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Background 

Wind turbine models in CFD 

• Fully resolved rotor (FR) 

• Actuator line model (AL) 

• Actuator disc model (AD) 
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Background 

 The blade/airfoil boundary layer is resolved 

 The required number of grid points for one 

rotor using RANS is O(107) 

 Provides detailed insight about flow behaviour 

 Usually used for accurately predict loads and 

power production 

 Too computationally heavy for several wind 

turbines.  

Wind turbine models in CFD 

• Fully resolved rotor (FR) 

• Actuator line model (AL) 

• Actuator disc model (AD) 
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Background 

 Blades represented as lines. Wind turbine models in CFD 

• Fully resolved rotor (FR) 

• Actuator line model (AL) 

• Actuator disc model (AD) 
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Background 

 Blades represented as lines. 

 Aerodynamic blade forces determined from 2D 

airfoil data. 

Wind turbine models in CFD 

• Fully resolved rotor (FR) 

• Actuator line model (AL) 

• Actuator disc model (AD) 
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Background 

 Blades represented as lines. 

 Aerodynamic blade forces determined from 2D 

airfoil data. 
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Wind turbine models in CFD 

• Fully resolved rotor (FR) 

• Actuator line model (AL) 

• Actuator disc model (AD) 
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Background 

 Blades represented as lines. 

 Aerodynamic blade forces determined from 2D 

airfoil data. 

 Blade forces smeared to avoid singular 

behaviour.  
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Wind turbine models in CFD 

• Fully resolved rotor (FR) 

• Actuator line model (AL) 

• Actuator disc model (AD) 
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Background 

Advantages: 

 Low number of grid points O(106) needed 

compared to full rotor CFD. 

 Applicable with simple grid geometries. 

 Captures the most important features of the 

wake including tip/root vortices. 

 Well suited for LES simulations (no boundary 

layers need to be resolved) 

 

Disadvantages: 

 Relies on airfoil data 

 

Wind turbine models in CFD 

• Fully resolved rotor (FR) 

• Actuator line model (AL) 

• Actuator disc model (AD) 
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Background 

 Rotor represented by forces distributed on 

permeable disc.  
Wind turbine models in CFD 

• Fully resolved rotor (FR) 

• Actuator line model (AL) 

• Actuator disc model (AD) 
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Background 

 Rotor represented by forces distributed on 

permeable disc.  

 The disc loading is either prescribed or 

determined from airfoil data. 

 Pressure velocity decoupling avoided using 

Gaussian force smearing or a modified Rhie-

Chow algorithm 

Wind turbine models in CFD 

• Fully resolved rotor (FR) 

• Actuator line model (AL) 

• Actuator disc model (AD) 



October 9-11, Oldenburg, Germany Torque 2012 11 DTU Wind Energy  

Background 

Axial velocity contours and streamlines 

for a uniformly loaded disc at CT=0.89 

Advantages: 

 Low number of grid points 

 Applicable with simple grid geometries 

 Well suited for LES simulations 

 Large time steps can be used 

 Can run in steady state 

 

Disadvantages: 

 Relies on airfoil data 

 Does not capture influence of individual blades 

 May be questionable in non-uniform inflow 

 

Wind turbine models in CFD 

• Fully resolved rotor (FR) 

• Actuator line model (AL) 

• Actuator disc model (AD) 
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Background 

Summary: 

 AL/AD typically used for wake studies  

 Details of rotor geometry assumed unimportant in far wake 

 

Objectives: 

Study importance of wind turbine model on wake 

characteristics  

 How much details are lost due to the simpler models? 

 

 Conduct a consistent comparison of the three models 

  Same numerical setup for all models  
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Previous work 

Simulations of NREL 5MW reference turbine in non-sheared laminar 

inflow 

Axial velocity 

 Wake of FR develops faster into a bell shaped form than the AL and AD. 

 Faster spreading of wake is caused by larger TKE in the FR simulation. 

Snapshot of vorticity magnitude contours in 

horizontal cross-section through rotor center.   

FR 

AL 

AD 
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Previous work 

Simulations of NREL 5MW reference turbine in non-sheared 

turbulent inflow 

Snapshot of vorticity magnitude contours in 

horizontal cross-section through rotor center.   

Axial velocity 

FR 

AL 

AD 
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Present work 

Objectives: 

Study importance of wind turbine model on wake 

characteristics in non-uniform inflow: 

 Sheared inflow 

 Yawed inflow 

 

 Simulating the 2MW NM80 turbine using similar numerical 

setup 
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Approach – Flow solver 

EllipSys3D: 

 In-house CFD code 

 Incompressible Navier-Stokes equations 

 Finite volume discretization 

 Structured curvelinear grids 

 Pressure/Velocity formulation 

 Multigrid 

 Multiblock 

 Grid sequencing  

 MPI 

Solver parameters: 

 QUICK/QUICK_CDS4 

 SIMPLE  

 DES 
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Approach - Numerical setup 

Background mesh: 

 Same background mesh for all simulations  

 Half cylinder with radius 8D 

 308 blocks of 323 (10.1 ∙106 cells) 

 High resolution of the first 5D of the wake 

(cell size 1.3m x 1.3m x 0.8m) 
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Approach - Numerical setup 

Full rotor with overset grid: 

 Four overlapping mesh groups  

 Rotor mesh generated using HypGrid3D to form an O-O topology 

 Total number of grid points is 26.7∙106  

 Rotor surface with a non-slip boundary condition 

 First cell height y=1.0∙106 (y+ < 2) 
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Approach - Numerical setup 

Actuator line simulations: 

 Same background mesh as the full rotor 

simulation (10.1 ∙106 cells) 

 Force smearing using 3D convolution 

 33 force elements along each line 
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Approach - Numerical setup 

Actuator disc simulations: 

 Same background mesh as the full rotor simulation 

(10.1 ∙106 cells) 

 33 radial force elements 

 Force smearing using 1D convolution in normal and 

radial direction 

 Forces on each differential area dA=rdrdθ is 

determined from local flow conditions and airfoil data.  
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Results 

Test cases 

• Sheared inflow  

• Yawed inflow 
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Results 

 V∞ = 8 m/s 

 Power law inflow (α = 0.55): 

 

 

 

Test cases 

• Sheared inflow  

• Yawed inflow 
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Results 

 Normal loads in good agreement 

 Tangential loads less in FR than in AL and AD 

 

 

 

Test cases 

• Sheared inflow  

• Yawed inflow 

FR 

AL 

 AD 

Spanwise distribution of normal and tangential loads at various azimuth positions 
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Results 

 Vorticity from tip vortices much stronger in FR 

than in AL and AD.  

 Wake of FR more unstable 

 Similar vorticity contours for AL and AD (except 

for instabilty in the far wake) 

 Reasons for more unstable wake of FR: 

 Higher grid resolution 

 Fluctuating loads (e.g. stall effets near root) 

Snapshot of vorticity magnitude contours in 

horizontal cross-section through rotor center.   

Test cases 

• Sheared inflow  

• Yawed inflow 

FR 

AL 

AD 
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Results 

Test cases 

• Sheared inflow  

• Yawed inflow 

 Good agreement in predicted near wake deficit 

 AL and AD in close agreement 

 Wake of FR develops faster into a bell shaped 

form than the AL and AD. 

AL 

AD 

Streamwise velocity contours in 

cross-section 1D downstream.   

Mean streamwise velocity 1D downstream 

for various azimuth positions 

FR 

AL 

 AD 

FR 

1D 
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Results 

Test cases 

• Sheared inflow  

• Yawed inflow 

 Good agreement in predicted near wake deficit 

 AL and AD in close agreement 

 Wake of FR develops faster into a bell shaped 

form than the AL and AD. 
FR 

AL 

AD 

Streamwise velocity contours in 

cross-section 3D downstream.   

Mean streamwise velocity 3D downstream 

for various azimuth positions 

FR 

AL 

 AD 

3D 
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Results 

Test cases 

• Sheared inflow  

• Yawed inflow 

 Good agreement in predicted near wake deficit 

 AL and AD in close agreement 

 Wake of FR develops faster into a bell shaped 

form than the AL and AD. 
FR 

AL 

AD 

Streamwise velocity contours in 

cross-section 5D downstream.   

Mean streamwise velocity 5D downstream 

for various azimuth positions 

FR 

AL 

 AD 

5D 
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Results 

Test cases 

• Sheared inflow  

• Yawed inflow 

 V∞ = 8 m/s 

 Yaw error of 20° 
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Results 

Test cases 

• Sheared inflow  

• Yawed inflow 

 Load predictions in good agreement 

Spanwise distribution of normal and tangential loads at various azimuth 

positions 

AL 

 AD 
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Results 

Test cases 

• Sheared inflow  

• Yawed inflow 

 Similar vorticity contours 

Snapshot of vorticity magnitude contours in 

horizontal cross-section through rotor center.   

AL 

AD 
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Results 

Test cases 

• Sheared inflow  

• Yawed inflow 

 Good agreement in predicted wake deficit and 

wake structure 

Vorticity magnitude contours in 

cross-section 1D downstream.   

Mean streamwise velocity 1D downstream 

for various azimuth positions 

AL 

 AD 

1D 
AL 

AD 
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Results 

Test cases 

• Sheared inflow  

• Yawed inflow 

Mean streamwise velocity 3D downstream 

for various azimuth positions 

 Good agreement in predicted wake deficit and 

wake structure 

Vorticity magnitude contours in 

cross-section 3D downstream.   

AL 

 AD 

3D 
AL 

AD 
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Results 

Test cases 

• Sheared inflow  

• Yawed inflow 

Mean streamwise velocity 5D downstream 

for various azimuth positions 

 Good agreement in predicted wake deficit and 

wake structure 

Vorticity magnitude contours in 

cross-section 5D downstream.   

AL 

 AD 

5D 
AL 

AD 
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Conclusions 

 Sheared inflow 

 Three models show good agreement in axial velocity up 

to 2D downstream of the turbine. 

 Further downstream the FR simulation predicts a faster 

smearing of the mean gradients 

 Much higher turbulence in the FR simulation 

 Generally good agreement between AL and AD for all 

downstream position. 

 

 Yawed inflow 

 Good resemblance between wake behavior predicted 

using AL and AD. 

 AD representation as accurate as AL even in non-

uniform inflow. 


