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Abstract: The decreased heating demand in low-energy buildings affects the cost-effectiveness of traditionally-designed 
district heating (DH) systems. This paper presents the innovative low-energy DH concept, which is based on low-
temperature operation. The annual energy performance of a low-energy network for low-energy houses in Denmark was 
investigated. We considered the influence of the human behavior on the energy demand, the importance of the degree of 
buildings connected to the network and a socio-economical comparison with ground source heat pumps. In the North 
European climate, the human behavior can lead to 50% higher heating demand and 60% higher heating power than 
expected according to reference values in standardized calculation of energy demand pattern in energy-efficient buildings. 
Next, we proved that low-energy DH systems are robust systems that ensure the security of supply to each customer in a 
cost-effective and environmentally friendly way in areas with linear heat density down to 0.20 MWh/(m.year). This suggests 
that the mandatory connection of low-energy buildings to DH in specific areas, by means of detailed energy planning, 
would improve the energy efficiency and the overall socio-economy and it is strategic for effective energy policy. The 
levelised cost of energy in case of low-energy DH supply is competitive with the scenario based on ground source heat 
pumps. The investment costs represent up to three quarters of the overall expenditure, over a time horizon of 30 years; 
hence, the implementation of an energy system that fully relies on renewable energy needs substantial capital investment, 
which in the long-term period is sustainable, from the environment and socio-economical point of views. The low-energy 
district heating concept fits the vision of the future energy sustainable society. 
 
Keywords: district heating, low-energy buildings, low temperature, human behavior. 
 

1. INTRODUCTION 
 

1.1. The low-energy concept applied to district heating 
District Heating (DH) covers 60% of the heating demand in Denmark and has a large influence on the rest of the energy 
system. DH plays a central role in the future Danish energy system based on Renewable Energy (RE) [1]. Hence many 
communities have prepared plans for implementing the vision of a society that achieves drastic energy savings and fully 
relies on RE [2]. The possibility of satisfying the energy demand in communities with DH is high not only in cold climate 
countries, but also in other countries [3], [4], so that the potential is huge. Nevertheless, the cost-efficiency of DH supply to 
low-energy buildings may be critical, especially due to the fixed costs that derive from capital intensive investments. 
Furthermore, it is not mandatory in case of low-energy buildings to connect to DH, according to the Danish Building 
Regulation. Finally, traditionally-designed networks would often have sub-optimal energy performance, because of over-
dimensioned design and unnecessary high operational temperatures. The application of the low-energy concept to the DH 
technology aims at three main targets. The first one is to guarantee comfort, with regards to delivery of Domestic Hot Water 
(DHW) and to Space Heating (SH) requirements, by exploiting low-grade energy sources and RE. The second objective is 
to match the exergy demand of such applications with the exergy available in the supply system, by making the temperature 
levels of the supply and the demand closer. Finally, it aims at reducing the heat loss in the distribution network. The main 
design concepts are: 1) low-size media pipes. This is achieved by allowing a high pressure gradient in the branch pipes 
connected to the unit with instantaneous DHW preparation or by installing units with storage of DH water. The latter one 
consists on a heat exchanger coupled to a water storage tank on the primary side, which ensures low continuous water flow 
and thus low-size media pipes in house connections. 2) Low temperatures: 50-55°C in the supply line and 20-25°C in the 
return line. The technical and economical feasibility of such systems were investigated from the theoretical point of view in 
[5] and applied in [6]. Lowering the supply and return temperatures increases the final energy efficiency of the systems and 
decreases the heat losses [7]. 3) Twin plastic pipes instead of single steel pipes. This leads both to lower investment costs 
for the civil works connected to the laying of the pipelines and to lower distribution heat losses. The investigation proposed 
in this paper aims at developing a proposal on how to best apply the low-energy DH concept for low-energy buildings. We 
evaluated the annual energy performance and the socio-economy of a demonstrative network, based on realistic energy 
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loads that derived from a model of the human behavior. Next, we discussed the economically-reasonable lower limit for the 
heat demand density for which the connection to low-energy DH networks is cost-effective and energy efficient. 
 

2. METHODS 
 

2.1. Simulation of the energy use in low-energy buildings 
Dynamic energy simulations were carried out with the software IDA-ICE [8]. A special module, developed in [9], evaluated 
the realistic human behavior and its effects to the energy use. The model is based on measurements in 10 apartments and 5 
single family houses; the following factors were measured every 10 minutes for an 8-month period: indoor environment 
factors (operative temperature, relative humidity, CO2 concentration), outdoor environmental factors (air temperature, 
relative humidity, wind speed, solar radiation), human behavior (window state open/closed, opening angle, temperature set-
point of the thermostatic valves in radiators). These factors were used to create a standardized human behavior model for 
energy simulations in IDA-ICE; the model takes into account the window opening behavior and the heating set point. A 
linear regression was used to calculate the relationship between the heating set point and environmental factors. Moreover, a 
realistic occupancy schedule was made by adopting the model in [10]. Finally, we determined the expected energy use and 
peak loads in two typical types of low-energy buildings “class 1”and “class 2015” according to the Danish Building Code 
[11]: a row house, whose floor area is 114 m2 and a detached, single-family house, whose floor area is 196 m2. A complete 
description of the two reference houses is available in [12].  

Table 1  Main input data for the energy calculations in the reference houses. 

* Weekdays 17:00-8:00: 3 people; 15:00-17:00 (1.5 persons). Weekends: 3 people. ** Lighting: 685 W, equipment: 240 W; schedule: 6:00-8:00 and 

15:00-23:00. *** Lighting: 1165 W, equipment: 475 W; schedule: 6:00-8:00 and 15:00-23:00.  

We consider 5 different cases for the reference row house and three cases for the reference detached house. The cases were 
chosen with the aim of comparing the influence of the human behavior on energy use to the effect of various system control 
strategies and environmental parameters. The cases are: 1) the input data are similar to what is required by the software 
Be06 [13]. Be06 is the Danish official software for energy certification of low-energy buildings. 2) The lighting and 
equipment are set with a schedule. The total electrical energy use in case 2 is equal to case 1, but the constant loads are 
replaced by variable loads. 3) The lighting, equipment and human occupancy are set with a schedule; the constant loads are 
replaced with variable loads. 4) Same as case 3; a Variable Air Volume (VAV) ventilation system replaces the Constant Air 
Volume (CAV) ventilation system. 5) The human behavior and occupancy models are introduced.  
 

2.2. Performance of the low-energy DH network 
In order to investigate the dynamic energy performance of low-energy DH networks for low-energy buildings, an existing 
network layout was adapted from [14]. In the simulations the consumer units consist of substations equipped with a heat 
exchanger for instantaneous preparation of DHW and without energy storage; they have a nominal power of 32 kW and 
they require a minimum pressure difference of 0.3 bar. In order to ensure a reasonable waiting time for DHW outside the 
heating season, the design thermal bypass temperature was set to 40°C in each consumer. Pipes with nominal diameter 
smaller or equal to 32 mm are Aluflex twin pipe type, while for bigger sizes steel twin pipes were chosen, see Table 2. 

House 
type 

Case 
Internal gains [W] Ventilation 

[L/(s.m2)] 
Heating 

set point [°C] Occupants Lighting Equipment 

R
ow

 h
ou

se
 

Be06 170 400 (lighting + equipment) 0.45 (CAV) 20 

1 2 persons, always 300 100 0.45 (CAV) 20 

2 2 persons, always schedule** schedule** 0.45 (CAV) 20 

3 3 persons , schedule* schedule** schedule** 0.45 (CAV) 20 

4 3 persons, schedule* schedule** schedule** 0.07-0.7 (VAV) 20 

5 Occupancy model schedule** schedule** 0.45 (CAV) Human behavior 

D
et

ac
h

ed
 

h
ou

se
 

Be06 294 686 (lighting + equipment) - 20 

1 294  schedule*** schedule*** - 20 

2 2 persons, always schedule*** schedule*** - 20 

5 3 persons , schedule* schedule*** schedule*** - Human behavior 
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Table 2 Pipe types and length of the pipeline. Alx: Aluflex twin pipe. Tws: steel twin pipe. 

Length [m]
  Alx 20 Alx 26 Alx 32 Tws 32 Tws 40 Tws 50 Tws 65 Total
Row houses 239.1 112 240.6 88.5 33.8 7.7 100.7 823.4
Detached houses 315.7 150.1 555.5 149.7 80.7 7.7 100.7 1360.1
 

    
 
Fig. 1 Network layout in the case of row houses (left). Mean monthly ground temperature in Denmark (source: [7]) and heat 
load factor for the case with row houses and standard energy use (right). 

In the cases of detached houses, the distance between the nodes representing the consumers was multiplied by a factor 3. 
For each case an annual simulation was made. The main input values consisted of the geometric and thermal parameters of 
the pipelines, the ratio between the average energy demand for a specific month and its maximum yearly value (load 
factors), the number of hours for each month and the mean monthly ground temperature. The results from such simulations  
were compared to dynamic simulations with detailed 
24-hour load profile for a typical day during the 
heating season and for a typical day in summer, in 
order to evaluate the accuracy of the annual 
simulations with averaged monthly energy use. Fig. 2 
shows the hourly values of the load factor for the case 
with row houses and standard energy use. We consider 
a typical summer day during which heat is supplied 
only for the DHW preparation and the typical average 
day in January (SH + DHW). The load profile of the 
average day in a month is defined by the average 
hourly values of energy use, calculated as: 

LF
∑ ,

∑ ,
              (1) 

where LFi is the load factor for a specific hour i, Ei,j is 
the energy use in the hour i of the day j and n is the 
number of days in the month considered. Finally, we 
compared the energy performance of the low-energy 
DH network to other reference examples of DH 
networks in low heat demand areas. 

Fig. 2 Row houses and standard energy use. Load factors in a 
summer day (DHW only) and for the average day in January (SH 
+ DHW). The peak values for the hourly energy use are 0.50 
kWh and 2.45 kWh, respectively for DHW only and SH + DHW. 
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2.3. Degree of connected users 
During the feasibility study of a DH network in a low heat demand density area, an economical investigation of a minimal 
feasible degree of connected consumers to the network must be made, since there is not mandatory connection for low-
energy buildings, even in zones that were planned to be supplied by DH or with an already existing network. Simulations 
were performed to investigate the performance of the low-energy DH network depending on the different percentage (from 
100% down to 10%) of low-energy buildings connected. We kept the last consumer of each street connected, so that the 
total network length did not vary from case to case. Next, the cost analysis shows the minimal cost-effective degree of 
connection, which can be generalize in terms of linear heat density. The linear heat density is defined as the ratio between 
the heat production and the trench length of the network. 
 
2.4. Socio-economy 
As final step we carried out a simplified socio-economic evaluation based on cost figures from reference reports [15], [16]. 
The cost comparison refers to the cost of 1 kWh, when buildings are supplied with either DH or with individual Ground 
Source Heat Pumps (GSHP). The interest rate of 6% and a period of 30 years were considered; this is in line with what the 
Danish Ministry of Finance requires for public investment analyses. However, other long-term analyses suggest that a 
discount rate as low as 3% is reasonable [17]. The significance of the discount rate is not to be underestimated particularly 
in cases that foresee a shift between operational costs to investment costs, such the ones considered in this article. It is 
important to underline that lower discount rates would improve the overall economy of the DH systems considered in this 
paper, and therefore the economic results are on the safe side. 
 

3. RESULTS AND DISCUSSION 
 

3.1. Energy use in low-energy buildings 

The results from the energy simulations of the two reference houses indicate the same tendency, when considering the 
heating demand. First, the heating demand increases by a factor 2 in comparison to standard calculations, when the human 
behavior is taken into account. Moreover, the human behavior significantly affects the magnitude of the heating peak load: 
+27% for the single family house and up to +60% for the row house, with standard simulation as reference. Next, the 
heating demand increases of around 5%, when internal gains are variable over the time. Finally, for the DH network 
operation point of view, it is interesting to underline that the duration of the heating season is approximately one month 
shorter in low-energy buildings than in standard buildings, considering the North European climate. 
 

Table 3 Energy use in the reference houses for the different cases. 

Type of 
house 

Primary energy demand* [kWh/(m2.year)]  

Case Lighting  Equipment  Other el. SH  DHW Total 

R
ow

  h
ou

se
 

 

Be06 - - 4.7 18.8 12.8 - 

1 54.3 19.3 4.3 17.1 13.1 108.0 

2 54.3 19.3 4.3 18.0 13.1 108.9 

3 54.3 19.3 4.3 17.1 13.1 108.0 

4 54.3 19.3 2.0 11.7 13.1 100.3 

5 54.3 19.3 4.3 35.0 13.1 125.9 

D
et

ac
h

ed
 

H
ou

se
 Be06 - - 2.4 15.4 12.3 - 

1 54.3 22.3 2.4 17.2 11.6 107.7 

2 54.3 22.3 2.4 18.1 11.6 108.6 

5 54.3 22.3 2.4 31.8 11.6 122.3 

*Primary energy factor for electricity = 2.5; primary energy factor for heat = 0.8. 

3.2. Low-energy DH network: annual energy figures 
We performed the energy performance analysis of the DH network for row houses and of the DH network for detached 
houses. We considered only the simulation case 1, where the energy demand is calculated according only to building 
physics parameters, and the simulation case 5, where the human behavior is taken into account. The heat production, the 
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areas with linear heat density down to 0.20 MWh/(m.year). Such systems are robust and ensure the security of supply to 
each customer, even in case of energy use patterns that differ from the expectations. The low-energy DH concept is strategic 
for reaching ambitious energy and climate targets and has the potential for being widely implemented in all the countries 
where energy saving measures and efficiency in the energy supply system are priorities in the political agenda. This 
suggests that the mandatory connection of low-energy buildings to DH in specific areas, by means of detailed energy 
planning (as in Denmark in the 1970s) would improve the potential for energy efficiency and it is strategic for effective 
energy policy. The levelised cost of energy in case of low-energy DH supply is competitive with the GSHP-based scenario, 
which is considered among the best alternative solution for efficiently heating in low heat demand density areas. The cost of 
heat for the end-user would be 13.9-19.3 c€/kWh (excl. VAT), respectively for the case with low-energy “class 2015” 
detached houses and the case with low-energy “class 2015” row houses. This is ~20% lower than the correspondent energy 
unit cost for the GSHP case. The energy costs for DH energy supply count for 18-28% of the total costs, while the 
investment costs represent 63-72% of the overall expenditure. Similar conclusion can be drawn for the case of HP heat 
supply, as the energy-related cost has a share of 12-19%. The implementation of an energy system that fully relies on RE 
needs substantial capital investment, which in the long-term period is sustainable, from the environment and socio-
economical point of views. The costs of such a scenario are at a comparable level with the current situation or even more 
profitable, if the environmental costs of keeping business as usual practice, opportunities of fuel savings and health issues 
are taken into accounts. The low-energy DH concept fits the vision of the future energy sustainable society. 
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