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DEBONDING ANALYSES IN ANISOTROPIC MATERIALS WITH STRAIN-GRADIENT EFFECTS

Brian Nyvang Legarth∗
∗Department of Mechanical Engineering, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark

Summary A unit cell approach is adopted to numerically analyze the effect of plasticanisotropy on damage evolution in a micro-
reinforced composite. The matrix material exhibit size effects and a visco-plastic anisotropic strain gradient plasticity model accounting
for such size effects is adopted. A conventional cohesive law is extended such that both the average as well as the jump in plastic strain
across the fiber-matrix interface are accounted for. Results are shown for both conventional isotropic and anisotropic materials as
well as for higher order isotropic and anisotropic materials with and withoutdebonding. Generally, the strain gradient enhanced
material exhibits higher load carry capacity compared to the corresponding conventional material. A sudden stress drop occurs in the
macroscopic stress-strain response curve due to fiber-matrix debonding and the results show that a change in yield stress, which is
caused by plastic anisotropy, affects the overall composite failure strain.

INTRODUCTION TO THE PROBLEM

For a composite reinforced at the micron scale, two competing mechanisms affect the overall behavior: (I) interfacial
failure reduces the strength and (II) strain-gradient effects enhance the strength. When analyzing such composites in
general a full 3D analysis is required in order to fully represent the geometry, the loading and the boundary conditions.
Such analyses are complicated and the computations become very time consuming when anisotropic plasticity and pro-
gressive debonding is to be accounted for. Thus, assuming a periodical distribution of the reinforcement allows for greatly
simplified approaches. Here, a composite material having a periodical distribution of reinforcement is analyzed usinga
plane strain unit cell approach. Thus, the results presented in this study approximate a composite of rather long, almost
aligned, stiff reinforcement which is subjected to a fixed stress state that is acting mainly in the transverse directionof the
reinforcement. Fig. 1(a) shows the distribution of fibers and Fig. 1(b) shows the unit cell adopted here. The orthonormal
basis,ni, of the principal axes of plastic anisotropy,x̂i, is defined by the angleθ, from from the global Cartesian coor-
dinate system,xi. The displacements∆1 and∆2 are prescribed such that ratio,κ, of the average stress at the cell edges
remains constant. Fig. 1(c) shows an example of the finite element mesh adopted. The element type is 8-node elements.
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Figure 1. The plane strain cell model for the composite. (a) Periodically distributed fibers. (b) The cell used for modeling with initial
dimensions, loads, supports and coordinate systems. (c) Example of finite element mesh using adopted,af
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MATERIAL MODELS

Higher order elasto-plastic constitutive model
The fibers are assumed to be purely elastic with a stiffness much larger than the elasto-plastic matrix material, which
is assumed to obey the strain gradient model proposed by Fleck and Hutchinson [1]. In addition, plastic anisotropy is
accounted for using the anisotropic version of the Fleck andHutchinson model suggested by Legarth [2]. Thus, the
effective plastic strain,Ėp, is enriched by the gradients of the conventional effectiveplastic strain,ǫ̇p, and a material
length scale parameter,l∗, as
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The work-conjugate effective stress is denotedσc and is given in table 1. Plastic anisotropy is accounted for by the
classical anisotropic Hill yield surface. For the case of plane strain conditions withσ13 = σ23 = 0 the yield surface is

Γ =
√

3
2(F+G+H) [F (σ̂22 − σ̂33)2 + G(σ̂33 − σ̂11)2+ H(σ̂11 − σ̂22)2 + 2Nσ̂2

12] (2)

where the Cauchy stresses,σ̂ij , refer to the principal axes of plastic anisotropy. ForF = G = H = 1 andN = L =
M = 3, Eq. (2) equals the isotropic Mises yield surface,σe. A higher-order stress measure is also introduced asρi.
a)Corresponding author. E-mail: bnl@mek.dtu.dk



Conventional materials Higher order materials
(l∗ = 0, ρi = 0) (l∗ 6= 0, ρi 6= 0)

Isotropic ρi,i = 0 ρi,i = q − σe

(Γ = σe) σc = σe σc =
√

(σe + ρi,i)2 + l−2
∗ ρiρi

Anisotropic ρi,i = 0 ρi,i = q − Γ

σc = Γ σc =
√

(Γ + ρi,i)2 + l−2
∗ ρiρi

Table 1. Summary of the effective stress,σc, for different materials.

Higher-order cohesive model
The bi-axial loading on the unit cell, Fig. 1, will tend to cause both normal and tangential interfacial separation,un and
ut, respectively, at the fiber-matrix interface. The cohesivezone model proposed by Tvergaard [3] takes both types of
separation into account and therefore this model may seem suitable for the present study. However, due to the existence of
the higher order stress,ρi and corresponding higher order tractions,ρini additional terms need to be included in order to
have a conventional as well as higher order stress-free surface after debonding failure. Hence, a non-dimensional damage
parameter is introduces as [4]
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where< ǫp > is the average (subscriptA) and [ǫp] is thehalf jump (subscriptJ) in plastic strain across the interface,
respectively, whereaslA andlJ are corresponding critical interfacial length scale parameters. Forλ ≥ 1 total separation
have occurred. It is noted, that since the fiber is taken to be purely elastic,< ǫp >=[ǫp]. The corresponding tractions are
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with α = δn/δt andF (λ) = 27
4 σmax(1 − 2λ + λ2) for 0 ≤ λ ≤ 1. The maximum interfacial stress is denotedσmax.

RESULTS AND CONCLUSION

Fig. 2 shows results for a load case withκ = σ2

σ1
= 0.5 corresponding to bi-axial plane strain tension. The fiber volume

fraction isVf =
πaf bf

4acbc
, with af

bf
= ac

bc
= 1. The initial yield stress isσ0/E = 0.003, whereE is Young’s modulus. The

coefficients of anisotropy areF = 0.7, G = 3.33,H = 1 andN = 9.6 with θ = 0o andσmax = 3σ0.
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Figure 2. Bi-axial tension results,κ = 0.5. (a) Average stress-strain curves (b) Contours of effective plasticstrain for a conventional
anisotropic material with debonding (c) Contours of effective plastic strain for a higher order anisotropic material without debonding.

For both isotropic and anisotropic behavior the effect of the material length scale parameter,l∗, is an increased load carry-
ing capacity, Fig. 2(a). A sudden stress drop occurs due to debonding, Fig. 2(a), and in Fig. 2(b) the corresponding void
at the fiber-matrix interface is shown. Fig. 2(c) illustrates, that at the fiber-matrix interface the plastic strain is suppressed
and the strain is smaller compared to the conventional case with severe plastic deformations at the tip of the void, Fig. 2(b).

In conclusion, this study analyzes numerically the combined effects of plastic anisotropy, size-effects and debonding in
a composite material. Debonding is seen as a sudden stress drop and plastic anisotropy highly affects the failure strain,
while the size-effect is observed as an increased load carrying capacity.
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