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Abstract—Wind power forecasting is essential for greater 
penetration of wind power into electricity systems. Because no 
wind forecasting system is perfect, a thorough understanding of 
the errors that may occur is a critical factor for system 
operation functions, such as the setting of operating reserve 
levels. This paper provides an international comparison of the 
distribution of wind power forecasting errors from operational 
systems, based on real forecast data. The paper concludes with 
an assessment of similarities and differences between the errors 
observed in different locations. 

Keywords—wind power forecasting, power system operation, 
power system reliability, power systems, wind power generation 

I.  INTRODUCTION 
The amount of wind power being incorporated into power 

systems worldwide has been increasing dramatically during 
the past decade. Wind power has no fuel costs and zero 
emissions, which means that its increased presence in power 
generation portfolios provides great benefits to society. 
However, wind power is a variable and uncertain power 
resource, in contrast to traditional thermal power units. This 
has led to concerns from utilities and system operators about 
how increasing amounts of wind power will be handled in 
system operations [1]. One way to reduce the uncertainty 
surrounding wind power output is through wind power 
forecasting systems. Typical systems used in operational 
forecasting consist of one or more Numerical Weather 
Prediction (NWP) models that provide forecasts of wind speed 
on a grid over a geographic area, coupled with statistical 
techniques that translate the forecasts to local wind plant 
conditions and convert forecasted wind speed to power [2]. 
Although these forecasts provide system operators with an 
expected wind power output level at future times, they are not 

perfect forecasts. Understanding the magnitude and frequency 
of wind power forecasting errors can facilitate the integration 
of wind power through advanced operational techniques, for 
example, setting dynamic reserve levels [3, 4], using 
stochastic unit commitment models [5, 6], or through simply 
increasing operator awareness. Power system operations are 
already designed to handle a certain degree of variability and 
uncertainty because load is itself both variable and uncertain 
[7]. Therefore, we are most concerned with the large and 
infrequent wind power forecasting errors. Large forecasting 
events can lead to major economic inefficiencies through non-
optimal commitment schedules. 

Wind power forecast errors are often a concern in wind 
integration studies and stochastic unit commitment models. 
Many of these studies assume that the forecast error 
distribution follows a normal distribution [3, 8, 9]. However, 
this is an overly simplistic assumption for most forecasting 
methods and timescales examined [10, 11]. Other distributions 
have been examined, including the Weibull [12] and beta [13] 
distributions; however, in this work we utilized the hyperbolic 
distribution [10]. We analyzed the forecast error distributions 
observed in a number of different countries and electrical 
systems and at two different timescales that are important in 
the unit commitment and economic dispatch process. 
Comparisons were made between the different cases, and 
conclusions on the importance of the differences for power 
systems operations with higher wind power penetrations were 
drawn. 

II. METHODS AND DATA 
In this study, statistical analysis techniques were applied to 

wind power forecasting data taken from seven countries. Day-
ahead wind power forecasts were supplied for seven countries 
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or balancing areas within a country. Hour-ahead wind power 
forecasts were utilized for two countrywide systems and for 
one large wind plant in a balancing area. The hyperbolic 
distribution parameters were fitted to the data using a 
maximum likelihood method. 

Mean, μ, and variance, σ, the first two standardized 
moments, are frequently used in the characterization of wind 
forecasting error distributions, providing important 
information about the distribution. However, considering the 
third and fourth statistical moments can provide additional 
information [10, 14, 15]. Skewness, γ, is the third moment and 
is a measure of the probability distribution’s asymmetry. 
Kurtosis, κ, is the fourth moment and describes the magnitude 
of the distribution’s peak. Conversely, kurtosis can also be 
thought of as a measure of the thickness of the tails of the 
distribution. A distribution with a high kurtosis value is 
leptokurtic; one with a low kurtosis value is platykurtic. 
Leptokurtic distributions have more pronounced peaks, 
slimmer shoulders, and longer tails than normal distributions 
with identical first two moments. In what follows, we refer to 
excess kurtosis, the kurtosis above that of the normal 
distribution, simply as kurtosis. 

We utilized some standard statistical tools such as 
histograms, quantile-quantile (Q-Q) plots, and cumulative 
distribution function plots. It is important to note that the 
forecast errors were normalized, based on the wind power 
capacity, for the sake of comparison. Therefore, all of the 
forecast errors lie on the interval from -1 to 1. The Q-Q plots 
shown here are normal Q-Q plots that compare the observed 
distribution to a Gaussian distribution with the same mean and 
standard deviation as the observed distribution. They include a 
line that runs through the first and third quantiles of the 
observed distributions. If the two distributions are identical, 
the line should pass through all of the points in the observed 
distribution. The cumulative distribution plots show how 
likely a random error from the distribution will be less than or 
equal to the magnitude selected. 

III. SYSTEM OPERATIONS WITH FORECASTS 
Wind power forecasting plays an important role in 

reducing the uncertainty of wind generation. Forecasts may be 
included directly in the unit commitment and economic 
dispatch scheduling process used to ensure enough generation 
is available to meet forecast load, or they may simply provide 
situational awareness for the balancing authority. Day-ahead 
forecasts are often required for the unit commitment process 
because the starting of large thermal units can often take 24 
hours or more. The forecasted wind power output at this 
timeframe can be used to optimize the availability of other 
generation units during the course of the following day. The 
economic dispatch process sets the final power output for units 
that are online and is performed closer to the time of 
realization, often one hour ahead. Variability and forecast 
errors at smaller timescales are often compensated with 
reserves held for that purpose. Because wind forecasts can be 
helpful to system operations in both the unit commitment and 
economic dispatch phases, we examined the wind power 
forecasting errors that occur at these two timeframes, in this 
paper represented by day-ahead and hour-ahead forecasts. 

IV. ERROR DISTRIBUTIONS FROM OPERATIONAL SYSTEMS 
In this section, we examine wind power forecast error 

distributions observed in a total of seven countries at the day-
ahead and hour-ahead timescales. In this work, we follow the 
convention that the error is equal to the forecast minus the 
realized value. 

A. Day-Ahead Forecasts 
1) United States 

Day-ahead forecasts for the United States were taken from 
the Electric Reliability Council of Texas (ERCOT) 
interconnection for the year 2010, with an installed wind 
capacity of approximately 9,000 MW. As shown in Figure 1, 
the distribution was leptokurtic, with a significant negative 
skew. The distribution also had a fairly large spread, with 
minimum and maximum error values above half of the 
installed capacity. The red line represents a normal 
distribution with the same mean and standard deviation as the 
observed errors. Figure 2 shows that the distribution was 
poorly represented by the normal distribution. The observed 
error distribution had a more pronounced peak, slimmer 
shoulders, and fatter tails than the corresponding normal 
distribution. This is an example of the differences between the 
observed error and normal distributions, and the other data sets 
show similar features. 

 
Figure 1.  Histogram of the normalized day-ahead forecast errors for the 

ERCOT system. μ = 0.0117; σ = 0.1187; γ = -0.616; κ = 1.0308  

 

Figure 2.  Normal Q-Q plot of the ERCOT day-ahead forecast errors. If the 
observed errors were well represented by a normal distribution, all 

observations would lie on the straight line. 
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2) Finland 
The Finnish installed wind capacity was the smallest in the 

study, with 102 MW of rated power. However, the capacity 
was spread over 25 sites (77 turbines), with the largest 
distance between the sites being 630 km. Figure 3 shows the 
slightly positively skewed and leptokurtic distribution of 
observed wind power forecasting errors for the Finnish 
system. The distribution included a number of fairly large 
positive forecast errors (over-forecasting), with a few 
exceeding half of the installed capacity. This may have been 
the result of the smaller number of turbines included in this 
data set, and possibly erroneous data used in producing the 
forecasts. 

 
Figure 3.  Histogram of the normalized day-ahead forecast errors for the 

Finnish system. μ = -0.0155; σ = 0.0751; γ =0.0720; κ = 3.1036  

3) Spain 
The Spanish installed wind power forecasting error 

histogram is shown in Figure 4. This data was from the year 
2010 and included 19,300 MW of wind power capacity. The 
distribution was leptokurtic and fairly strongly positively 
skewed. The forecasts also displayed a notable bias, 
corresponding to more than 15% of installed wind power 
capacity. The distribution also had distinctly fat tails in both 
the over- and under-forecasting directions. 

 
Figure 4.  Histogram of the normalized day-ahead forecast errors for the 

Spanish system. μ = 0.1624; σ = 0.0514; γ =0.3855; κ = 3.0180  

4) Sweden 
The day-ahead forecasts for the Swedish system (year 

2011) included 2,899 MW of installed wind capacity. The 
forecast errors plotted in Figure 5 showed a slightly 

leptokurtic negatively skewed distribution. The Swedish errors 
were interesting for their fairly small spread, with the largest 
errors being less than 30% of installed wind capacity. This 
was likely because of the large geographic diversity stemming 
from the multiple sites covering a large geographic area. It 
was also interesting to see that the normal distribution would 
under-represent the negative error tail, but over-represent the 
positive error tail, because of the skewness. Figure 6 shows the 
cumulative distribution function of the observed errors, the 
normal distribution based on those errors, and a hyperbolic 
distribution fit to the observed errors. It was readily apparent 
that the hyperbolic distribution provided a superior fit to the 
data than did the normal distribution, with the hyperbolic line 
running on top of the observed errors line for much of the 
cumulative distribution function. The Swedish example was 
chosen to display the cumulative distribution plot because of 
the clear example of the improved fit of the hyperbolic 
distribution. However, other cumulative distribution functions 
would have similar characteristics. 

 
Figure 5.  Histogram of the normalized day-ahead forecast errors for the 

Swedish system. μ = -0.0052; σ = 0.0603; γ = -0.7252; κ = 0.7757  

 

Figure 6.  Cumulative distribution plot of the normalized Swedish day-ahead 
forecast errors  
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5) Denmark 
The Danish system data included 3,871 MW of installed 

wind capacity for the year 2011. The distribution was more 
strongly leptokurtic than many of the other day-ahead forecast 
error distributions examined previously, as shown in Figure 7. 
Also, in contrast to the other countries, the distribution was 
fairly symmetric, with only a slightly positive skew. The 
spread of the data was fairly small with relatively few errors 
greater than 25% of the total installed capacity. This was 
likely a result of the geographic diversity acquired from the 
turbines being spread throughout the country.  In addition, 
Denmark has a long history of wind power forecasting and 
contains relatively easy terrain. 

 
Figure 7.  Histogram of the normalized day-ahead forecast errors for the 

Danish system. μ = -0.0005; σ = 0.0534; γ = 0.1378; κ = 2.3859  

6) Ireland 
The Irish data was from the year 2011 and included 1,557 

MW of installed wind capacity. The Irish day-ahead 
forecasting errors had a small positive skew and were 
leptokurtic, as shown in Figure 8. There was a fairly large 
spread to the distribution, with a significant amount of forecast 
errors approaching 50% of installed wind power capacity. This 
was likely because of the small geographic area covered by the 
wind turbines. For reference, the total land area of Ireland is 
roughly 1/6th the land area of Sweden and 1/5th that of 
Germany. 

 
Figure 8.  Histogram of the normalized day-ahead forecast errors for the 

Irish system. μ = -0.0123; σ = 0.0827; γ = 0.3063; κ = 3.0311 

7) Germany 
The German data was from the year 2010 and covered the 

total installed wind capacity in Germany ranging from 25.18 
GW in January 2010 to 26.39 GW in December 2010. The 
power measurement was based on an up-scaling algorithm 
based on spatially distributed reference wind farms that 
included about 25% of the total capacity. The forecasts were 
used and published by the German transmissions system 
operators and were based on combinations of power forecasts 
from different providers and on different NWP models. The 
day-ahead forecasting errors had a slightly negative skew, and 
were leptokurtic, as shown in Figure 9. The spread of the data 
was relatively small, with all errors less than 30% of installed 
wind capacity. This was because of the large number of 
turbines included in the analysis, as well as the geographic 
spread of the locations used. 

 
Figure 9.  Histogram of the normalized day-ahead forecast errors for the 

German system. μ = 0.0092; σ = 0.0450; γ = -0.2891; κ = 3.5896  

B. Hour-Ahead Forecasts 
In power system scheduling, short-term wind power 

forecasts are necessary to set the generating unit output levels 
in the dispatch process, which often coincides with intraday 
market timing. These shorter term forecasts are used to reduce 
the uncertainty from day-ahead forecasts; consequently, only 
these forecast errors must be balanced by reserve power [16]. 
Although the dispatch interval may vary between systems, we 
used a one-hour interval as a representative example. 

1) United States 
The U.S. hour-ahead forecast error distributions came from 

a single wind plant in the Xcel Colorado service territory with 
approximately 300 MW of capacity. Because this data came 
from a single plant, the benefits of geographic diversity were 
not apparent. This was clear when looking at the extreme 
values shown in Figure 10. The maximum errors for the single 
plant were approximately 80% of the total capacity. It must be 
noted that these large values were likely because of the manual 
curtailment of wind plant output. These hour-ahead forecasts 
also had a much greater kurtosis value than the day-ahead 
forecasts observed in the previous section. The practical 
implication of this is that the forecasts were often more 
accurate, but had occasional instances when they were very 
inaccurate. 
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Figure 10.  Histogram of the normalized day-ahead forecast errors for the 

Xcel Colorado wind plant. μ = -0.01; σ = 0.08; γ = - 0.01; κ =17.62  

2) Spain 
The hour-ahead forecasts for the Spanish system included 

20,091 MW of wind power capacity, the second largest 
amount in this study. Figure 11 shows the histogram of the 
forecast errors. One important aspect to note is the smaller 
range of values shown in the Spanish data, with forecast errors 
above 10% of capacity being very rare. Part of the explanation 
is that the forecasts were hour-ahead instead of day-ahead 
data; the smaller forecasting interval reduced the uncertainty 
in the forecast considerably. The fat tails shown in Figure 11 
resulted in a poor fit to the normal distribution. Further 
verification of this finding was provided by the dramatic 
deviations in the tails in the normal Q-Q plot shown in Figure 
12. 

 
 

Figure 11.  Histogram of the normalized hour-ahead forecast errors for the 
Spanish system. μ = -0.0018; σ = 0.0133; γ = - 1.6585; κ =20.2385  

 

Figure 12.  Normal Q-Q plot of the Spanish hour-ahead forecast errors. If the 
observed errors were well represented by a normal distribution, all 

observations would lie on the straight line. 

3) Germany 
The hour-ahead forecasts for the German system were for 

the same set of wind plants described in the day-ahead section. 
The histogram of the hour-ahead forecast errors is shown in 
Figure 13. The spread of the errors was very small, with no 
errors above 10% of installed capacity. As mentioned for the 
Spanish system, the large amount of wind turbines considered 
(~25 GW), with the resulting geographic diversity, was an 
important factor in the smaller spread of the error distribution, 
as was the usage of online power measurements that underlay 
a high-quality data check. The distribution was leptokurtic and 
slightly negatively skewed. 

 
Figure 13.  Histogram of the normalized hour-ahead forecast errors for the 

German system. μ = 0.0004; σ = 0.0116 γ = - 0.2194; κ =3.7389  
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V. COMPARISON 
The wind power forecasting errors shown in this study 

followed at least one common theme, regardless of country, 
forecasting period, or installed wind capacity considered: they 
were all leptokurtic distributions that were poorly represented 
by normal distribution. However, the distributions shown 
varied considerably based on each of the aforementioned 
criteria. As might be expected, the hour-ahead forecasts had 
much higher kurtosis values than those made at the day-ahead 
timescale. This would be expected from the reduction in 
uncertainty that occurs between making a forecast in the day-
ahead time frame versus a single hour ahead. These 
distributions had many more very small forecast errors but still 
had large forecast errors in extreme cases with high power 
ramps, as represented by the relatively fat tails of the 
distributions. Generally speaking, the larger the installed wind 
power capacity, the smaller the spread of the distribution. This 
was related to the geographic diversity of having more 
turbines experiencing different weather conditions at the same 
time, though one exception of this is the ERCOT day-ahead 
data set. Most of the wind capacity installed in Texas is found 
in a narrow corridor in the northwest panhandle of the state. 
Additionally, wind turbines in the United States tend to be 
built in clustered plants, with a high density of turbines in a 
small area. In some of the European countries considered, the 
turbines are built in smaller groups, with less dense clusters of 
wind power. This geographic distance means that the 
forecasting errors between individual turbines are not as well 
correlated. 

TABLE I.  DAY-AHEAD FORECAST SUMMARY 

 U.S. Finland Spain Sweden Denmark Ireland Germany 

Installed 
Capacity 

(MW) 

9,000 102 19,300 2,899 3,871 1,557 26,000 

Data Set 
Length 
(Hours) 

9,504 8,760 8,760 7,370 8,760 8,760 8,760 

Forecast 
Horizon 
(Hours 
Ahead) 

8–32 12–36 1–48 16–40 12–36 6–144 12–48 

VI. CONCLUSION 
This study examined the day-ahead and hour-ahead wind 

power forecasting errors seen in operating practice in seven 
countries. The distribution of forecasting errors was shown to 
be poorly represented by the normal distribution often 
assumed in wind integration studies. The distributions were 
found to be more leptokurtic, with an important distinction 
being the heavier tails seen in the operational forecast error 
distributions. Extreme errors that are not represented by 
normal distribution can have a large economic impact on 
integration planning studies and system operations. We 
recommend that future integration studies use representative 
wind power forecasting error distributions to guide the process 
instead of making the normal distribution assumption. In this 
study, the hyperbolic distribution was found to better represent 
the entire wind power forecasting error distribution. Further 
investigation is planned on the significance of the differences 

found in the country-to-country variations of wind power 
forecasting error distributions. Likely causes of such 
differences—such as country-specific geographic features, 
forecasting methods, model input parameters, and long-term 
wind resource quality—will be analyzed. The use of this 
information can be important in system operations, impacting 
operational and planning policies. An examination of how 
these country-specific error distributions could impact issues 
such as wind power curtailment policies and thermal generator 
flexibility is planned. Additional work is also planned on 
disaggregating forecast error distributions based on time of 
day and prevailing weather patterns to extract more useful 
information for system operations. 
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