
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 20, 2017

The Medusa Algorithm for Polynomial Matings

Boyd, Suzanne Hruska; Henriksen, Christian

Published in:
Conformal Geometry and Dynamics

Publication date:
2012

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Boyd, S. H., & Henriksen, C. (2012). The Medusa Algorithm for Polynomial Matings. Conformal Geometry and
Dynamics, 16, 161-183.

http://orbit.dtu.dk/en/publications/the-medusa-algorithm-for-polynomial-matings(edaba63a-f649-4573-81ae-b932ca6e1b6c).html


THE MEDUSA ALGORITHM

FOR POLYNOMIAL MATINGS

SUZANNE HRUSKA BOYD AND CHRISTIAN HENRIKSEN

Abstract. The Medusa algorithm takes as input two postcritically fi-
nite quadratic polynomials and outputs the quadratic rational map
which is the mating of the two polynomials (if it exists). Specifically, the
output is a sequence of approximations for the parameters of the rational
map, as well as an image of its Julia set. Whether these approximations
converge is answered using Thurston’s topological characterization of
rational maps.

This algorithm was designed by John Hamal Hubbard, and imple-
mented in 1998 by Christian Henriksen and REU students David Farris,
and Kuon Ju Liu. In this paper we describe the algorithm and its im-
plementation, discuss some output from the program (including many
pictures) and related questions. Specifically, we include images and a
discussion for some shared matings, Lattès examples, and tuning se-
quences of matings.

1. Introduction

The study of the dynamics of rational maps of the Rieman sphere is
greatly facilitated by the fact that a wide variety of dynamical phenomena
can be illustrated using only the quadratic family Pc(z) = z2 + c. Of course
most general theorems about rational maps have examples in the quadratic
family, but further, in some cases the dynamics of a quadratic polynomial
appear within a rational map. The most basic example of this phenomena
is through polynomial-like behavior. In addition, there are several ways
to combine two (or more) quadratic polynomials to produce rational maps
whose dynamics can be described via a combination of the quadratic poly-
nomial dynamics. Probably the first such example was a polynomial mating
discovered by Adrien Douady [Dou83].

In order to define matings, first we must step back to quadratic poly-
nomials. It is simple to write a computer program which, given a c, will
compute (approximately) the orbit of any given point under the quadratic
polynomial Pc. To illustrate the overall behavior one draws the filled Julia
set, Kc, the set of points whose orbit under Pc does not tend to ∞. This
also illustrates the Julia set, Jc, the topological boundary of K. (See §2,
Figure 1 for a sample Jc.) We may examine experimentally the dynamics of
one map at a time with such a program.
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2 S. Boyd and C. Henriksen

The next natural step is to understand how the dynamics changes with
a change in the parameter, c. We organize the parameter space by defining
M , the Mandelbrot set, as the set of all c in C for which the Julia set Jc is
connected (see §2, Figure 3). By Fatou’s fundamental dichotomy theorem,
this is equivalent to the set of all c such that the orbit of the critical point
0 under Pc lies in Kc. Thus it is also a simple matter to generate a picture
of M , and a program which will draw the Julia set Jc when a parameter c
in M is selected. After a brief investigation with such a program, one sees
intriguing patterns, and a relationship between M and the Julia sets of its
children, the quadratic polynomials.

In addition to the definition of M , many basic results in the theory of the
iteration of rational functions support the premise that the behavior of the
critical orbit is crucial for describing the dynamics. The dynamics are most
amenable to analysis when the polynomial Pc is postcritically finite (PCF),
i.e., the orbit of the critical point 0 is finite. A key technique in giving
a mathematical description of the patterns of quadratic polynomials turns
out to be combinatorics. For a postcritically finite quadratic polynomial,
we can build a labelled graph, called a spider, which gives a combinatorial
description of the dynamics of the polynomial. This is described in §2.2.

The reverse problem, of starting with a combinatorial spider and pro-
ducing a quadratic polynomial Pc (i.e., producing a parameter c) whose
dynamics are given by that model, is solved by the spider algorithm. The
spider algorithm is an iterative procedure, based on Thurston’s topological
characterization of rational maps [DH93], and is described fully in [HS94].

The main subject of this paper is the Medusa algorithm, which takes
two combinatorial spiders, glues them together in a certain manner (hence
the name Medusa), then runs a sort of double spider algorithm which, if it
converges, produces a rational map which is the mating of the two quadratic
polynomials associated with the originally inputted spiders, see Theorem 3.9.

John Hamal Hubbard designed the Medusa algorithm, based on Thurston’s
theory ([DH93]) and the foundational theory of polynomial matings devel-
oped by Douady, Hubbard, Shishikura, Rees, Tan Lei and others ([Dou83,
Ree92, Lei92, Shi00], see §2.3). The computer program implementing the
algorithm was written under Hubbard’s direction by David Farris, Chris-
tian Henriksen and Kuon Ju Liu, in a 1998 summer research experience for
undergraduates program. The full source code for Medusa is available for
download at [Dyn].

Some progress has been made in the study of polynomial matings since
1998, however there are still many intriguing questions. The goals of experi-
mental software like Medusa are to help form conjectural answers to existing
questions, as well as inspire new questions. After explaining the algorithm
and implementation, in the final section of this paper we provide several
examples of images we created using Medusa, which serve to illustrate and
examine several of the phenomena of matings. Specifically, we include im-
ages and a discussion for some Lattès examples, shared matings, and tuning
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sequences of matings. We hope this paper will energize future researchers to
study polynomial matings, and we expect Medusa is of service in advancing
the field.

Organization of sections. In §2 we provide needed prerequisite material
on the dynamics of quadratic polynomials and polynomial matings. In §3,
we describe the Medusa algorithm and its implementation, proving Theo-
rem 3.9. The final section, §4, contains examples of output from the program
related to a few areas of interest in the study of matings.

Acknowledgements. The authors thank Dierk Schleicher, Adam Epstien
and Tan Lei for inspiring discussions and advice on how to write this paper.
All images of Julia sets of quadratic polynomials were generated with the
Otis fractal program [Kaw].

2. Background

2.1. Notation. We write Ĉ = C ∪ {∞} for the Riemann sphere, i.e., the
one point compactification of the complex plane, endowed with the complex
structure with respect to which the identity restricted to C is a chart, and
z 7→ 1/z a conformal isomorphism. We write S2 for Ĉ viewed as a topological
manifold, i.e., not equipped with a canonical complex structure.

2.2. Quadratic polynomials and combinatorics. If Kc is connected,
then there is a unique conformal isomorphism

ψc : Ĉ− D→ Ĉ−Kc,

such that ψ′c(∞) = 1. This map conjugates w 7→ wd to Pc. The curve
Rt(c) = Rt = {ψ(re2πit) : r > 1} is the external ray of angle t. For a
postcritically finite polynomial the filled in Julia set Kc is locally connected,
and then ψc extends continuously to the boundary. If we parameterize the
circle by R/Z, then the map ψc on the boundary becomes

γc : R/Z→ Jc,

and γc is a semiconjugacy of multiplication by two to f , i.e., γc(2t) =
Pc(γ(t)). Then γc(t) is called the landing point of Rt(c). Call γc the
Carathéodory map of Pc. See Figure 1 for a picture of a Julia set and
some external rays.

Given a postcritically finite quadratic polynomial, Pc, choose θc ∈ R/Z so
thatRθc is the external ray associated with the critical value, c. That is, Rθc
lands at c, if c ∈ Jc. Otherwise the critical point is periodic. If the critical
point is fixed, take θc = 0. If the critical point is periodic of period n > 1,
the critical value is contained in the immediate basin U of a superattracting
cycle and there exists a pair of rays landing at the root of U whose closure
seperates the critical value from the other points in the critical orbit. Take
θc to be one of the two angles corresponding to this pair of rays.

We can use γc and θc to create a simple combinatorial model of the critical
orbit.
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Figure 1. Left: the Julia set of z 7→ z2 + i, and critical
orbit rays 1/6, 1/3, 2/3. Right: the Julia set of z 7→ z2 − 1,
and critical orbit rays 1/3, 2/3, plus 1/6 for comparison.

Given a rational number θ ∈ R/Z, following Hubbard and Schleicher

([HS94]) we define the standard θ-spider, Sθ ⊂ Ĉ by:

Sθ = {re2πi2j−1θ : r ≥ 1, j = 1, 2, . . .} ∪ {∞}.

See the image on the left in Figure 2 for an example, it shows the spider for
one of the Julia sets of Figure 1. One may view this as a spider, with legs
the rays emanating from the unit circle which are in the orbit of θ under
angle doubling, and body the point at infinity.

Since γc semi-conjugates Pc to angle doubling, γc maps Sθc to the union
of Rθc and its images under Pc, plus the point at infinity. Note if θ is
rational, then it has finite orbit under angle doubling, so the spider has a
finite number of legs. Similarly, if Pc is postcritically finite, then θc will be
rational. We denote the endpoints on the unit circle of the spider legs by

zj = e2iπ2
j−1θ.

The spider illustrates the critical orbit. Using this diagram we can also
create a sequence called the kneading sequence of θ which records informa-
tion about the order of the critical orbit in this diagram. Take the plane
containing the spider Sθ, and cut along the line composed by the rays of
angle θ/2 and (θ + 1)/2. Label by A the open half of the plane containing
θ, label the other open half B. See the right hand image of Figure 2. Label
the ray of angle θ by ∗a, and the ray of angle (θ+ 1)/2 by ∗b. For any angle
t, its θ-itinerary is the infinite sequence of labels from (A,B, ∗a, ∗b) corre-
sponding to the position in the labelled plane of the points in the forward
orbit of t under angle-doubling. The kneading sequence of θ, denoted k(θ),
is the θ-itinerary of the angle θ. Note a symbol ∗n appears in this sequence
if and only if θ is periodic under angle doubling.
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Figure 2. Left: the spider for θ = 1/6. The critical orbit
is (1/6 7→ 1/3 7→ 2/3 7→ 1/3). Right: the kneading sequence
for this spider is K(1/6) = A AB. This spider models f(z) =
z2 + i, whose Julia set is shown in Figure 1.

In this paper, we are interested in combining and comparing quadratic
polynomials. In order to keep track of the dynamics of various maps we
are studying, we use the discovery of Douady and Hubbard (see [DH82]) on
how θc relates to the position of c in the Mandelbrot set. They show the
Mandelbrot set, M , is connected, with simply connected complement in Ĉ,
hence there is a unique conformal isomorphism ΨM : Ĉ−M → Ĉ−D which
fixes ∞ and such that Ψ′M (∞) = 1. Then ΨM defines external rays outside
of M , by images of straight rays outside of the disk. It happens that for
any rational angle θ = p/q, the map ΦM extends radially to the boundary,
to define a landing point c(θ) for the ray of angle θ. Given a postcritically
finite polynomial Pc to which we associate the angle θc, then the parameter
ray of angle θc will either land at c (in the preperiodic case) or at the root of
the hyperbolic component of M that has c as a center (in the periodic case).
For example, for the basilica, f(z) = z2 − 1, the external rays associated
with the critical value −1 is of angle 1/3 and 2/3. The parameter rays of
angle 1/3 and 2/3 lands on the Mandelbrot set at the root point of the bulb
containing the basillica (the real bulb). Figure 3 shows the Mandelbrot set
and some external rays.

2.3. Mating quadratic polynomials. Let fn(z) = z2 + cn, n = 1, 2 be
two quadratic polynomials, with Julia sets Jn. Assume each Jn is locally
connected, and γn is the Carathéodory map of fn. Define K = K1 tK2/ v
to be the quotient space of the disjoint union of K1 and K2 in which for
each t ∈ R/Z, we identify γ1(t) with γ2(−t). In other words, we obtain a
topological space K by gluing K1 and K2 together along their boundaries
via γ1(t) v γ2(−t). Consider this definition while viewing Figure 1. In
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Figure 3. The Mandelbrot set, i.e., the set of all
c in C for which the Julia set Jc is connected,
shown above in black, together with the external rays:
0, 1/511, 1/7, 10/63, 1/6, 3/14, 1/5, 1/4, 169/511, 1/3,
255/511, 1/2, 2/3, 5/6.

general one might imagine K as some bizarre balloon animal (possibly with
infinitely many body segments), but we will see below that in many cases,
K is simply a sphere.

On the space K, define the map f1 � f2 by fn on Kn, n = 1, 2. Since γn
semiconjugates f to multiplication by two on Jn, this map is well-defined
and continuous (no matter how bizarre the space K may be).

If there is a quadratic rational map F which is topologically conjugate on
Ĉ to f1 � f2 on K, then F is called a mating of f1 and f2. We denote this
relationship by F ∼= f1 � f2, and in this case say the mating of f1 and f2
exists. The conjugacy h : K → Ĉ is required to be an orientation preserving
homeomorphism which is holomorphic on the interiors of each Kn. It is
believed that if F exists, it is unique up to Möbius conjugation.

Note that a mating of any quadratic polynomial f1 with f2(z) = z2 yields
F ∼= f1.

Results of Rees, Shishikura, and Tan Lei ([Ree92, Lei92, Shi00]) show
that whether the mating of two PCF quadratic polynomials f1 and f2 exists
can be answered in terms of the location of c1 and c2 in parameter space.
The fundamental existence theorem is:

Theorem 2.1. If f1, f2 are PCF quadratic polynomials, TFAE:

• K is homeomorphic to the sphere S2;
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• there exists a quadratic rational map F which is the mating of f1
and f2;
• c1 and c2 do not belong to complex conjugate limbs of the Mandelbrot

set, M .

We refer the reader to Milnor’s book [Mil99] for detailed background
on the dynamics of polynomial maps of C, and his article [Mil04] for a
more complete discussion of the definition of mating and its subtleties, a
discussion of many foundational results on matings, and a detailed analysis
of an interesting example of mating.

3. From Thurston’s Algorithm to the Medusa Algorithm

Thurston’s algorithm is a proof that given a branched covering g of the
sphere there exists a rational map F that is Thurston equivalent to g unless
there exists a Thurston obstruction. The proof can be made into an iterative
procedure computing a sequence of complex structures and rational maps Fn
which, when properly normalized, converges to F . In this section we see that
we can take g to be a model of the mating of two quadratic rational maps,
and extract finite dimensional but crucial information about the complex
structures produced by Thurston’s Algorithm so that the sequence Fn can
be recovered. This is the heart of the Medusa Algorithm. Because of the
finite dimensional information needed to run the algorithm, it lends itself to
actual computation.

3.1. The Theory.

Normalizing matings. Assume f1, f2 are postcritically finite quadratic
polynomials and F ∼= f1 � f2. Each fn has one critical point 0, which lies
in Kn. Thus F has two distinct critical points. By conjugating F with a
mobius transformation we can arrange that the critical point coming from f1
is at the origin, the other critical point at infinity and the two glued-together
beta fixed points are at 1. Therefore we know that any such mating belongs
to the following family of maps.

Notation 3.1. We normalize the rational maps which are matings by:

(1) F = {F rational of degree 2 | 0,∞ are critical points and F (1) = 1}.

Note that every rational map of degree two is conjugate to (at least one)
member of F .

The following innocent lemma, which is trivial to prove, is of fundamental
importance to why there is such a thing as the Medusa Algorithm.

Lemma 3.2. Given two distinct points u, v ∈ Ĉ \ {1} there exists a unique
F ∈ F so that F (0) = u and F (∞) = v.

The lemma shows that there is some magic to quadratic rational maps.
Normalized in the way described, we just need the position of the two critical
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values (and which correspond to which critical point) to uniquely determine
the map. We don’t need any extra combinatorial information.

Proof. We prove the lemma in the case where u, v are different from infinity.
The case where either u or v equals infinity is just as easy and left to the

reader. First notice that F : z 7→ (u−1)vz2−u(v−1)
(u−1)z2−(v−1) ∈ F , has the desired

properties, so we need to show that this is the only such map in F . Since
the origin and infinity are critical points, we can write

F (z) =
az2 + c

bz2 + d
.

That 1 is fixed, F (∞) = v and F (0) = u implies that a− vb = 0, c− ud = 0
and a− b+ c− d = 0. When either u or v is different from 1 the matrix 1 −v 0 0

0 0 1 −u
1 −1 1 −1


has rank 3. It follows that every solution to the three equations can be
written (a, b, c, d) = λ((u− 1)v, u− 1,−u(v − 1),−(v − 1)) for some λ ∈ C,
and therefore F is uniquely determined. �

In the following we will write Fu,v for the map given by the lemma.

The Standard Medusa. We now build a model for the mating F = f1 �

f2 of the two postcritically finite quadratic maps f1, f2. We start by defining
the standard Medusa.

Definition 3.3. Let θ1, θ2 ∈ Z be the two rational numbers we associate to
f1 and f2, as in §2.2. Define the (θ1, θ2) standard Medusa M(θ1, θ2) ⊂ S2 to
be the union of the unit circle S1, the interior legs

{ρ exp(2iπ2jθ1) |
1

2
≤ ρ ≤ 1, j = 1, 2, . . .}

and the exterior legs

{ρ exp(−2iπ2jθ2) | 1 ≤ ρ ≤ 2, j = 1, 2, . . .}.

Defined in this way we have that z 7→ 1/z maps M(θ2, θ1) bijectively
to M(θ1, θ2). The endpoints of the interior legs we denote by xj , and the
endpoints of the exterior legs we denote by yj , hence

xj = 2 exp(2iπ2jθ1), j = 1, 2, . . . , and

yj = 1/2 exp(−2iπ2jθ2), j = 1, 2, . . . .

We can think of the standard Medusa as a coupling of two standard spiders
Sθ1 ,Sθ2 , where the bodies have been cut away, then the two are glued along
the cut. See Figure 4 for a schematic diagram of this process.
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Figure 4. Above is a schematic of the process of mating
1/6 with 1/7. The upper figures are the truncated spiders,
the lower left is the Medusa on the sphere, and the lower
right is the projection of the Medusa to the plane.

Thurston Matings. Recall that two postcritically finite branched cover-
ings F : S2 → S2 and g : S2 → S2 with postcritical sets PF and Pg are called
Thurston equivalent if there exists orientation preserving homeomorphisms
φ and ψ such that φ restricted to PF maps bijectively onto Pg and ψ−1 ◦ φ
is isotopic to the identity on S2 rel. PF .

We proceed to define a branched covering g of S2 by itself that in non-
degenerate cases is Thurston equivalent to the mating F = f1 � f2. Let
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g|M(θ1,θ2) be the angle doubling map r exp(iφ) 7→ r exp(2iφ). Extend g
smoothly to a degree two branched covering of the sphere so that:

(1) g : D → D is a degree two branched coveing with critical value at
x1, and

(2) g : S2\D→ S2\D is a degree two branched covering with the critical
value at y1.

Denote by ω1 the critical point of g in D and by ω2 the critical point of g in
S2 \D. Notice that ωi coincides with an endpoint of a leg if and only if θi is
periodic under angle doubling, θ 7→ 2θ mod 1.

Notice that if we redefine g outside the unit circle to by setting it equal to
z 7→ z2 here, we obtain a map that is Thurston equivalent to f1. Similarly, if
we instead redefine g inside the unit circle so it restricts to z 7→ z2 here, we
obtain a mapping that is Thurston equivalent to f2. Hence it is reasonable to
view g as our branched covering model of the mating F. Shishikura [Shi00]
guarantees convergence in the nondegenerate case:

Definition 3.4. Let f1, f2 be PCF quadratic polynomials not in complex
conjugate limbs of M . If the two critical orbits of F ∼= f1 � f2 are disjoint,
then f1 and f2 are called strongly mateable.

Theorem 3.5 ([Shi00]). If f1, f2 are strongly mateable, then g is Thurston
equivalent to the mating F ∼= f1 � f2.

Thurston’s algorithm is an iterative process that will give us a sequence
of rational maps converging to F when F and g are Thurston equivalent.
Using g as our model map, it works as follows. Let σ0 : S2 → Ĉ be an
orientation preserving homeomorphism mapping ω1 to 0, ω2 to∞ and fixing
1. Recursively define σn and Fn as follows for n = 1, 2, . . . Interpret σn−1 as a
global chart defining a complex structure on S2. This complex structure can
be pulled back by g. Indeed, since g is a local homeomorphism everywhere
except at ωi, i = 1, 2 we can just compose restrictions of g with σn−1.
The complex structure defined in this way can be uniquely extended to the
missing points ω1, ω2. By the uniformization theorem S2 equipped with the
pullback complex structure is conformally equivalent to Ĉ. So let σn : S2 → Ĉ
be the conformal isomorphisms and normalize it so ω1 is mapped to 0, ω2 to
∞ and 1 is fixed. By construction Fn defined by the composition σn ◦g◦σ−1n
is holomorphic. The sequence of maps constructed can be illustrated by the
commutative diagram shown in Figure 5.

In principle Thurston’s algorithm solves our problem, the sequence of
generated maps rational maps should converge to our mating. However the
set of possible complex structures on S2 is beyond actual computations, so
we need to adapt the algorithm to allow for this. This is exactly what
Hubbard’s Medusa Algorithm does for us.

The Medusa Algorithm. Notice that each map Fn in Thurston’s algo-
rithm (in the strongly mateable described) is a degree two rational map
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...

g

��

...

Fn+1

��
S2

σn //

g

��

Ĉ
Fn

��
S2

σn−1 //

g
��

Ĉ
Fn−1

��
...

g

��

...

F2

��
S2

σ1 //

g

��

Ĉ
F1

��
S2

σ0 // Ĉ

Figure 5. A commutative diagram representing the maps
involved in Thurston’s algorithm.

fixing 1 and having the origin and infinity as critical points. In other words,
Fn ∈ F . By Lemma 3.2 we just need to know to where 0 and∞ are mapped
to identify Fn. Hence we don’t need all the information contained in the
sequence of complex structures to find Fn, it is enough knowing σn−1 re-
stricted to the standard Medusa M(θ1, θ2). Motivated by this we make the
following definition.

Definition 3.6. Set

M0(θ1, θ2) = {σ|M(θ1,θ2) | σ ∈ homeo+(S2 → Ĉ) and normalized},

where normalized here means that σ(ω1) = 0, σ(ω2) = ∞, σ(1) = 1, and
define the Medusa space M as the quotient of M0 with the equivalence
relation that identifies σ1 and σ2 if and only if the two maps are isotopic rel
{x1, x2, . . .} ∪ {y1, y2, . . . , } through mappings in M0.

Notice there is a natural projection π from the complex structures on
S2 onto M. Given a complex structure Σ we know by the uniformization
theorem that there exists a conformal isomorphism σ : (S2,Σ) → Ĉ which
we can normalize so that ω1 maps to 0, ω2 to infinity and 1 is fixed. We let
π(Σ) equal the equivalence class of σ|M(θ1,θ2) in M(θ1, θ2).

One can show that there is a natural bijection between M(θ1, θ2) and
the Teichmüller space of S2 \ {x1, x2, . . . , y1, y2, . . . , 1}, so Medusa space is
a finite dimensional complex manifold in a natural way.
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Mappings in Medusa space can be lifted. More precisely we have the
following lemma.

Lemma 3.7. Let sn−1 ∈ M0(θ1, θ2) be given. Set un = sn−1(x1), vn =
sn−1(y1) and let Fun,vn ∈ F be the unique mapping as in Lemma 3.2. Then
there is a unique mapping sn ⊂M0(θ1, θ2) such that the following diagram
commutes.

M(θ1, θ2)
sn //

g

��

Ĉ
Fun,vn

��
M(θ1, θ2)

sn−1 // Ĉ
If s′n−1 and sn−1 represent the same element in M(θ1, θ2) then the lifts s′n
and sn also represent the same element in M(θ1, θ2).

Proof. Since the simple closed curve γ′ = σn−1(S1) seperates one critical
point 0 and its image un = Fun,vn(0) from the other critical point ∞ and
its image v, the preimage γ of γ′ by Fun,vn is a simple closed curve and
Fun,vn : γ → γ′ is a two to one covering map. Identify the fundamental group
on S1 with Z so that a curve having index 1 with respect to 0 correspond
to +1 ⊂ Z. Do similarly for γ and γ′. Then the induced map g∗ : Z → Z is
multiplication by two. Since sn−1 extends to a homeomorphism that maps
ω1 to 0 (sn−1)∗ : Z → Z is the identity. Finally, Fun,vn maps the bounded

component of Ĉ \ γ onto the bounded component of Ĉ \ γ′ which implies
that (Fun,vn)∗ : Z→ Z is multiplication by +2. Hence (sn−1 ◦ g)∗ : π1(S1)→
π1(γ

′) has the same image as (Fun,vn))∗ : π1(γ) → π1(γ
′). It follows by a

fundamental theorem of algebraic topology that there exists a covering map
sn : S1 → γ so that g◦sn−1 = sn−1◦Fun,vn on S1, and this lift is unique when
we require that sn(1) = 1. We can extend sn to M(θ1, θ2) by lifting each leg
seperately, in the way that agree with how sn is defined on the circle. In
this way we have obtained a homeomorphism sn mapping M(θ1, θ2) to its
image, and we must show that sn ∈M0(θ1, θ2). However, since Fun,vn maps

the bounded (unbounded) part of Ĉ \ γ to the bounded (unbounded) Ĉ \ γ′
the image of an interior (exterior) leg is interior (exterior), so we can extend
sn to a orientation preserving homeomorphism of the sphere as required.

We still need to show uniqueness of sn. For sn to be an element of
M0(θ1, θ2) we must have sn(1) = 1 and that uniquely determines sn on
S1. Knowing sn on the unit circle means we know to where the base point of
the legs must lift and therefore there is only on extension to M(θ1, θ2) such
that g ◦ sn−1 = sn−1 ◦ Fun,vn .

Finally suppose that s′n−1 and sn−1 represent the same element inM(θ1, θ2)
and let sn, s

′
n ∈ M0(θ1, θ2) be the two unique lifts. By assumption there

exists an istopy connecting s′n−1 to sn−1, through maps in M0(θ1, θ2). This
isotopy can be lifted to an isotopy connecting sn and s′n. Each map in the
isotopy maps 1 to 1 so as before we can prove that it is an element of
M0(θ1, θ2). �
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Let a starting point S0 ∈ M(θ1, θ2), be given. The Medusa algorithm
consists of repeatedly applying Lemma 3.7 to get a sequence Sn ∈M(θ1, θ2)
and rational maps Fun,vn ∈ F for n = 1, 2, . . . . The beauty of the algorithm
is that we produce the same sequence of rational maps that Thurston’s
algorithm produces.

Theorem 3.8. Suppose π(σ0) = S0. Then the rational maps produced by
Thurston’s algorithm equal those produced by the Medusa algorithm, Fn =
Fun,vn . Futhermore π(σn) = Sn, n = 1, 2, . . .

Proof. Assume π(σn−1) = Sn−1, this is case when n = 1 by assumption.
Then sn−1 = σn−1|M(θ1,θ2) is a representative of Sn−1. Now Fn ∈ F maps 0
to σn−1(x1) and ∞ to σn−1(y1). So too does Fun,vn . Hence, by Lemma 3.2
Fn = Fun,vn . We have that σn|M(θ1,θ2) ∈ M0(θ1, θ2), is a lift of sn−1. So by
the uniqueness part of Lemma 3.7 π(σn) = Sn. The theorem now follows by
induction. �

Now we can justify the Medusa algorithm, by combining Theorems 2.1,
3.5, and 3.8:

Theorem 3.9. If f1 and f2 are strongly mateable, then the Medusa algo-
rithm converges to the mating F ∼= f1 � f2.

In practice, the algorithm seems to converge without assuming the maps
are strongly mateable. Thus we expect that a stronger theorem holds;
namely, it should be the case that anytime f1 and f2 are PCF quadratic
polynomials in complex conjugate limbs of M , the Medusa algorithm should
converge to the mating. The case not covered by Thurston’s theorem is when
two polynomials that are not in complex conjugate limbs have a mating with
only one critical orbit. In this case naively running the Medusa algorithm
produces a sequence of Medusas which does not converge (rather tends to
the boundary of the Teichmuller space), but the obstruction points (the
critical orbits becoming identified) are all pushed together upon iteration of
the algorithm, hence the sequence of rational maps seems to converge to the
mating. To prove this stronger result one could investigate how the maps
in the Medusa algorithm are converging as the boundary of the Medusa
space is approached. We expect the techniques of Nikita Selinger’s PhD
thesis [Sel10] on convergence at the boundary of Teichmuller space could be
adapted to solve this question, and leave this future result to the interested
reader.

3.2. The Implementation. The point of the Medusa algorithm is that it
lends itself to implementation as a computer program. The implementation
is an adoption of the implementation of the spider algorithm to the more
general setting of quadratic rational maps.

To initiate the program, the user inputs two rational angles θ1, θ2. The
implementation defines an initial Medusa s0 : M(θ1, θ2) → Ĉ, say close to
the identity.
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To describe our matings, we define a chart on F by letting Ra,b : z 7→
az2+(1−a)
bz2+(1−b) , (a, b) ∈ C2 \ {(z, z) | z ∈ C}. In this way we parametrize all the

maps in F . Supposing that F ∈ F maps 0 to u and∞ to v, we let a = v(u−1)
u−v

and b = u−1
u−v . Then Ra,b = F = Fu,v.

We represent a mapping s : M(θ1, θ2)→ C by several lists of points in Ĉ.
One list represent the image of the unit circle, and the other lists represent
the images of the legs. Also we always let the list of points representing the
image of the unit circle start with the point 1.

We adopt the convention that two consecutive points in the image of
the unit circle or in a leg is connected by an arc of circle. For the points
on the image of the circle or on the interior legs the circle chosen is that
through s(y1), and the arc of circle chosen is the one connecting the two
points and omitting s(y1). For consecutive points on the exterior legs adopt
the convention that they are connected by the arc of the circle through the
points and s(x1). The arc is the one that connects the two points and omits
s(x1).

Clearly, with the information contained in the lists of points and the
convention just mentioned we can reconstruct, not s, but the isotopy class
of s.

An iteration consists of finding the class of the pullback of sn−1 (as in
Lemma 3.7). As in the implementation of the spider algorithm we break
the process down into three steps: a pullback step, a rectifying step and a
pruning step.

Pullback. Given sn−1 as lists of points as described we first find Fun,vn =
Ran,bn . This corresponds to solving

(2)
1− a
1− b

= un = sn−1(x1) and
a

b
= vn = sn−1(y1).

In other words

an =
(un − 1)v

u− v
and bn =

un − 1

u− v
.

Notice that Ran,bn is the composition of a Mobius transformation with z 7→
z2. Hence, pulling back a point consists of first pulling it back by a Mobius
transformation Mn and then by the square. The question that needs to
resolved is, what branch of the squareroot do we need to choose.

First we pullback the points corresponding to the image of the unit circle.
Suppose that we have pulled back a point zk and obtained the point wk
and want to pullback the next point in the list zk+1. Pulling back first by
the Mobius transformation we get that the circle through zk, zk+1 and vn
becomes a circle through M−1n (zk),M

−1
n (zk+1) and ∞ i.e. a line. Since the

arc of circle connecting the two points was chosen to be the one that did not
contain vn the pullback of the arc of circle by the Mobius transformation
becomes simply a line segment between M−1n (zk),M

−1
n (zk+1). The preimage
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of a line by the square is a hyperbola, the two branches of which are con-
tained in opposite quarter planes. Hence knowing one preimage wk, we need
to choose the square root so that wk and wk + 1 lies in the same halfplane.

So the pullback the points corresponding to the circle we construct to
lists, A,B. The first element of A is 1 and the first element of B is −1, i.e.
the two preimages of 1 by Ran,bn . This was the first step. Next we iterate
through the remaing points in the list. The k’th step consists in finding the
two preimages of zk, call them wk and w′k. If the last inserted point in the
list A lies in the same quarter plane as wk then we insert wk in A, and w′k
in B. Otherwise we insert wk in B and w′k in the A. It is easy to verify that
the points in the list A are images of the points on the unit circle of angles
in the interval 0 ≤ θ < π, whereas the points in B correspond to angles θ
with π ≤ θ < 2π. Having pulled back all the points we can concanate the
two list so we get one list (starting with the point 1) representing the image
of the circle by sn. Notice that this list contains twice the points of the one
we have just pulled back.

Next we pull back the interior legs. The leg corresponding to angle θ is the
preimage of the leg corresponding to angle 2θ. If 0 ≤ θ < π the point in the
list A list that is the preimage of the anchor point of the leg of angle 2θ will
be the anchor point of the new θ leg, otherwise it will be the corresponding
point in the list B. Hence we have already computed (and can localize) the
pull-back of the first point in the leg. Hence, as before we can pull back the
rest of the leg, we need to chose the square root so the consecutive points
lies in the same halfplane.

Pulling back the outer legs is essentially the same, except that now pulling
back by Mn two consecutive defines a arc of circle, where the circle goes
through 0. However since z 7→ z2 commutes with z 7→ 1/z we can write the
squre as the composition of 1/z, z2 and then 1/z again. Hence pulling back
by Mn and then making the change of coordinates w = 1/z we are back in
the same situation as the one we were facing when pulling back the interior
legs.

In this way we obtain a list of point representing the map sn. However,
the points are now connected by arcs of hyperbolas and not arcs of circles.
The next step, rectifying, remedy this situation.

Rectifying. Perhaps a better word for the second part of an iteration would
be circlyfying. We want to bring us back to the starting position where
consecutive points in the lists are connected by arcs of circles. This is the
most delicate part of the implementation. What we want to do is replace the
arcs of hyperbolas with arcs of appropiate circles without changes the isotopy
class of the corresponding element in M(θ1, θ2). So given two consecutive
points z1, z2 we want to see if there is a homotopy from an arc of hyperbola
to an arc of circle so that the intermediate curves does not cross any of
the distinguished points sn(x1), sn(x2), . . . , sn(y1), sn(y2), . . .}. It is rather
tedious so we will only outline how it is done. The circle and the hyperbola
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are two (real) quadratic curves and we first find their intersection. This
can be boiled down to finding the roots of a degree 4 equation in one real
variable. However, since we know that z1 and z2 lies on both curves, we can
do a division of polynomial and the remaing points (if any) can be found
by solving a quadratic equation. The most difficult case when the branch of
hyperbola containg z1 and z2 intersect the circle in four points. Then the
union of the circle and the branch of hyperbola cuts the plane into six parts.
By elementary geometric reasoning, one can find exactly to which of the six
parts a given point belongs, and this knowledge is enough to decide if the
homotopy exists.

If the homotopy exists then we can move on, but if it doesn’t we need to do
something. What we do is to subdivide the arc of hyperbola in two halves,
z1, ζ and ζ, z2 and recursively rectify each half. In case we are not dealing
with a leg terminating at a distinguished point, then by compactness the
distinguished points are a definite distance away from the arc of hyperbola
between z1, z2. Given any ε > 0, any fine enough subdivision of the arc
of hyperbola, z1, ζ1, ζ2, . . . , ζk, z2 will satisfy, that if we replace the parts of
hyperbolas with arcs of circles we will stay with a spherical ε neighborhood of
the original arc of hyperbola. Hence, we are able to rectify after adding only
a finite number of points. In the case that the arc of hyperbola terminates
in a distinguished point z2 then we are dealing with the image of a leg. It is
not difficult to see that we do not change the isotopy class of sn by allowing
the homotopy to cross z2. In practice, this means that when rectifying a leg,
we do not consider the endpoint of the leg a distinguished point, and we are
sure that we can rectify adding only a finite number of points.

Pruning. After pulling back and rectifying, we have new lists of point rep-
resenting sn, but the number of points representing the image of the unit
circle has at least doubled. This means that unless we do something we will
run out of memory in a finite number of iterations.

What we do is pruning which amounts to checking each point z2 that is not
the attachment point or terminal point of the leg whether it can be removed
without changing the isotopy class of the represented map. In practice this
means checking whether two arcs of circles, one through z1 and z2 the other
through z2 and z3, can be replaced by an arc of circle going from z1 to z3
without changing isotopy class. Using a Mobius transformation to change
coordinates the question becomes whether a line segment (w1, w2) and a
line segment (w2, w3) can be homotopied to a line segment (w1, w3) without
crossing distinguished points, a question that can be easily answered.

Drawing the Julia set. In addition to producing a sequence of maps
Ran,bn converging to the mating, the Medusa algorithm can be used to draw
successive approximations to the Julia set of the mating. At the beginning of
the program, a “painted” sphere K0 is created, with each point in the upper
hemisphere painted black, and each point in the lower hemisphere painted
white (or clear). At each iteration of the algorithm, given parameters am, bm
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Figure 6. Each of the three columns above shows Maple
output of the actual Medusas used in the iteration of the
Medusa algorithm for the mating of 1/7 with 1/3 (rabbit
mate basilica). In each column, the top figure is the Medusa
on the sphere, the lower figure is the Medusa projected onto
the plane. Leftmost is the initial Medusa, central is after 2
steps, rightmost is after 20 steps.

and a painted sphere Km−1 (i.e., a sphere with each point marked one of
black or white), the program computes the pull back of Km−1 by R−1am,bm , to
create Km.

When the sequences (am, bm) converge, then Ram,bm converges to Ra,b ∼=
f1 � f2, and Km converges to K, with white or clear marking the Julia set
of f1, and black the Julia set of f2.

For example, let c1/4 be the parameter which is the landing point in the
Mandelbrot set of the external ray of angle 1/4 (c1/4 ≈ −0.228 + 1.115i).

This is a tip point on the rabbit bulb. The mating of z2 + c1/4 with itself
exists, and is studied in detail in [Mil04]. In this case the Julia set of the
mating is the entire sphere, so the approximations Kn drawn by Medusa are
particularly interesting. Figure 7 shows approximations K6, K10, and K14

for this mating. Also see §4.3 for other similar examples.
The full source code for Medusa is available for download at [Dyn]. There

are still a few bugs, most notably: when mating with a p/q where q is even,
the algorithm will converge properly for a few steps, then start diverging.
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Figure 7. Upper Left: the Julia set of f(z) = z2 + c1/4,
where c1/4 is the landing point in the Mandelbrot set of the
external ray of angle 1/4 (so c1/4 ≈ −0.228 + 1.115i), shown
with critical orbit rays 1/4, 1/2, 0. Clockwise around (upper
right, lower right, lower left): approximations on the sphere
K6,K10,K14, respectively, to the Julia set of f(z) = z2 + c1/4
mated with itself.

4. Examples

In this section we discuss several types of matings with different proper-
ties. For simplicity, we will refer to a PCF quadratic polynomial simply by
its rational angle θc = p/q, or sometimes fp/q.

4.1. Simple examples. We explain our first example of an image of a
mating produced by the Medusa algorithm in detail. We will mate the two
quadratic polynomials shown in Figure 8: f1 will be the rabbit, 1/7, and f2
will be the basilica, 1/3.

Let F = f1 � f2 = 1/7 � 1/3. The rightmost sphere in Figure 8 illustrates
the Julia set of the mating F . Due to our normalization (Equation ??),
the critical point 0 of f1 is always at z = 0 in the sphere, shown as the
south pole, and the critical point 0 of f2 is sent to z = ∞ in the sphere,
shown as the north pole. The portion of the filled Julia set of the mating F
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Figure 8. From left to right: The Julia set of the rabbit,
critical angle 1/7, then the Julia set of the basilica, critical
angle 1/3, both shown with both sets of critical orbit rays
(1/7, 2/7, 4/7, 1/3, 2/3) for comparison; finally, the mating
1/7 mate 1/3 on the sphere, with 1/3 in black, and 1/7 clear.

which corresponds to J(f1) (the rabbit) is shown in clear, and “centered”
about the north pole. The portion corresponding to J(f2) (the basilica) is
shown in black on the front half of the sphere, and grey on the back half
(to indicate that to see this, you are looking through J(f1)). However, due
to the symmetry of the Julia sets of quadratic polynomials, this image is
invariant under 180 degree rotation about the vertical axis, hence the grey
image in the back does not convey new information. Also, the fixed point
z = 1 (corresponding to the β-fixed points of f1, f2), is in the dead center
of the image, in the front. Note reversing the order of mating, drawing the
image of 1/3 � 1/7, would have the effect of a 180 degree rotation about the
central horizontal axis (from z = 1 to z = −1), and flipping the colors.

Self-mating. The limb of the mandelbrot set enclosed by rays of angle
1/3, 2/3 (see Figure 3) is the only limb which is its own complex conjugate.
As such, any PCF quadratic polynomial which is not in that limb can be
mated with itself. Such a mating clearly has extra symmetries. The leftmost
image in Figure 9 is the rabbit 1/7 mated with itself. We discuss self matings
more in §4.4.

Tuning. One simple way to make a mating more complicated is by tuning
one of the quadratic polynomials. The result shows up as you would expect.
In figure 9, compare the rabbit mate rabbit on the left with the right figure,
in which the clear rabbit has been tuned with a basilica. We explore further
expectations (and surprises) concerning tunings in §4.5.

4.2. Shared Matings. One of the intriguing observations in the study of
matings is that it can happen that two distinct pairs of PCF quadratic
polynomials give rise to the same mating F . If f1 � f2 ∼= F ∼= f3 � f4, and
f1 6= f3 or f2 6= f4, then we call F a shared mating.
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Figure 9. Left: 1/7 mate 1/7, rabbit mate rabbit. Right:
1/7 mate 10/63, i.e., replace each disk in the leftmost clear
rabbit with a basillica.

The simplest kind of shared mating is when f1 � f2 ∼= f2 � f1. For
example, the left side of Figure 10 illustrates such a shared mating of the
rabbit (1/7) and aeroplane (3/7). Of course, taking a shared mating and
performing the same tuning on each quadratic polynomial will produce an-
other shared mating, for example as on the right side of Figure 10.

Wittner ([Wit88]) studied this, and related, shared matings.

4.3. Space-filling curves and Lattés mappings. A very different exam-
ple of a shared mating, discussed in detail in [Mil04], is a Lattés map which
can be realized as a mating in four distinct ways:

1/6 � 5/14 ∼= 3/14 � 3/14 ∼= 3/14 � 1/2 ∼= 5/6 � 1/2.

It is not known whether there is a bound on the number of ways in
which a quadratic rational map can be realized as a mating. The quadratic
polynomials involved above are: f1/6(z) = z2 + i, a tip point on the rabbit

limb; f5/6(z) = z2−i, the complex conjugate of f1/6; f5/14, a tip point of the

bulb on the basilica bulb corresponding to the rabbit; and f1/2(z) = z2 − 2,
the real tip point of the basilica limb (the leftmost point in the mandelbrot
set). The Julia set for each of 1/6, 5/14, 3/14, 1/2 is a dendrite, hence has
empty interior. For example, the Julia set of f1/4 is a dendrite, shown in
Figure 7. Below is a characterization of when this occurs.

Fact 4.1. Suppose Pc is a PCF quadratic polynomial. Let θc = p/q be a
reduced fraction. TFAE:

(1) Kc has empty interior;
(2) q is even;
(3) θc is strictly pre-periodic under angle doubling.

Thus the mating of any two quadratic polynomials satisfying Fact 4.1
(including the shared mating above) has Julia set the entire Rieman sphere.
You can visualize such a mating as a space-filling curve on the sphere (each
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Figure 10. Upper left: the rabbit, 1/7; Upper right: the
aeroplane, 3/7, both shown with both sets of critical or-
bit rays (1/7, 2/7, 4/7, 3/7, 6/7, 5/7). Lower left: the shared
mating the rabbit mate the aeroplane, 1/7 mate 3/7, equiva-
lently, the aeroplane mate the rabbit. Lower right: basilicas
in the rabbit mate basilicas in the aeroplane, 10/63 mate
28/63.

of the empty interior Julia sets is a curve which is pulled into becoming a
space-filling curve). Further, since the Julia set of f1/2 is a line segment,
any mating of the form p/q � 1/2 where q is even will create a space-filling
Peano curve.

Since the Julia set is the entire Riemann sphere, we cannot very well study
such matings by drawing their Julia sets. The harmonic measure supported
on the Julia set is an object which deserves further study. One could hope to
learn something by examining the approximations to the Julia set drawn by
the program Medusa in the steps of the algorithm converging to the mating.
See Figure 11.

4.4. Self Matings. Carston Peterson has observed that if f is any PCF
quadratic polynomial which is not in the 1/2-limb of the Mandelbrot set
(i.e., not in the unique limb which is its own complex conjugate), then the
following two rational maps are topologically conjugate:
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Figure 11. Each of the four images above illustrates a
Medusa approximation K12 to the same shared Lattés mat-
ing. Upper left: 1/6 mate 5/14. Upper right: 3/14 mate
3/14. Lower left: 1/2 mate 3/14. Lower right: 1/2 mate
5/6. (Note the two lower figures are mated in reverse order
from the shared mating. Just rotate the picture 180 degrees
and exchange the colors to see the correct image).

(1) start with f � f , then mod out by the obvious symmetry, and
(2) f � f1/2, where f1/2(z) = z2 − 2.

This is because for f1/2, the Julia set is a line segment, [−2, 2], and every
external ray of angle θ has the same landing point as the ray of angle 1− θ
(the ray 0 is horizontal and lands at 2, the ray of angle 1/2 is horizontal and
lands at −2).

For example, shown in Figure 12 is the Julia set of f1/5, together with the
Julia sets of both the self mating of f1/5, and the mating of 1/5 with 1/2.
Since the Julia set of 1/2 is simply a line segment, note in the figure how
this simple segment is twisted to fill up all of the black.

4.5. Sequences of matings, and their limits. One question about mat-
ings which has yielded an interested study is: If f1 and f2 are quadratic
polynomials not in complex conjugate limbs, which are not PCF, when does
a mating exist (assuming connected Julia sets)? If f1 and f2 are hyper-
bolic, thus stable perturbations of hyperbolic PCF polynomials g1, g2, each
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Figure 12. Upper Left: The Julia set of f1/5, which is the
center of largest baby Mandelbrot set off of the rabbit bulb,
shown with critical orbit rays 1/5, 2/5, 4/5. Upper Right:
1/5 mate 1/5. Lower Right: 1/2 mate 1/5, i.e., mod out
the upper figure by the obvious symmetry. Lower Left: an
approximation K16, to 1/2 mate 1/5. The black is 1/2, so
shows the simple line twisting to fill up the alloted space.

with a super attracting periodic cycle, the mating exists as a deformation
of the mating of g1, g2. Several papers have appeared constructing matings
between particular non-hyperbolic polynomials (see Häıssinksy and Tan Lei
[HL04], Luo [Luo95], Yampolsky, Zakeri [YZ01].) However, Epstein [Eps]
has shown that mating does not extend continuously to the boundary of the
hyperbolic component (in fact, the set of points in ∂M ×∂M where there is
no continouous extension is dense). Epstein’s theorem is that an obstruction
to continuously extending this map to a mating between the two root points
of the hyperbolic components occurs whenever in the mating g1 � g2, the
immediate basins of the superattracting cycles of g1, g2 touch along a distin-
guished repelling cycle (excluding gi(z) = z2). For example, this occurs in
the mating of the rabbit and the aeroplane, Figure 10. That this is a shared
mating is an additional coincidence, not needed for Epstein’s theorem.



24 S. Boyd and C. Henriksen

Figure 13. Medusa images of the Julia sets of the follow-
ing matings: Left: 1/511 mate 1/511. Center: 1/511 mate
255/511. Right: 169/511 mate 169/511. I should elaborate...

We can use Medusa to see a different type of example of why mating as a
map from M ×M to the space of quadratic rational maps is not continuous.
We examine a few convergent sequences of quadratic polynomials, θm, ωm →
θ, ω, as m→∞, such that the mating θm � ωm exists for every m, but θ �

ω either does not exist, or is not the limit of θm � ωm.
Below are some simple examples of sequences with no limit, or the wrong

limits.

(1) First consider θm = ωm = 1
2m−1 , so θ = ω = 0. Note 0 corresponds

to z 7→ z2, so θ � ω = 0 � 0 is just z 7→ z2, with Julia set the circle.
However, Medusa output suggests that the Julia set of θm � ωm is
much more complicated than the unit disk. The leftmost image in
Figure 13 shows the Julia set of 1/255 � 1/255 (recall Figure 9 shows
the first element of the sequence, 1/7 � 1/7).

(2) A similar example is given by θm = 1
2m−1 , ωm = 2m−1−1

2m−1 , so θ = 0

and ω = 1/2. Note 0 � 1/2 is just 1/2, i.e., z 7→ z2 − 2, with Julia
set [−2, 2]. As in the previous example, Medusa output shows θm

� ωm is quite complicated. The center of Figure 13 shows 1/511 �

255/511 (and Figure 10 shows the first element of the sequence, the
rabbit mate the aeroplane).

(3) Finally, we examine θm = ωm = (22m−1)(2/3)−1
22m+3−1 (i.e., the sequence

9/31, 41/127, 169/511, . . ., of angles of the upper ray landing at the
root point of the bulbs proceeding from the rabbit to the basilica),
hence θ = ω = 1/3. Since f1/3(z) = z2 − 1 is the basilica, it is
its own complex conjugate, and its self mating does not exist. The
rightmost image in Figure 13 is the Julia set of 169/511 mated with
itself.
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