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Abstract

Multiple view stereo is typically formulated as an opti-
mization problem over a data term and a prior term. The
data term is based on the consistency of images projected
on a hypothesized surface. This consistency is based on
a measure denoted a visual metric, e.g. normalized cross
correlation. Here we argue that a visual metric based on a
surface reflectance model should be founded on more obser-
vations than the degrees of freedom (dof) of the reflectance
model. If (partly) specular surfaces are to be handled, this
implies a model with at least two dof. In this paper, we pro-
pose to construct visual metrics of more than one dof using
the DAISY methodology, which compares favorably to the
state of the art in the experiments carried out. These exper-
iments are based on a novel data set of eight scenes with dif-
fuse and specular surfaces and accompanying ground truth.
The performance of six different visual metrics based on the
DAISY framework is investigated experimentally, address-
ing whether a visual metric should be aggregated from a set
of minimal images, which dof is best, or whether a combi-
nation of one and two dof should be used. Which metric
performs best is dependent on the viewed scene, although
there are clear tendencies for the two dof minimal metric to
be the preferred one.

1. Introduction
Multiple view stereo or the dense 3D reconstruction of

the surface of an object from multiple calibrated images is
one of the persistent central challenges of computer vision.
This paper addresses this challenge by investigating image
similarity measures – the visual metrics for surfaces with
light reflectance properties that contain both specular and
diffuse components.

A massive effort has recently been put in multiple view
stereo, and advances have been achieved by recent bench-
mark datasets like the Middlebury multi-view stereo sets
[17], the dense multi-view stereo of buildings from Strecha
et al. [19], as well as works on large scale urban reconstruc-
tion of Furukawa et al. [8] and Gallup et al. [11]. Many
recent landmark achievements [6, 9, 11, 12, 16, 22, 23, 24]
have been obtained. These recent efforts have mainly fo-
cused on methods for optimization and regularization. The
visual metrics used have been sums of squared differences
(SSD) or normalized cross correlation (NCC) between im-
age pairs. These visual metrics are well suited for diffuse
reflecting surfaces, where the surface appearance is inde-
pendent of the viewing direction, but not for more complex
reflecting surfaces with specularities. Both the Middlebury
datasets [17] and the buildings from [19] consist of diffuse
objects, and therefore fit well with the simple visual metrics
such as SSD and NCC.

Many real world objects are not well modeled as diffuse
reflecting. Multiple view stereo algorithms can, however,
handle a lot of these objects using NCC or SSD by robust
statistics and an abundance of images. Such an abundance
is, however, often not possible or practical, and in these
cases, the SSD and NCC based frameworks brake down,
and a more elaborate visual metric is needed.

In [14, 18], it is shown that visual metrics dealing with
objects with more complex reflectance properties, e.g. spec-
ular, cannot be based on comparing image pairs. In this pa-
per, we further this work and propose novel visual metrics
based on modeling the reflectance. To do this the number
of images should exceed the dof of the reflectance model,
which is one in the diffuse case. Based on this realization,
we investigate how to construct visual metrics dealing with
diffuse and specular objects, and thus reflectance models
with more than one dof. This results in a visual metric with
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Figure 1. Illustration of the relationship between a surface patch and corresponding image patches. Visual metrics typically evaluate the
support for the presence of a given surface patch in the data by comparing these image patches

better properties than the radiance tensor of Jin et al. [14].
Considerable evidence exists to support that the SIFT

framework is superior to NCC when dealing with salient
feature point matching [7, 15]. This has been exploited by
Tola et al. [21] in the stereo case by changing the binning
of the descriptors to the output of Gaussian filters, whereby
the computations could be performed more efficiently re-
sulting in the DAISY descriptor. To deal with more than
two images, the DAISY framework combines the scores of
image pair matchings as commonly done with NCC. As part
of the investigation we also propose how to construct a vi-
sual metric with more than one dof by constructing a tensor
of DAISY descriptors. We experimentally show that the
DAISY tensor is superior.

The investigation of the proposed visual metric is based
on a new data set of eight different scenes with diffuse and
specular objects. This data is accompanied by ground truth
obtained by a structured light scanner1. Firstly we demon-
strate that the DAISY tensor is to be preferred to raw pix-
els because it is more robust and approximates the ground
truth better. Following this, we investigate the difference
between using one or two dof and a combination of the two.
As for the latter, if the part of a scene is diffuse, then extra
dof could lead to overfitting so that it might cause possible
performance degradation. Lastly, we investigate if a visual
metric should be aggregated from a minimal set of images,
i.e. two in the diffuse case and three for the proposed vi-
sual metric, or directly based on all relevant images. The
performed experiments are done in a 2.5D manner via the
alpha expansion of [2]. This is a relatively simple recon-
struction algorithm, which we deliberately have chosen over
the state of the art algorithms because our focus is on the
visual metric. If we chose an algorithm with stronger mod-
eling capabilities, this could clutter the effect of the visual
metric. Choosing an algorithm that does not use contextual
information might, however, not reveal the potential of the
visual metric in a realistic setup. We found the choice of the
graph cut algorithm [2] a good tradeoff.

1This data set is available at http://roboimagedata.imm.dtu.dk/reflectance/.

In this paper, we investigate the similarity metric similar
to the work of [13], but we focus on multiple views opposed
to stereo in their work. An in depth review of the multiple
view stereo literature and introduction of this field can be
found in [17, 5].

2. Visual Metrics
Multiple view stereo deals with estimating the 3D sur-

face of an object or a scene from multiple images with the
known camera calibrations. These known calibrations allow
us to compute where a given 3D point is projected in the im-
ages, cf. Figure 1. Multiple view stereo is typically handled
as an optimization problem, where we want to find the sur-
face S, which is most consistent with the images. Normally
a prior is added. This prior is often formulated as a smooth-
ing. The image consistency is formulated as a visual metric,
V(x,n), evaluated at each point x on the surface with nor-
mal n. The optimization problem thus becomes2

min
S

∑
x∈S

V(x,n(x)) + Prior(S) , (1)

where n(x) is the surface normal at x. The visual metric
is based on a planar patch at x with normal n, whereupon
the relevant images are projected as illustrated in Figure 1.
Different visual metrics then employ different measures to
quantify the consistency. A typical example is the use of
NCC between pairs of projected patches, e.g. projections
from cameras i and j in Figure 1. It is the construction
of these consistency measures we investigate further in this
paper.

2.1. The Radiance Tensor

In Jin et al. [14], a visual metric is constructed via a ra-
diance tensor. For a given surface patch described by x and
n, this radiance tensor is constructed by firstly enumerating
the relevant, visible, images by i ∈ {1, . . . , n}. Denote the
m pixel intensities of the associated projected patches as

2This is typically formulated as an integral over S, which is then later
discretized.



ri(x,n), where ri(x,n) is an m dimensional vector. These
vectors are then combined into the m× n radiance tensor

R(x,n) =
[
r1(x,n) r2(x,n) · · · rn(x,n)

]
.
(2)

In the ideal case where the patch coincides with the surface
and no other noise is present either, a patch should look the
same from all directions, up to scale, in the diffuse case. In
this ideal case, all ri(x,n) should thus be scaled versions of
each other, and the rank of R(x,n) becomes one. A main
result of [14] is that if the reflectance model of a surface is
described by the diffuse plus specular Phong model, then
the rank of R(x,n) should be two in the ideal case.

In the rank two case of [14], the singular values3 of
R(x,n), {σ1, σ2, . . . , σn}, form the basis of a visual met-
ric. Given a patch on the true surface in the ideal case, only
the first two singular values σ1 and σ2 should be non-zero.
This corresponds to R(x,n) having rank two. The visual
metric, J(x,n), from [14] is thus

J(x,n) =

n∑
i=3

σ2
i , (3)

which is equal to the total variation of the noise for the patch
being on the true surface. A similar visual metric corre-
sponding to a diffuse model would similarly be 4

n∑
i=2

σ2
i . (4)

2.2. Visual Metric as Model Fitting Residual

An interpretation of the visual metric in (3) is that a lin-
ear subspace is fitted to the data, i.e. the ri(x,n), and that
the visual metric is put equal to the squared residual error.
This linear subspace has dimension two, corresponding the
the models dof. The same interpretation can be made of
(4) except that a 1D subspace is fitted. Similarly, the cross-
correlation, ρij , between ri(x,n) and rj(x,n) is the best
fit of the model∥∥∥∥ ri(x,n)− µi

‖ri(x,n)− µi‖
− α rj(x,n)− µj

‖rj(x,n)− µj‖

∥∥∥∥2
2

, (5)

where µi is the mean of ri(x,n) – i.e. α∗ = ρij . The resid-
ual error is 1 − ρ2ij . The NCC can thus also be interpreted
as residual error after fitting a one parameter model.

An implication of viewing a visual metric as a model fit-
ting residual is that we need more observations, i.e. |n|,
than the dof of the underlying reflectance model. If not,
the residual, and thus the visual metric, will always be zero.
Thus, the diffuse model works well with only two observa-
tions, (n = 2), since it has one dof.

3In general n < m, and there is thus n singular values of R(x,n).
4Note the starting index of the summation.

The model fitting residual interpretation does not need
to be possible for all conceivable visual metrics. However,
given a reflectance model, then its dof is equal to the di-
mension of the possible ways in which a surface patch can
change appearance between image views in general. Thus,
at least one more image observation, ri(x,n), than the dof
is needed. This again implies that if a visual metric is based
on a reflectance model, then it needs to be based on at least
one plus the dof observations.

The conclusions reached here are generalizations of [18],
which is based on more formal arguments. Note also that
visual metrics are often made invariant under different ac-
tions, e.g. rotation in the SIFT descriptor [15]. Such an in-
variance removes an effect instead of modeling it, and as
such it does not increase the dof.

3. Visual Metrics for Specular Surfaces

Specular surfaces are best described by a two or larger
dof reflectance model. So based on the above reasoning,
we wish to investigate how we may best construct visual
metrics of more than the usual one dof. First of all, we
propose an extension of the SIFT methodology to the two
or larger dof case via a DAISY tensor.

3.1. DAISY Tensor

A DAISY descriptor [21] of a gray scale image is com-
puted from orientated image derivatives. These derivatives
are convolved by Gaussian kernels and the filter output form
the entries of a DAISY descriptor vector di(x,n). We pro-
pose forming a tensor of the relevant DAISY descriptors,
described by 3D point x and normal n as in line with (2)

D(x,n) =
[
d1(x,n) d2(x,n) · · · dn(x,n)

]
.

(6)
Let the singular values of D(x,n) be given by
{ς1, ς2, . . . , ςn}. Then we can form visual metrics as5

D1(x,n) =

n∑
i=2

ς2i (7)

D2(x,n) =

n∑
i=3

ς2i . (8)

3.2. Further Lines of Investigation

In line with findings for two view stereo [20] and salient
features [7], our experiments show that the DAISY tensor
outperforms the radiance tensor as a basis for a visual met-
ric. Likewise, we only consider linear subspaces of a given
degree as representatives of models of a given dof.

5Note the starting indices of the summations



3.2.1 Minimal vs. All

For salient features, matching performance is increased for
smaller differences in viewing angle between images. It
is partly because the approximation of the planar patch as-
sumption becomes less profound. It is thus relevant to pon-
der whether visual metrics should be based on aggregations
of minimal sets of images, as done with NCC in [22], or if
all relevant images should be used at once as done in [14],
cf. (3). Using all relevant images at once increases the re-
dundancy in the data giving bigger noise reduction. Also
the larger difference in viewing angle will generally give a
better baseline to depth ratio, and thus better depth estima-
tion, cf. [10]. To shed light on this matter, we compare the
two alternatives experimentally.

The visual metrics directly using all relevant images are
given by (7) and (8). The size of the minimal sets is one
plus the dof of the model since there needs to be a residual.
In the two dof case, we denote these sets {i, j, k} ∈ C3.
The visual metric is then aggregated from the squared third
singular value of[

di(x,n) dj(x,n) dk(x,n)
]
, (9)

which we denote Γ3
ijk(x,n) , i.e.

Γ3
ijk(x,n) = ς23 =

min
v1,v2

∑
m∈{i,j,k}

∥∥dm(x,n)− [v1v2][v1v2]Tdm(x,n)
∥∥2
2
,

(10)

where v1,v2 is an orthonormal basis of a 2D linear sub-
space. The two dof minimal visual metric considered here
is then given by

M2(x,n) =
∑

{i,j,k}∈C3

Γ3
ijk(x,n) , (11)

which is the sum of ς23 for all relevant image triplets. In an
analog fashion, the one dof minimal visual metric is given
by

M1(x,n) =
∑

{i,j}∈C2

Γ2
ij(x,n) . (12)

3.2.2 Model Averaging

Although two dof visual metrics are superior when dealing
with specular surfaces, one dof visual metrics suffice for
diffuse surfaces. In the latter case, a two dof visual metric
would possibly overfit leading to performance loss. A vi-
sual metric averaging the one and two dof models is also

investigated. We propose an additional pair of visual met-
rics

D1.5(x,n) =
1

2
D2(x,n) +

1

2
D1(x,n)

=
1

2
ς22 +

n∑
i=3

ς2i (13)

M1.5(x,n) =
∑

{i,j,k}∈C3

Γ2.5
ijk(x,n) (14)

where Γ2.5
ijk(x,n) =

1

2
ς22 + ς23 .

3.2.3 Investigated Visual Metrics

In summary, our investigation is based on eight visual met-
rics. Two are based on the raw pixel intensities J , (3), with
two different patch sizes. Six are based on the DAISY ten-
sor, i.e. D1, D1.5, D2, M1, M1.5, and M2, investigating the
combined possibilities of

• If one dof, two dof or an averaged alternative should
be used.

• If the visual metric should be based directly on all rel-
evant images or on a combination of minimal subsets.

4. Experimental Results
To perform multiple view stereo experiments on objects

with specular and diffuse surface reflectance models, we
compiled a new data set consisting of eight different scenes
as shown in Figure 2. The scenes show specular reflectances
and have planar to non-planar surfaces. We chose to vary
the baseline of the different data sets to ensure significant
specularities to challenge the visual metric. This is done by
visual inspection. The number of images was kept constant
at five and the maximum angles between images of the eight
scenes were: #1 – 20◦, #2 – 40◦, #3 – 20◦, #4 – 20◦, #5 –
20◦, #6 – 30◦, #7 – 40◦, #8 – 40◦. These angles are an
indication of the baselines used, and are listed in Figure 2.

The recorded images have a spatial resolution of 1200×
1600 pixels recorded as 8 bit RGB converted to gray scale.
The data set was recorded with an industrial robot arm us-
ing a setup similar to [1, 17]. We have, however, mounted
the structured light scanner on the robot arm holding the
camera. Hereby the ground truth 3D point-set was perfectly
aligned with the camera position and provides a good cov-
erage of the scenes. This enabled us to evaluate multiple
view stereo algorithms by measuring the distance from the
ground truth points of the structured light scan to the multi
view reconstruction.

The average reconstruction errors and standard devia-
tions are shown in Table 1 and the graph of averge recon-
struction errors is illustrated in Figure 3. One reconstruction



Figure 2. The scenes of our investigation numbered #1 - #8. The numbers after the comma indicate the baseline in degrees.

example is shown in Figure 4. The reconstruction errors
were computed by taking the absolute difference between
the estimated depths and ground truth for each pixel, but
only where there were ground truth measurements.

To get a clearer picture of the performance of the visual
metrics, we have solved the multiple view stereo reconstruc-
tion optimization problem (1) via the alpha-expansion algo-
rithm of Boykov et al. [2], which is a very well understood
optimization algorithm. For the same reason we have also
avoided iterating over a visibility mask as done in [21]. In
this way, we avoid complicating factors that impair the eval-
uation of the visual metrics.

The algorithm of [2] works by finding an optimal depth
for each pixel in a reference image, where the depth is taken
from a discrete set of ordered depth values. The depth reso-
lutions used for the different scenes are determined by range
of the ground truth data points and divided into equal sized
steps of approximately 1 mm. This resulted in between 110
and 180 discrete steps in the different scenes.

We evaluate six different DAISY based visual metrics.
The di(x,n) is computed similarly to the DAISY descrip-
tor in [21]. We compute the descriptor on a 31× 31 pixels6

image patch with three spatial sampling rings of six posi-
tions resulting in 19 spatial sampling positions. At each
position the eight smoothed signed derivatives are sampled
resulting in a 152 dimensional descriptor. The smoothing
factor of the center point and first ring is σ = 3, for the sec-
ond ring σ = 5.5, and for the third ring σ = 8. The raw
based visual metrics evaluated are J(x,n) from (3) with a
patch size of 11 × 11 and 31 × 31. The first is chosen be-
cause it is the recommendation by Jin et al. [14], the second
is chosen in order to have the same terms as the DAISY
based visual metrics. In the following we denote these two
visual metrics as J11(x,n) and J31(x,n) respectively.

6In this case m = 31× 31 = 961.

A summary of experimental results is shown in Table 1,
Figure 3 and Figure 4. From the quantified errors in Ta-
ble 1 several things can be concluded. Firstly, the DAISY
based visual metrics outperform the raw based visual met-
rics, J11(x,n) and J31(x,n), by a large margin. This is
clear evidence that a DAISY based visual metric should be
preferred supporting the findings of [21]. Also J31(x,n)
consistently outperforms J11(x,n).

We also note that the best performing descriptor varies
between the two 2-dof DAISY descriptors, D2 andM2, and
theD2 favors the data sets with the small baselines. This in-
dicates that the minimal cases are better at dealing with per-
spective distortion, and this is more important than a good
depth to baseline ratio.

5. Perspective and Conclusion

In this paper, we have linked surface reflectance models
with the visual metrics used for multiple view stereo. We
conclude that we need more observations for a visual metric
than the dof of an underlying reflectance model. Thus, more
than two observations are needed to handle (partly) specular
objects. We proceeded by proposing a method for including
more than two images or observations into a visual metric,
while incorporating the DAISY framework. This proved
superior to directly using raw pixels regarding the ability to
approximate the ground truth of our data. This is consistent
with findings for salient feature matching [7] and two view
stereo [21].

We have also put forth a new multiple view data set with
ground truth, which spans different reflectance models bet-
ter than any available data set we are aware of. This data
set is the basis of our experimental evaluations. The eval-
uations, first of all, consider the dof of the underlying re-
flectance model. Our experiments also address whether the
visual metric should be aggregated from a minimal set of



V (x,n) Scene #1 Scene #2 Scene #3 Scene #4
mean std. mean std. mean std. mean std.

D1(x,n) 10.67 22.55 10.79 17.43 4.99 13.59 4.18 4.69
D2(x,n) 8.34 19.28 10.77 19.14 3.82 10.64 3.59 3.90
D1.5(x,n) 9.70 21.68 11.07 18.83 4.25 12.75 3.91 4.23
M1(x,n) 7.00 15.93 8.69 15.36 5.56 13.86 3.80 4.31
M2(x,n) 6.24 14.08 6.46 12.47 5.35 13.52 4.01 4.78
M1.5(x,n) 7.12 15.84 9.01 15.98 5.00 12.41 3.74 3.79
J11(x,n) 29.45 42.91 32.67 33.93 18.79 31.11 10.16 21.78
J31(x,n) 20.84 38.05 23.57 30.80 15.39 29.19 4.40 12.40
V (x,n) Scene #5 Scene #6 Scene #7 Scene #8

mean std. mean std. mean std. mean std.
D1(x,n) 2.32 4.51 4.06 12.56 6.22 13.31 12.36 29.94
D2(x,n) 1.77 3.28 2.68 6.45 4.53 10.99 11.94 29.87
D1.5(x,n) 2.16 4.44 3.44 10.42 5.62 12.56 12.23 30.02
M1(x,n) 1.90 2.61 2.76 6.15 4.22 9.16 12.30 29.87
M2(x,n) 1.83 2.38 2.65 5.78 3.90 9.24 10.59 27.77
M1.5(x,n) 1.91 2.90 2.70 6.36 4.41 9.44 10.76 27.77
J11(x,n) 15.31 26.34 29.22 44.75 17.62 31.70 33.51 46.00
J31(x,n) 10.10 22.09 17.65 36.90 13.62 26.66 20.51 38.79

Table 1. Average reconstruction errors and standard deviation (in mm) for the eight visual metrics and eight scenes. Note that the reported
standard deviation is for the errors and not for the mean. If we assume a few hundred independent observations, the main differences
between the means are significant. The ground truth consists of about 300.000 correlated observations, so a few hundred independent
observations seems a reasonable assumption. The fact that the stdandard deviation is larger than the mean is a consequence of the recon-
struction errors following a very skew distribution with a very fat tail in the direction of large errors. For each scene, the best mean value
is denoted by bold face.

Figure 3. Graph of mean errors in Table 1. It shows the average reconstruction errors (in mm) on the vertical line and eight metrics on the
horizontal line with eight scenes with different color. Note that DAISY based visual metrics are superior to the raw based visual metrics
by a large margin, and M2 is slightly better than other DAISY based metrics. The effect of subtle differences among DAISY based visual
metrics can be seen in Figure 4.

images, as done with NCC in [3], or if all relevant images
should be used directly as in [14]. Our experimental results
show that the use of two dof is favorable. The choice be-
tween all or the minimal case seems to depend on the base-
line – with a small baseline favoring using all images. As ar-
gued in the introduction, elaborate visual metrics are mostly

needed for limited image budget, and thus large baselines,
favoring M2.

Since the state of the art in visual metrics [21, 14] is also
represented in the visual metrics we investigated, the M2

proposed here looks like a strong choice for a visual met-
ric in relation to multiple view stereo. To further argue the



Figure 4. The reconstruction results of Scene #1, wrt. the DAISY based visual metrics. The figures illustrate a) The sample input image
with blue arrows marking the distinct specularities to notice in the results. b) The ground truth. c) - h) reconstructed depth maps by the
following visual metrics D1, D1.5, D2, M1, M1.5, and M2 respectively. i) and j) the reconstruction errors of M1 and M2 respectively, i.e.
f) and h) minus b). Note the differences around the specularities.

matter in relation to robustness, e.g. occlusions, some of the
current good choices of addressing this [3, 22] use minimal
cases, and thus our M2 visual metric should be usable in
these robust frameworks.

Our findings favor basing visual metrics on underlying

surface reflectance models. This opens the new interest-
ing question of how these models should be formulated. In
this work, we have limited these reflectance models to be
linear subspaces to avoid a combinatorial explosion since
we already compared eight visual metrics. It is, however,



likely that other models, e.g. more physical based models
comprising nonlinear manifolds, would perform better. In
this regard the work of [4] is inspirational. Also it is likely
that probabilistic models of the reflectance should be formu-
lated, but this would require much more than eight scenes.
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