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    Chapter 19   

 Bioinformatics Identi fi cation of Antigenic Peptide: 
Predicting the Speci fi city of Major MHC Class I 
and II Pathway Players       

     Ole   Lund      ,    Edita   Karosiene   ,    Claus   Lundegaard   , 
   Mette   Voldby   Larsen   , and    Morten   Nielsen     

  Abstract 

 Bioinformatics methods for immunology have become increasingly used over the last decade and now 
form an integrated part of most epitope discovery projects. This wide usage has led to the confusion of 
de fi ning which of the many methods to use for what problems. In this chapter, an overview is given focusing 
on the suite of tools developed at the Technical University of Denmark.  

  Key words:   Immune ,  Epitope ,  MHC, HLA ,  Class I ,  Class II ,  Antigen processing ,  Proteasome ,  TAP , 
 Visualization ,  Bioinformatics ,  Prediction ,  Web server.    

 

 Experimental methods for analyzing antigenic peptide generation, 
transport, and binding to Major Histocompatibility Complex 
(MHC) class I molecules are expensive and time consuming. While 
bioinformatics methods can never replace experiments in the 
laboratory, they may in a highly cost-effective manner guide the 
experimental efforts in a direction that increases the likelihood of 
discovering immunologically important responses. At the Technical 
University of Denmark, we have over the last decade developed a 
number of methods for predicting which part of an antigen most 
likely is presented to the immune system. A complicating factor is 
that the MHC molecules associated with response to foreign anti-
gens are encoded at several loci. Furthermore, these genes are the 
most polymorphic in the human genome and thousands of different 
alleles are known. Many of these alleles encode different variants of 
MHC molecules having different peptide binding speci fi cities. 

  1.  Introduction
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However, it is possible to cluster alleles with similar speci fi cities 
into functional groups called supertypes,  fi rst described by Sette 
and Sidney  (  1  ) . The pioneering methods for predicting binding to 
MHC class I molecules such as BIMAS  (  2  )  and SYPEITHI  (  3  )  
helped initiate the  fi eld of immunological bioinformatics, but these 
methods have since been surpassed by newer methods like the ones 
described in this chapter, and we propose that experimental efforts 
may be minimized by basing the experiments on these newer 
methods.  

 

 In recent years numerous methods for predicting binding to MHC 
molecules have been proposed. These methods can broadly be 
divided into two classes: one being the allele-speci fi c and one being 
the pan-speci fi c methods. Allele-speci fi c methods are constructed 
for a given allele, and can interpolate between different ligands and 
give predictions for peptides for which no binding data are avail-
able. An obvious limitation by these methods is that predictions 
can only be made for alleles for which a number of binding data is 
already available. This requirement has been circumvented by the 
so-called pan-speci fi c methods, which can also interpolate between 
different MHC alleles and thus make predictions for alleles for 
which no known binders are available. This strongly increases the 
number of alleles for which predictions can be obtained, from the 
few hundreds for which binding data is available to the more than 
3,000 for which the protein sequence is known. 

 The accuracy of methods for MHC peptide binding prediction 
depends critically on the available data characterizing the binding 
speci fi city of the MHC molecules. This makes it very dif fi cult for 
the nonexpert user to choose the most suitable method for 
predicting binding to a given MHC molecule. To complicate 
things even further, it has been demonstrated that consensus meth-
ods de fi ned as combinations of two or more different methods led 
to improved prediction accuracy.  

 

 To bene fi t from the consensus approach and to guide the nonexpert 
user on selecting the most appropriate binding prediction method 
for a given MHC class I molecule, we have recently developed the 
 NetMHCcons  method. The method is available at   http://www.cbs.
dtu.dk/services/NetMHCcons    . 

 The method integrates predictions from three well-established 
prediction methods ( NetMHC   (  4,   5  ) ,  NetMHCpan   (  6,   7  ) , and 

  2.  Binding of 
Peptides to MHC

  3.  Prediction of 
MHC Class I 
Peptide Binding

http://www.cbs.dtu.dk/services/NetMHCcons
http://www.cbs.dtu.dk/services/NetMHCcons
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 PickPocket   (  8  ) ) and allows the user in an automatic manner to 
obtain the most accurate predictions for any given MHC class I 
molecule of known protein sequence. The three methods included 
in  NetMHCcons  are state of the art and have performed well in 
recent benchmarks  (  9–  14  ) . For MHC class I alleles with well-
characterized binding speci fi city, the method is de fi ned as a combi-
nation of the  NetMHC  and  NetMHCpan  methods, and for alleles 
with unknown binding speci fi city, the method is de fi ned in terms 
of the  NetMHCpan  method combined with  PickPocket . For details 
on the method and its benchmark performance refer to  (  15  ) . 

 The submission site of the server can be seen in Fig.  1 . 

  Fig. 1.    Submission site of  NetMHCcons  server. Two submission types are handled—a list of peptides or protein sequence(s). 
The server provides a possibility for the user to choose MHC molecules in question from a list of alleles or alternatively 
upload a full-length MHC protein sequence of interest. The user has a choice of setting the threshold for de fi ning strong 
and weak binders based on predicted af fi nity (IC50) or %Rank. The output can be sorted based on predicted binding af fi nity 
as well as  fi ltered on the user-speci fi ed thresholds.       
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    1.    Select method. By default, the consensus method ( NetMHCcons ) 
is selected but each of the three individual prediction methods 
can be run separately.  

    2.    Select Allele(s). To aid in navigation, the alleles listed by default 
are limited to the human supertype representatives, but all 
alleles from different human/animal loci can be selected under 
“Select species/loci” (the list of selectable alleles is limited to 
alleles with well-characterized binding speci fi city when using 
the  NetMHC  method). In the MHC allele selection  fi eld, mul-
tiple alleles can be selected but the selection is limited to 20 
alleles per submission. Multiple alleles can also be inputted as a 
comma-separated list. For the pan-speci fi c methods 
( NetMHCcons ,  NetMHCpan , and  PickPocket ) the user can 
upload a  fi le containing the protein sequence of an MHC class 
I molecule that is not among the available, selectable alleles, 
and the method will perform peptide binding predictions for 
this molecule.  

    3.    Provide input sequence. The input can either be in peptide raw 
text or protein FASTA format. In peptide format, each line is 
assumed to be a separate peptide. All peptides must be of equal 
length. In FASTA format, the sequence of each protein must 
be preceded by a line beginning with a “>.” When FASTA 
input is used, multiple different epitope lengths from 8 to 11 
residues can be selected.  

    4.    Select output formatting. By default the output is sorted by 
the residue number, but the user can choose to sort the output 
by the predicted binding af fi nity. Predictions for all the input 
peptides given are by default but by setting “Filter output” to 
“Yes,” only the peptides predicted to bind stronger than the 
de fi ned thresholds are given in the output. The output can 
optionally be saved to a  fi le readable by spreadsheet applica-
tions for further processing by the user.  

    5.    Press submit.  
    6.    Wait for the server to produce output. The output from the 

server consists of a list of peptides, each associated with three 
prediction values: 1-log50k(aff), Af fi nity, and %Rank. The 
1-log50k value is the raw score provided by the prediction 
method, and is related to the predicted binding af fi nity value as 
1-log(Aff)/log(50,000). The %Rank score gives % rank of the 
prediction score to a set of 200,000 random natural 9mer pep-
tides. Thresholds can be selected for which peptides to report 
as strong binders (SB) and week binders (WB). The peptides 
are labeled as a strong binder if the %Rank score or the binding 
af fi nity is below the speci fi ed thresholds for the strong binders. 
Likewise, peptides are labeled as weak binders if the %Rank or 
the binding af fi nity is above the thresholds of strong binders, 
but below the speci fi ed threshold for the weak binders.     



25119 Bioinformatics Identifi cation of Antigenic Peptide…

 References to other well-performing methods for prediction of 
MHC class I binding can be found in one of the several reviews 
that have been written on the subject including a recent one from 
our group  (  14  ) . 

  For class I, alignment-free methods like the ones described earlier 
can readily be applied, since the binding motif is well characterized 
and most natural peptides that bind MHC class I are of the same 
length. For MHC class II, the situation is quite different due to the 
great variability in the length of natural MHC-binding peptides. 
This variation in ligand length makes alignment a crucial and inte-
grated part of estimating the MHC-binding motif and predicting 
peptide binding. During the last decade, large efforts have been 
invested in developing data-driven prediction methods for MHC 
class II peptide binding. For an overview of these refer to one of 
the many reviews written on the theme including the one written 
by our group  (  16  ) . 

 The binding of a peptide to a given MHC class II molecule is 
predominantly determined by the amino acids present in the pep-
tide-binding core. However, peptide residues  fl anking the binding 
core (the so-called peptide  fl anking residues, PFR) do also to some 
degree affect the binding af fi nity of a peptide  (  17–  19  ) . Most pub-
lished methods for MHC class II binding prediction focus on iden-
tifying the peptide-binding core only, ignoring the effects on the 
binding af fi nity of PFRs. In the work by  (  19  )  it was demonstrated 
that the additional information provided by the PFR leads to 
signi fi cantly improved predictions. 

 Two high-performing methods for MHC class II binding pre-
diction developed by our group are  NetMHCII   (  19  )  and 
 NetMHCIIpan   (  20,   21  ) . The  NetMHCII  method is allele-speci fi c 
and allows for peptide–MHC binding predictions to a set of 14 
HLA-DR, six HLA-DQ, six HLA-DP, and two mouse H2 class II 
alleles.  NetMHCIIpan  is HLA-DR pan speci fi c, allowing for pre-
diction of peptide binding to all HLA-DR molecules with a known 
protein sequence. Several benchmark studies have demonstrated 
these methods to be high performing and state of the art  (  22–  25  ) .

    1.    Select input sequences. Both methods accept input either as 
individual peptides in raw text format or as protein sequence(s) 
uploaded in FASTA format (see earlier). If protein sequences 
are uploaded, the user can specify the peptide length and pre-
dictions are made for each overlapping peptide of the speci fi ed 
length. Multiple MHC alleles can be speci fi ed.  

    2.    Customize search. The input to (and output from) the 
 NetMHCIIpan  method is very similar to that of  NetMHCII . 
Only does the  NetMHCIIpan  method (as was the case for 
MHC class I methods described earlier) allow the user to 
upload a  fi le containing the protein sequence of an HLA-DR 

  3.1.  Prediction of MHC 
Class II Peptide 
Binding
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molecule that is not among the available, selectable alleles, and 
the method will perform binding predictions for this molecule. 
Likewise the user can de fi ne the prediction score threshold 
values used to classify prediction as strong and weak binders. 
Also can the output from the  NetMHCIIpan  server be saved 
to a  fi le readable by most spreadsheet applications for further 
processing by the user.  

    3.    Select output formatting. By default the output is sorted by 
the residue number but the output can also be sorted by af fi nity. 
Predictions for all peptides are by default given but by setting 
a “Threshold,” only the peptides predicted to bind stronger 
than the de fi ned threshold (in 1-log50k units) are given in the 
output.  

    4.    Press Submit.  
    5.    Wait for output. As for the MHC class I prediction server 

described earlier, the output from the MHC class II prediction 
servers consists of a list of peptides, each associated with the 
predicted binding core and three prediction values: 
1-log50k(aff), Af fi nity, and %Rank. The 1-log50k value is the 
raw score provided by the prediction method, and is related to 
the predicted binding af fi nity value as 1-log(Aff)/log(50,000). 
The %Rank score gives % rank of the prediction score to a set 
of 200,000 random natural peptides. Peptides are labeled as a 
strong binder if the binding af fi nity is below 50 nM. Likewise, 
peptides are labeled as a weak binder if the binding af fi nity is 
below 500 nM.       

 

 The number and binding speci fi city diversity of MHC molecules can 
be overwhelming for most users. To help get an overview, we have 
developed the  MHCMotifViewer  server (  http://www.cbs.dtu.dk/
biotools/MHCMotifViewer/    ). The homepage is shown in Fig.  2 . 

    1.    Select species/loci. By clicking on “Human alleles,” different 
loci can be selected. For other species the user is taken directly 
to a list of alleles.  

    2.    Select allele. Clicking on one of the thumbnail pictures will 
create a larger logo for that allele. This is shown for HLA-
A*01:03 in the right panel of Fig.  2 . On the x-axis the nine 
positions in the binding motif are given. The height of the 
columns of letters at each position corresponds to the pre-
dicted contribution to binding on that position calculated 
according to the formula developed by Kullback–Leibler  (  26  ) . 
The amino acids for which their frequency differs the most 

  4.  MHCMotif-
Viewer: Browsing 
and Visualization 
of MHC Class I and 
Class II Binding 
Motifs

http://www.cbs.dtu.dk/biotools/MHCMotifViewer/
http://www.cbs.dtu.dk/biotools/MHCMotifViewer/
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from the background frequency for that amino acid in proteins 
in general are shown with the highest letters. The overrepre-
sented amino acids are shown above the x-axis, and the under-
represented ones below.     

 The binding motif of up to four different alleles can be shown side 
by side by clicking on “MHC Fight.” By default, all four alleles 
are the same, but by clicking on the blinking curser, the allele 
name can be changed by deleting (part of) the name using the 
backspace key and typing the new name. By holding the curser 
over the “K” button, the display will shift between showing a 
Kullback–Leibler (K), and a Sequence frequency (S)-based logo. 
In a sequence frequency-based logo the relative height of each 
letter within a column is proportional to the frequency of the 
corresponding amino acid at that position. A more detailed expla-
nation can be found in  (  27  ) .  

 

 Considering the many different peptides that can be generated, 
even from a small target protein, and the extensive polymorphism 
of the presenting MHC molecules, identifying pathogen-speci fi c, 
HLA-restricted T cell epitopes can be an immense experimental 

  5.  HLArestrictor: 
Patient-Speci fi c 
HLA Restriction 
Elements and 
Optimal Epitopes 
Within Peptides

  Fig. 2.    The  MHCMotifviewer  server. Left panel shows the homepage of the  MHCMotifViewer  server where the organism can 
be selected. Human, murine, chimpanzee, swine, gorilla, and macaque alleles can be browsed. In the right panel an allele 
from the Human HLA-A loci (HLA-A*01:03) is selected and its motif is displayed as the sequence logo representation.       
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task. To reduce this complexity, one could conveniently exploit a 
commonly used approach of T cell epitope discovery: testing over-
lapping peptides (OLP) with a length of 15–18 amino acids in 
IFN γ  release, ELISpot, or  fl ow cytometric intracellular staining 
assays. Given a positive peptide it is, however, not a simple task to 
 fi nd the actual stimulatory peptide (minimal epitope) and the pre-
senting HLA restriction element. By way of example, a 15mer pep-
tide tested positive in a patient with six different HLA class I 
molecules could potentially be explained by any one of the possible 
22 * 6 = 132 8–11mer HLA combinations. To lower this experi-
mental burden, we have developed an immunoinformatics method, 
 HLArestrictor  (  www.cbs.dtu.dk/services/HLArestroctor    )  (  28  ) , 
which has been tailored to support CTL epitope discovery in indi-
vidual subjects. As inputs, the method requires the amino acid 
sequence of the positive peptide(s) and the HLA type of the indi-
vidual in question (high-resolution HLA typing, e.g., HLA-
A*01:01, and preferably for all relevant loci, e.g., for HLA-A, -B, 
-C for HLA class I-restricted CTL responses). Using these inputs, 
 HLArestrictor  creates all possible 8, 9, 10, and 11mer peptides 
from the target peptides(s), predicts their binding to all the HLA 
molecules in question, and generates an output  fi le consisting of 
the most likely peptide/HLA combination(s). Peptide/HLA 
tetramers is one of the most ef fi cient means to validate T cell 
epitopes, and  HLArestrictor  can also be viewed as a tool for ef fi cient 
design of speci fi c peptide/HLA tetramers. The vehicle behind the 
 HLArestrictor  is the  NetMHCpan  method, and the Webpage inter-
face bears a high resemblance to the interfaces for  NetMHCpan, 
NetMHCIIpan,  and  NetMHCcons .

    1.    Select input sequences. Multiple peptide sequences can be 
uploaded in FASTA format.  

    2.    Select HLA alleles. The host HLA allele names can be selected 
or typed in.  

    3.    Select lengths of epitopes. The lengths of the predicted mini-
mal epitopes can be speci fi ed.  

    4.    Select prediction threshold. Threshold values de fi ning how the 
prediction scores are interpreted can be speci fi ed in terms of 
threshold values for strong and weak binding peptides.     

 With default settings, the server will scan all possible 8, 9, 10, 
and 11mer peptides from the target peptides(s) for binding to all 
HLA alleles of the host and report peptides with %Rank score less 
than or equal to 0.5 or af fi nity stronger than 50 nM as strong bind-
ers, and peptides with %Rank score less than or equal to 2 or af fi nity 
stronger than 500 nM as weak binders.  

http://www.cbs.dtu.dk/services/HLArestroctor
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 All the prediction servers described here provide three prediction 
scores for each peptide, as well as a label classifying the peptides 
into groups of strong and weak binders. For the end user, these 
prediction values are meant to serve as a guide to make rational 
peptide selections for epitope discovery and/or interpretation of 
immune responses. This opens for questions on how to de fi ne 
relevant thresholds relating prediction values to likelihoods of a 
peptide being a T cell epitope. It is becoming apparent that not all 
MHC molecules present peptides at the same binding threshold 
 (  29,   30  ) . The two distinct prediction values (af fi nity and %Rank) 
are included to capture these intrinsic differences between MHC 
molecules in terms of binding threshold for presentation of pep-
tides. Large benchmark studies have demonstrated that the vast 
majority of known CTL epitopes are characterized by having a 
%Rank score less than or equal to 2 or an af fi nity stronger than 
500 nM  (  28,   31,   32  ) . These numbers are hence used as default 
values for the de fi nition of weak binding peptides for all MHC 
class I prediction methods. For MHC class II the situation is less 
clear. While it is clear that the prediction values correlate strongly 
with the measured binding af fi nity, few studies have investigated 
the direct correlation between %Rank score, predicted af fi nity values, 
and the likelihood of a peptide being immunogenic. The default 
values for the classi fi cation of peptides as weak and strong binders 
are hence poorly justi fi ed for MHC class II, and the relationship to 
the likelihood of being immunogenic is at the best poorly investi-
gated. However, for both MHC class I and class II it is clear that 
using the prediction score to rank peptides provides a highly cost-
effective tool to guide the experimental efforts in a direction that 
increases the likelihood of discovering immunologically important 
responses.  

 

 As part of the protein recycling machinery, proteins in our cells are 
cut into shorter peptides by the proteasome. These peptides may 
bind to the Transporter associated with Antigen Processing (TAP) 
and be transferred to the Endoplasmic Reticulum (ER). Inside the 
ER, peptides may be further trimmed, bind the MHC class I mol-
ecules, and be transported along with it to the cell surface. If the 
peptide is of nonself origin, the peptide–MHC complex may bind 
to a T Cell Receptor (TCR) on a cytotoxic T cell, which will then 
initiate an immune response. More detailed descriptions of and 

  6.  Interpreting the 
Output from the 
Prediction Servers

  7.  The MHC Class I 
Antigen 
Presentation 
Pathway
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references to these processes can be found in other chapters of this 
book. The three most essential of the above steps (cleavage by the 
proteasome, transport by TAP, and binding to MHC class I) have 
been modeled by bioinformatics methods that can predict which 
peptides from a given protein/organism are most likely to be 
presented to the immune system.  

 

 A method has been developed, which predicts proteasomal cleavage 
sites. The method is called  NetChop   (  33  ) , and a server is available 
at   http://www.cbs.dtu.dk/services/NetChop/    .

    1.    Select prediction method. Two different versions of the method 
exist: “C term 3.0” and “20S 3.0.” They differ by the sets of 
data they have been trained on. While  NetChop 20S 3.0  has 
been trained on in vitro constitutive proteasome protein digests, 
 NetChop C term 3.0  has been trained on natural MHC class I 
ligands. The rationale for the latter is that the proteasome most 
likely has generated the ligand’s C-terminal ends.  NetChop C 
term 3.0  predicts the C-terminal end of CTL epitopes with a 
higher speci fi city than  NetChop 20S 3.0  (has fewer false posi-
tives). The main reason for this is that since it is trained on natu-
ral ligands, it predicts a combination of MHC class I binding, 
TAP transport ef fi ciency, and proteasomal cleavage.  

    2.    Select input sequence. The input to the server is proteins or 
peptide fragments in FASTA format (see earlier). The method 
assigns a score in the range 0–1 to each residue in the input 
sequence. The higher the score, the more likely it is that the 
proteasome cleaves after this residue. Note that the score refers 
to cleavage of the peptide bond on the C-terminal side of the 
residue to which the score is assigned.  

    3.    Select prediction threshold.     

 By default, 0.5 is used as the threshold for predicted protea-
somal cleavage. In the output, scores above the threshold are 
assigned an “S” in the C (cleavage) column, while lower scores 
are assigned a “.”.  

 

 Two methods that integrate predictions of proteasomal C-terminal 
cleavage, TAP transport ef fi ciency, and MHC class I binding for 
the overall prediction of MHC class I presentation called  NetCTL  

  8.  NetChop: 
Proteasomal 
Cleavages (MHC 
Class I Ligands)

  9.  NetCTL and 
NetCTLpan: 
Integrated Class I 
Antigen 
Presentation

http://www.cbs.dtu.dk/services/NetChop/
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and  NetCTLpan  have been developed by our group. The  NetCTL  
method  (  34  )  is available at   http://www.cbs.dtu.dk/services/
NetCTL/    . For prediction of proteasomal cleavage, it uses 
 NetChop C term 3.0  (see above). Predictions of TAP transport 
ef fi ciency are based on the weight matrix-based method described 
by Peters et al.     (  35  ) . For predictions of MHC class I binding, 
 NetMHC  (see above) is used.

    1.    Select input sequence. The input to the server is proteins or 
peptide fragments in FASTA format (see earlier).  

    2.    Select Allele/supertype. The user must specify for which of the 
12 MHC class I supertypes the predictions should be per-
formed (A1, A2, A3, A24, A26, B7, B8, B27, B39, B44, B58, 
or B62; for a de fi nition of supertypes see  (  1  ) ).  NetCTL  inte-
grates the individual scores from  NetChop , the TAP matrix, 
and  NetMHC  into one, overall score. To allow for comparison 
between different MHC class I supertypes, the rescaled af fi nity 
is used (see  (  34  )  for details on how the rescaled af fi nity is 
calculated).  

    3.    Select weighting of processing steps. As default, the relative 
weight of C-terminal cleavage is 0.15, while it is 0.05 for TAP 
transport ef fi ciency. The default weights have been found to 
result in optimal performance, but can be changed by the user.  

    4.    Select prediction threshold. The user can also specify which thresh-
old to use for de fi ning a CTL epitope. By default it is 0.75.  

    5.    Select sorting of output. Lastly, the user can specify how the 
9mers of the input sequence should be sorted in the output. In 
the default “no sort” option, the 9mers are listed according to 
the order in which they appear in the input sequence. 
Alternatively, they can be sorted according to the combined 
score, MHC binding, proteasomal cleavage, or TAP. For each 
9mer sub-peptide in the input sequence, the output will list the 
predicted af fi nity and the prediction scores of proteasomal 
cleavage, TAP binding, and  fi nally a combined score. If the 
combined score is above the selected threshold for de fi ning an 
epitope, it is marked by an “E.”     

  NetCTLpan  is an extended and improved version of  NetCTL , 
which is available at   http://www.cbs.dtu.dk/services/NetCTLpan/     
and described in detail in  (  30  ) . The C-terminal proteasomal cleav-
age and TAP transport ef fi ciency are predicted as for the  NetCTL  
method, while MHC class I binding is based on the  NetMHCpan  
method. While  NetCTL  only allows for predictions of peptides 
restricted by one of the 12 MHC class I supertypes,  NetCTLpan  
allows for predictions of CTL epitopes binding any MHC class I 
molecule for which the protein sequence is known. As for the 
above-described pan prediction methods, it is additionally possible 

http://www.cbs.dtu.dk/services/NetCTL/
http://www.cbs.dtu.dk/services/NetCTL/
http://www.cbs.dtu.dk/services/NetCTLpan/
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to paste in or upload a  fi le containing the protein sequence of an 
MHC class I molecule that is not among the available, selectable 
alleles, and the method will perform CTL epitope predictions for 
this molecule.  NetCTLpan  furthermore performs predictions for 
8–11mers. The Webpage interface of  NetCTLpan  bears a high 
resemblance to the interfaces of  NetCTL . One difference is that it 
is possible to select a threshold that the combined score must 
exceed for the predictions to be displayed in the output page. By 
default, this threshold is −99.9, which results in all predictions 
being displayed. In the output page, the same values are listed as in 
the  NetCTL  output. Additionally, the %Rank value is given (see 
above for de fi nition of the %Rank value).      
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