now consider the following problem:

min Z Vb

meM
st. S-v=b
t,20

Where y, is cost coefficient of variable ¢, in the objective function. The new problem

biologically corresponds to the previous one, after mapping the flux space into metabolite space.
We term it as a MiMBI-like problem formulation.
As i, = Zam,iv,. VmeM,N, c N
ieN,,

Recall that «,, ;is the stoichiometric coefficient of metabolite 71 in reactioni. The objective

function can be re-written as function of v;:

min Z 7,,1(206,,,,[\/[ VmeM,N, c N

ieN,,

min Z( Z(%,,am,f)'vfj

ieN \ meM
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Therefore, the objective function coefficients of each v, is a function of the stoichiometric

coefficients,,;: ¢, = Z}/m“m,i .
meM

Similarly to the previous problem, the following optimality condition is satisfied, so vis an

optimal solution.

9}

_ _ ' p-l1
=c,—¢c;'B7S,

‘ ~.

o

;20 VjeN
Scaling the optimality condition will result in:
¢y =00, —c;'0,(BO,)"6,S,
=c,0,-¢,'0,0,"B'0,S,
=0, '(Cj _CB'B_IS/')
(C./' - cB'B’lSj>2 Oand 6, >0
;Q@ZO
Unlike the previous situation (sum of non-normalized fluxes in the objective function), using a

MiMBI-like problem formulation guarantees that the optimality condition is always satisfied,

independently of the stoichiometry representation.

Genetic interactions — epistasis score

The fitness (f) of each single and double mutant was calculated by normalization of the mutant
growth to the wild-type growth. A variety of phenotypic traits can be used to quantify epistasis,
growth being the most commonly used, due to its accurate experimental quantification in an
efficient high-throughput manner. The epistatic interaction (&) of each double gene combination
(A and B) was calculated based on the following metrics:

e=fap—fa'fs
To address the accuracy of the different algorithms (FBA, IMoMA and MiMBI) in predicting
genetic interactions, we did a precision versus sensitivity analysis given the range of
computational epistasis score cutoffs |g.f|<0.05. Precision is the fraction of experimentally
validated interactions among all predicted interactions, while the sensitivity represents the

fraction of the experimentally validated interactions captured by the analysis.

True positives

Precision =
TECSION = Al predicted positives
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True positives

Sensitivity =
Y All experimental positives

All significant genetic interactions among the non-essential genes from Szappanos et al. [2]
dataset involving genes contained in iAZ900 model were included in the present analysis. The

experimental data was filtered by using a confidence threshold of | €|<0.08 and P<0.05 [2, 30].

R 2.12.1 was used to perform statistics calculations and to generate the plots. The Venn diagram
from Fig. 5.4b was generated by using the R package “VennDiagram” by Chen & Boutros (2011).

Cytoscape 2.8.2 was used to generate the genetic interactions map from Fig. 5.4a.

Metabolic/network distance

The metabolic connectivity graph obtained from the metabolic model /AZ900 was used to
calculate the metabolic/network distance between two genes. We define network distance
between the two as the number of reactions belonging to the shortest path between the two
genes on the connectivity graph. A pair of directly connected metabolic genes was considered as
being separated by distance of 2. This way, genes coding for the same reaction (e.g. isoenzymes
and complexes) have a distance of 1. As highly connected metabolites, as cofactors (ATP, NADH,
NADPH, FADH2, pyrophosphate and orthophosphate) are not likely to connect genes with
related metabolic functions, this subset of metabolites was excluded from the connectivity
graph [32]. Despite being highly connected, mitochondrial protons were kept part of the
connectivity graph to ensure the integrity of the respiratory chain. Graph Template Library (GTL)

was used to implement the algorithm for network distance calculations.
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Chapter 6: Conclusions and Future Perspectives

Metabolic engineering for vanillin production and analysis of genetic interactions in S. cerevisiae
were used to contextualise the application of genome-scale metabolic models for prediction and
systematic analysis of phenotypes resulting from perturbed genotypes. The results obtained
within this thesis provide experimental evidence for the current capabilities and limitations for
predicting metabolic phenotypes based on the genotype by using metabolic models. While
prediction of the metabolic behaviour of single gene deletion mutants can be successfully
achieved, as we showed by experimentally demonstrating the application of the yeast genome-
scale stoichiometric model to metabolic engineering, predicting metabolic phenotypes of
multiple gene deletions or overexpression mutants is still a challenge. A newly developed
computational tool herein presented is expected to contribute for enhancing the predictive
power of metabolic phenotypes by means of metabolic modeling, particularly relevant for

multiple gene deletion mutants.

The yeast genome-scale model was successfully used to guide the design of a metabolic
engineering strategy for increasing heterologous production of vanillin in S. cerevisiae (Chapter
3). The biological objective function used to perform metabolic simulations proved to be a
relevant parameter, as FBA (Flux Balance Analysis) predicted that no vanillin improvement
would take place even after deleting six metabolic reactions. By using MoMA (Minimization of
Metabolic Adjustment), and thereby assuming the mutant’s metabolic proximity towards the
reference strain instead of its optimal growth, several strategies comprising the deletion of one
reaction were suggested. A thorough analysis of the predicted gene targets was performed
accounting for different modes of yeast physiology and final target selection for experimental
work was done based on prioritizing strategies which were predicted to compel the smallest
metabolic adjustment. Implementation of the metabolic engineering strategies following the in
silico guided design successfully resulted in three mutants with up to 2-fold increased vanillin
production. The results from physiological characterization and flux variability analysis of the
predicted flux distribution of the mutants suggested that increased vanillin production was

associated with improved cofactors supply for the vanillin biosynthetic pathway.

Despite the success of taking a global approach for improving vanillin production by using the
yeast genome-scale metabolic model, lower vanillin yield than expected was obtained, as
accumulation of several intermediate compounds of the vanillin biosynthetic pathway was

observed. In order to achieve maximum potential of the global approach for metabolic
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engineering, the activity of the pathway enzymes must not impose a limitation. Indeed, In
Chapter 4 it was shown that the O-methyltransferase for vanillin biosynthesis was limiting the
conversion of pathway intermediates to the final product, vanillin glucoside. Moreover, the
limitation was found to prevail exclusively on the globally engineered mutant, supporting the
fact that local pathway engineering is of higher value when it is combined with global

approaches, which take the whole metabolic network into account.

Model incompleteness and lack of regulatory information are often pointed as potential factors
for limiting the success of application of the genome-scale models. Although the usage of MoMA
as biological objective function indirectly accounts for regulation imbedded in the wild type flux
distribution, direct inclusion of regulatory genes on metabolic networks is still limited due to lack
of knowledge of regulation at the genome-scale level. Additionally, regulatory genes modulate
the expression of several genes, rendering the mathematical description of the relationship
between the expression level of the genes and the corresponding flux changes an intricate task.
Chapter 4 present experimental examples of overexpression of a transcription factor for
metabolic engineering, using vanillin and succinate production in S. cerevisiae as case studies. In
the case of production of vanillin, alleviation of the yeast glucose repression by overexpression
of HAP4 lead to increased respiratory capacity, decreased ethanol formation and higher vanillin
production, most likely due to higher ATP availability. In the case of succinate, the same strategy
raised production by 15%, but it was also found to have a strong negative effect on biomass
formation. Better characterization of the improved strains, particularly by obtaining the
transcriptome and fluxome, could further explain the observed phenotypes. Concerning
succinate production in particular, clarifying the reasons for the observed decreased fitness, as
well as explaining the origin of the produced succinate, either cytosolic or mitochondrial, would

reveal relevant information for future strain improvement.

The results obtained in Chapter 4 confirm the potential of using regulatory genes as targets for
metabolic engineering. In a recent study, Sauer and co-workers (2010) performed systematic
flux analysis of 119 yeast transcription factor deletion mutants, under 43 different experimental
conditions. Their results demonstrate that, despite the altered expression profile of numerous
genes, the metabolic network operation mode is very robust towards transcription factor
deletion. However, the results herein presented, also in agreement with previous work on
overexpression of transcription factors, e.g. van Maris et al. (2001) and Sopko et al. (2006),
suggest that transcription factor overexpression, instead of deletion, may in fact strongly affect

growth rate, as well as the distribution of metabolic fluxes and modulate the activity of central
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pathways in yeast. Efforts towards the systematic clarification of the relationship between
changes in gene expression and metabolic fluxes upon overexpression of transcription factors,

could largely contribute for understanding regulatory mechanisms.

At last, Chapter 5 describes a new computational tool focusing on the formulation of objective
functions for optimization-based algorithms using genome-scale models. MiMBI — Minimization
of Metabolites Balance — presents an alternative methodology to formulate new and currently
used biological principles in a stoichiometry representation independent manner. Several
biological principles are currently formulated by using linear combination of fluxes, e.g. MoMA
and minimization of intracellular flux, which was herein shown to be susceptible to alternative
representations of stoichiometry. This is an undesirable feature, as alternative representation of
the stoichiometric coefficients can be used to describe the same biochemical reaction, thus
simulation algorithms should be insensitive towards such artifacts. MiMBI was used to perform a
systematic study of the yeast genetic interaction network while assuming minimization of
metabolic adjustment as biological principle and showed considerably higher prediction
accuracy than IMoMA. Despite the apparently modest accuracy of prediction of genetic
interactions using metabolic modeling, MiMBI accurately captured the largest fraction of genetic
interactions comparing to other simulation algorithms, namely FBA. Nevertheless, the results
herein obtained support the observations previously reported by Constanzo et al. (2010), where
correlation between genetic interaction degree and different cellular features, such as single
mutant fitness, physical interactions and gene multi-functionality was observed, suggesting that
the wide map of genetic interactions is explained by diverse biological traits. Analogously, as FBA
and MiMBI describe different biological principles, their combined use captures genetic
interactions potentially explained by different biological traits. Indeed, by performing such
analysis, we observed that FBA mostly captures negative generic interactions, as a direct
consequence of its objective function, while MiMBI is more suitable for describing both positive
and negative interactions, due to the prevalence of minimizing metabolic adjustment relatively
to the reference over maximizing growth. Furthermore, MiMBI accurately captures interactions
between genes which are more distant in the metabolic network than FBA. Ultimately,
differently predicted genetic interactions between both approaches provide mechanistic insights

about modes of operation of metabolic networks.

The use of genome-scale metabolic models is currently increasing; the scope of their
applications is expanding, as well as the number of organisms with their metabolic network

reconstructed. The work herein developed evidenced the effectiveness of such models for
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investigating genotype to phenotype relationship, particularly contributing to the analysis of
perturbed metabolic networks. MiMBI versatility for implementation of objective functions can
be explored in the future for formulation of many different biological principles potentially
governing the metabolic phenotype. To this end, availability of large-scale datasets, such as
internal flux distribution of the single and double gene deletion libraries, as well as of
overexpression libraries, in combination with transcriptome, proteome and metabolome, would
largely increase the potential of uncovering biological principles underlying metabolism.
Furthermore, developing new computational tools which can describe complex relationships
between these cellular components would enhance systematic investigation of how changes in
genotype influence the phenotype. Consequent improvement of the predictive power of
metabolic models would contribute for increasing their usefulness in supporting fundamental

and applied research.
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Chapter 2: Systems Biology, Genome Scale Metabolic Modeling and

Metabolic Engineering of S. cerevisiae — Acts and Facts

Table ST2.1: Database and other online resources useful for research in S. cerevisiae and other

yeasts. Adapted from [33].

Database URL

Comments

SGD (Saccharomyces Genome Database)

http://www.yeastgenome.or

g/

The most widely used genome database. It
contains a wide range of data and community
resources. It employs Gene Ontology (GO) for
functional annotation.

CYGD (Comprehensive Yeast Genome
Database)

http://mips.helmholtz-
muenchen.de/genre/proj/yea
st

Particularly useful for protein sequence and
structure. It employs FunCat for functional
annotation, often complementary to GO.

EUROSCARF (European Saccharomyces
cerevisiae Archive for Functional Analysis)

http://web.uni-
frankfurt.de/fb15/mikro/euro
scarf/index.html

Index to the S. cerevisiae strains and plasmids
repository. It contains the complete deletion
collections and several other important
resources.

PROPHECY (Profiling of phenotypic
characteristics in yeast)

http://prophecy.lundberg.gu.

se/

Quantitative phenotypic information for the
complete library of S. cerevisiae deletion
mutants.

BioGRID (Biological General Repository
for Interaction Datasets)

http://thebiogrid.org/

A curated database of genetic and protein-
protein interactions for a number of organisms,
including S. cerevisiae.

YEASTRACT (Yeast Search for
Transcriptional Regulators and Consensus
Tracking)

http://www.yeastract.com/

A curated repository for regulatory associations
between transcription factors and target genes
in S. cerevisiae.

SGRP (Saccharomyces Genome
Resequencing Project)

http://www.sanger.ac.uk/res
earch/projects/genomeinfor

matics/sgrp.html

Contains the genome sequence of S. cerevisiae
and S. paradoxus, as well as of several wild and
industrial strains.

WoLF PSORT (Protein subcellular
localization prediction)

http://wolfpsort.or;

An online tool for prediction of sucellular
localization of proteins in S. cerevisiae and other
fungi.

YGOB (Yeast Gene Order Browser)

http://wolfe.gen.tcd.ie/ygob/

An easy-to-use online viewer that enables
synthetic comparisons between 16 yeast
species, as well as the reconstruction of their
ancestral genome

NetPhosYeast

http://www.cbs.dtu.dk/servic

es/NetPhosYeast/

A web based tool for prediction of serine and
threonine phosphorylation sites in yeast
proteins.

YTPdb (Yeast Transport Proteins
database)

http://homes.esat.kuleuven.b

e/~sbrohee/ytpdb/

A manually annotated set of S. cerevisiae
proteins either demonstrated or predicted to be
transporters.

YEASTNET (A consensus reconstruction
for yeast metabolism)

http:
bio.or

WWW.COmp-Sys-
eastnet,

A consensus reconstruction of the S. cerevisiae
metabolic network.
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Supplementary Information

Chapter 3: Metabolic Engineering for Vanillin Production in S.

cerevisiae. Part 1 - Metabolic Modeling for Strain Improvement

Table ST3.3: List of primers used in this study.

Primer name

Primer sequence

Purpose

His3_Fw
His3_Rev
MarkSeq_Fw
MarkSeq_Rev
dKLS5’

KI URA3 3'-int
KI URA3 5'-int
cKL3’
GDH1(UP)_Fw
GDH1(UP)_Rev
GDH1(DW)_Fw
GDH1(DW)_Rev
GDH1_Ver_FW
GDH1_Ver_REV
PDC1(UP)_Fw
PDC1(UP)_Rev
PDC1(DW)_Fw
PDC1(DW)_Rev
PDC1_Ver_FW
PDC1_Ver_REV
GDH2(UP)_Fw
GDH2(UP)_Rev
PGK1_GDH2(Dw)_Fw
PGK1_GDH2 (DW)_Rev
PGK1verifb

Gdh2verifb

attgctatgacccgggCATAACACAGTCCTTTCCCGC
attgctatgtcccggg TCACACCGCATAGATCCGTC
CTGTGTCTATGAAAGTCGACGCG
GGGGCTGGCTTAACTATGC

gtcageggecgeatcectgc TTCGGCTTCATGGCAATTCCCG
GAGCAATGAACCCAATAACGAAATC
CTTGACGTTCGTTCGACTGATGAGC
cacggcgegectagcagcGGTAACGCCAGGGTTTTCCCAGTCAC
GTCATCATTTCAAATATATG
geagggatgeggecgctgacATAGTCTAAAAGAAAGAAAA
ccgetgetaggegegeegtg TTCTTTTTCTTTTTGGTCTC
AAAGTATACGTAATCTAAGT
TTGCAAGTTAAAGCGGTC

GCCCATGCATTTTCAGT

TCGTTTAAGAGAAATTCTCC
gcagggatgeggeegetgacGCGATTTAATCTCTAATTAT
ccgetgetaggegegecgtg TTTGATTGATTTGACTGTGT
GTGATGGCACATTTTTGCAT
AGCAATGGCTTGCTTAATAG
ATTTGCAAAATGCATAACCT
AGCAATGTCATACTGGCC
gcagggatgcggeegetgacTTGAGATCGTGACAATCAC
ccgetgetaggegegecgtgTCTAACTGATCTATCCAAAACTG
GAATCATCCATTTCAATCC

GTCACACAACAAGGTCCTA

GGTTTTCTACAATCTCCAAAAGAG

Amplify HIS3 marker from pWJ1213
Amplify HIS3 marker from pWJ1213
Sequencing marker in plasmid ARB021

Sequencing marker in plasmid ARB021

Amplify N-terminal URA3 from plasmid
pWJ1042

Amplify N-terminal URA3 from plasmid
pWJ1042

Amplify C-terminal URA3 from plasmid
pWJ1042

Amplify C-terminal URA3 from plasmid
pWJ1042

Amplify GDH1 upstream fragment from
VGO genomic DNA

Amplify GDH1 upstream fragment from
VGO genomic DNA

Amplify GDH1 downstream fragment from
VGO genomic DNA

Amplify GDH1 downstream fragment from
VGO genomic DNA

Analytical PCR for verifying GDH1 deletion
from VG2 genomic DNA

Analytical PCR for verifying GDH1 deletion
from VG2 genomic DNA

Amplify PDC1 upstream fragment from
VGO genomic DNA

Amplify PDC1 upstream fragment from
VGO genomic DNA

Amplify PDC1 downstream fragment from
VGO genomic DNA

Amplify PDC1 downstream fragment from
VGO genomic DNA

Analytical PCR for verifying PDC1 deletion
from VG2 genomic DNA

Analytical PCR for verifying PDC1 deletion
from VG2 genomic DNA

Amplify GDH2 upstream fragment from
VG3 genomic DNA

Amplify GDH2 upstream fragment from
VG3 genomic DNA

Amplify PGK1_GDH2 (DW) fragment from
pPGK1_GDH2

Amplify PGK1_GDH2 (DW) fragment from
pPGK1_GDH2

Analytical PCR for verifying GDH2
overexpression from VG4 genomic DNA
Analytical PCR for verifying GDH2
overexpression from VG4 genomic DNA

?Small case letters indicate non homologous region of the primer, rather they code for restriction sites for cloning

purposes or tails for fusion PCR.

®Primers by TL Nissen et al. (2000)
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Chapter 4: Metabolic Engineering for Vanillin Production in §.

cerevisiae. Part 2 - Pathway and Regulatory Engineering

Table ST4.4: List of oligonucleotides used in this study.

Name Sequence Purpose
OLf ATGGTGCAAGACACATCAAGC npgA (Aspergillus nidulans) amplification from pESC-
02_r attgctatgaGGTACCTTAGGATAGGCAATTACACACCC npgA-pcbAB
03_f GGAGTTTAGTGAACTTGCAA

npgA (Aspergillus nidulans) verification in pARB118
O4_r GATGACTACGGAAAGCTTT
05_f attgctatgaGGCGCGCCGAGTTTGGCCGAGTGGTT MET15 (S. cerevisiae) amplification from CEN.PK 113 7D
06_r attgctatgaGGCGCGCCGAAACCTCCATCATCCTCTT gDNA
07_f CTGTGTCTATGAAAGTCGACGCG

MET15 (S. cerevisiae) verification in pARB030
08 r GGGGCTGGCTTAACTATGC
uo1_f AGTCGCCCCCUTTCGGCTTCATGGCAATTCCCG

Recyclable URA3 marker amplification from pwJ1042
uo2_r ACTCACTGCUGGTAACGCCAGGGTTTTCCCAGTCAC
uos_f ECCIMIRAYIATAAAGCAGCCGCTACCAAA YPRCA15 - UP fragment amplification from CEN.PK 113
uoa r AGGGGGCGACUAATGGAAGGTCGGGATGAG 7D gDNA
uos § AGCAGTGAGUGCTGAGGGTTTAATTAAGTCCTCAGCCCTTTC

- GTCATGGACACTTCT YPRCA15 - DW fragment amplification from CEN.PK

uo6_r GGACTTAAUTACCAACGGACTTACCTTCAG 113 7D gDNA
uo7_f GGGTTTAAUCACACACCATAGCTTCAAA

Prgr amplification from CEN.PK 113 7D gDNA
uos_r AGGGGGCGACUTTTGTAATTAAAACTTAGATTAG
uo9_f AGCAGTGAGUCATGTAATTAGTTATGTCACGC

Teyer amplification from CEN.PK 113 7D gDNA
uo10_r GGACTTAAUGCAAATTAAAGCCTTCGA
uo11_f AGTCGCCCCCUATGACCGCAAAGACTTTTCT

HAP4 amplification from CEN.PK 113 7D gDNA
uoi12_r ACTCACTGCUCAACATGCCTATTTCAAAATAC
Uo13_f AGTCGCCCCCUATGGGTGACACTAAGGAGC

hsOMT amplification from pARB033
uo14_r GGACTTAAUCGCGTCGACTTTCATAGA
09_f CTTGACGTTCGTTCGACTGATGAGC Internal URA3 primers for amplifing bipartite fragments
010_r GAGCAATGAACCCAATAACGAAATC for yeast transformation
O1Lf ATCTGCTGCGCTACCACTG Amplification of YPRCA15 locus from CEN.PK 113 7D
012_r GGCTTGTGGTCACCTGTCAT gDNA (verification)

Note 1: Lower case letters indicate “jungle” to ensure DNA restriction by the endonucleases.
Note 2: UO_# distinguishes the USER oligonucleotides.
Note 3: Gray highlighting designates restriction sites or USER tails, in case of USER cloning primers.
Note 4: Underlined text designate Pacl/Nt.BbvCl User cassette.
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Chapter 5: Minimization of Metabolite Balance Explains Genetic

Interactions within the Yeast Metabolic Network

Supplementary methods

All the simulation algorithms were formulated as Linear Programming (LP) optimization

problems and implemented in C++ using the GLPK (http://www.gnu.org/s/glpk/).
Supplementary Method 5.1: Flux Balance Analysis [2] was formulated as follows:

max VGrowth
st. S-v=0

b b .
v, <y, </ YieN

Supplementary Method 5.2: Minimization of overall intracellular flux [3] was formulated as

follows:

minZ‘vi‘ VieN
st. S-v=0

vl <y, < VieN

Supplementary Method 5.3: Minimization of metabolic adjustment (IMoMA, [4]) was

formulated as follows:

min Y W' —v, VieN
i
st. S-v=0
vl <y, < VieN
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Figure S5.1: Profiles obtained for the objective function value (minimization of overall
intracellular flux) using alternative stoichiometry representations of S. cerevisiae genome-scale
model [5]. This analysis is complementary to and based on the same simulation constraints as
used for Fig. 5.1 in the main text. As the contribution of each flux to the objective function
changes based on the corresponding stoichiometry representation, different situations could be
described, leading either to the same (a, b) or distinct (c, d) optimal solutions. To illustrate these
different situations, four reactions within the model were linearly scaled one at a time by
multiplying by a scalar 6 as described in Methods. a) Linear scaling of the reaction FBP1. As FBP1
carries no flux under the simulated conditions, the scaling of this reaction does not affect the
objective function value. b) Linear scaling of the reaction RPE1. For the range of 0 tested, the
objective function value perfectly correlated with the scaling factor of the reaction RPE1, which
indicates that all obtained solutions are in fact the same optimal solution (or alternative optimal
solutions, depending on the model complexity). This profile means that there is no pathway
alternative to RPE1 that can become part of the optimal solution. c) Linear scaling of the
reaction RPI1. For the range of tested 6, at least two slopes are observed when correlating the
objective function value with 1/6, indicating that at least two different optimal solutions were

found for the same problem. d) Linear scaling of the reaction NDI1. Similarly to that of RPI1,
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scaling of NDI1 leads to different optimal solutions. However, in this case, the objective function
value stabilizes after a given 6, which means that this flux no longer influences the optimization.
Such profile suggests that the optimal solution found after the given value of 8 does no longer

involve NID1, but an alternative pathway, which became preferred for minimizing the objective

function.
a b
1
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«— ) J— S
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—_— P = E w
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Figure S5.2: A toy-model illustrating how, and why, alternative stoichiometry representations
influence simulation of minimization of metabolic adjustment by using normalized IMoMA —
normlIMoMA. a) Toy-model: RI to R7 and A to D represent reactions and metabolites,
respectively. In the wild-type, or reference, flux goes from A to D via R5. R6 and R2-R3-R4 are
two alternative pathways for flux re-distribution after deletion of R5. b) Flux through reactions
R2 (full symbols) and R6 (open symbols) obtained after simulation with normIMoMA by using
alternative representations of reaction R6 (given by different 6z, Methods). ¢) Formulation of
normIMoMA objective function (Methods). d) Optimal objective function value (distance)

obtained for minimization of metabolic adjustment as function of 8.
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Figure S5.3: Stoichiometry representation impacts the design of metabolic engineering
strategies for improving succinate production in S. cerevisiae depending on the nature of the
objective function formulation. Shown is the comparison of predicted succinate yield for a)
single, b) double and c) triple gene knockout mutants obtained with two alternative
stoichiometric matrices (Sp and S;, Methods). The number of mutants diverging in their IMOMA-
predicted succinate yield for the two alternative representations of stoichiometry is represented
on the y-axis, while the percentage of deviation of product formation by the mutants relative to
Sy is represented on the x-axis. d-f) Comparison of ranks of IMoMA-predicted metabolic
engineering strategies for improving succinate production obtained by using S, and S; for d)

single, e) double and f) triple gene knockout mutants.
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Figure S5.4: Stoichiometry representation impacts the design of metabolic engineering
strategies for improving vanillin-glucoside production in S. cerevisiae depending on the nature of
the objective function formulation. Shown is the comparison of predicted vanillin-glucoside yield
for a) single, b) double and c) triple gene knockout mutants obtained with two alternative
stoichiometric matrices (Sp and S;, Methods). The number of mutants diverging in their IMOMA-
predicted vanillin-glucoside yield for the two alternative representations of stoichiometry is
represented on the y-axis, while the percentage of deviation of product formation by the
mutants relative to Sy is represented on the x-axis. d-f) Comparison of ranks of IMoMA-predicted

metabolic engineering strategies for improving vanillin-glucoside production obtained by using
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Figure S5.5: Stoichiometry representation impacts the design of metabolic engineering
strategies for improving succinate and vanillin-glucoside yields in S. cerevisiae depending on the
nature of the objective function formulation. a-f) Number of mutants diverging in their IMoMA-
predicted a-c) succinate and d-f) vanillin-glucoside yields for two alternative representations of
stoichiometry, S, and S, (Methods). Results for a,d) single, b,e) double and c,f) triple gene

knockout mutants are presented. g-l) Comparison of ranks of IMoMA-predicted metabolic
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engineering strategies for improving g-i) succinate and j-1) vanillin-glucoside production obtained
by using S, and S,. Results for g,j) single, h,k) double and i,l) triple gene knockout mutants are

presented.
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Figure S5.6: Comparing the performance of MiMBI, FBA and IMoMA for predicting yeast genetic interactions using

iAZ900 metabolic model.

Supplementary tables

Table ST5.1: Number of IMoMA-predicted lethal gene/reaction knockouts in S. cerevisiae that
differ between alternative representation of stoichiometry (S; and S;), relative to S, (Methods).
The yeast genome scale model [5] was constrained as per Szappanos et al, 2011, and FBA was
used to generate the reference flux distributions. Single, double and triple gene/reaction

deletions were simulated.

Number s, s, Total n'uml:'>er of
of combinations
Deletions | Reactions Genes | Reactions Genes | Reactions Genes
1 0 0 4 3 387 424
2 0 13 1526 1166 74691 89676
3 189 4565 289664 225548 | 9585345 12614424
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Table ST5.2: IMoMA-predicted epistatic interactions within S. cerevisiae genome-scale metabolic
model [5]. Simulations were performed using three alternative representations of stoichiometry,
So, S; and S, (Methods). The yeast genome-scale metabolic model was constrained as in

Szappanos et al. 2011.

So Sz S:

Positive interactions 2219 2154 2087

Negative interactions 840 781 742

Synthetic lethals 197 217 97
Total number of

interactions 89676

Table ST5.3: MiMBI-predicted epistatic interactions within S. cerevisiae genome-scale metabolic
model [5]. Simulations were performed using two alternative representations of stoichiometry,

So and S; (Methods). The yeast genome-scale metabolic model was constrained as in Szappanos

etal 2011.
Sg $1
Positive interactions 2019 2019
Negative interactions 811 811
Synthetic lethals 198 198
Total number of
interactions 89676
Supplementary notes
Supplementary Note 5.1: Toy-model
Reaction ID Reaction [lower bound, upper bound]
R1: Axt -> A [1,1]
R2: A->B [0,200]
R3: B->C [0,1200]
R4: C->D [0,100]
RS5: A->D [0,100]
R6: A->D [0,100]
R7: D -> Dxt [0,100]

Where R1 to R7 represent reactions, A, B C and D represent internal metabolites, Axt and Dxt
represent external metabolites. Constraints are represented as [lower bound, upper bound].
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Reference flux distribution
R1 1

R2
R3
R4
R5
R6
R7

m ORr OOOo

Reference intracellular metabolite turnovers
A 1

B 0
C 0
D 1

Supplementary Note 5.2: normIMoMA

One possible approach to normalize the objective function variables with respect to the
stoichiometric representation, can be achieved by dividing each variable by its value on the wild-
type flux distribution — normalized IMoMA (normIMoMA). Albeit being simple, this
normalization method has several drawbacks, the first one being the fact that many reactions
have null fluxes on the wild-type flux distribution. The simplest solution to this problem would
be to disregard the contribution of null fluxes to the objective function, biologically meaning that
the onset of new enzymes would be costless. This normalization solves the inconsistency of the
initial problem, since the calculated distance is constant independently of the matrix
representation. However, as R2-R3-R4 and R6 (toy-model, Fig. $5.2) have null fluxes on the wild-
type flux distribution, and therefore they do not take part of the objective function, they
represent alternative optima to the problem. Moreover, exclusion of the wild-type null fluxes
from the objective function alters the biological principle underlying MoMA and increases the

number of alternative optimal solutions.

Supplementary Note 5.3: Impact of scaling stoichiometry on finding the optimal solution for

metabolic flux distributions using FBA-like objective functions — Analytical evidence

Consider the problem

min c,v,
st. S-v=b
v,20,VieN

Where q is the index of variable v, on the matrix §. Note that this is a particular case of having

a sum of non-normalized variables on the objective function, where all the entries of the

136



objective function coefficients vector ¢ are zero, except for the a* entry (=c,). As described in
Methods, after scaling matrix S with ® , the optimality condition becomes:

c,—c;'(BO,)'0,5,20

)

where j is the index of variable v in matrix§, ¢ is the reduced cost of the variable v, ¢ is
the objective function coefficient ofvj , Cyis the vector containing the objective coefficients of
basic variables, Sj is the / column of matrix §, @ is a nxn positive diagonal matrix (scaling

matrix) and 49//. is the scaling factor for the j column of matrix S [6].

Three different cases should be considered and in all of them we will show that the optimality
condition is satisfied.
a) ag¢Banda=#j
g = [0] and c; =0
S, =0
The optimality condition is satisfied.

b) agBanda=j
SCp = [0]2@ =c,and ¢; 20 (Optimalily)

.C. =C¢C. 7 >
S € c‘,zcje_O

The optimality condition is satisfied.

c) aeB
zfazj,thenjeB:cTzcj@ =0
ifa#j=c;,=0
~—c;'(BO,)'0,S,20
As CB'BflSj <0 and all entries of the matrix ® are positive, the optimality condition is

always satisfied.
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