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Disentangling evolutionary signals: conservation,
specificity determining positions and coevolution.
Implication for catalytic residue prediction
Elin Teppa1, Angela D Wilkins2, Morten Nielsen3,4† and Cristina Marino Buslje1*†

Abstract

Background: A large panel of methods exists that aim to identify residues with critical impact on protein function
based on evolutionary signals, sequence and structure information. However, it is not clear to what extent these
different methods overlap, and if any of the methods have higher predictive potential compared to others when it
comes to, in particular, the identification of catalytic residues (CR) in proteins. Using a large set of enzymatic protein
families and measures based on different evolutionary signals, we sought to break up the different components of
the information content within a multiple sequence alignment to investigate their predictive potential and degree
of overlap.

Results: Our results demonstrate that the different methods included in the benchmark in general can be divided
into three groups with a limited mutual overlap. One group containing real-value Evolutionary Trace (rvET) methods
and conservation, another containing mutual information (MI) methods, and the last containing methods designed
explicitly for the identification of specificity determining positions (SDPs): integer-value Evolutionary Trace (ivET),
SDPfox, and XDET. In terms of prediction of CR, we find using a proximity score integrating structural information
(as the sum of the scores of residues located within a given distance of the residue in question) that only the
methods from the first two groups displayed a reliable performance. Next, we investigated to what degree
proximity scores for conservation, rvET and cumulative MI (cMI) provide complementary information capable of
improving the performance for CR identification. We found that integrating conservation with proximity scores for
rvET and cMI achieved the highest performance. The proximity conservation score contained no complementary
information when integrated with proximity rvET. Moreover, the signal from rvET provided only a limited gain in
predictive performance when integrated with mutual information and conservation proximity scores. Combined,
these observations demonstrate that the rvET and cMI scores add complementary information to the prediction
system.

Conclusions: This work contributes to the understanding of the different signals of evolution and also shows that
it is possible to improve the detection of catalytic residues by integrating structural and higher order sequence
evolutionary information with sequence conservation.

Keywords: Coevolution, Mutual information, Specificity determining position, Catalytic residues, Functional sites,
Sequence analysis
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Background
A number of methods have been developed to predict
functionally important sites in protein families based on
sequence and structure information. The importance of
a particular residue in a protein can be due to many
different factors, including structural stability, protein-
protein interaction, protein-DNA/RNA interaction, lig-
and binding site and maintenance of protein functions.
In most cases, it is difficult to assign a particular func-

tion to a particular residue or group of residues, as func-
tion is determined by a subtle interplay between
multiple residues and mutation to any of them might
impact the protein function and/or structure. In some
cases however, the association between a particular resi-
due and a protein function can be readily recognized.
One such example being catalytic residues, where large
data set exist defining residues within a given protein se-
quence linked to a given catalytic function [1].
Most methods developed to predict functionally import-

ant sites in protein families rely on some signal related to
protein evolution. Three clear signals of evolution are: con-
servation, conservation within specific groups of sequences
sharing a common function, and coevolution between resi-
dues (see Figure 1). Conservation is straightforward to cal-
culate and interpret. A change in a conserved position

(even when proteins are highly diverse) should have a
deleterious effect on the protein function. Specificity de-
termining positions (SDPs) are those positions within
multiple sequence alignments (MSAs) that are conserved
within groups of proteins that perform the same function
(specificity groups) and varying between groups with dif-
ferent functions/specificities. These sites generally de-
termine protein specificity either by binding specific
substrate/inhibitor or through interaction with other
protein [2-4].
The degree of co-evolution between pairs of residues is

commonly estimated using a measure of mutual informa-
tion (MI). If two residues share high signal of mutual
information, the two residues most likely are co-evolving,
meaning that in order to maintain a given protein func-
tion a mutation of one residue is linked to a specific
compensatory mutation of the other residue.
Several methods to predict specificity-determining

positions have been developed. Many of these require a
previous classification of the proteins into functional
groups [3,5,6], which is a problematic limitation since
the specificity of a given protein is unavailable in the
great majority of cases and is non-trivial to calculate and
validate. To overcome this problem, methods have been
developed that group the sequences in a MSA upon cer-
tain ad-hoc criteria [7,8]. As an example, Capra and
Singh [9] addressed the classification problem using a
combination of Pfam, EC numbers and sequence simi-
larity. There are also methods where the clustering is
based on sequence similarity alone [10] or Bayesian sta-
tistics [11]. Many of these methods approximate the
classification of sequences using phylogeny [12-14] or a
combination of phylogenetic information and entropies
analysis [15]. Other methods rank residues by their rela-
tive importance in the MSA [12,13,16-18]. These
approaches differ in design, but all look for specific pat-
terns of amino acids conservation as indicators of likely
functional importance.
Finally, inter-relationship between two or more posi-

tions (estimated using mutual information) can contrib-
ute a different type of biological information related to
protein function and functional importance of specific
residues. We have earlier introduced a cumulative mu-
tual information concept (cMI) that measures the de-
gree of shared mutual information of a given residue
and the proximity mutual information (p(MI)) which
measures the amount of shared mutual information in
the proximity of a given residue [16]. In a large bench-
mark data set of enzymatic protein families, we showed
that whereas identification of catalytic residues (CR) is
strongly guided by sequence conservation, mutual infor-
mation (or coevolution) provides an additional and
complementary signal that significantly improves the
predictive power.

Figure 1 Different column patterns in an MSA. Schematic
representation of an MSA and its phylogenetic tree (left). Conserved
position is highlighted in red, coevolved positions in green and
orange and putative SDPs in yellow and blue. On the top are
indicated the column pattern and on the bottom, the suitable
method to detect each kind of position (C: conservation score; cMI:
cumulative MI; ivET: integer value ET; rvET: real value ET; XDET and
SDPfox are also indicated).
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A large panel of methods thus exists aiming at identify-
ing residues with critical impact on protein functionally
relying on measures of information content extracted
from multiple sequence alignments. However, it is not
clear to what extent the predictive power of the different
methods overlap, and if any of the methods have higher
predictive potential compared to others when it comes to
the identification of a particular type of functional import-
ant sites. Here, we aim at addressing this question by
comparing the ability to identify CR in enzymatic proteins
of different information-based methods. Although CR
clearly do not constitute the sole test-case to perform such
an investigation we have chosen this test-case due to the
large data sets of unambiguous annotations of functionally
important residues available.
Using this test-case of CR identification, we seek to de-

compose and compare the predictive signal of a series of
unsupervised (i.e. methods that do not require prior func-
tional clustering) information-based predictions method.
The analysis includes on the one hand, methods aim at
ranking residues by their functional importance using i)
conservation; ii) mutual information [16] and iii) evolu-
tionary trace real value (rvET) that incorporates evolu-
tionary and entropic information from multiple sequence
alignments [13]. On the other hand, we include methods
aimed at detection of specificity positions i.e. i) the evolu-
tionary trace integer value (ivET) score that represents
conservation within groups in a qualitative manner [12];
ii) SDPfox [10] that predicts SDPs in a phylogeny-
independent manner and iii) XDET [19] that is based on
the comparison of the mutational behavior of a position
with the mutational behavior of the full-length protein
MSA, by directly comparing the corresponding distance
matrices.
Comparing these methods will allow us to break up the

different components of information content included in a
MSA, investigate to what degree they overlap and estimate
their predictive potential for the identification of active site
residues in catalytic proteins.

Results and discussion
The analysis is based on a set of 424 enzymatic Pfam
families earlier described by Marino Buslje (2010) [16]
(for details see Methods). In short, each family is
characterized by a (MSA) taken from Pfam [20], has
an annotated set of CR taken from the CSA database
[1] and by having a known three-dimensional struc-
ture for at least one of its members. Given this data
set, we calculated measures related to evolution for
the different methods included in the benchmark, and
next analyzed the overlap/correlation between these
measures and their predictive potential for identifica-
tion of CR in proteins.

Although all the methods are intended to identify
functionally important sites within protein families, they
can be divided into two major groups: the methods that
rank positions in the MSA according to their relative
functional importance within the protein family, no mat-
ter what this importance might be due to. In this cat-
egory falls the cumulative mutual information (cMI),
real-value evolutionary trace (rvET) and sequence con-
servation (C). The other group consists of methods
intended to predict specificity determining positions in a
family of proteins and includes XDET, ivET and SDPfox.

Concordance of the different predictions methods
To determine the influence data redundancy might have
on the prediction scores for the different methods, we
measured the correlation between scores calculated on
the MSAs as retrieved from Pfam (MSA100) and on a
set of sequence redundancy reduced MSAs (for details
see materials and methods). If a given method is insensi-
tive to sequence redundancy, the scores produced from
the different MSAs should be highly correlated. This is
true for cMI (Spearman’s rank correlation coefficient,
SCC= 0.76) and rvET (SCC= 0.93). However, for ivET
we found only a weak correlation between the scores
obtained using the two data sets (SCC= 0.21) indicating
that data redundancy for this method strongly impacts
the predictive output (see Figure 2, Additional file 1
Table S1 and Additional file 2 Figure S1).
Methods for prediction of SDPs aim at estimating a

score that correlates with the functional importance of a
given residue in terms of protein specificity. Another
critical question to analysis is therefore the degree of
concordance between different prediction methods aim-
ing at identifying SDPs. From Figure 2, it is clear that
the methods for SDP identification (ivET, SDPfox and
XDET) show limited mutual overlap. The correlations
values are low for all comparisons, with the highest
value of 0.34 being between SDPfox and XDET.
Next, we investigated to what degree the information

extracted by the methods developed for detection of
SDPs (ivET, SDPfox, XDET) overlapped with the infor-
mation signal of cMI, which points out positions with a
high degree of shared mutual information. We found
that cMI has a low overlap with all these methods
(SCC < 0.28 for every comparison, see Figure 2 and
Additional file 1 Table S1).
We next analyzed the correlation between methods

aimed to rank the residues by functional importance
(rvET, cMI and conservation). As expected, conservation
was strongly correlated with rvET [13] for both the
MSA100 and MSA62 (redundancy reduction at 62%)
data sets (SCC> 0.7, in both cases). cMI was found to be
weakly correlated with conservation (SCC 0.16 for both
MSA100 and 62), and finally the overlap between the
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rvET and cMI methods was moderately weak with a
maximal correlation of 0.41.
The above results demonstrate that the different meth-

ods included in the benchmark in general can be divided
into major groups with a limited mutual overlap. One
group containing the methods with a signal highly corre-
lated to sequence conservation (rvET, conservation and
ivET when was evaluated on redundancy reduced data).
Another group containing the methods which signal is
derived from mutual information (cMI). The methods
designed explicitly for the identification of SDPs (SDPfox
and XDET) have low correlation to any other method
included in the benchmark. The ivET method evaluated
on the MSA100 data set (ivET100) appears as an outlier
in this analysis and does not show overlap with any
other method. The results hence in general underline
that the overlap between the different methods in most
cases is limited, suggesting that high ranked cMI and
SDPs do not necessarily form the same group of resi-
dues. Also, it is noticeable that methods aimed to detect
the same kind of positions as SDPs (ivET, SDPfox, and
XDET) display rather low mutual concordance in pre-
diction scores.

Proximity summed information measures for predicting
catalytic residues
We have earlier demonstrated that CR are characterized
by a structural proximity with high mutual information,
i.e. that residues within a certain distance threshold of

CR are rich in shared MI [16]. To investigate if similar
observations can be made for the other information
measures included in the benchmark, we calculated a
proximity measure of each method and investigated to
what degree this measure contributed to the identifica-
tion of CR. For each residue, we calculated the proximity
score as the sum of the scores of the residues located
within a certain distance from the residue in question
(see equation 1)

pMIi ¼
X

j;dij<t

cMIj ð1Þ

where the sum is over all residues j in the given protein
within a distance dij < t from the residue i, where dij is
the shortest distance between any pair of heavy atoms of
two residues i and j, cMIj is the cumulative mutual infor-
mation score of residue j, and t a distance threshold.
Those measures are designated with a “p” preceding
the name of each method, i.e.: p(rvET) for proximity
rvET, p(ivET) for proximity ivET, p(C) for proximity C,
and p(MI) for proximity cMI. The threshold distance t
was optimized for each prediction method.
Table 1 gives the results of the calculation, and shows

that all methods with the exception of p(ivET) evaluated
on the MSA100 data set, SDPfox and XDET could be
used as reasonable predictors of CR (AUC>0.8 for all
the methods). Note that we also here observe a large dif-
ference in the performance of the ivET method when

Figure 2 Heat map representation of the Spearman rank correlation coefficient between methods. cMI: cumulative MI, ivET: integer value
evolutionary trace, rvET: real value evolutionary trace, cons: conservation. Numbers following the methods name (100, 62 and 50) indicate the
redundancy of the sequences in the MSA (100, 62 and 50% redundancy reduced). The dendrogram indicates the distance between methods.
Correlation colour key goes from white (0, no correlation) to blue (1, perfect correlation). All correlations are statistically different from zero (T-test,
p-value threshold of 0.05).
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evaluated on the different sets of MSAs. The results in
Table 1 shows that all high performing methods (AUC>
0.8) have a optimal proximity distance threshold be-
tween 5 and 7 Å. Only for the SDPs prediction methods
which all have poor predictive performance is the dis-
tance threshold larger.
We can next investigate to what degree the perform-

ance of the different methods is statistically different. In
doing this, we obtain the following rank of the methods:

p rvET62ð Þ � p rvET100ð Þ � p Cð Þ > p ivET62ð Þ
� p MI100ð Þ � p MI62ð Þ > p XDET50ð Þ
� p SDPfox62ð Þ > p ivET100ð Þ

Here a “�” means that the preceding value is higher
but not statistically different and “>” means significantly
higher, where statistical tests were conducted as bino-
mial tests excluding ties using a p-value threshold of
0.05. The different methods hence fall in three different
groups a) p(rvET62), p(rvET100) and p(C), b) p(ivET62),
p(MI100) and p(MI62), c) p(XDET50) and p(SDPfox62),
with p(ivET100) as an outlier.

Combined catalytic likeliness Score (Cls) with the best
performing distance threshold for each method and
optimizing the weight for each term
We have demonstrated in a previous work how the p(C)
and p(MI) scores when integrated with conservation en-
hance the predictive performance for identification of
CR [16]. Here, we aimed at demonstrating to what de-
gree this observation is maintained when integrating the
other methods included in the benchmark with the con-
servation score. In this way, we can in a simple manner
investigate to what degree each method adds comple-
mentary information to the final prediction model. We

defined different combined models by adding one or
more proximity scores to the conservation score. For
each Pfam family, the additional feature was normalized
so that the values fell in the range [0–1] (for details see
Methods). We included in this benchmark p(MI62) (pre-
viously used for CR detection [16]), the best performing
ET method p(rvET62), and p(C).
Table 2 gives the performance values in terms of the

AUC (area under the ROC curve) and AUC0.1 (area under
the ROC curve integrated up to a false positive rate of 0.1)
and optimal relative weights (estimated using 5 fold cross-
validation) for the different models. The 0.2�C+0.8�p(C)
row hence gives the optimal performance for the model
defined as a combination of conservation (C) and the
proximity sum of conservation (p(C)), and states that the
optimal relative weight of the two terms is 0.2 on conser-
vation and 0.8 on p(C), respectively. In the table, a weight
equal to 0 indicates that a given score did not contribute
to the performance of the model.
Several observations can be made from these results.

First of all, it is clear that all proximity scores contain
complementary information that when combined with
conservation (C) leads to an improved predictive per-
formance (all models C + p(XX), where XX equals C,
rvET62, or MI62 significantly outperform the model
based on conservation only, p < 0.05 one-tailed binomial
test excluding ties). Also, it is striking to observe that
the relative weight on the p(C) score in all models in-
cluding p(rvET) is zero. This strongly suggests that the
high performance of the p(rvET) method shown in
Table 1 is driven by the signal of sequence conservation
contained within the rvET score (as also suggested from
the correlation analysis in Figure 2). The model C+p
(C) +p(MI), achieved a higher performance than the cor-
responding model C + p(C) + p(rvET), the difference is
however not statistically significant (p > 0.1, one-tailed
binomial test excluding ties). Finally, the model C + p
(rvET) + p(MI) integrating both the cMI and rvET prox-
imity scores had the highest performance of all models

Table 1 Performance and optimal distance threshold of
the proximity measures for detecting catalytic residues

Method AUC average Distance cutoff (Å)

p(SDPfox62) 0.703 12

p(XDET50) 0.736 8

p(ivET62) 0.835 7

p(ivET100) 0.640 7

p(rvET62) 0.878 5

p(rvET100) 0.875 7

p(MI62) 0.823 7

p(MI100) 0.833 7

p(C) 0.854 5

The number of protein families included in SDPfox is 289, 298 in XDET and
424 in all other methods. “p” before the method’s name denotes “proximity”.
The number following the method’s name denotes the MSA data set on which
the method was evaluated (ie: 50 =MSA50). The optimal distance cut-off for
the proximity sum was found using a grid-search as described in Methods.

Table 2 Performance of different methods in terms of the
AUC

Method AUC AUC0.1

C 0.881 0.491

0.2 C+ 0.8 p(C) 0.898 0.553

0.15 C + 0.85 p(rvET62) 0.913 0.567

0.25 C + 0.75 p(MI62) 0.912 0.555

0.15 C + 0.0 p(C) + 0.85 p(rvET62) 0.913 0.567

0.15 C + 0.3 p(C) + 0.55 p(MI62) 0.916 0.571

0.15 C + 0.0 p(C) + 0.45 p(rvET62) + 0.4 p(MI62) 0.921 0.586

Methods give the optimal combined model including conservation and the
different proximity scores. The relative weights were determined using fivefold
cross validation as described in the text. AUC and AUC0.1 are the average
performance values over the 424 protein families.
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included in the benchmark, and significantly outper-
formed all other models, except C+ p(C) + p(MI)
(p < 0.05 in all case, one-tailed binomial test excluding
ties). In terms of specificity and precision, the C+ p
(rvET) +p(MI) method had average performance values
of 0.88 and 0.25 respectively at a sensitivity level of 0.98
when evaluated on the 424 Pfam data sets. At a sensitiv-
ity level of 0.55 these values are altered to 0.96 and 0.45,
respectively. For comparison, these values are reduced to
0.82/0.20 and 0.93/0.35, respectively, using the model
defined from conservation only. Note, that these conclu-
sions are maintained integrating multiple residue-
specific information measures (conservation, rvET, and
cMI) with the corresponding proximity scores. Doing
this, we confirm that both the rvET and cMI measures
carries complementary information, and that this com-
plementarity is captured both at the per-residue and
proximity level (data not shown).
Taken together, these observations demonstrate that

the rvET and cMI scores capture distinct signals from
the MSA and add complementary information to the
prediction system.

Conclusions
Many algorithms have been proposed for the identifica-
tion of residues critical for protein function in general
and protein specificity in particular. Here, we have com-
pared a series of such methods in terms of both the con-
cordance between their predictions and their ability to
identify catalytic sites in proteins with enzymatic func-
tion. From our results, we find that the methods
included in the benchmark can be divided in three
groups with limited mutual overlap. One group consists
of methods which predictive signal is strongly correlated
to sequence conservation (rvET, and sequence conserva-
tion itself ), one group consists of the methods whose
predictive signal is derived from mutual information
(cMI), and the last group consists of the methods devel-
oped for prediction of specificity determining positions
(SDPfox, XDET and ivET).
Defining a proximity score for each method as sug-

gested by [16] and benchmarking for the ability to iden-
tify CR, we find that only methods from the first two of
the above three groups displayed a reliable predictive
performance (mean AUC value above 0.8), indicating
that the methods from the SDP group has limited value
for the identification of residues critical for protein func-
tion. Comparing the different methods for prediction of
specificity determining positions we found that they
shared limited mutual overlap despite the fact that they
are designed to capture a common functional signal.
Finally, we investigated to what degree the information

signal of conservation, rvET and cMI methods (belong-
ing to the two well-performing groups of methods) was

complementary so that the combined signal could sig-
nificantly improve the predictive capacity. Here, we
found that the predictive performance could be signifi-
cantly improved when combining conservation with the
signal from the proximity scores of the different meth-
ods. The best performing method was found to consist
of a combination of sequence conservation and proxim-
ity scores for both rvET and cMI. This finding confirms
the notion that the rvET and cMI methods are distinct
in nature, and that the two methods add informative
and complementary information to the prediction sys-
tem. The benchmark however also demonstrated that
the gain in predictive performance of the rvET signal is
limited and insignificant if combined with the conserva-
tion proximity scores.
It is critical to emphasize that the conclusions

obtained in this work are strictly related to the identifi-
cation of CR in enzymatic proteins. Albeit the different
methods for predicting SDPs do not correlate strongly in
our dataset, some have proven to be successful in the
predictions in small size benchmark data sets with a lim-
ited number of sequences and few specificity groups
[21-23]. Capra et. al (2008) [9] obtained reasonable
results in predicting SDPs using as true positive, pre-
dicted instead of experimentally determined SDPs. Also,
successful prediction results were obtained by Rodriguez
GJ (2010) [24], demonstrating with experimental verifi-
cation that they were able to predict, with rvET, residues
responsible for the specificity between dopamine and
serotonine ligands in bioamine receptors of the Class A
G-Protein coupled receptors family.
What remains an unquestionable result from our ana-

lysis is that prediction scores for the different methods
evaluated share a limited overlap, and in particular that
the methods for SDP identification and the method
based on mutual information capture a very distinct sig-
nal of evolutionary information.
In conclusion, we believe this work contributes to: i) a

better understanding of the different signals of evolution
of a protein; ii) in a highly quantitative manner char-
acterize similarities and differences between different in-
formation measures captured within a multiple sequence
alignment and iii) demonstrates that it is possible to sig-
nificantly improve the ability to detect CR by integrating
these different types of information measures.

Methods
Data set construction
The data set comprise 424 Pfam multiple sequence
alignments (MSA) with CR annotation in Catalytic Site
Atlas database (version 2.2.11, released August 2009) [1]
earlier published by [16]. CSA provides catalytic site an-
notation for enzymes in the PDB. Catalytic residues are
defined as those residues directly involved in some
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aspect of the reaction catalysed by an enzyme. Note, that
the data is different from the original publication [16]
due to parsing errors for 10 MSAs. We ended up with a
dataset of 424 Pfam families which in turn include a
total of 1328 CSA annotated catalytic residues. Each
family has on average 3 CR (standard deviation 1.72)
with a minimum of 1 and a maximum of 23 CR per fam-
ily. The distribution of the number of sequences per
families is shown in Additional file 3: Figure S2.
For each family at least one three-dimensional struc-

ture is known and this protein sequence was taken as a
reference. When more than one PDB entry with catalytic
site annotation was available for a given family, one
reference PDB entry was selected following the criteria:
highest sequence coverage of the Pfam MSA, the year of
structure determination (preferably later than 2000) and
resolution. Multiple sequence alignments were taken
from Pfam [20] and pretreated by trimming deletions
and insertions across the whole alignment so as to pre-
serve the continuity of the reference sequence.
In order to investigate the effect of sequence redun-

dancy on the different methods, we tested the perform-
ance of the MI and ET methods using the full multiple
alignments (as retrieved form Pfam) as well as in a set of
redundancy reduced alignments (reduced at 62% iden-
tity). SDPfox and XDET were tested only with a set of
MSA 62% and 50% identity redundancy reduced respect-
ively, due to their limitation in the number of input
sequences allowed and the large runtime requirements
(see below). The different benchmark data sets are
named MSA100 (no redundancy reduction applied),
MSA62 and MSA50 respectively. Redundancy reduced
alignment were generated with T-Coffee software [25].
The complete data sets of MSAs for the 424 Pfam fam-
ilies, including catalytic site annotations is available at
http://www.cbs.dtu.dk/suppl/immunology/CSA.

SDP prediction software
SDPs predictions were performed with: a) Integer value
ET (ivET) score that represents conservation within
groups in a qualitative manner [12]; b) SDPfox method
that predicts SDPs in a phylogeny-independent manner
[10]. The software was downloaded from http://bioinf.
fbb.msu.ru/SDPfoxWeb/main.jsp and run locally with
default parameters. This method has a limitation on the
number of specificity groups per family (between 2 and
200 specificity groups) and total length of the sequence
(<500 residues), so the predictions for this method were
hence made on the MSA62 data set; and c) XDET soft-
ware is based on the comparison of the mutational be-
havior of a position with the mutational behavior of the
whole alignment [19,26]. It furnishes two methods for
detecting position related to functional specificity. Here,
we used the mutational behavior (MB) method of XDET

that does not use external arbitrary functional classifica-
tion. Due to the high cost of the computer time of the
method (the running time grows quadratic with the
number of sequences) it was only possible to run XDET
on the MSA50 data set. Source code for XDET was
obtained from the authors.

Methods of functionally important residues prediction
Prediction of functionally important residues was per-
formed with the following methods: a) Sequence conser-
vation, was calculated from the MSA100 as the
Kullback–Leibler relative entropy [27] using an amino
acids background frequency distribution obtained from
the UniProt database (http://www.uniprot.org/); b) Mu-
tual information was calculated in terms of the cumula-
tive Mutual Information (cMI) score, that measures the
degree of shared mutual information of a given residue
[16]; c) Evolutionary Trace real value score (rvET) [24],
which incorporates entropy as a quantitative measure of
conservation giving a rank of positions by their relative
importance.

Predictive performance
The predictive performance in detecting CR using the
proximity scores was evaluated in terms of the area
under the ROC curve (AUC) per family. Annotated CR
in the CSA were taken as the positive set, and all the
other residues were assigned as negative. Both the full
AUC value and the value integrated for specificities from
1 to 0.9 were included to capture the high specificity per-
formance of the different measures [28]. The overall pre-
dictive performance was evaluated as a simple average of
the per-family obtained AUC values. Parameters for each
model were optimized using fivefold cross validation.

Proximity summed scores
We calculated proximity scores for each method as a
sum of the scores within a certain physical distance to
the given amino acid. The distance between each pair of
residues in the structure was calculated as the minimum
distance between two heavy atoms. The optimal distance
threshold for each proximity measure was found using a
grid of 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 Å.

Derived scores to predict catalytic residues
To integrate different score with sequence conservation,
a combined score was defined as (equation 2)

S ¼ 1� wð Þ CþwX ð2Þ

where w is a relative weight in the range [0–1]. For each
protein family MSA, the additional feature was normal-
ized so that the values fell in the range [0–1]. This sin-
gle combination was made for X= {p(C), p(rvET62) and
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p(MI62)}. Note that for p(ET), the formula is S ¼
1� wð Þ C�w p rvET62ð Þ , as ET best rank is the smal-
lest number.
When two features are added, the combined score was

calculated as equation 3.

S ¼ 1� w1 � w2ð ÞCþw1 p Cð Þþw2 X ð3Þ
Where w1 and w2 are relative weights both in the

range [0–1], and w1 +w2< 1. Here the combination was
made for X= {p(rvET62) and p(MI62)}. Also here the
sign for the last term was negative when X= p(rvET62).
Finally, the complete combination of all methods was

calculated as equation 4.

S ¼ 1� w1 � w2 � w3ð Þ Cþw1 p Cð Þ
� w2 p rvET62ð Þþw3 p MI62ð Þ ð4Þ

where w1 , w2 and w3 are relative weights in the range
[0–1] and w1 þ w2 þ w3 < 1j .
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