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1. INTRODUCTION
1.1. Background
In the assessment of the reliability of engineered
systems, the efficient evaluation of probability integrals
remains a technical challenging issue. Modern
structural reliability theory has provided a number of
efficient approaches to this including First and Second
Order Reliability Methods (FORM/SORM), probability
bounds, and various Monte Carlo based sampling
techniques.

In practical applications, the best choice of approach
depends on the specifics of the problem, and to identify
this in general it is necessary to understand the strengths
and weaknesses of the different approaches in some
detail. As a consequence, there is a tendency, when
analyzing the reliability of complex engineered
facilities such as offshore platforms, infrastructure
networks and industrial facilities, to use the easily
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applicable but not always efficient Monte Carlo based
probability integration techniques. Even though various
variance reduction schemes exist, the use of these in
general adds to the need of expertise of the user. The
user, on the other hand, also needs to master the
engineering aspects of the modelling of the considered
facility and cannot be expected also to be an expert on
probability integration techniques. This leaves the
generally very inefficient so-called crude Monte Carlo
approach as the commonly preferred choice for
probability calculations in practical applications.

Recently, Naess et al. (2009) and Bucher (2009)
independently proposed a novel class of approaches to
the evaluation of probability integrals, which in the
present paper is referred to as probability integral
solution by extrapolation. Following the concept
underlying this class of approaches, Nishijima et al.
(2010) propose a slightly different scheme, which can
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be shown to have a more firm mathematical
justification, and which can be applied to a broader
range of systems as compared with the schemes
proposed by Naess et al. (2009) and Bucher (2009).

1.2. Aim and Structure of the Paper
The idea underlying the class of approximations
considered in the present paper is simple and appealing.
First, the probability integral of interest is expressed as
a function of a scaling factor. The scaling factor serves,
in different ways, to scale the integral down such that it
can be efficiently approximated by means of e.g. crude
Monte Carlo simulation. Now, by approximating the
integral in this way for a relatively few number of (low)
values of the scaling factor, the idea is to fit a functional
form in terms of the scaling factor to the results and to
use this functional form to extrapolate the results to
large values of the scaling factor. Thus, based on Monte
Carlo approximations performed for probability
integrals with relatively large probability contents,
integrals with very small probability contents may be
extrapolated – yielding a potentially very significant
gain in efficiency.

There are of course various issues to be considered in
using the outlined scheme. First of all, there are different
ways of introducing the scaling. Secondly, there is the
choice of the functional form applied as basis for the
fitting. Depending on how these issues are approached,
the scheme may be more or less general and efficient. In
the present paper general systems are considered;
probability integrals with complexly bounded integral
domains, i.e. domain which may be described by unions
and intersections of sub-domains.

First, a short outline of the probability integral
approximations schemes proposed by Naess et al.
(2009) and Bucher (2009) is provided; each followed by
one critical example to discuss their respective
limitations. Thereafter, following Nishijima et al.
(2010) a new approach which takes basis in the theory
of asymptotic integral approximations for multi-normal
probability integrals (see e.g. Breitung (1984), Breitung
and Hohenbichler (1989), and Hohenbichler et al.
(1987)) is introduced and generalized also to the non-
asymptotic case. The significance of the proposed
scheme is investigated through an illustrative example.
Thereafter, the adaptation of the scheme to the non-
normal case is outlined and a proposal on how to
implement the scheme into a program code is presented.
The proposed scheme is tested thoroughly on a variety
of examples against crude Monte Carlo simulation and
also compared with the schemes of Naess et al. (2009)
and Bucher (2009).

1.3. Problem Setting
The problem considered in the present paper is the
evaluation of the probability integral I of the following
form:

(1)

where fXn
(xn) is the joint probability density function of

random variables Xn = (X1, X2, ...., Xn)T. The generally
complexly bounded integral domain D is given as:

(2)

and ( j = 1, ..., Jm; m = 1,...,M) are functions that
jointly characterize the integral domain. In system
reliability assessment, if and D are adopted to
describe the performance of individual components of
the system (limit state functions) and the domain
representing the system failure respectively, the integral
I correspond to the probability of failure of a system.

The underlying assumptions in the discussion in the
present paper are: first, direct numerical integration of
the probability integral in the form of Eqn 1 is
computationally prohibitive due to the high dimension
of the integral domain; second, use of First/Second
Order Reliability Methods (FORM/SORM) is not an
option, since either the integral domain is too complex
to identify the design point(s) with a reasonable effort,
or people do not have sufficient experience on the
applications of FORM/SORM or do not have access to
software tools of these. Thus, Monte Carlo simulation
techniques are the preferred option. Note that the
schemes presented in the paper can readily be combined
with importance and/or adaptive sampling techniques;
however, these are assumed not to be adopted and only
crude Monte Carlo simulation is considered. This is
because Monte Carlo simulation is most straightforward
to implement into programming codes and maybe most
importantly - requiring very little expertise in the
technical aspects of applied probability theory.

2. PROBABILITY INTEGRAL SOLUTION BY
EXTRAPOLATION

2.1. Shifting of Integral Domain as Proposed by
Naess et al. (2009)

2.1.1. Introduction
A new class of approach for probability integral
solutions is proposed by Naess et al. (2009). It aims to
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take advantage of the strong sides of (crude) Monte
Carlo simulation and at the same time to avoid the
weak points. For the purpose of illustration, the
underlying idea is here introduced considering the
evaluation of the probability of a component failure.
Note, however, that the approach can also be applied
for the evaluation of the probabilities of system
failures.

Denote a set of random variables by Xn = (X1, X2, ....,
Xn)T, the limit state function by g(Xn) and the probability
of the failure of interest by the integral

The joint

probability density function of random variables Xn is
not limited to be multi-normal. Now, introduce a scaling
factor γ (referred as λ in Naess et al. (2009)) and define
the shifted limit state function g(Xn; γ) as:

(3)

where E[•] is the expectation operator. The
corresponding probability that the random variables
have joint realizations in the domain D(γ ) = {g(Xn; γ ) <
0} is:

(4)

The probability of failure of interest then corresponds
to I(1). For certain values of γ (< 1) the values of I (γ )
are significantly larger than I(1); hence, the values of 
I (γ )  may be easily computed by means of crude Monte
Carlo method with relatively few simulations. Note that
in case where E [g(Xn)] cannot be analytically
calculated, it is evaluated also by Monte Carlo
simulation. Naess et al. (2009) assume that the
probability can be parameterized by the following form
as γ → 1 as:

(5)

where the parameters = (a, b, c, q)T in the equation
above are estimated by optimizing the fit on the log
scale by minimizing the mean square error between the
two sides of Eqn 5 (see details in Naess et al. 2009)
using the set of the computed probabilities I(γ ) for
several values of γ (<1) as = (â, b̂, ĉ, q̂ )T. Then, the
probability of failure of interest is obtained as:
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The performance of the scheme is investigated in
Naess et al. (2009) with four practical engineering
applications and it is shown that the scheme works quite
convincingly. However, the extent of the viability of the
scheme is not clear. In fact, it is possible that the scheme
fails for some cases as is shown in the following.

2.1.2. Critical example
Let the two random variables R and S independently
follow the uniform distributions in the intervals [0.999,
1.999] and [0, 1] respectively (the mean values of R and
S are µR = 1.499 and µS = 0.5). Define the limit state
function g(R, S) = R – S and the probability of failure
described by the integral (see Figure 1):

(7)

where fR(r) and fS (s) respectively are the probability
density functions of the random variables R and S, and
are written as:

(8)

(9)

Following the scheme introduced above, consider the
shifted limit state function g(R, S; γ ) = R – S – (1–γ ) E
[g(R, S)]and the probability that the two variables in the
domain D(γ)(= {g(R, S; γ) < 0}) is: I(γ ) = P[g(R, S; γ )
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Figure 1. Original limit state function and parameterized limit state

function in the illustrative critical example



< 0] = ∫D(γ ) fR(r)fS(s) drds, where E[g(R, S )] = µR –µS =
1.499 –0.5 = 0.999. Note that in this example I(γ ) can
be analytically obtained and is equal to (1 – 0.999γ )2/2,
which thus can be utilized to assess the performance of
the scheme. The parameters in Eqn 5 are estimated
using the set of the values of γ and the corresponding
probabilities I(γ ); the probability of failure of interest,
i.e. I(1), is obtained by extrapolation. Figure 2 shows the
results of the extrapolation utilizing the values of γ and
I(γ ) in the range of γ ∈[0.80, 0.95] (1) and 
γ∈[0.90, 0.99] (2). Following the plot scheme in Naess
et al. (2009), the horizontal and vertical axes are scaled
in terms of In (γ – b̂) and ln (–ln(I(γ )/q̂)) respectively so
that if the parameterized probabilities 
I(γ ) are represented by Eqn 5 the points (γ, I(γ)) should
appear on a straight line. As can be seen in Figure 2,
however, whereas the points that are utilized for the
curve fitting align well with a straight line, the points
beyond the range of the curve fitting do not follow a
straight line; the extrapolation fails.

The observation in the above example implies that
the scheme for shifting the integral domains and the
functional form of Eqn 5 for the extrapolation may not
be suitable for certain probability integrals, and that the
visual inspection on whether the points are on a straight
line in the scaled plot is not always reliable. Concerning
the latter, it should be mentioned that any functional
form could fit points of interest to any desired degree by

introducing sufficient degrees of freedom to the
functional form; however, it does not guarantee that the
curve thus obtained fits the points beyond the range of
the curve fitting. Thus, it is of significant importance to
establish a “correct” mathematical basis for the
functional form.

2.2. Scaling of the Standard Deviation of the
Basic Random Variables as Proposed by
Bucher (2009)

2.2.1. Introduction
Bucher (2009) considers the probability integral
represented in the form of Eqn 1 in the normal space, i.e.
the basic random variables Xn = (X1, X2, ..., Xn)T follows
independent and identically normal distributed variables
(i.i.d.) whose mean values are zero and standard
deviations are 1/η0( referred as σ in Bucher 2009). The
value of 1/η0 may be but is not limited to one. It is noted
that if the basic random variables are not normal or there
are correlations among the variables these can easily be
transformed into independent normal random variables.
A scheme for component reliability assessment is
proposed; i.e. the integral domain is defined by Eqn 2
with the restrictions of M = 1 and J1 = 1.

A parameter η (referred as f in Bucher 2009) is
adopted to scale the probability integral. The scaled
probability integral I(η) is:

(10)

where X
∼

n = (X
∼

1, X
∼

2, ..., X
∼

n)T is the n-dimensional
independent normal random vector. Here, the mean
value and the standard deviation of X

∼
n are 0 and 1/η

respectively. Un = (U1, U2, ..., Un)T is the n-
dimensional independent standard normal random
vector. fX

∼
n (x~n) and φn (ηun) are the joint probability

density function of Xn and ηUn respectively. The
probability integral of the original problem is then
∫D fXn(xn)dxn = I(η0). By the scaling, it is anticipated
that the value of the probability integral I(η) generally
becomes larger, as the factor η becomes smaller; a
critical case where this is not true is shown in Bucher
(2009). Taking basis in the asymptotic theory of the
multi-normal probability integral (see e.g. Breitung
1984; Breitung and Hohenbichler 1989; Hohenbichler
et al. 1987), it is proposed that the scaled probability
integral I(η) may be approximated with two
parameters A and B through the reliability index B(η)
as:
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where the symbol “ ≈ ” signifies that the function in the
left hand side is approximated by the function in the
right hand side. In Bucher (2009), β(η) is related to the
probability integral I(η) as:

(12)

where Φ(•) is the cumulative distribution function of the
standard normal random variable. This approximation is
consistent with the asymptotic theory in the following
sense:

(13)

Here, “~” signifies that limη→∞ β(η)/(Αη) = 1 holds.
It is mentioned in Bucher (2009) that other forms that
conform with Eqn 13 are admissible as candidates for
the approximating functional form.

In the following, the scheme is applied to the
reliability assessment of a simplistic parallel system.
Note, however, that since the scheme is originally not
proposed for the cases of system reliability assessment,
the results from the following example are not meant for
the criticism to the scheme. Instead, the purpose of the
example is to investigate the limitations of the scheme,
and by doing so, it serves as a motivation and basis to
develop another scheme, which is applicable for a
broader range of reliability assessments.

2.2.2. Critical example
Consider a parallel system whose failure is defined by
the domain:

(14)

Here, J1 = 3 and c = 1 are assumed. The basic random
variables X3 = (X1, X2, X3)T are independently identically
distributed normal random variables with mean values of
0 and standard deviations of 1/η0. Consider the scaled
probability integral I(η), which is expressed as:

(15)

The approximation in Eqn 11 can be adopted directly
together with Eqn 12.

In order to investigate the range in which the
assumption of the asymptotic characteristics of the
probability integral (Eqn 13) is valid, the values of
β(η)/η are plotted as a function of η, see Figure 3; if the
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assumption is valid, the values of β(η)/η should be
constant with respect to the values of η. The figure
shows that the assumption is valid when the value of η
is larger than around 4. This implies that, in order for the
asymptotic characteristics to be a valid assumption, both
the value of η0 in the original problem and the values of
η for curve fitting must be at least larger than 4;
however, for η = 4, I(η) = 3.2 × 10–14, which is by far
smaller than those of practical interest. Within the range
of I(η) of practical interest, the asymptotic
characteristics is, in this example, not a valid
assumption, and the non-asymptotic term (i.e. B/η in
Eqn 11) plays an important role in extrapolating the
probability integral I(η).

Motivated by the successes illustrated in the papers
by Naess et al. (2009) and Bucher (2009), and by the
limitations presented above, another scheme is
presented in the following, which can be applied for the
cases of both parallel and series systems as well as for
the cases where the assumption of the asymptotic
characteristics may not be valid.

2.3. General Concept of Probability Integral
Solution by Extrapolation
The approach proposed in the papers by Naess et al.
(2009) and Bucher (2009) may be stated in a slightly
generalized form as follows: Consider a scalable
parametric representation of the probability integral I(λ)
where the scalar λ is the scaling factor so that for a
certain value λ0 of λ the probability integral I(λ0)
corresponds to the probability integral of interest.
Assume a functional form f (λq)characterized by
parameters q, which approximates the probability
integrals I(λ), i.e. I(λ) ≈ f(λq). Then, estimate the
parameters q by using the estimated values I(λ) of the
probability integrals by (crude) Monte Carlo
simulations for several values of λ that correspond to
relatively high probabilities. Substituting the estimated
parameters q̂ into the functional form f (λq), the
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probability integral I(λ0) of interest is obtained by
extrapolation as I(λ0)= f(λ0q̂).

Within the general concept of the probability integral
solution by extrapolation outlined above, it is to be
noted that the main contribution of the present paper is
to propose such a scalable parametric representation, i.e.
I(λ) with a functional form f(λq) suitable for the
extrapolation.

3. PROPOSED SCHEME FOR PROBABILITY
INTEGRAL PARAMETERIZATION

3.1. Scalable Representation of Probability
Integrals

A series of papers (Breitung 1984; Breitung and
Hohenbichler 1989; Hohenbichler et al. 1987) consider,
in the context of the evaluation of the probability of
failure of systems, multi-normal probability integrals
I(λ) whose integral domain is characterized by a scaling
factor λ as:

(16)

where φn (un) is the joint probability density function of
the standard normal variables Un = (U1, U2, ..., Un)T, and
the domain D(λ) is the domain of D scaled by the real-
valued positive parameter λ with respect to the origin,
see Figure 4.

It is pointed out in the papers (Breitung 1984; Breitung
and Hohenbichler 1989; Hohenbichler et al. 1987) that the
integral above is reduced to the following form of integral:

(17)
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The integral form in the last equation is a special case
of the so-called Laplace-type integral, to which
asymptotic approximations have been extensively
investigated, see e.g. Bleistein and Handelsman (1975)
for the definition of the Laplace-type integral as well as
its asymptotic characteristics.

The domain D can be generally given in the form of
Eqn 2, and the scaled domain D(λ) is written as:

(18)

The present paper employs this scalable parametric
representation of the integral domain as the basis for the
extrapolation; the domain D is chosen so that for a
certain value λ0 of λ the scaled domain D(λ0)
corresponds to the domain of interest.

It should be realized that the scaling factor λ
introduced as above plays the role equivalent to the
scaling factor η introduced in section 2.2 in regard to the
scaling of the probability integral.

Note that in sections 3.2 and 3.3, the random variables
are assumed to be independent standard normal
variables. General cases where the random variables are
not standard normal are considered in section 3.4.

3.2. Functional Form for the Extrapolation in
Asymptotic Case

3.2.1. Derivation of the functional form
It is assumed here that the probability integral I(λ) has a
single design point on the boundary of the integral
domain D(λ). The applicability of the scheme presented
in this section for other cases with two or more design
points is discussed in section 5.3 together with the
results in the examples in section 4. Applying the
Theorem 1 in Breitung and Hohenbichler (1989), under
several conditions (see Breitung and Hohenbichler
1989), the following asymptotic approximation form is
obtained as λ → ∞:

(19)

Here, un
* is the distance from the origin to the design

point un
*, i.e.  un

*= min
un∈D 

un; k is the number
of “active” limit state functions, i.e. the number of the
limit state functions whose values are equal to zero at the
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design point un
*; det (•) represents the determinant of a

matrix. Without going into detail, it is said that det(A),
det(B), and γ i (i = 1, 2, ..., k) concern the geometric
property of the limit state functions at the design point;
i.e. given the limit state functions, the values of these
parameters are uniquely determined.

Since there exists a set of positive real numbers 

ci (i = 1, 2, ..., k) such that holds, using

these numbers, it is possible to write Eqn 19 as:

(20)

Using the relation Φ(– x) ~ (2π)–1/2 x–1 exp (–x2/2) for

x→∞, and denoting 

, Eqn 20 is written as (see also Nishijima

et al. 2010):

(21)

Note that the right hand sides in Eqns 20 and 21 are
asymptotically identical as λ→∞; however, it is
empirically known that Eqn 21 better approximates the
probability integral I(λ) for larger yet finite value of λ.
In the context of SORM, the values of these parameters
a∞ and ci (i = 1, 2, ..., k) are obtained first by searching
for the design point, and then, by computing the
curvatures of the limit state functions at the design
point; seen in the light of the proposed scheme, these are
estimated by curve fitting method using a sequence of
the values of scaled probability integrals I(λ), which are
provided by Monte Carlo simulations. This difference is
emphasized with an example in the following.

3.2.2. Illustrative example
Consider the following probability integral:

(22)

Here, φ (•) is the standard normal probability density
function. Following the proposed scheme, the scaled
probability integral I(λ) is given as:
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where the scaled integral domain D(λ) is defined as:

(24)

The scaled integral domain is shown in Figure 5.
For the purpose of comparison, the values of the

scaled probability integrals are first computed by
means of Monte Carlo simulations. This is shown in
Figure 6 (indicated with “Exact”). Furthermore, it is
known from the asymptotic theory in the context of
SORM that:
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the interval λ ∈[2, 5])



where a~∞ = (1 + c~1α
∼

1)–1/2, c~1 is the distance from the
origin to the design point in the integral domain D, and
α∼1 is the principal curvature of the original limit state
function at the design point, which in this case is
calculated as: α∼1 = (∂2u2/∂u1

2)(u1, u2)=(0,1) = 2, where u2

= u1
2 + 1. Thus, c~1 = 1 and a~∞ = 0.577. Note that k = 1

for this example since only one limit state function is
involved in the definition of the integral domain.

The parameters in Eqn 21 are estimated by a standard
curve fitting method first with the points of λ = 3.1, 3.2,
3.3, 3.4, 3.5. The values of the parameters estimated are:
â∞ = 0.5322 and ĉ1 = 0.9965. The extrapolation result
with the values of the estimated parameter is shown in
Figure 6 (indicated with “Curve fit with λ = 3.1 ∼ 3.5 ”).
Besides the performance of the extrapolation, it should
be emphasized that the estimated values of the
parameters, especially ĉ1, which is more relevant, are
very close to those values calculated based on the
asymptotic theory. Note that these values are calculated
without identifying the location of the design point and
calculating the curvature of the limit state function at the
design point; instead, only by means of the curve fitting.
In this sense, it can be said that the information of the
location of the design point is not required for assessing
the system reliability, and the functional form of the
extrapolation in Eqn 21 can be seen as a meta-level
representation of asymptotic characteristics of the
system reliability.

Then, the parameters in Eqn 21 are estimated with the
points of λ = 0.6, 0.7, 0.8, 0.9, 1.0 instead of λ = 3.1, 3.2,
3.3, 3.4, 3.5 (indicated with “Curve fit with λ = 0.6 ∼
1.0” in Figure 6). In contrast to the case above, the
extrapolation with the functional form with the
estimated values of the parameters (â∞ = 0.3601, c~1 =
0.81) fail. The reason for this can be that the functional
form utilized for the extrapolation is not appropriate for
relatively small values of λ. Mathematically, Eqn 21 is
correct only asymptotically, i.e. as λ →∞; practically, it
is said that the values of λ should be “sufficiently” large.
However, in general the values to be considered
sufficiently large depend on the probability integrals in
consideration, and cannot be known a-priori. Thus, the
result from this example necessitates the extension of
Eqn 21 to the non-asymptotic case such that the
extended form is valid for a broader range of the value
of λ.

3.3. Extension to Non-Asymptotic Form
The functional form presented in the previous section
takes basis in the asymptotic characteristics of the
integral I(λ). It is, however, in general not known if and
to which degree the assumption of the asymptotic
characteristics is valid for the integral domains of

interest, as is shown in the previous section. Thus, a
functional form of the extrapolation is required which
can be applied for a broader range of the scaling factor
λ, beyond the range where the asymptotic
characteristics is valid. For this purpose, the functional
form presented in the previous section is extended.

Consider the integral I(λ) defined by Eqn 16. With a
rotational transformation of the integral domain, it is
possible that the integral I(λ) is expressed as:

(26)

where the design point of the transformed integral
domain D*(λ) is (λc1

*, ..., λck
*, 0, ..., 0) satisfying

and ci > 0 (i = 1, ..., k), see Figure 7 (left).

Define an integral J(λ) as:

(27)

where the integral domain D
~*(λ) is given as:

(28)

That is, the two integral domains share the same design
point (λc1

*, ..., λck
*, 0, ..., 0), see Figure 7 (right).

Further, it should be realized that the integral J(λ) is
written as:

(29)
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Denote by a(λ) the ratio between the two integrals I(λ)
and J(λ) as: a(λ) = I(λ)/J(λ). From the definition of the
ratio a(λ), it follows:

(30)

Thus, the introduction of the ratio a(λ) can be seen as an
extension of Eqn 21. Note that Eqn 30 is not an
approximation but is an identity. In what follows, the
approximation of the functional form of the ratio a(λ) is
investigated, which does not depend on the asymptotic
characteristics of the integral I(λ). The ratio a(λ) can be
reformulated and approximated as follows:

Here, for the discretization in the second line, it is
utilized that the integrands in the last term of the first
line are only functions of the distance un from the
origin: {rl}∞l = 0 is the sequence of the distances from the
origin at which the integrals are discretized, and r0 =
un

*>0, rl = r0 + � ∆r, ∆r > 0; {V(rl)}∞�=0 and
{V

~
(rl)}∞�=0 are the sequences of the corresponding

volumes at the discretized distances, see Figure 7
(right); Rl = (rl

2 − r0
2)/2, and it can be approximated as:

Rl = ((r0 + l∆r)2–r0
2)/2 � l∆r.

(31)
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As a next step, the approximation of the summations
in the last term of Eqn 31 is considered. The values of the
terms V(rl) and V

~
(rl) grow at most with the polynomial

order of n–1 with respect to l, whereas the values of the
exponents exponentially decrease as a function of l.
Thus, the summations in the last term can be
approximated by a finite number of terms in the
summations. The change rates of a few subsequent terms
of V(rl) and V

~
(rl) depend on the local geometry of the

failure domain. Focusing on the first few terms of V(rl)
and V

~
(rl), only which are significant to the overall

summations in Eqn 31 due to the exponential decrease of
the term, exp (–λ2Rl). It is assumed that these change
rates are approximated by one of the two extreme
situations; i.e. V(rl) and/or V

~
(rl) (1) are constant or (2)

increase/decrease quasi-exponentially (they grow/decay
fast and the rate of growth/decay is close to exponential
increase/decrease at least for the first few terms). In both
cases, V(rl) can be represented as: V(rl) � zwl(z > 0, w >
0) with certain parameters z and w. Assuming the same
situations for V

~
(rl) and substituting these approximations

into the last term of Eqn 31, it is found that the ratio a(λ)
may be approximated in the form of (see also Nishijima
et al. 2010):

(32)

where the parameters a∞,b1, b2, b3, b4 are positive. Note
that a(λ) → a∞ (as λ →∞), which is reduced to the
asymptotic functional form of the probability integral in
the previous section.

To obtain the probability integral of interest by the
fitting and the extrapolation correctly, the proposed
formulation of a(λ) in Eqn 32 should, at least, have no
discontinuity points in the extrapolation and should
always be positive. In practice, it may happen that (1–b1

× exp(–b2λ2))/(1–b3 exp(–b4λ2)) becomes negative or the
denominator (1–b3 exp(–b4λ2)) is equal to zero in the
extrapolation; for example, assume that the range of λ
for curve fitting is λ1 ≤ λ ≤ λp, and the estimated values
of the parameters in Eqn 32, b1, b2, b3, and b4, are b̂1, b̂2,
b̂3, and b̂4 respectively. If both ln b̂3 < 0 and ln b̂1/b̂2 > λp

2

are satisfied, it is easy to prove that (1–b1 exp(–b2λ2))/
(1–b3 exp(–b4λ2)) will be less than zero in the range of

. On the other hand, if ln b̂3/b̂4 > λp
2 , the

zero-value of 1–b3 exp (–b4λ2) will appear at the point

in the range of extrapolation and it is
thus a point of discontinuity of the functional form. To
circumvent this problem, the parameter b1 and b3 may
be replaced by exp(–b1′) and exp(–b3′) respectively.
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Finally, the proposed functional form for the
extrapolation in the non-asymptotic (general) case is
represented as:

(33)

where q = (a∞, b1′, b2, b3′, b4, c1, ..., ck). All the
parameters are positive. Without loss of generality, it is
assumed that c1 ≥ c2 ≥ ... ≥ ck. It is not difficult to prove
that (1– exp(–b1′ – b2λ2)) / (1– exp(–b3′ – b4λ2)) will be
always larger than zero and the requirement that both b1

and b3 in Eqn 32 are positive is also satisfied. Note here
that the number k of the active limit state functions is
generally not known a-priori; however, k is equal to or

smaller than min , see Eqns 1 and 2 for the

definitions of n, M, and Jm. The choice of the parameter
k in practical applications is discussed in section 5.2.

3.4. Extension to Non-Normal Cases
Consider the probability integral in Eqn 1, where the
basic random variables Xn may not be independent
standard normal random variables. Denote by T a
transformation Un = T–1(Xn) which transforms the basic
random variables Xn into the independent standard
normal random variables Un. Such transformations are
readily available; e.g. Rosenblatt transformation (e.g.
Hohenbichler and Rackwitz 1981), Nataf transformation
(e.g. Liu and Der Kiureghian 1986) and moment-based
transformation (e.g. Winterstein and Bjerager 1987).

Employing a transformation T, the probability
integral in Eqn 1 can be rewritten as:

(34)

where the integral domain DU is given as:

(35)

The scheme presented in the previous section can be
straightforwardly applied as:
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where the scaled integral domain DU (λ) is given as
follows:

(37)

That is, whenever the basic random variables Xn are not
normal variables, in order to estimate the probability
integrals I(λ) by Monte Carlo sampling, it is required
first to generate realizations from the standard normal
distribution, then to scale the realizations by the scaling
factor λ, and finally to apply the transformation T.

3.5. Implementation into Programming Code
The general procedure for the evaluation of probability
integrals by extrapolation can be stated as follows:
Step 1: Choose a value λ1 of the scaling factor λ that
corresponds to a relatively high probability I(λ1).
Step 2: Generate realizations of the set of the random
variables Un, i.e. un

(1), un
(2), ..., un

(N). Here, N is the
number of the realizations.
Step 3: Calculate T(u(1)/λ1), T(u(2)/λ1), ..., T(u(N)/λ1).

Step 4: Evaluate . 

Here, I[•] is the indicator function which returns 1 if the
condition in the bracket is satisfied; otherwise it returns 0.

Step 5: Repeat Step 1 to Step 4 for different values of
the scaling factor λ; the dataset (λp, Î(λp)), p = 1, 2, ...., np

is obtained.
Step 6: Estimate the parameters q of the functional

form f(λq) in Eqn 21 or Eqn 33 using the dataset
obtained in Step 5.

Step 7: Evaluate the probability integral of interest by
extrapolation as I = I(1) � f (1q̂)where q̂ are the
parameters estimated in Step 6.

Note that in Step 1 trial-and-errors may be required in
order to identify the value of λ that corresponds to
relatively high probability I(λ). In Step 5, several methods
are available for estimating the parameters q, e.g. non-
linear least square methods and Bayesian regression
methods. It should be mentioned that the programming
code for the parameter estimation is independent from the
steps until Step 4; that is, once the programming code is
established it can be utilized for different applications.
Finally, it is recommended that this procedure is repeated
using several datasets consisting of different ranges of the

ˆ( ) /I
N

I g T
mj n

l

j

J

m

M m

λ λ
1 1

11

1
0= ( )( ) <













( )

==

u∩∪
ll

N

=
∑

1

D g TU mj n
j

J

m

M m

λ λ( ) = ( )( ) <










==

u / 0
11

IU

I dn n nDU

λ φ
λ

( ) = ( )
( )∫ u u

Extrapolation Method for System Reliability Assessment: A New Scheme

1902 Advances in Structural Engineering Vol. 15 No. 11 2012



scaling factor λ in order to examine that the probability
integrals obtained by the extrapolations are stable.

Before investigating the performance of the proposed
scheme with examples, it should be mentioned here that
the presence of the nonlinearity in the limit state functions
is not an additional difficulty in applying the presented
scheme, compare to FORM (or SORM) or the ordinary
Monte Carlo simulations. This is because the scaled
failure domains are equivalent to the original failure
domains in the sense that these still define the same
failure events only with different augments of the limit
state functions; one with the original basic random
variables (Un), and the other with the scaled variables
(Un /λ) (see Eqn 18). The difference appears only in the
likelihood of the failure events, due to the scaling of the
failure domains. These can be also seen in Step 4 above,
where the original limit state functions are evaluated with
realizations of the scaled random variables.

4. EXAMPLES
In this section, several examples are investigated to
compare the performances of the three schemes as
introduced and presented in the foregoing. The orders of
magnitudes of the probabilities evaluated by the
extrapolation vary in the range from 10–5 to 10–9,
whereas the ranges of the probabilities with which the
parameters of the functional forms are estimated are fixed
as [10–2,10–3]; thus, the performances are investigated
with different degrees of the extrapolation.

In these examples, the values of the scaled/shifted
probability integrals are estimated by means of crude
Monte Carlo simulations with 106 samples for each, which
is sufficient enough to guarantee that the statistical errors
associated with the evaluations of the probability integrals
are negligible. The parameters q are estimated with the
transformed dataset of (λp, ln I(λp)) for the proposed
functional forms, (ηp, β(ηp)/ηp) for the functional form
proposed by Bucher (2009), and (γp′, ln I(γp′)) for the
functional form proposed by Naess et al. (2009). Since the
scaling factor η in the scheme proposed by Bucher (see
section 3.1) play the role equivalent to the scaling factor λ
in the proposed scheme, for convenience the scaling factor
η is symbolized by λ in the following. However, the
scaling factor γ is not equivalent to η and λ, and the dataset
of λp′ and may have different values with λp. In the
parameter estimations, a standard non-linear least squares
method (i.e. the function lsqcurvefit in MATLAB®) is
utilized. The initial values of the parameters are set equal
to 0.8 for the examples presented.

In the following sections, a selection of
representative examples and their results are shown and
discussed. Discussion on these numerical results is
provided in section 5.1.

4.1. Critical Example from Section 2.1.2
The critical example in section 2.1.2 is reconsidered. In
this example, the procedure for the application of the
proposed scheme for the case of non-normal random
variables is illustrated step-by-step.

The probability integral I in Eqn 7 can be transformed
into the probability integral in the standard normal space
(uR, uS) as:

(38)

where FR(r) and FS(s) respectively are the cumulative
distribution functions of the random variables R and S.
These are written as:

(39)

(40)

Therefore, Eqn 7 can be rewritten as:

(41)

Thus, the scaled probability integral I(λ) is formulated
as:

(42)

and I = I(1), see also Figure 8.
The parameters in the functional form proposed by

Naess et al. (2009) are estimated using the points in the
range γ ∈[0.86, 0.95], and the range for other two forms
are λ∈[0.42, 0.58]. The integrals in the ranges are
computed by means of Monte Carlo simulations. Here,
k = 1 since the integral domain involves only one limit
state function. The result is shown in Figure 9.

Note that Eqns 41 and 42 shown above are only for
the illustrative purpose. In practice, the explicit
transformation of the domain is not required; instead,
the procedure written in section 3.5 should be
followed.
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4.2. Critical Example from Section 2.2.2
The critical example shown in section 2.2.2 is considered
in the case of c = 3 and η0 = 1. The result is shown in
Figure 10. Here, k = J1 = 3 since there are J1 (= 3) limit
state functions whose values are equal to zero at the design
point (c, c, c). The detailed discussion about the choice of
k in the case that the “active” limit state functions is
generally unknown a-priori is given in section 5.2.

4.3. Parallel and Series System Reliability
Consider the probability integral in the following form:

(43)

where the integral domains Di (i = 1, 2, 3, 4) (see also
Figure 11 and Figure 12) are:
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the last two domains correspond to the reliability
analyses of series systems. Here, note that the integral
domain D4 is considered as a special case of series
system where the design points of all (infinite number
of) the limit state functions are located at the same
distance to the origin. The numerical results are shown
in Figure 13.

4.4. Practical Examples
4.4.1. Daniels system
The Daniels system is considered as a typical example
of parallel systems in practice, which is taken from Song
and Der Kiureghian (2003), see also Figure 14. There
are totally six ideally brittle wires in the system. The
strengths Xi (i = 1, 2, ..., 6) of the six wires are assumed
to identically and independently follow the Weibull
distribution:

(48)

The load P is assumed to be deterministic, equal to
4.5, and uniformly distributed to the wires. If some of
the wires fail, the load is uniformly redistributed over
the surviving wires. The failure of the system is defined
as the event that all the six wires fail. The numerical
result is shown in Figure 15.

F x x xXi
( ) = − −( ) >( )1 0 01 010exp .

4.4.2. Simple truss structure
The truss bridge example investigated in Naess et al.
(2009) (originally presented in Thoft-Christensen and
Murotsu 1986) is considered, see Figure 16. It is
assumed that: the yield stress σm of each truss member
(m = 1, 2, ...., 13) follows the normal distribution; the
loads P1, P2, P3 follow the normal distribution also; all
these random variables are assumed to be independent
to each other; the cross section Am of each truss member
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Figure 13. Extrapolation results [Example 1 (left, top), Example 2 (right, top), Example 3 (left, bottom), Example 4 (right, bottom)]
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Figure 14. Example of Daniels system



and the representative length L are deterministic, see
Table 1 for the definitions of these random variables and
constants. 13 failure modes are considered as the
constituents of the series system failure, and the
corresponding limit state functions are given as:

(49)g P P P A a P a P a Pm m m m m m mσ σ, , ,1 2 3 1 1 2 2 3 3( ) = − + +( )

The values of the coefficients am1, am2, and am3 are
provided in Table 1. The failure domain is written as:

. The numerical result is

illustrated in Figure 17.

4.4.3. Redundant truss structure
The truss structure presented in Thoft-Christensen and
Murotsu (1986) is considered, with some changes in the
parameters of the structural elements. The geometry of
the truss structure is illustrated in Figure 18. The truss
structure is subject to a horizontal load P concentrated on
the top. Assuming that the elements 1, 2, 5 and 6 are not
to fail (i.e. the yield strengths are infinite), two failure
modes are considered: In the first mode, the element 3
fails first, the load is redistributed over the surviving
elements, then the element 4 fails; in the second mode,
the element 4 fails first, the load is redistributed over the
surviving elements, then the element 3 fails. The
corresponding domain D of failure is written as:

(50)
D A P A P

A P A
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Table 1. Variables, constants and coefficients in the

example of the simple truss structure (m = 1, 2, ...., 13)

Probability Coefficient of
distribution Mean value variation

sm (MPa) Normal 275.8 0.15
Pm (kN) Normal 89 0.15

Deterministic value
Am (cm2) 18.7,13.1,11.7,11.3,3.3,8.0,18.7,13.1,11.7,11.3,3.3,

11.7,11.7
L(m) 2.54

Coefficient
am1 0.9186, 0.3029, 0.5303, 1.0, –0.4186, 0.1835, 0.3062,

0.3029, 0.1768, 1.0, 0.1938, 0.5303, 0.1768
am2 0.6124, 0.6058, 0.3535, 0,0.3876, 0.3670, 0.6124,

0.6058, 0.3535, 0,0.3876, 0.3536, 0.3536
am3 0.3062, 0.3029, 0.1768, 0, 0.1938, 0.1835, 0.9186, 

0.3029, 0.5303, 0, 0.4186, 0.1768, 0.5303
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L
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4
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3

Figure 18. Example of redundant truss structure
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where σi, Ai (i = 3, 4) represent the (random) yielding
strength and (deterministic) cross section area of the
element i, the properties of which are provided in Table 2.
The numerical results are given in Figure 19.

5. DISCUSSIONS
5.1. Performances of the Three Schemes in the

Examples
The values of the probability integrals obtained by the
three schemes as well as the exact values in the
examples in the previous section are presented in Table 3.
As shown in the table, the proposed scheme works well
for all the examples. The evaluated probabilities by the
proposed scheme are generally associated with very
small errors as compared to the corresponding “exact”
values. The “exact” values are either theoretical
solutions or the solutions by sufficiently large number of
Monte Carlo simulations. Note whereas the probabilities
in the examples are set to vary in the range from 10–5

and 10–9, the probabilities of practical interest are often
higher. Thus, the degree of the extrapolation in practical
applications is smaller, and it is anticipated that the
errors of the evaluated probability integrals by the
proposed scheme are even smaller. The other two
schemes work well for most of the examples except for
the critical examples. The scheme proposed by Naess
et al. (2009) tends to fail for the cases when the basic
random variables are significantly different in their tails
from the normal random variables (see the example in
section 4.1). This is because the extrapolation scheme
takes basis in the original space, and the functional form
for the extrapolation is postulated based on the
asymptotic characteristics of normal variables. The
scheme proposed by Bucher (2009) tends to fail for
the case of parallel system reliability (see the example in
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Table 2. Random variables and constants in the

example of the redundant truss structure

Random Probability Coefficient
variable distribution Mean value of variation

σ3 (MPa) Normal 300 0.1
σ4 (MPa) Normal 300 0.1
P (kN) Lognormal 250 0.15

Deterministic value
Ai(m2) A3 = A4 = 2 × 10−3

Table 3. Comparison of the numerical results (values in the brackets are the ratio of the evaluated value by

extrapolation over the exact value)

Result

Example Naess et al. Bucher Proposed Exact

Critical example in 1.35 × 10–4 3.17 × 10–7 4.99 × 10–7 4.97 × 10–7

section 2.1.2 (2.71 × 102) (0.64) (1.00)
Critical example in 8.49 × 10–9 5.03 × 10–11 2.46 × 10–9 2.46 × 10–9

section 2.2.2 (3.45) (2.00 × 10–2) (1.00)
Example 1 4.01 × 10–8 1.53 × 10–8 4.14 × 10–8 4.14 × 10–8

(section 4.3) (0.97) (0.37) (1.00)
Example 2 6.93 × 10–8 2.29 × 10–8 4.66 × 10–8 4.14 × 10–8

(section 4.3) (1.67) (0.55) (1.13)
Example 3 3.14 × 10–7 2.53 × 10–7 3.05 × 10–7 3.06 × 10–7

(section 4.3) (1.03) (0.83) (1.00)
Example 4 3.73 × 10–6 4.39 × 10–6 4.38 × 10–6 3.73 × 10–6

(section 4.3) (1.00) (1.18) (1.17)
Daniels system 9.11 × 10–6 6.86 × 10–6 4.45 × 10–6 4.99 × 10–6

(1.83) (1.38) (0.89)
Simple truss 2.68 × 10–5 2.60 × 10–5 2.60 × 10–5 2.80 × 10–5

structure (0.96) (1.38) (1.38)
Redundant truss 9.94 × 10–7 7.39 × 10–7 7.99 × 10–7 8.88 × 10–7

structure (1.12) (0.83) (0.90)
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Figure 19. Extrapolation results in the example of the redundant
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section 4.2). Note, however, that the scheme is
originally proposed only for the case of component
reliability assessment.

5.2. Choice of the Unknown Parameter, k
As mentioned in section 3.3, the number of the active
limit state functions k is generally unknown a-priori, yet

does not exceed k
~ 

= min . A strategy for

the choice of the parameter k in the functional form for
the extrapolation is to assume k = k

~
. The values of k

adopted in the examples presented above is listed in
Table 4. If the number of the active limit state functions
is smaller than k

~
, it is anticipated that the estimated

values of ci (i = k + 1, ..., k
~

) in the curve fitting are close
to zero, imposing the restriction ci ≥ 0 so that the value

of the product term varies slowly as a

function of λ, hence, it does not significantly contribute
to the change of the value of  f(λq) in Eqn 33.

For instance, in the example of Daniels system it is
assumed that k = k

~ 
= 6 and the estimated values of (ĉ1,

ĉ2, ĉ3, ĉ4, ĉ5, ĉ6) are (4.97, 1.5 × 10–8, 1.5 × 10–8, 1.5 ×
10–8, 1.5 × 10–8, 1.5 × 10–8). Thus, it means that only one
of the six limit state functions is effectively active,
although the Daniels system is in fact a parallel system.
This is consistent with the observation that in the
Daniels system the probability of cascading failure
given that one of the elements fails is relatively high;
hence, the first failure of an element dominantly
contributes to the system failure.

5.3. Applicability of the Functional Form for
Extrapolation

The asymptotic form (Eqn 21) and its extension thereof
(Eqn 33) are derived assuming that there is a single
design point on the boundary ∂D of the integral domain
D in the standard normal space (see also the derivation
of the Theorem 1 in Breitung and Hohenbichler 1989).
However, the functional forms are valid for the case of

Φ
i k

k

ic
= +
∏ −

1

%

( )λ

n J
m M

m, max
,...,=





1

multiple (yet finite numbers of) design points. In Eqn
19, for all the design points, the values of un

* are
identical, whereas the values of the

constant term (2π)–k/2det(A)–1 det (B)–1/2

and the exponent –k of λ may differ. In case when the
values of k are identical for all the design points, by
summing up the respective constant terms, the same
form of Eqn 21 is derived. In case when the values of k
differ between the design points, only the design
point(s) with the largest values of k are asymptotically
relevant. By summing up the corresponding constant
terms for these design points, the same form of Eqn 21
is derived. For the case when the distances to two or
more of the limit state functions are close, and for the
case when the number of design points is infinite, the
applicability is numerically investigated and is
confirmed (Examples 3 and 4 in section 4.3).

Here, it should be mentioned that the term a(λ)
approximated in Eqn 32 generally plays the role for
incorporating all the characteristics of scaled probability
integrals I(λ) that are not considered in the term

, and it is responsible for the asymptotic

characteristics of I(λ).

5.4. Further Applications of the Proposed
Scheme

As further applications of the proposed scheme,
reliability assessments of various types of engineered
systems, such as high dimensional systems and dynamic
systems, are promising. In this respect, Sichani et al.
(2011a, b) has recently applied the asymptotic approach
to high dimensional structural dynamic problems and
the first passage probability of high-dimensional
nonlinear systems. In these papers, two advantages of
the scheme proposed by Bucher (2009) are pointed out.
The first advantage is that the method is actually a
“black box” method, which does not require any a-priori
knowledge of the system. The second advantage is that
the scheme has low demand on the data storage of the
pre-processing, time history of the previous simulations
in terms of excitation or response. Since the proposed
scheme in the present paper shares the same principle
idea with the scheme by Bucher (2009), it is anticipated
that the proposed scheme should have wide applicability
as indicated by Sichani et al. (2011a, b).

6. CONCLUSIONS
The present paper proposes a new scheme for the
probability integral solution by extrapolation for the
reliability assessment of complex systems. The idea of

Φ
i

k

ic
=
∏ −

1

( )λ

γ i
i

k
–1

1=
∏
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Table 4. Values of k adopted in the examples

Example k

Critical example in section 2.1.2 1
Critical example in section 2.2.2 3
Example 1 (section 4.3) 2
Example 2 (section 4.3) 2
Example 3 (section 4.3) 1
Example 4 (section 4.3) 1
Daniels system 6
Simple truss structure 1
Redundant truss structure 2



the new scheme comes from the novel class of
approaches to the evaluation of probability integrals by
Naess et al. (2009) and Bucher (2009). The proposed
scheme in the present paper is formulated as an
extension of the scheme by Nishijima et al. (2010) to the
cases where the basic random variables are not normal.
A number of examples, including critical examples to
the approaches by Nishijima et al. (2010) and Naess et
al. (2009), representative series and parallel systems and
practical structural systems, are investigated to illustrate
the performance of the proposed scheme. It is found that
the proposed scheme performs well for all the examples.
Finally, technical issues in the implementation of the
scheme in practice are discussed.
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