

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Direct Measurement of Power Dissipated by Monte Carlo Simulations on CPU and
FPGA Platforms

Albicocco, Pietro; Papini, Davide; Nannarelli, Alberto

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Albicocco, P., Papini, D., & Nannarelli, A. (2012). Direct Measurement of Power Dissipated by Monte Carlo
Simulations on CPU and FPGA Platforms. Kongens Lyngby: Technical University of Denmark (DTU). (D T U
Compute. Technical Report; No. 2012-18).

http://orbit.dtu.dk/en/publications/direct-measurement-of-power-dissipated-by-monte-carlo-simulations-on-cpu-and-fpga-platforms(6a93b167-c627-43d3-befc-637f83e62238).html

Direct Measurement of Power Dissipated
by Monte Carlo Simulations on

CPU and FPGA Platforms

IMM-Technical Report-2012-18

Pietro Albicocco, Davide Papini and Alberto Nannarelli

Dept. Informatics and Mathematical Modelling
Technical University of Denmark

Kongens Lyngby, Denmark
Email: an@imm.dtu.dk

Abstract

In this technical report, we describe how power dissipation measurements on different com-
puting platforms (a desktop computer and an FPGA board) are performed by using a Hall effect-
based current sensor. The chosen application is a Monte Carlo simulation for European option
pricing which is a popular algorithm used in financial computations. The Hall effect probe mea-
surements complement the measurements performed on the core of the FPGA by a built-in Xilinx
power monitoring system.

1 Introduction

In [1], we implemented an FPGA-based specific processor for European option pricing using Monte
Carlo simulations, and we compared its performance and power dissipation to the execution on a
CPU. The experimental results of [1] show that impressive results, in terms of speed-up and energy
savings, can be obtained by using FPGA-based accelerators at expenses of a longer development time.
In [1] the power measurements are limited to the implementation on the FPGA platform. Here,
we extend the measurements to simulations performed on desktop computers to further validate the
findings of [1].
The measurements are performed by connecting a Hall effect-based current sensor [2] between the
power supply and the motherboard’s power socket, as done in [3].
The experimental results confirm that using FPGA based accelerators can significantly reduce both
execution time and energy consumption.

Algorithm 1 Monte Carlo European option pricing.
VsqrtT = σ

√
T

drift = (r − σ2

2)T

expRT = erT

sum = 0

for i = 1 to n do
St = S0 · e(drift + VsqrtT · Vrnd)
if (St−K > 0) then
sum = sum + (St −K) · expRT

end if
end for
S = sum/n

2 Monte Carlo Simulation

The value of an European option can be computed by using a Monte Carlo simulation by evaluating

S(T) = S(0) · e
[(
µ−σ2

2

)
T+σε

√
T

]
(1)

for several samples and then by computing the mean value.
This approach is shown in Algorithm 1 for a risk-neutral world [4].
In the algorithm, the inputs are:

- initial security price S0

- strike price K

- risk-free interest rate r

- security volatility σ

- time to expiration T (in years)

- number of simulations n.

The parameters r and σ are constant for each simulation, and, therefore variables VsqrtT, drift
and expRT are constant as well and can be precomputed.
The computations in the body of the loop originate from a floating-point random variable Vrnd with
Gaussian distribution in [−1.0, 1.0], zero mean and variance=1.
The algorithm is particularly suitable for a hardware implementation on an Application Specific Pro-
cessor (ASP), because it does not require frequent memory access, and the communication with the
input/output is limited as well.
The algorithm can be executed on a computer, or, as shown in [1], implemented in hardware on a
FPGA based ASP.

2

Figure 1: Measurements Set Up:

3 Measurements Set Up

This section presents the set up used in the experiments. We used the following equipment, listed
below with the same numbers as in Figure 1.

1. An Allegro MicroSystem Hall effect current sensor, the ACS711 mounted on a Pololu board
[2] (Figure 2 at left).

2. Desktop PC (Dell Optiplex 755) used to run C simulations equipped with an Intel R© CoreTM2
Duo E4600 CPU running at a maximum frequency of 2.40 GHz.

3. Digilent Genesys board equipped with a Virtex-5 FPGA (XC5VLX50T).

4. A dual output power supply to bias the Hall effect probe and give the reference voltage (zero
current in the probe) for the measurements.

5. A digital multimeter to measure the voltage drop across the probe.

6. A digital oscilloscope used to record the voltage measurements across the probe.

7. A second power supply for the FPGA board.

3

Figure 2: Hall effect probe [2] (left). Power and bias set up (right).

We call, in the following Device-Under-Test, or DUT, the desktop’s CPU or the FPGA, depending on
the experiment.
To measure the power dissipated by the DUT, the Hall effect current sensor is placed between the
power supply and the DUT. The oscilloscope and the multimeter are used to read the voltage, propor-
tional to the current that flows toward the DUT. The DC power supply, (4) in Figure 1, is used both to
power the sensor, and to provide an offset voltage as a reference for the oscilloscope. This reference
voltage is needed to bias the voltage reading up to 0 V when no current flows toward the DUT. The
multimeter’s probes are placed to measure the unbiased output voltage of the sensor. The power and
bias set up of the probe is shown in Figure 2 at right.
The power consumption is computed through the following formula:

P = Vsupply · Vmeas/S [W] (2)

where P is the power dissipated by the DUT in [W], Vmeas is the biased reading of the output of the
sensor in [mV], Vsupply is the supply voltage in [V], S is the sensitivity of the sensor S = 110mV/A,
when powered at 3.3 V .

3.1 CPU Power Monitoring

The PC, running the Linux CentOS 6.3 (64-bit) operative system, is remote controlled through a ssh
connection.
To measure the power dissipated by the CPU, the Hall effect current sensor is placed between the
four-pin ATX cable of the power supply of the computer and the four pin ATX connector on the
motherboard (Figure 3).

4

Figure 3: Detail of current sensor connection between the PC power supply and motherboard.

3.2 FPGA Power Monitoring

To measure the power dissipated by the whole Genesys board, a second DC power supply, (7) in
Figure 1, is used to supply the board. The sensor is placed between the DC power supply and the
board.
To measure the power dissipated by the FPGA chip only, the power monitoring system integrated on
the board is used. The board is equipped with Kelvin resistors connected to the voltage regulators
to monitor the power dissipation of the different parts of the FPGA chip. The voltage drop across
these resistors is fed to a analog-to-digital converter, which output can be read by Digilient’s Adept
software through a PC (not depicted in Figure 1) connected to the FPGA board by a USB cable.
The Digilient’s Adept power monitor can measure the power dissipated by the FPGA core and the
other parts of the chip working at different voltages.

4 Experiments

4.1 CPU Measurements

The Monte Carlo simulation of Algorithm 1 is coded in C and compiled (gcc) for the 64-bit ISA of the
Intel R© CoreTM2 CPU. The simulation is run for n = 106 and the variations in the probe voltage drop
are captured by the oscilloscope. The waveforms, under different operating frequencies are displayed
in Figure 4.
Because CPU are energy optimized by having clock frequency and supply voltage scaling, depending
on the required performance, the simulation is run with different clock frequencies fC .
For the CPU-motherboard used two frequency/voltage scaling governors are available:

5

fC = 1.2 GHz fC = 1.6 GHz

fC = 2.0 GHz fC = 2.4 GHz

Figure 4: Oscilloscope snapshots for different clock frequencies (SpeedStep governor) and n = 106.

• the “Legacy governor”;

• the “Enhanced SpeedStep governor”.

Those governors can be set in the PC BIOS, while the frequency can be scaled by the Linux command
cpufreq-selector.
The PC is running several processes (OS and user space processes) and we tried and keep those to a
minimum by not running any graphic interface and by connecting to the PC by ssh. We call idle the
state in which the PC is running only those basic processes and no user applications.
The measurements for the simulations under different governors/frequencies are reported in Table 1.
In Table 1, the columns (left to right) report the values:

c1 The clock frequency fC set for the simulation.

c2 The simulation execution time, determined by a timer in the C program and measured on the
waveforms of Figure 4.

6

Legacy governor
clock freq. t(exec) Readings Power dissipation

run idle diff run idle diff
[GHz] [ms] [mV] [mV] [mV] [W] [W] [W]

0.3 2,170 125.00 88.00 37.00 13.64 9.60 4.04
0.6 1,390 130.00 88.00 42.00 14.18 9.60 4.58
1.2 798 138.00 83.00 55.00 15.05 9.05 6.00
2.4 384 163.00 75.00 88.00 17.78 8.18 9.60

SpeedStep
clock freq. t(exec) Readings Power dissipation CPU

run idle diff run idle diff Vdd
[GHz] [ms] [mV] [mV] [mV] [W] [W] [W] [%]

1.2 768 105.00 75.00 30.00 11.45 8.18 3.27 0.83
1.6 575 123.00 75.00 48.00 13.42 8.18 5.24 0.90
2.0 461 143.00 75.00 68.00 15.60 8.18 7.42 0.96
2.4 384 163.00 75.00 88.00 17.78 8.18 9.60 1.00

Table 1: PC measurements for n = 106.

c3 The first of the readings is the probe reading (oscilloscope, Figure 4) of the high voltage level,
when the simulation is running.

c4 The probe reading, low voltage level in Figure 4, when the simulation is not running: idle.

c5 The difference between the high and low level readings: the actual voltage drop due to the
probe.

c6 The power dissipation corresponding to the reading in c4 obtained by Eq. (2), with Vsupply = 12 V
and S = 110mV/A.

c7 The power dissipation by Eq. (2) for c5.

c8 The power dissipation by Eq. (2) for c6.

c9 The percent the CPU’s supply voltage VDD is scaled from the voltage VDD at maximum fre-
quency, when frequency is scaled. It only applies to the SpeedStep governor and it is measured
indirectly by the measures at fmax = 2.4 GHz and at frequency fY = Y GHz:{

PY GHz = (xVDD)
2 · fY · k

P2.4 GHz = V 2
DD · 2.4 · k

where the CPU switching capacitance k is assumed to be constant. By solving the above system,
for the percent x we obtain the expression

x =

√
PY GHz · 2.4
P2.4 GHz · fY

(3)

used to compute the values in Table 1 column c9 for fC = Y GHz.

7

freq. Pdiff texec Esim
[GHz] [W] [ms] [J]

1.2 3.27 768 2.51
1.6 5.24 575 3.01
2.0 7.42 461 3.42
2.4 9.60 384 3.69

Table 2: Summary of PC-CPU measurements for n = 106.

The experimental results show that the fastest simulation (at fmax) results in a latency of 384ms. The
most power efficient simulation is the one run under the SpeedStep governor at fC = 1.2 GHz with
a power dissipation of 3.27W for the effective application power.
We introduce the energy-per-simulation, Esim defined as

Esim = Pdiff × texec [J]

or the area of the box between the run and idle power levels in Figure 4.
Based on the Esim definition, the most energy efficient simulation is the one run under the SpeedStep
governor at fC = 1.2 GHz as shown in Table 2.

4.2 FPGA Measurements

For the FPGA implementation of the accelerator to run the Monte Carlo simulation, we used the two
implementations of [1]:

ASP-1P the single path implementation of the ASP, as shown in Figure 5.

ASP-4P the four path implementation of the ASP.

For the FPGA experiments, we measure the power in several parts of the system. By using Digilent’s
Adept software we can monitor the current drawn by different parts of the FPGA chip. Namely:

• DC-DC 3.3 V output, used to power the I/O of the FPGA chip.

• DC-DC 1.8 V output, used to power the DDR memory and the FPGA DDR I/O.

• DC-DC 1.0 V output, used to power the FPGA core: the actual processor.

F
P

−
a
d
d

F
P

−
m

u
l

F
P

−
e
x
p

F
P

−
a
c
c

F
P

−

R
N

D
g
e
n

seed

F
P

−
m

u
l

F
P

−
a
d
d

0
1

zero

sign

VsqrtT drift k1 k2

S
24

64

Figure 5: ASP: single path implementation.

8

Readings POWER DISSIPATION
TOTAL Adept (FPGA chip) Board

clock freq. status Mult. Osc. (probe) 3.3 V 1.8 V 1.0 V 2.5 V Total
[MHz] [V] [mV] [W] [mW] [mW] [mW] [mW] [W] [W]

No progr. N.A. N.A. 1.6930 43.2 1.96 - - - - - -
RUN 1.6925 43.3 1.97 841 25 426 248 1.540 0.428

ASP-1P 50 IDLE 1.6920 42.5 1.93 847 25 386 245 1.503 0.429
RESET 1.6920 42.5 1.93 847 25 386 245 1.503 0.429
RUN 1.6941 44.8 2.04 840 25 484 248 1.597 0.439

ASP-1P 100 IDLE 1.6297 43.0 1.95 847 25 408 248 1.528 0.427
RESET 1.6925 43.1 1.96 854 25 402 248 1.529 0.430
RUN 1.6968 48.1 2.19 847 25 582 248 1.702 0.484

ASP-4P 50 IDLE 1.6934 43.9 2.00 861 25 434 248 1.568 0.427
RESET 1.6935 42.2 1.92 841 25 387 222 1.475 0.443
RUN 1.7020 52.4 2.38 854 25 787 248 1.914 0.468

ASP-4P 100 IDLE 1.6944 45.2 2.05 867 25 483 248 1.623 0.432
RESET 1.6914 42.2 1.92 834 25 390 222 1.471 0.447

average 0.441
std. dev. 0.019

Table 3: FPGA measurements.

• DC-DC 2.5 V output, used to power the FPGA auxiliary circuits.

Additionally, we monitor the whole current drawn by the FPGA board, by placing the Hall effect
probe between the power supply and the on-board power connector, as shown in Figure 1: power
supply (7), probe (1) and FPGA board (3).
The readings and power dissipation measurements in the experiments are reported in Table 3.
For each of the two processors (ASPs), we performed measurements with the circuit working at
the maximum operating frequency of 100 MHz and at a frequency of 50 MHz to determine the
components of dynamic and static power dissipation, as explained later in this section.
For each combination of ASP/frequency, we considered three processor states:

RUN : the simulation is running.

IDLE : the processor is idle. No inputs (random numbers) are generated.

RESET : the processor is in reset state. All registers are reset (state equivalent to fC = 0).

Because the throughput is 1 processed random number per clock cycle (1× fC [elements/s]) for
ASP-1P, and 4× fC [elements/s] for ASP-4P, we run significantly longer simulations (n = 108)
than the CPU case to have stable readings on the instruments.
The first row in Table 3 refers to measurements done when the FPGA is not programmed (no circuit
mapped). The last column in Table 3 (marked ”Board”) shows the difference between the total power
dissipation measured by the probe and the power dissipated in the FPGA chip. That is, the power
dissipated by the other components on the board mounting the FPGA. The results of the experiments
show that the average power dissipated in the board (except the FPGA chip) is about 441 mW.
The total power dissipation in the whole system is in the range 1.9–2.4 W, and it is much less than the
power required to run the simulation in the PC.

9

freq. exec. time Pcore Pf Epc Pstat Pdyn Esim
[MHz] [ms] [mW] [mW] [10−11J] [mW] [mW] [mJ]

ASP-1P 50 20.0 426 214 156 58 -
ASP-1P 100 10.0 484 272 1.16 156 116 2.72
ASP-4P 50 5.0 582 370 165 205 -
ASP-4P 100 2.5 787 575 4.10 165 410 1.44

Table 4: Power dissipation components of FPGA core for ASP-1P and ASP-4P (n = 106).

The most interesting column of Table 3, marked in red, is the power dissipation measured in the
FPGA core (1.0 V), called Pcore in the following. From these Pcore values, we can derive the static
and dynamic portions of the power dissipated by the ASPs.
Each FPGA chip needs some energy to bias the interconnect fabric, the configuration memory, etc..
This required power does not depend on what circuit is mapped on the FPGA, but it depends on the
size and features of the specific chip. We call this amount of power Pbias, that is the power dissipated
in the chip core when the power supply is connected to the chip.
It is not possible to use Adept’s software to perform the Pbias reading. However, the same FPGA
chip, XC5VLX50T, is also mounted on a Xilinx ML550 board [5] which provides physical access to
the Kelvin resistor connected to the core’s DC-DC converter. By performing the measurement by a
multimeter on the ML550 board, we found a Pbias = 212mW for the XC5VLX50T chip [6].
Once determined the Pbias, the dynamic and static portions of the power dissipated in the ASP can be
computed by two readings a different operating frequencies. By calling Pf = Pcore(@f)− Pbias, the
dynamic Pdyn and static Pstat power dissipation can be obtaining by solving:{

P50 = Pstat + Epc · 50
P100 = Pstat + Epc · 100

(4)

for the two measurements at f =50 and 100 MHz, and where the energy-per-cycle is defined as:

Epc =
Pdyn · texec

(n. clock cycles)
[J] (5)

By applying the Eq. (4) and Eq. (5) to the Pcore values (RUN state) of Table 3, we obtain, for ASP-1P
and ASP-4P, the power dissipation data of Table 4.
A graphic display of power dissipation as frequency increases is shown in Figure 6. The measured
values of Pcore in RESET state are close to the values of Pf (@ 0 Hz): 386 mW vs. 368 mW at 50
MHz, and 387 mW vs. 377 mW at 100 MHz.
Finally, by considering the energy-per-simulation (Esim = Pf × texec), last column in Table 4, the
ASP-4P is almost twice more energy efficient than the ASP-1P (272/144 = 1.88).

4.3 Summary of Experiments

By comparing the experimental results of Section 4.1 and Section 4.2, we derive that the Monte Carlo
simulation on the FPGA ASPs is much faster and power efficient than its execution on the PC.

10

Figure 6: Power dissipation components of FPGA core, Pcore, for ASP-1P and ASP-4P.

In this section, we finalize the comparison by indicating a realistic acceleration scenario and by eval-
uating the advantages of having FPGA based acceleration.
We assume to run simulations on 100 different option prices for n = 106 random values per simula-
tion.

PC only simulation
By running the 100 simulations on the PC at fMAX it requires (according to Table 2)

tFmaxexec = 100× 0.384 = 38.4 [s] (6)

The power dissipation in the CPU during the simulations (Table 1) is P Fmax
CPU = 17.78 W and

9.6W are necessary for the simulation.

The total energy required by the CPU to run the 100 simulations is then:

EFmax
CPU = 17.78× 38.4 = 682.75 [J] (7)

By running the simulations at the lower frequency (1.2 GHz) the total energy is not reduced
(lower power dissipation, but double execution time):

EFmin
CPU = 11.45× 76.8 = 899.97 [J].

PC+ASP simulation
We use the PC to transfer the input parameters to the FPGA based accelerator and to receive
back the estimated values of the options. This operation can be done by the PC in batch mode.
By assuming the PC is consuming Pidle = 8.18 W during the simulations (executed on the
FPGA) and assuming to implement to the ASP-4P processor (running at 100 MHz), we have:

tASP−4Pexec = 100× 2.5 · 10−3 + 10% = 0.275 [s] (8)

11

by assuming a data-transfer overhead of 10%.

Because we need to supply power to the whole board, according to Table 3, the total power
dissipated (measured at the probe) during the simulations is PASP−4P

FPGA = 2.38W .

Consequently, the energy dissipated by the whole system on the board is:

EASP−4P
FPGA = 2.38× 0.275 = 0.65 [J].

By putting together the energy necessary for the PC and the FPGA during the ASP accelerated
simulations, we have:

ETOT = (P idle
CPU + PASP−4P

FPGA)× 0.275 = (8.18 + 2.38)× 0.275 = 2.90 [J] (9)

In conclusion, the results of the comparison on latency, Eq. (6) and Eq. (8), and energy consumption,
Eq. (7) and Eq. (9), between the PC based simulations and the combined PC plus accelerator approach,
show that not only, the system CPU+ASP is about 140 times faster, but also that the simulations can
be run by consuming less than 1/100 of the energy.

5 Conclusions and Future Work

In this technical report, we explained how to measure the power dissipated by a CPU running some
application program and by an FPGA accelerator implementing an Application Specific Processor
executing a given algorithm.
In future work, we plan to integrate the data transfer CPU-FPGA in the computation flow and to
precisely benchmark the energy consumption of an application running on the FPGA based ASP.

References

[1] J. S. Hegner, J. Sindholt, and A. Nannarelli, “Design of Power Efficient FPGA based Hardware
Accelerators for Financial Applications,” in Proc. of the 30th NORCHIP Conference, Nov. 2012.

[2] Pololu Robotics & Electronics. ACS711 Current Sensor Carrier. [Online]. Available:
http://www.pololu.com/catalog/product/2197

[3] H. Esmaeilzadeh, T. Cao, X. Yang, S. M. Blackburn, and K. S. McKinley, “What is Happening to
Power, Performance, and Software?” IEEE Micro, vol. 32, no. 3, pp. 110–121, May-June 2012.

[4] J. C. Hull, Options, Futures and other Derivatives, 8th ed. Prentice Hall, 2012.

[5] Xilinx User Guides. ”ML550 Networking Interfaces Platform”. UG202 (v1.4) April 18, 2008.
[Online]. Available: http://www.xilinx.com/support/documentation/boards and kits/ug202.pdf

[6] J. S. Hegner, “Design of Power Efficient FPGA based Hardware Accelerators,” M. Sc.
thesis, Technical University of Denmark, Kongens Lyngby, 2012. [Online]. Available:
http://www.imm.dtu.dk/pubdb/views/publication details.php?id=6485

12

