Technical University of Denmark

Proton Conductivity of Refractory Metal Phosphates at Intermediate Temperatures

Li, Qingfeng; Huang, Yunjie; Anfimova, Tatiana; Jensen, Jens Oluf; Christensen, Erik; Bjerrum, Niels J.

Publication date: 2012

Link back to DTU Orbit

Citation (APA):

Li, Q., Huang, Y., Anfimova, T., Jensen, J. O., Christensen, E., & Bjerrum, N. (2012). Proton Conductivity of Refractory Metal Phosphates at Intermediate Temperatures [Sound/Visual production (digital)]. 16th Solid State Protonic Conductors (SSPC16), Grenoblef, France, 10/09/2012, http://sspc16.weebly.com/

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Proton Conductivity of Refractory Metal Phosphates at Intermediate Temperatures

<u>Qingfeng Li</u>, Yunjie Huang, Tatiana Anfimova, Jens Oluf Jensen, Erik Christensen and Niels. J. Bjerrum

Section of Proton Conductors Department of Energy Conversion and Storage Technical University of Denmark, Kemitorvet 207, DK-2800 Lyngby, Denmark Email: qfli@dtu.dk

Outlines

Introduction

Refractory metals and their phosphates
 Niobium phosphates

- Anhydrous Conductivity
- Heat Treatment Temperature
- Crystalline forms
- Indium doping
- Morphology effects sol-gel method
- Further stability evaluation
- OCV & EMF

Conclusions

Intermediate temperature operation - and fuelling of fuel cells

Hydrogen release temperature, °C

PBI/PA Conductivity

H₃PO₄ Protonates PBI

- IR measurements indicate max protonation at n=2
- Very low conductivity with n<2 indicating little N-H to N-H proton hopping
- H₂PO₄⁻ predominates over concentration range (n=6)
- Low activation volume measured
- t_{H+} measured ~.98 for n=6
- Activation energy consistent with Grotthuss mechanism

Above 200°C

- Acid condensation
- Acid evaporation
- Polymer degradation

•

Refractory metal oxides

Vanadium, Niobium, Tantalum.....

- High surface acidity
 - Lewis acid sites Me=O
 - Brønsted acid sites Me-OH
- Solid acid catalysts for reactions such as
 - esterification
 - polycondensation
 - dehydration
- Significantly decreased acidity at elevated temperatures (below 700 K)

Refractory metal phosphates

- Phosphoric acid treated oxides
- Further increased surface acidity
 - both Me-OH and P-OH
- Acidity preserved at elevated temperatures
 - due to formation of polyphosphates

Vanadium & niobium phosphates Layered structure $VPO_5 \cdot H_2O$ or $VOPO_4 \cdot H_2O$ $NbPO_5 \cdot H_2O$ or $NbOPO_4 \cdot H_2O$

 M_EO_6 octahedra connected to four PO_4 tetrahedra one axial group $M_E=O$ other axial ligands (H_2O)

- With both Lewis and Brønsted acid sites

 strong acidity and catalytic activities
 towards acid-catalyzed reactions

 Layered/3-dimension structures

 intercalation capacity of the interlamellar space
 ammonia, amines, alcohols
 acid molecules H₃PO₄, H₂SO₄, etc
 - strong hydrogen bonding involved

Nb phosphates

and Vanadium phosphates

- up to 5 H_2O molecules
- dehydration at HT led to P-O-P/Nb-O-P bonde
- reversible hydr./dehydr.

Both Nb-OH and P-OH

Anhydrous Conductivity and water vapor dependence

Strong dependence

- on heat treatment temperature
- on atmospheric humudity

Heat Treatment Temperature				Synthesis			
- phosphate structures P/Nb = 2.0					Initial r ratio P	nolar 9/Nb	Heat treatment temperature (°C)
Nb2P4O15				P/Nb =	÷ 4.0	650	
NbP800 NbP650				P/Nb =	: 3.0	350 500 <u>650</u> 800	
NbP500 NbP350					P/Nb =	2.5	350 500 650 800
$\frac{Nb_5P_7O_{30}}{Nb_{1.91}P_{2.82}O_{12}}$				P/Nb =	: 2.0	350 500 650 800	
20 30 40 2θ (deg	gree)	0	6	0			
Theo: density	Theoretic.Crystal parameterssity, g/cm3abc α		of unit cel β	1 Υ	Notes		
Monoclinic Nb ₅ P_7O_{30} 3,37		8,7	8,8	90	91.8	90	Favors at LT
Cubic $Nb_2P_4O_{15}$ 3.1	8,0	8,0	8,0	90	90	90	Favors at HT
Orthorhombic $3,3$ $Nb_{1,91}P_{2,82}O_{12}$	31 12.1	8,7	8,7	90	90	90	Minor phase 9 Favors at LT

(amorphorous P_mO_n phase?) P/Nb= 2: Low - Cubic + Low OH

XRD & FTIR

• P/Nb = 2.0: Cubic while low OH content

2.5: Cubinc + monoclininc3-4: monoclinic but high OH content

Water vapor dependence

P/Nb= 4: Less - Monoclinic + high OH (amorphorous P_mO_n phase?) P/Nb= 2: More - Cubic + Low OH

13

Acknowledgements

- Danish National Research Foundation
 Danish-Chinese Centre of Proton Conducting Systems
- Danish Agency for Science, Technology and Innovationan Medlys project
- Danish Public Service Obligations (ForskEL programme) HOT-MEA Consortium