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The authors investigated the use of InAlP as a sacrificial layer lattice-matched to GaAs when

diluted hydrochloric acid is used for sacrificial etching. They show that InAlP can be used to

fabricate submicrometer air gaps in micro-opto-electro-mechanical systems and that a selectivity

toward GaAs larger than 500 is achieved. This selectivity enables fabrication control of the

nanometer-size structures required in photonic crystal and high-index contrast subwavelength

grating structures. The crystallographic dependence of the lateral etch rate in InAlP is shown to be

symmetric around the h110i directions where an etch rate of 0.5 lm/min is obtained at 22 �C in

HCl : 2H2O. Since the etch rate in the h100i directions exceeds by ten times that of the h110i
directions, InAlP may be used in sacrificial release of high-aspect ratio structures. Free-hanging

structures with length to air-gap aspect ratios above 600 are demonstrated by use of critical point

drying following the sacrificial etch. VC 2013 American Vacuum Society.

[http://dx.doi.org/10.1116/1.4771971]

I. INTRODUCTION

Sacrificial wet etching of compound semiconductors is a

necessary step during fabrication of nanophotonics devices

such as photonic crystals, tunable vertical-cavity surface-

emitting lasers, and photodetectors.1–4 By removal of sacri-

ficial material, an air-gap may be fabricated and, thus,

high-index contrast and movable mechanical structures

are enabled. Preferably, the sacrificial wet etch should be

isotropic, selective to other materials present, and have an

etch rate on the order of 1 lm/min. For crystalline materi-

als, however, the etch process is usually anisotropic,

though the two other requirements may be met. The etch

selectivity must be high since during fabrication of nano-

photonic devices, the wet etch must remove one material

without significantly affecting nanometer-sized patterns

realized in other materials.

The device topology often requires that multiple binary,

ternary, and/or quaternary materials are present at the same

time, and thus it becomes a challenging task to find an appro-

priate etch chemistry. Compared to silicon microelectrome-

chanical systems where hydrofluoric acid is well-established

for sacrificial etching of silicon oxide and a significantly

smaller variety of materials are present, sacrificial etching of

III–V compound semiconductor materials is much more

complicated. For a comprehensive review on III–V sacrifi-

cial etching, we refer to the article of Hjort.5 For devices

based on GaAs substrates, the main sacrificial materials

reported in literature are AlxGa1�xAs; Al0:5In0:5P and

In0:5Ga0:5P, since they may all be grown lattice-matched to

GaAs substrates.6–8

Anhydrous (water-free) citric acid (C6H8O7) mixed with

hydrogen peroxide (H2O2) and ammonium hydroxide

(NH4OH) has been reported for etching GaAs selective to

Al0:15Ga0:85As with selectivities up to 100.9 Hydrofluoric

acid is favored for etching AlxGa1�xAs with x � 0:5 where

high etch rates and selectivities are obtained simultane-

ously.7,10 AlxGa1�xAs can be difficult to use as a sacrificial

material since it may also appear both in the fabrication of

high-reflectivity distributed Bragg reflectors and piezoelec-

tric layers and, hence, high selectivity toward AlxGa1�xAs is

often desired. In order to selectively undercut GaAs, sacrifi-

cial layers of AlInP or InGaP have been reported, with hy-

drochloric acid (HCl) used for sacrificial wet etching.6,11

The lateral etch rate of InGaP has been reported for different

crystallographic orientations but not for AlInP. Studies on

AlInP have focused only on the etch rate of the (100) plane.8

Here, we report the first results on the lateral wet etch rate

of AlInP using an HCl : xH2O etch solution. We show that

AlInP can be etched at a rate of 0.5 lm/min with a selectivity

toward GaAs exceeding 500. Furthermore, we show that

released mechanical structures can be achieved by use of

critical point drying to overcome stiction. This is of critical

importance for successful release of large structures where

the mechanical stiffness may be insufficient to overcome the

capillary forces occurring during drying, due to the surface

tension of the liquid.

II. EXPERIMENTAL METHODS

For epitaxial growth, 2 in. (100) GaAs wafers with the

major flat cut along ½0�1�1� were used. Epitaxial growth

was conducted in an Emcore D-125 TurbodiscVR -equipped

metal-organic vapor phase epitaxy rotating disk reactor. Thea)Electronic mail: ky@fotonik.dtu.dk
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sacrificial Al0:53In0:47P layer was grown at 610 �C to a thick-

ness of 540 nm and capped with a 280 nm thick GaAs layer.

The lattice mismatch, Da=aGaAs, was characterized by x-ray

diffraction to be less than 10�3. The wafers were patterned

using photoresist (AZ5214E) and conventional UV lithogra-

phy. A pattern of 40-lm-squares rotated at angles from 0� to

45
�

in steps of 2:65
�

was then transferred to GaAs by Cl2=Ar

inductively coupled plasma etching at 20 �C. During

over-etching, the exposed AlInP was dry-etched at a lower

etch rate. The samples were then etched with one part hydro-

chloric acid diluted in x parts of deionized water (37%

HCl : xH2O) at room temperature. After etching, the samples

were rinsed in deionized water and dried. Samples for lateral

etch rate measurements were dried in N2, while samples

with released beams were rinsed in 2-isopropanol and dried

using critical point drying. Since the etch process is surface

reaction limited, the rate is strongly temperature-dependent6

and, therefore, the temperature was monitored using a ther-

mometer to ensure reproducible results. The undercut was

imaged using an optical microscope fitted with a Nomarski

prism for differential interference contrast (DIC), while the

etch profile was imaged using scanning electron microscopy

(SEM).

III. RESULTS AND DISCUSSION

We find that wet etching of AlInP in HCl : 2H2O is lim-

ited by f111gA planes that etch at 0.5 lm/min at 22 �C.

Figure 1 shows the etch profiles of AlInP in (a) the ½0�11� and

(b) the ½0�1�1� directions after etching in HCl : 2H2O. Similar

results have been shown for the ½0�1�1� direction by Lee

et al.11 The etch profile in Fig. 1(a) is typical of anisotropic

reaction-limited etching with a slope of 54:7� corresponding

to the angle between the ð1�1�1Þ plane and the (100) surface.

The angle in Fig. 1(b) is around 125�, which shows that the

column-III-terminated f111gA plane is the slowest etching

plane.5

The DIC images in Fig. 2 show the undercut (light grey)

of unmasked squares (dark grey) aligned to (a) the ½0�1�1�, (b)

23:8� from the ½0�1�1�, and (c) the ½0�10� direction, respec-

tively. The etched pattern is limited by the low etch rate of

the f111gA planes, which intersects the (100) plane along

h110i directions and thus the outline of the etched pattern

will proceed until it is bounded by h110i directions.

Figure 3 shows the crystallographic orientation depend-

ence of the etch rate in AlInP as a function of the angle rela-

tive to the ½0�1�1� direction for two HCl-based etch solutions.

The etch rate in the h100i directions is several times higher

than that in the h110i directions, and this anisotropy is seen

to be dependent on the HCl concentration, whereas the etch

rate in the ½0�1�1�-direction is (within experimental error) the

same in the two etch solutions while the etch rate in the

½0�10�-direction increases with increasing HCl concentration.

Figure 3 shows that the etch rate is symmetric around the

½0�10� direction but slightly skewed toward the ½0�11� direc-

tion, which is clearly seen in Fig. 2(b). Similar results have

been observed during wet etching of InGaP in HCl and

attributed to atomic surface reconstruction during etching.8

The lithographic pattern was aligned to the wafer major flat,

specified to within 3 � of the ½0�1�1�-direction, and the result-

ing possible misalignment to the crystal direction may

explain the off-set of the symmetry point of the curve from

the ½0�10�-direction.

Previous studies have shown that wet etching of AlInP in

HCl : H2O has perfect selectivity (above 106) to GaAs.5,6 In

contrast to this, we find a GaAs etch rate on the order of

1 nm/min in the h110i directions; that is, the selectivity of

GaAs to AlInP is >1:500. The etch rate was deduced from

line width measurements on lines of nominal 130 nm width

and 460 nm pitch. Line widths were measured using SEM

before and after 10 min of wet etching in HCl : 2H2O. Etch-

ing of GaAs is usually mediated by an oxidizing agent and,

thus, the nonzero etch rate is an unexpected result. It is com-

monly assumed that HCl does not etch GaAs and, in general,

the oxidizing agent H2O2 is added for GaAs wet etching.

Four different possible explanations for the incomplete

selectivity are identified: anodic etching due to the presence

of metal pads, photochemical etching, crystal quality, and

oxidation by H2O. However, we do not see any sign of sur-

face pitting, which is commonly seen in anodic etching.12

Photochemical wet etching of GaAs has also been reported

but at higher light intensities.13 Since the etch rate was meas-

ured on GaAs grown on top of AlInP, an increased etch rate

of the GaAs epilayer could be due to a higher number

of crystal defects or impurities, such as the presence of Al,

In, or P. Also, H2O can act as an oxidizing agent in acidic

solutions where Ga2O3 is formed, and although the oxidation

FIG. 1. Scanning electron microscope image of the etch-profile along (a)

minor flat ½0�11� and (b) major flat ½0�1�1�. The sample has been cleaved using

a diamond-scribe.
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rate is very low (�0:5 nm=h for pure H2O), it can signifi-

cantly increase when the pH-value of the mixture is low-

ered.14 Further studies are needed to clarify the unexpected

etching of GaAs.

Undercutting of support structures is an issue in me-

chanical systems. The anisotropy of the wet etch can be

exploited to reduce undercutting of the supports relative

to structures that are to be fully released and thus fully

undercut. This is achieved by aligning the support struc-

tures to the h110i directions, while the free-hanging struc-

tures are aligned to the h100i directions. Another critical

issue is stiction, which is related to the surface tension and

wetting properties of the liquids used and the stiffness of

the structures to be released. Stiction is a well-known

problem and may be avoided by critical point drying.15 In

this technique, the rinse liquid is substituted with liquid

CO2, which is brought to its critical point. By maintaining

the temperature above the critical point, the pressure is

then lowered in the gas-phase. Figure 4 shows released

cantilevers with an air-gap spacing of 0.5 lm. The longest

cantilevers are 350 lm long and the cantilevers to the

left are 40 lm wide, while the cantilevers to the right are

10 lm wide. All cantilevers have been successfully

released, i.e., none of them are stuck to the substrate sur-

face. The inset in Fig. 4 shows a magnification of a shorter

cantilever, where the shadow due to the air-gap is clearly

visible. The slight curvature of the cantilevers that is

observed in Fig. 4 may be explained by a thin residue layer

left over from incomplete etching. Note in Fig. 1 that no

etch product residual is observable.

FIG. 3. Plot of the etch rate of Al0:5In0:5P in different directions relative to

the h110i direction. The etch rate is highest in the h100i direction.

FIG. 4. Scanning electron microscope image of suspended beams released

by critical point drying. The image (a) shows an overview of 10 and 40 lm

wide beams. The inset (b) shows a zoom-in on a single cantilever.

FIG. 2. Optical microscope image showing structures etched out of 40

�40 lm2 square mask windows aligned to (a) the ½0�1�1� direction, (b)

23:8� from the ½0�1�1� direction, and (c) the ½0�10� direction. The undercut

region is the bright area. The samples were etched for 15 min in HCl : 5H2O.

The limiting h110i directions are outlined with a dashed line.
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IV. SUMMARY AND CONCLUSION

The lateral etch rate of AlInP in diluted hydrochloric acid

and its use as a sacrificial layer have been investigated. We

find that the etching of AlInP in diluted hydrochloric acid

shows a selectivity toward GaAs of 1:500. This compares

favorably with the highest selectivity reported for InGaP of

1:100 using the same etchant. Furthermore, the etch rate of

AlInP in HCl is much higher than that of InGaP. The more

rapid sacrificial release makes high-aspect ratio structures

more feasible. Therefore, AlInP is a good candidate for sac-

rificial layers in micro-opto-electro-mechanical systems.
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