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ABSTRACT 

This work presents measurements of the gas temperature, including fluctuations, and its 

influence on the radiative heat transfer in oxy-fuel flames. The measurements were carried out 

in the Chalmers 100 kW oxy-fuel test unit. The in-furnace gas temperature was measured by a 

suction pyrometer and by an optical system based on FTIR-spectroscopy. The radiation 

intensity was measured by a Narrow Angle Radiometer and the gas radiation was calculated 

with a Statistical Narrow Band model. The overall agreement between the two temperature 

measurement techniques was good. The optical system showed a lower temperature than the 

suction pyrometer in the low velocity regions of the furnace, a difference which is likely to be 

an effect of the purge gas added in the optical probe. The measured temperature fluctuations 

were evaluated by modeling of the gas radiation. The influence from the measured 

fluctuations on the radiative heat transfer shows no effect of turbulence-radiation interaction. 

However, by comparing with temperature fluctuations in other flames it can be seen that the 

fluctuations measured here are relatively small. Further research is needed to clarify to which 

extent the applied methods can account for the turbulence-radiation interaction in the 

investigated flame.   

 

INTRODUCTION 

One of the main options proposed for capture of CO2 from fossil based power production is 

oxy-fuel combustion [1]. In this technology the combustion air is replaced by oxygen and 

recirculated flue gases thereby replacing the N2 in the furnace with CO2 and H2O.  This has an 

impact on the radiative heat transfer since both CO2 and H2O absorb and emit radiation in 

contrast to N2, which is an inactive gas with respect to radiation. Radiation is the main heat 

transfer mechanism in combustion chambers and has accordingly been identified as a key 

research question for development of the oxy-fuel technology. The emitted radiation is 

proportional to the temperature to the power of four, and it is therefore crucial to accurately 

measure the in-furnace temperature for understanding of the radiative heat transfer. The 

temperature in flames is constantly changing. Applying a time average of these fluctuations in 

modeling of radiation can therefore not be done without introducing errors due to the strongly 



non-linear relation between temperature and radiation. The interaction between these 

fluctuations and radiation is called Turbulence-Radiation Interaction (TRI). In a review on the 

subject [2], it was concluded that it is important to include TRI in the modeling of heat 

transfer in turbulent reacting flows for accurate heat transfer predictions.  

Therefore, it is important for the understanding of radiatiative heat transfer to be able to 

measure temperature fluctuations in furnace flames. 

There are several ways to measure the flame temperature, ranging from simple techniques 

based on a thermocouple to advanced laser techniques. When bare thermocouples are used, 

the radiation loss from the thermocouple to a colder surrounding is a problem. To overcome 

the problem, a suction pyrometer can be used. In this technique flue gases are sucked with a 

high velocity over a shielded thermocouple, thus increasing the convective heat transfer and 

suppressing the radiative heat loss. A problem with the suction pyrometer is that the flame is 

disturbed by the removal of gas and by the cold probe itself. The technique has also a poor 

time resolution due to thermal inertia. Therefore, optical measurement techniques are 

appealing since they allow non-intrusive measurements with high temporal resolution. The 

optical techniques can be divided into line-of-sight techniques and point measurement 

techniques. Examples of line-of-sight techniques used in combustion diagnostics are 

pyrometers or spectroscopic techniques. Point measurement techniques in combustion are 

often advanced laser based techniques. The laser technique most frequently used for 

temperature measurements in large scale combustion applications is Coherent Anti-Stokes 

Raman Spectroscopy (CARS). In this work  an optical technique based on FTIR-spectroscopy 

[3] is applied as it is relatively simple compared to laser techniques, at the same time it gives 

more information on the flame characteristic than a pyrometer since the entire spectrum 

instead of single wavenumbers is analyzed. 

Measurements of radiation intensity and gas temperature have been carried out in the 

Chalmers 100 kW oxy-fuel test rig since 2003 [4-7]. The gas temperature has so far been 

measured with a suction pyrometer and no information on temperature fluctuations in the 

flames is therefore available. The aim with the experiments carried out in this work was to 

also obtain information of temperature fluctuations in the Chalmers oxy-fuel test rig. This was 

done by measuring the gas temperature with the optical FTIR technique [7]. The optical 

measurements are compared with suction pyrometer measurements and their performance is 

evaluated for the flames investigated. The influence of the measured fluctuations on the 

radiative heat transfer is examined by modeling of gas radiation, and the modeled gas 

radiation is compared with measurements of the total radiation intensity. 

 

 

  



METHODOLOGY 

Experiments 

The measurements were carried out in the Chalmers 100 kW oxy-fuel test rig, a down-fired 

and refractory lined furnace presented in more detail by Andersson et. al. [5]. The cylindrical 

furnace has an inner height of 2.4 m and an inner diameter of 0.8 m. The burner is a swirl 

burner with two air registers and a central fuel lance for either propane or coal. In the 

experiments of this work propane was used as a fuel in order to establish well-defined 

combustion conditions and dry recycling was applied in the oxy-fuel flames. The test rig 

allows in-furnace measurements in seven measurements ports distributed along the height of 

the reactor. Measurements were done by traversing water cooled probes radially through the 

furnace.   

Three different flames were investigated: one air fired and two oxy-fuel flames with 25 

respectively 30 vol-% O2 in the oxidizer. The oxy-fuel flames are referred to as OF25 and 

OF30. The stoichiometric ratio was kept constant at 1.15 in all experiments, and the 

concentration of O2 in the oxidizer was controlled by changing the recycling rate of the flue 

gas. Table 1 lists the test conditions. The wall temperature in the furnace was monitored by a 

number of thermocouples mounted inside the wall. During the experiments, temperature, gas 

concentrations and radiation intensity were measured in one measurement port in the high 

temperature flame zone (384 mm from the burner). 

Table 1. Test conditions in the three investigated flames.  

Test case O2 in oxidizer  

[vol-%] 

Stoichiometric 

ratio 

O2 in stack  

[vol-%] 

Fuel input 

[kW]  

Air 21 1.15 3.0 80 

OF25 25 1.15 3.5 80 

OF30 30 1.15 4.3 80 

 

The gas temperature was measured with a water cooled suction pyrometer and with the 

optical technique based on FTIR. The suction pyrometer is equipped with a B-type 

thermocouple allowing temperature measurements up to 1700°C. 

The system used in the optical measurement have previously been described by Bak and 

Clausen [8]. In principle, the technique measure emitted radiation from a gas column between 

a cooled background and the probe tip, at a distance g in Fig. 1. The optical measurement 

system gives an estimation of temperature fluctuations since the time resolution is in the order 

of 10
-4

 s. The time resolution is limited by the scanning velocity of the spectrometer and the 

width of the spectral region used for estimation of the temperature. The time to scan the entire 

spectrum was approximately 1 s in these measurements, giving a measurement frequency of 1 

Hz. To be able to carry out in-situ measurements of temperature, the setup is integrated in a 

water cooled probe (Fig. 1). The optics is protected by an uncooled ceramic tube, and by a 

small purge gas flow of argon.   

 



 
Figure 1. Cross-section of the tip of the optical probe used: a) water cooled steel probe, b) fibre optic 

cable, c) cooling water tube, d) focusing lens, e) ceramic protection tube, f) water cooled background. 

The distance (g) between the ceramics and the beam stop was 200 mm in the air flame and 51 mm in 

the oxy-fuel flames.  

 
To determine the gas temperature from the measured spectra, the strongly absorbing CO2 

band around 2349 cm
-1

 is analyzed. The emissivity at these wavelengths is close to unity for a 

short distance, and the gas does therefore act as a blackbody in this spectral region. The gas 

temperature can accordingly be found by fitting a Planck curve to the measured spectra at the 

strongly absorbing region 2250-2350 cm
-1

, as shown in Fig. 2. Due to the non-uniform path, 

the shape of the measured spectra is not a perfect Planck curve, Fig. 2b). Therefore one 

temperature for each data point in the spectral region is determined, and an average of these 

temperatures is calculated.  

The temperature given by fitting the Planck curve is an estimate of the instantaneous 

temperature of the gas column near the probe tip. By combining a series of measured 

temperatures, information of the fluctuations inside the flame is obtained. The spatial 

resolution of the measurements, the length of the gas column needed to reach an emissivity 

close to unity, depends on the concentration of CO2. A higher CO2 concentration will give 

higher absorption and a shorter path length is needed, the spatial resolution can therefore be 

increased in the oxy-fuel flames. For pure gas temperature measurements the water cooled 

beam stop is not required, but it was used here since additional information on gas 

concentrations can be obtained if the optical path length is known. The equipment was 

calibrated with a two point method [9].       

  

Figure 2. Example of a measured spectrum without the beam stop and a Planck curve, a) the 

entire scanned spectrum b) the strongly absorbing region used to determine the temperature.  
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The line-of-sight radiation intensity was measured with a narrow angle radiometer of IFRF-

type, as shown in Fig. 3. The measured radiation is the total intensity including both gas and 

particle radiation. A small purge gas flow of argon was used to prevent flue gas and particles 

to enter the tube. The sensor used is a thermopile, and to ensure a stable signal, the sensor 

housing is maintained at a constant temperature by a separate water cooling circuit. The 

measured intensity corresponds to radiation emitted by the gas column between the probe tip 

and the background, a window at the opposite side of the furnace. The probe, and the 

procedure of the measurements are similar to what is described by Andersson et. al. [4]. 

 
Figure 3. Schematic picture of the narrow angle radiometer used to measure the radiation intensity: a) 

thermopile, b) focusing lens, c) shutter, d) PT-100, e) water cooled sensor housing, f) collimating tube 

and g) water cooled probe. 

 
The time average in-furnace gas concentrations were measured by extracting flue gas with a 

water cooled extraction probe. The inner tube of the probe is electrically heated to ensure a 

temperature above the dew point of the flue gas. The extracted flue gas is analyzed by both a 

conventional gas analyzing system and a system based on FTIR- and UV spectroscopy. The 

gas species of interest in this work are H2O, CO2, CO and O2. Due to the different gas 

composition in air- and oxy-fuel flames, several analyzers calibrated under conditions 

corresponding to both air- and oxy-fuel combustion were applied. The instruments were 

calibrated each morning before the measurements.  

Modeling of gas radiation 

The measured temperature and gas concentrations were used as input for modeling of the gas 

radiation intensity along the measured profiles in the furnace. The dominating species 

contributing to gas radiation are CO2 and H2O. The radiative properties of these gases are well 

known and are here calculated with the Malkmus Statistical Narrow-Band (SNB) model [10]. 

The transmissivity,  ̅ , of each narrow band is calculated according to 
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where Y is the mole fraction of the absorbing species, P is the total pressure and L is a 

characteristic length. The parameters kk and dk  are species specific temperature dependent 

parameters, and are taken from the work of Soufiani and Taine [11]. The half-widths, γ, of the 

absorbing species are calculated with Ps =1 bar and Ts = 296 K as  
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To account for the non-uniform path the Curtis–Godson approximation is applied [12] and the 

transmissivity ( ̅   ) of the gas mixture is calculated as the product of the absorbing gases: 

   ̅     ̅       ̅     (4) 

 
The path between the probe and the quartz window is discretized into a number of equally 

sized cells. The intensity at each cell face is calculated by using the correlated formulation of 

the Radiative Transfer Equation (RTE) for each narrow band, Eq. (5).  

 
The total gas radiation, Itot,n can then be calculated as a sum of all band intensities, Ik,n, 

multiplied by the band width, Eq. 6.  
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As been mentioned above, the influence of temperature fluctuations on the radiative heat 

transfer can be significant. The influence of the fluctuations is evaluated by using two 

temperature profiles when calculating the black body radiation, Ib. The first temperature 

profile is based on the time average of the measured temperatures. It is calculated as an 

arithmetic mean value of the instantaneous temperatures, Ti, measured with the optical 

system, j refers to the number of measured temperatures as 
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This temperature does not account for the effect of the strongly non-linear relation between 

temperature and radiation. In the second approach the fluctuations are accounted for by a 

simplified approach since it is very complex to fully account for TRI. The gas concentration is 

assumed to be constant at each position in the flame, and the only fluctuating term included in 

the modeling is the temperature. An average radiation temperature, Trad, is calculated as the 

mean of the instantaneous temperatures to the power of four, Eq. (8). This average reflects the 

influence of a fluctuating temperature on the non-linear relation between temperature and 

radiation.   
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Eq. (8) is a simple way of accounting for TRI in modeling of radiative heat transfer, as it only 

accounts for temperature fluctuations and the temperature fluctuations in each position in the 

flame are assumed to be independent.  

 

RESULTS AND DISCUSSION 

Figure 4 gives the measured temperature profiles in the flames investigated. The temperature 

measurements were not performed on the same day with the optical system and the suction 

pyrometer, but the wall temperatures and combustion conditions were the same in each case 

i.e. similar flame temperatures are expected. The peak temperature in the air- and the OF30 

flame is above 1500°C, while the peak temperature in the OF25 flame is lower, around 

1400°C. The temperature difference between the two oxy-fuel flames is due to a higher 

recycle rate in the OF25 flame, i.e. more cold CO2 is added to the flame. The increased 

emission and absorption from CO2 and H2O is a likely reason for the slight broadening of the 

temperature profile in the oxy fuel flames. Cold CO2 is absorbing radiation emitted by the 

flame, thus increasing the gas temperature close to the walls.  

In general, the agreement is good between the two measurement techniques. Yet, the optical 

measurement gives a slightly higher temperature in the center of the flame and a lower 

temperature in the low temperature regions. The region outside the flame where the 

temperature and temperature gradients are relatively low, the suction pyrometer should give a 

good estimation of the average temperature. The difference of up to 200°C between the 

optical technique and the suction pyrometer may be explained by cooling and dilution by the 

purge gas (argon) that is added to protect the optics. In this region the velocity is low and it is 

therefore likely that the flue gas flow is not able to entirely remove the argon, thus decreasing 

the concentration of CO2 as well as cooling the CO2 which makes the calculated temperature 

from the spectra too low. To avoid this effect, the flow of purge gas should be kept at a 

minimum, especially in low-velocity regions. The problem of self-absorption from cold CO2 

is further discussed in the work by Clausen [3].  

The spatial resolution of the optical measurements in the air fired flame is lower than in the 

oxy-fuel flames due to a lower CO2 concentration. The distance between the beam stop and 

optics can therefore be decreased in the oxy-fuel flames. The influence from the purge gas, 

discussed above, seems to increase when the measurements are performed on a shorter gas 

column and the distance between the beam stop and the optics is decreased. This can be seen 

by looking at the temperature difference between the suction pyrometer and the optical system 

close to the walls in the air flame compared to the oxy-fuel flames.  



   

Figure 4. Temperature profiles for the three different flames; a) air, b) OF25 and c) OF30. The probe 

is inserted at 0 m and traversed through the flame. 

 

For optimum performance of the optical temperature measurements, the temperature and gas 

concentration should be constant in the measured line-of-sight path. However, when 

measuring in a turbulent diffusion flame the temperature and gas concentration in the 

measurement volume will vary. With a non-uniform temperature in the measurement volume, 

the measured temperature will be biased towards higher temperatures [13]. The influence of 

the lower spatial resolution, and thus larger temperature differences in the measurement 

volume, can be seen as a broadening of the temperature profile measured with the optical 

system compared to the profile measured with the suction pyrometer. This broadening is more 

pronounced in the air flame, in which the optical distance is larger, Fig. 4 a), compared to the 

oxy-fuel flames, Fig. 4 b) and c). The temperature profiles given in Fig. 4 are measured with 

the water cooled beam stop. Measurements were also performed without the beam stop, and 

the result was similar.  

Figure 5 a-c) shows both measured and modeled radiation intensity profiles in the radial 

cross-section 384 mm from the burner. Modeling is based on the profile of average 

temperature measured with the suction pyrometer as well as the profile measured with the 

optical system. The radiation intensity in the air-fired flame is lower than the intensity in the 

two oxy-fuel flames, due to the increased concentration of CO2 and H2O in the oxy-fuel 

flames. The higher and broader temperature profiles measured with the optical system results 

in a higher modeled gas radiation in all three flames (dashed curve). The difference between 

the modeled gas radiation and the measured total radiation can be caused by radiation from 

particles [4], and possibly by the TRI effects which are not accounted for in the modeled 

profiles in Fig. 5. In the air fired flame it should be noted that the purge gas flow added to 

prevent gas from entering into the collimating tube, was higher than in the oxy-fuel flames. 

This has probably affected the measured intensity in the region 0.4-0.8 m in Fig 5 a), where 

the modeled gas radiation is higher than the measured intensity. It is believed that the purge 

gas has diluted and cooled the flue gas in front of the probe, thus decreasing the measured 

intensity. The difference in temperature measured with the suction pyrometer and the optical 

system in the low temperature region of the furnace can also be seen in the modeled intensity 

profile, as a larger decrease in intensity close to the measurement port in the profile based on 

the optical temperature in the oxy-fuel flames, Fig 5 b) and c). 



   

Figure 5. Measured total intensity and modeled gas radiation intensity profiles in a cross-section of 

the investigated flames; a) air, b) OF25 and c) OF30. 

 
Figure 6 shows the measured instantaneous gas temperature at a position 300 mm from the 

measurement port in the OF30 flame. Similar fluctuations as in Fig. 6 can be seen in all 

positions in the flame, but the fluctuations are largest in the flame boundaries where the 

temperature gradients are highest. The measured instantaneous temperatures are used to 

calculate an arithmetic average temperature and an average of the instantaneous temperature 

to the power of four, according to Eqs (7) and (8), also shown in Fig. 6. The difference 

between the two calculated average temperatures is small in all positions indicating that the 

choice between Eqs (7) and (8) should have a small influence on the radiative heat transfer in 

this flame.  

 

Figure 6. Instantaneous gas temperature measured with the optical system at a position 300 mm from 

the wall in the OF30 flame. 

 
To investigate the influence of the measured temperature fluctuations on the radiative heat 

transfer the two calculated average temperatures are applied in the modeling of the gas 

radiation. The result is shown in Fig. 7, and as seen the influence of the fluctuations measured 

is negligible. The difference between the highest and lowest temperature in Fig. 6 is 470°C, 

which indicates that significant temperature differences can be captured with this 

measurement technique. However, the influence on the average value from these fluctuations 

is small. The optical measurement technique has previously been compared to CARS 

measurements in a coal flame [3]. From that comparison it was seen that the Probability 

Density Function (PDF) was wider in the CARS measurements, which indicates that the 

fluctuations measured with CARS can be expected to be higher than with the FTIR-based 

setup. A comparison with the commonly used reference flame Sandia Flame D [14] shows 



that the temperature fluctuations measured with Raman/Rayleigh scattering in the Sandia 

flame is larger than what is measured in the Chalmers flame. Another study by Hughes et al. 

[15] in which CARS was used to measure temperature in a swirling coal and oil flame with a 

thermal input of 280 kW, showed a difference between the highest and lowest temperature in 

a position downstream of the oil flame of 600°C. The standard deviation was also higher than 

what is observed in the flame investigated here, indicating that the influence from the 

fluctuations measured by Hughes et. al. [15] would be larger than from the ones observed in 

this work. The fact that the optical temperature measurement technique is a line-of-sight 

measurement can mean that not all temperature fluctuations in the flame are captured, which 

could explain the differences in measured fluctuations. Further research is needed to clarify 

these issues as well as the influence of other fluctuating variables such as concentration of gas 

species and particles. 

   
Figure 7. Radiation intensity with modeled profiles based on temperatures calculated with both Eq. 6  

and 7 a) air, b) OF25 and c) OF30. 

 

CONCLUSIONS 

Gas temperature, radiation intensity and gas composition have been measured in Chalmers 

oxy-fuel test unit. Two techniques for measuring gas temperature have been used and 

evaluated: a suction pyrometer and an optical technique based on FTIR. The FTIR-based 

technique was used since it provides information of temperature fluctuations. The influence of 

the measured temperature fluctuations are evaluated by modeling the gas radiation in the 

flames. In general the agreement between the temperature profiles measured with the suction 

pyrometer and the optical system is good. However, the FTIR-based system showed a 

somewhat lower temperature in the low velocity regions compared to the suction pyrometer 

measurements, the difference likely being due to the influence of the purge gas on the FTIR 

measurements. The measured temperature fluctuations do not show any significant effect on 

the radiative heat transfer. However, studies in other flames have indicated larger temperature 

fluctuations and more work is needed to clarify if the optical technique is capable of capturing 

all fluctuations in the investigated flames before conclusions can be drawn to what extent, if 

at all, the temperature fluctuations are of importance for modeling the conditions studied in 

this work.  
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