Technical University of Denmark

Topology Optimized Bioreactors — A Design Example with Immobilized Yeast

Lencastre Fernandes, Rita; Schäpper, Daniel; Eliasson Lantz, Anna; Okkels, Fridolin; Bruus, Henrik; Gernaey, Krist V.

Publication date: 2012

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Lencastre Fernandes, R., Schäpper, D., Eliasson Lantz, A., Okkels, F., Bruus, H., & Gernaey, K. (2012). Topology Optimized Bioreactors — A Design Example with Immobilized Yeast [Sound/Visual production (digital)]. Bioprocessing Summit 2012, Boston, MA, United States, 20/08/2012

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

υθιοπσδφγηξκλ

Topology Optimized Bioreactors — A Design Example with Immobilized Yeast

Rita Lencastre Fernandes¹, Daniel Schäpper¹, Anna Eliasson Lantz², Fridolin Okkels³, Henrik Bruus³, <u>Krist V. Gernaey¹</u>

Technical University of Denmark (DTU)

¹ Department of Chemical and Biochemical Engineering

² Department of Systems Biology

³ Department of Micro- and Nanotechnology

DTU Chemical Engineering

Department of Chemical and Biochemical Engineering

Outline

- Introduction
- Case Study
- Implementation
- Results
- Conclusions & Outlook

Outline

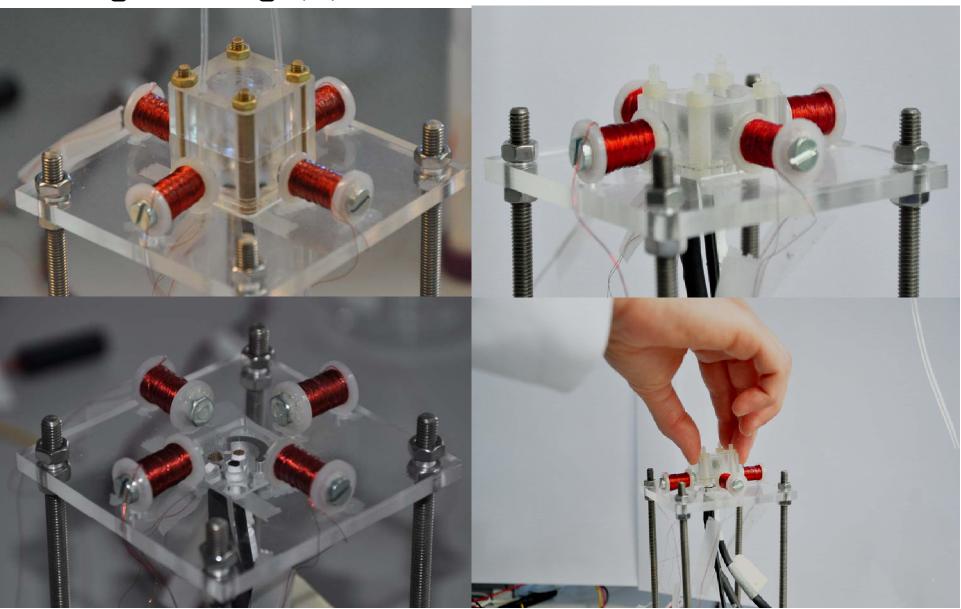
Introduction

- Case Study
- Implementation
- Results
- Conclusions & Outlook

Microbioreactors

- Recent interest in microbioreactors (<1 mL) that allow for cultivations under well-controlled conditions
- Increased design flexibility enabling a wide range of reactor configurations, which may lead to increased productivity
- In microbioreactors with immobilized biomass, the culture medium flows laminarly, leading to gradients of substrate and product
- For a review on microbioreactors: Schäpper et al. (2009) Analytical and Bioanalytical Chemistry, 395:679-695.

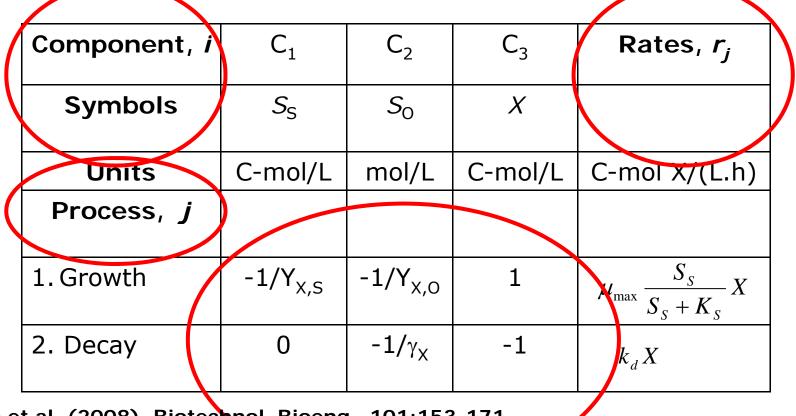
Microbioreactors at DTU Chemical Engineering (1)



Schäpper et al. (2010) Chemical Engineering Journal, 160:891-898.

Microbioreactors at DTU Chemical Engineering (2)

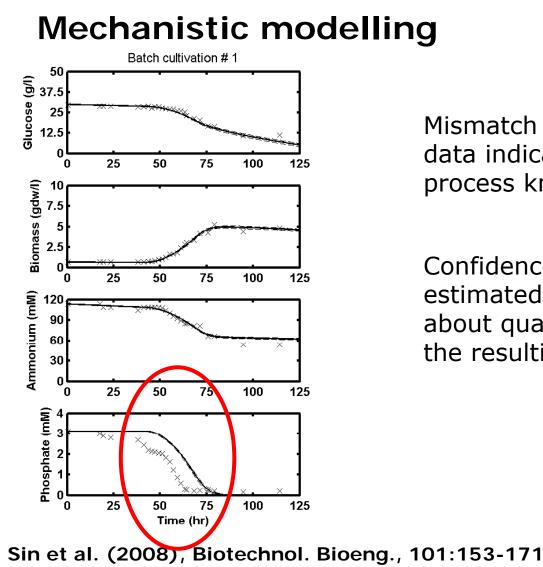
Mechanistic modelling - fermentation


- **Mechanistic modelling** = collection of process knowledge
 - Well-structured (model matrix)
 - Analysis
 - Link to experiments via
 - Parameter estimation (confidence intervals, correlations)
 - Uncertainty and sensitivity analysis (local, global)
- Review on state of the art:
 - Gernaey et al. (2010) Trends. Biotechnol. 28:346-354.

Mechanistic model - development

- Model development equations are structured in a matrix
 - Example: matrix description of Monod-Herbert aerobic growth model

Sin et al. (2008). Biotechnol. Bioeng., 101:153-171



Matrix, model of S. coelicolor fermentation

							Liquid phase							1			Gas phase	1		
	$Components \rightarrow i$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
	Name	Glucose	Oxygen	Ammonia	Phosphate	Biomass	Antibiotic 1	Antibiotic 2	Carbon dioxide	Hydrogen ion	Ammonium	Phosphate	Bicarbonate	Hydroxyl ion	Nitrogen	Oxygen	Carbon dioxide	Nitrogen	Ammonia	Rates
	Symbol	Sg	So	SNH	Spo	х	Sp1	Sp2	Sco2	SH	SNB4	SHPO4	S _{HCO3}	Soll	S _{N2}	Go	Gc02	G _{N2}	G _{NH3}	
	Chemical composition	C6H12O6	02	NH ₃	H2PO4	CH1*O05N02P0.015	C32H26O14	C25H35N3O	CO2	H,	NH4*	HPO4-2	HCO ₃	OH	N_2	02	CO2	N ₂	NH ₃	
j	Processes] (Units)	C-mmol/l	O-mmoM	N-mmol/l	P-mmoM	C-mmol/l	C-mmol/	C-mmol/l	C-mmol/l	H-mmol/l	N-mmol/l	P-mmol/l	C-mmol/l	H-mmol/l	N-mmol/l	O-mmol/l	C-mmol/l	N-mmol/	N-mmol/l	mmol/l-d
	Biomass growth																			Cana 1 SI SO SANA SPO V
1		-1/Y _{SX}	$\gamma_{\rm X}/4.0 - \gamma_{\rm S}/(Y_{\rm SX}^*4.0)$	-I _{NX}	-lpx	1			1/Y _{SX} -1	-lpx										$\frac{\mu}{1 + e^{2-r}} \frac{1}{S_{g} + K_{s}} \frac{1}{S_{0} + K_{0}} \frac{1}{S_{MY3} + K_{MY3}} \frac{1}{S_{F0} + K_{F0}} \frac{1}{K_{F0}} 1$
	Actinorhodin																			(S. Y.S. K.)
2		-1/Va+07	$\gamma_{ACT}/4.0 - \gamma S/(Y_{SACT}*4.0)$				1		10/2007-1											$\alpha_{ACT} \cdot r_X + \beta_{ACT} \cdot \left[1 - \frac{S_{ACT}}{S^{max}}\right] \frac{S_T}{K_T + S_T} \frac{K_T}{K_T + S_T} X$
	production	TH SAULT	TACING TON SACT NOT			Equ	-÷:,	-			~ .						~			
3	prosioni	1//	γRED/4.0 - γS/(YSRED*4.0)			EQU		ons					Dr	\mathbf{O}	-5	se	S			$\alpha_{BBD} \cdot r_X + \beta_{BBD} \cdot \left[1 - \frac{\sigma_{BBD}}{\sigma_{BBD}}\right] \frac{\sigma_B}{K_a + S} \frac{\kappa_B}{K_a + S} X$
~	Undecylprodigiosin	- ITTSRED	7REDP4.0 - 7/S/(1SRED 4.0)	"INRED					SHID		9		P ··				U			(2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4	production	-1							4											$m_3 \cdot \frac{\Sigma_5}{\Sigma_5 + K_5} \frac{\Sigma_0}{\Sigma_0 + K_0} X$
4		-1	-γ _S /4.0						1											
~	Biomass maintenance																			$k_d = \frac{S_o}{2} \frac{K_s}{K_s} X$
5			- _{7x} /4	INX	1 _{PX}	-1			1	IPX										$\mathcal{K}_{d} = \frac{1}{S_0 + K_0} \frac{1}{S_s + K_s} X$
	Ammonium dissociation																			$k_{f,MH}S_{MHA} = \frac{k_{f,MH}}{k}S_{MHA} = S_H$
6				1						1	-1									K _M K _M
	Dihydrogen phosphate									·										k a kj. Haros a
7	dissociation				-1					-	:					•				K _{T, N2FON} S _{H2FON} = K _{T, H2FON} S _{H2FON} · S _H
	Carbon dioxide					Equ	2110	ons	CDE		ICZ	a I e	- O I		Dr	IA				$k_{\gamma,corr}S_{corr} = \frac{k_{\gamma,corr}}{K_{men}}S_{men} \cdot S_{M}$
	dissociation								0110											Ky cost cos - K mon SH
	Water dessociation																			
	- The second second second second																			$1 - \frac{k_{f,w}}{R_w} S_H \cdot S_{out}$
	Annalise (Onners)									45				A						$\mathcal{K}_{I} \alpha_{00} = (S_{0}^{\bullet} - S_{0})$
	Aeration (Oxygen)																			K100 (00-00)
10	and the second		840													-1				and the second sec
	CO ₂ stripping					_							~							$K_{1}a_{002} \cdot (S_{002} - S_{001})$
11						Equ	atu	nnc	ma	CC	tr	an	CTC	2r			-1	_		
	Nitrogen strapping					LYU	aur	0115	110	33	LI.	an	SIC	~				S		$K_{2}a_{ND} \cdot \left(S_{ND}^{*} - S_{ND}\right)$
12															1			-1		
	Ammonia stripping																			$K_{1}a_{3}a_{3}a_{3} = S_{3}a_{3}a_{3}$
19				1															.1	Construction of the second
Conservat	ion matrix								1		11	-								
Flements	Units																			
Bact Of LEDGE House	g/C-mmol; g/N-mmol;				-										-			-	-	
	g/P-mmol	30.00	32.00	14.00	31.00	25.07	19.81	15.72	12.00	1.00	14.00	31.00	14	1	14	32.00	12.00	14.00	14.00	
C	C-mmol/mmol	1.00	0.00	0.00	0.00	Con		1/nti		INOU C		COL	-	0.00	0.00	0.00	1.00	0.00	0.00	
N	N-mmol/N-mmol	0.00	0.00	1.00	0.00		ser	Val		0	UU	20		0.00	1.00	0.00	0.00	1.00	1.00	
P	P-mmol/P-mmol	0.00	0.00	0.00	1.00	0.02	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Ŷ	mmol e/ C-mmol	4.00	-4.00	0.00	0.00	4.13	3.94	4,96	0.00	0.00	0.00	0.00	0	0.00	0	0.00	0.00	0.00	0.00	
Charge	mmol /mmol	0.00	0.00	0.00	-1.00	0.00	0.00	0.00	0.00	1.00	1.00	-2.00	-1.00	-1.00	0	0.00	0.00	0.00	0.00	

Sin et al. (2008). Biotechnol. Bioeng., 101:153-171

DTU Chemical Engineering, Technical University of Denmark Center for Process Engineering and Technology

Mismatch between model and data indicates a lack of process knowledge

Confidence intervals on estimated parameters informs about quality of the data and the resulting model

20 µm

Topology Optimization

- Mathematical optimization technique: first used in the field of structural mechanics, and recently successfully applied in microfluidic systems.
- Inverses the traditional design process:
- 1) Formulating the problem
- Implementing iterative code, including the definition of an objective function and system constraints
- 3) Relying on the computer to find the optimal solution
- 4) Simplifying and assuring fabrication and economical feasibility

Microgripper

It is a kind of a robotic 'hand' approx. ten thousand times smaller than a human hand. It was based on an earlier gripper design, a dual (open/close action) actuator, and applied the topology optimization algorithm. The new gripper that is approx. 50x stronger than the previous design, has similar actuation range, and similar size. This new design provides a viable route to fast prototyping and even small scale manufacturing of nanotube-based devices, resembling industrial macroscale robotic assembly lines.


> Reference: P. Bøggild, O. Sardan, DTU Nanotek

Topology Optimization

- Mathematical optimization technique: first used in the field of structural mechanics, and recently successfully applied in microfluidic systems.
- Inverses the traditional design process:
- 1) Formulating the problem
- Implementing iterative code, including the definition of an objective function and system constraints
- 3) Relying on the computer to find the optimal solution
- 4) Simplifying and assuring fabrication and economical feasibility

Concrete Shell Latice

Concrete's poor tensile strength and strong compressive capacity makes it suitable for shell structures, a structural system containing mainly compression. In this case study a spherical shell was optimized, leaving a shell lattice structure that comprises 30% of the initial volume. The optimized shell lattice structure measuring $12 \times 12 \times 4$ meters represents a spatial expression of the imbedded forces

> Reference: UnikaBeton (http://fluxstructures.net/)

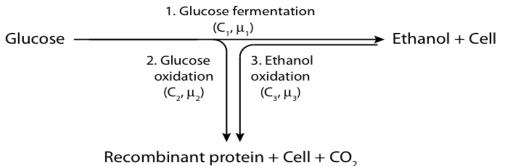
Hypothesis

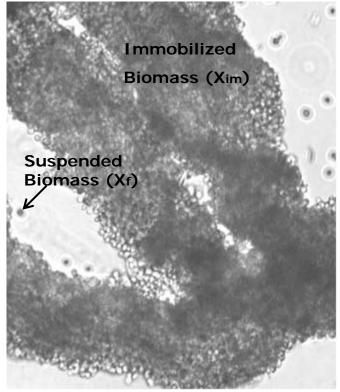
- Topology optimization allows for higher productivities by optimizing the spatial distribution of immobilized microorganisms within the reactor.
 - Traditional process optimization: focus on other variables such as pH,
 T, feed profile, medium composition
- In the optimal solution, the negative effects on the process due to lack or excess of substrate, or accumulation of a metabolite or a product, will be minimized.
- So, the key question to be answered is:
 - Is it possible to significantly improve the performance of a conventional reactor with homogeneously distributed immobilized biomass, by letting topology optimization change the spatial distribution of the immobilized biomass keeping all other parameters fixed?

Outline

Introduction

Case Study


- Implementation
- Results
- Conclusions & Outlook



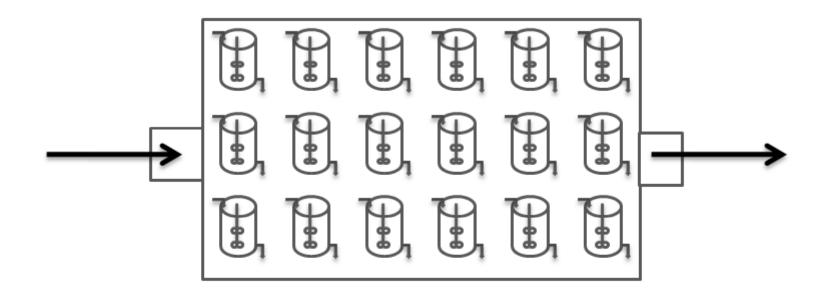
Case study

• Cultivation of *Saccharomyces cerevisiae* adsorbed onto a porous carrier for production of a plasmid encoded recombinant protein

• Crabtree effect: Excess of glucose leads to an overflow of the respiratory pathways

Outline

- Introduction
- Case Study


Implementation

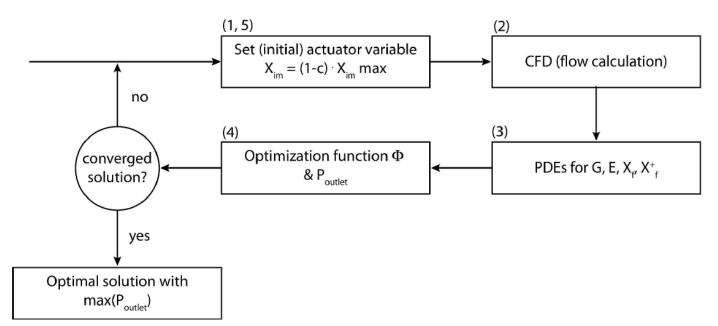
- Results
- Conclusions & Outlook

Implementation: local CSTRs

Biological and flow model

Biological model formulation	Flow model formulation
 Porous immobilization support (sponge like material) 	 Flow of culture broth (medium + suspended cells)
• Immobilization kinetics: detachment of cells	 Effect of solid structures (immobilized cells + walls) on the flow
 3-pathway description of the cell metabolism glucose oxidation glucose fermentation ethanol oxidation 	 Steady-State Navier-Stokes and Darcy friction (due to support)
 No flow dependent term 	

Biological model


- A model was developed based on two models proposed in the literature:
 - One accounting for the immobilization dynamics: cell detachment from the carrier (Brányik et al. (2004), Biotechnol. Progr., 20, 1733-1740).
 - One consisting of a simple 3-pathway metabolic model which accounted for the Crabtree effect (Zhang et al. (1997), Bioprocess Eng., 17, 235-240).
- Simplifications to the models were made in order to be able to insert the resulting combined model into a topology optimization routine:
 - A cell deposition term was neglected as it was expressed as a function of the dilution rate (flow dependent).
 - Implicitly defined expressions were replaced by mathematically equivalent explicitly defined ones (optimization routine needs smooth transitions).

Topology optimization routine

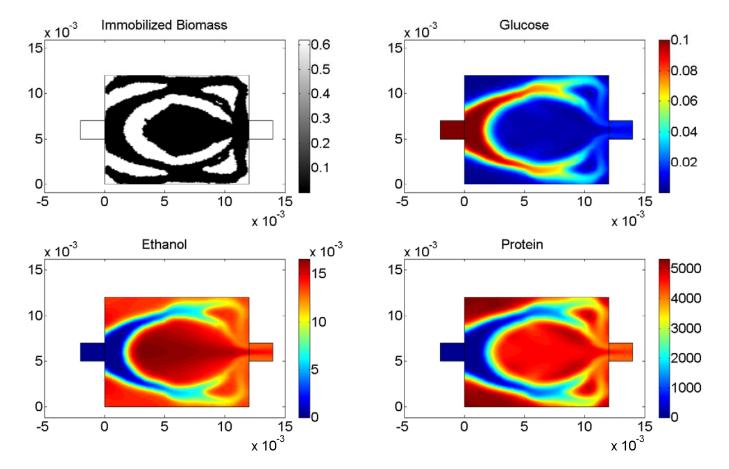
• The reactor is considered as a collection of local CSTRs each with a given concentration of immobilized cells

- Actuator variable: Concentration of immobilized cells onto the carrier
- Optimization Goal: Maximum local product formation rate for each CSTR

Outline

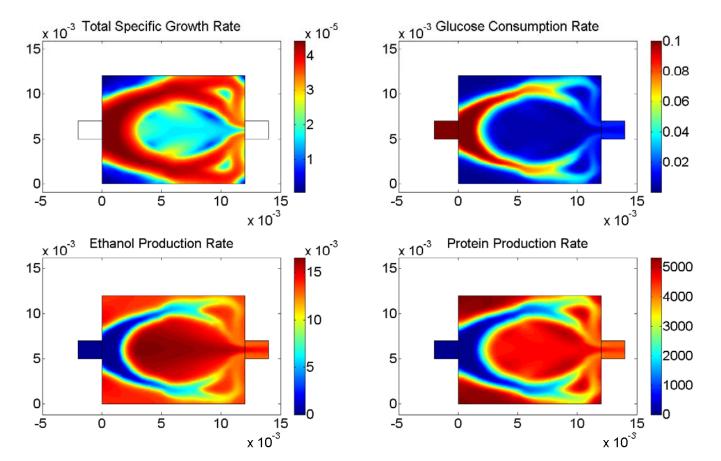
- Introduction
- Case Study
- Implementation

Results


Conclusions & Outlook

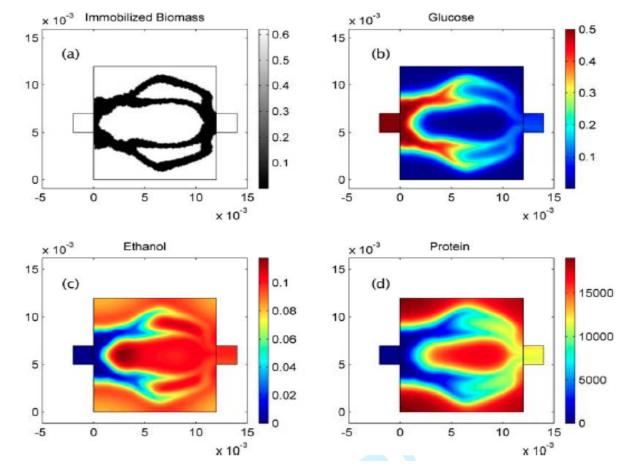
Concentrations and rates

• Glucose inflow concentration of 0.1 g.L⁻¹



Concentrations and rates

• Glucose inflow concentration of 0.1 g.L⁻¹



Concentrations and rates

• Glucose inflow concentration of 0.5 g.L⁻¹

Benchmarking

Product flow at the reactor outlet (units s ⁻¹)									
	Distribution of immobilized biomass								
Glucose feed concentration	Homogeneous	Optimized	Gain (fold)						
0.01 g/L	2.7	23.1	8.5						
0.1 g/L	17.6	170.3	9.7						
0.5 g/L	39	325.2	8.4						

Outline

- Introduction
- Case Study
- Implementation
- Results
- Conclusions & Outlook

Conclusions

- Successful application of a new design methodology to a biological system;
- Theoretical proof that significant gains in product outflow can be achieved for a microbioreactor where the spatial distribution of immobilized biomass has been optimized;
- Especially relevant in cases where there are constraints, e.g. substrate/product inhibition

• Details about the methodology: Schäpper et al. (2011) Biotechnology and Bioengineering, 108:786-796.

Future perspectives

- However, **many questions arise** as well and should be addressed in the future, among which:
 - Will similar gains be observed for other organisms and cell types (e.g. mammalian cells, filamentous fungi)?
 - Would reactor shapes other than rectangular result in higher productivity gains?
 - Would it be possible to manufacture such a design including the spongelike structures?
- Comparison of experimental data with simulations is essential to prove the reliability of the method.

"It doesn't matter how beautiful your theory is, it doesn't matter how smart you are. If it doesn't agree with experiment, it's wrong."

Acknowledgements

- The PhD project of Daniel Schäpper was funded by Novozymes A/S and the Technical University of Denmark (DTU) through a Novozymes Bioprocess Academy PhD stipend.
- Fridolin Okkels is funded by the Danish Agency for Science, Technology and Innovation (Grant No. 09-065029).
- The Danish Council for Strategic Research is gratefully acknowledged for financial support in the frame of the project "Towards robust fermentation processes by targeting population heterogeneity at microscale" (project number 09-065160).

Contact details

• Krist V. Gernaey

Department of Chemical and Biochemical Engineering Technical University of Denmark Building 229 DK-2800 Lyngby Denmark

Email: kvg@kt.dtu.dk Phone: +45 45 25 29 70 Skype: Krist_gernaey

