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Abstract in English

Density functional theory (DFT) emerged almost 50 years ago. Since then DFT has
established itself as the central electronic structure methodology for simulating atomic-
scale systems from a few atoms to a few hundred atoms. This success of DFT is due to
a very favorable accuracy-to-computational cost ratio. In a wide range of applications,
in fields as diverse as condensed matter physics over geophysics, chemistry, and chem-
ical engineering to molecular biology, DFT now continuously delivers the theoretical
base for experimental interpretation and forms an essential component for establishing
reliable insights and generation of knowledge. In spite of the great successes of DFT,
fundamental challenges still exist for the theory. Systematic improvement of the cen-
tral ingredient in the theory—the approximate exchange–correlation functional—is by
no means a straightforward task: Some materials and chemical properties are simply
not treated acceptably well, errors are unknown and often difficult to control, and
it is difficult to evaluate whether a highly optimized, empirically fitted, functional is
truly a “good” functional or whether it is merely over-parametrized and overfitted. In
this thesis I address these problems systematically. It is here analyzed carefully which
ingredients must be included to establish a functional which simultaneously performs
well for a range of important materials and chemical properties. A general method-
ology is defined for the multi-objective fitting of exchange–correlation functionals in
a language that naturally allows for error prediction within DFT. The optimization
methodology includes as a central ingredient establishment of a compromise between
high transferability (measured by the smoothness of the resulting functional) and low
prediction error using statistical resampling techniques, thereby systematically avoid-
ing problems with overfitting. The first ever density functional presenting both reliable
accuracy and convincing error estimation is generated. The methodology is general
enough to be applied to more complex functional forms with higher-dimensional fitting
and resampling. This is illustrated by searching for meta-GGA type functionals that
outperform current meta-GGAs while allowing for error estimation.





Resumé på dansk

Tætheds-funktional teori (DFT) opstod for næsten 50 år siden. Siden da er DFT
blevet den vigtigste elektron-struktur metode til simulering af atomar-skala systemer
fra et par atomer til få hundrede atomer. Baggrunden for dette er et meget favora-
belt forhold mellem nøjagtighed og beregningsmæssig omkostning. I en bred vifte af
anvendelser, indenfor felter så forskellige som faststoffysik over geofysik, kemi og ke-
miteknik til molekylær biologi, leverer DFT nu kontinuerligt det teoretiske grundlag
for fortolkning af eksperimentelle resultater, og danner et essentielt grundlag for etab-
lering af pålidelige indsigter og frembringelse af ny viden. På trods at denne store
succes for DFT har teorien stadig fundamentelle udfordringer. Systematisk forbedring
af den helt centrale komponent i teorien—det approximative exchange–korrelations-
funktional—er på ingen måde en simpel opgave: Visse typer af materialer og kemiske
egenskaber behandles simpelthen ikke nøjagtigt nok, usikkerheder på beregninger er
ukendte og ofte svære at kontrollere, og det er vanskeligt at bedømme om et stærkt
optimeret, empirisk tilpasset, funktional virkelig er et “godt” funktional, eller om det
blot er over-parametriseret og “overfittet”. I denne afhandling adresserer jeg systema-
tisk disse problemer. Der udføres en omhyggelig analyse af hvilke ingredienser der bør
inkluderes for at frembringe et funktional som virker godt for en hel række af vigtige
egenskaber i materiale-fysik og kemi. En generel metodik defineres for multi-objektiv
optimering af exchange–korrelations-funktionaler i en formulering som helt naturligt
leder til usikkerheds-estimater i DFT. Et centralt element i optimerings-metoden er
bestemmelse, ved hjælp af resamplings-teknikker, af et kompromis mellem høj transfe-
rabilitet (målt på blødheden af det resulterende funktional) og lav fejl på forudsigelser.
Herved undgås systematisk problemer med overfitning. Det første tætheds-funktional
med både pålidelig akkuratesse og overbevisende usikkerheds-estimater fremstilles. Me-
todikken er generel nok til at blive anvendt på mere komplicerede funktionelle former
med højere-dimensional optimering og resampling. Dette illustreres med en søgning
efter nye funktionaler af meta-GGA-typen, som overgår nuværende meta-GGA funk-
tionaler, samtidig med at metoden tilbyder muligheden for usikkerheds-estimater.
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Chapter 1

Introduction

Modern materials science is an ever growing effort to understand the phenomena de-
termining the properties of materials and processes on the atomic level. Though sig-
nificant progress has been made in experimental techniques to unravel the secrets of
condensed matter physics and chemistry, the interactions between nuclei and electrons
are ultimately governed by the laws of quantum mechanics and the electronic struc-
ture of matter. Computational approaches to materials science are therefore becoming
increasingly important, and density functional theory (DFT) in particular. Such first
principles calculations offer not only a framework for fundamental understanding of
processes in nanoscale physics and chemistry, but also computer-aided design of new
materials for future technologies.1,2

Catalysis and surface chemistry in general is one branch of materials science, and is of
immence importance to modern day chemical and petrochemical industry. A catalyst
is a substance which accelerates a chemical reaction without itself being consumed in
the process. In heterogeneous catalysis the catalyst material is ususally a solid and the
molecular reactants and reaction products may be in the gas phase or liquid phase.
Modern DFT methods have proven highly valuable for elucidating mechanisms and
fundamental trends in enzymatic and heterogeneous catalysis,3–7 and computational
design of chemically active materials by “electronic structure engineering” has been
demonstrated.8–11 The catalyst takes part in a continuous cycle, where gas phase
molecules approach the chemically active surface and bonds to it (adsorbs), whereafter
one of more chemical transformations (most often bond rupture and formation) leads
to the reaction product(s), which may then leave the surface in a desorption process.
The active site is (ideally) unaltered after a catalytic cycle.12,13
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The first catalytic step is adsorption of reactants. This is an exothermic process; it is
energetically favorable for the reactant molecules to bond to the surface (and possible
dissociate), and the total energy of the combined system of surface plus reactant
is lowered upon adsorption. Interactions develop when the molecule approaches the
surface, leading first to physical adsorption (physisorption) mediated by long-range van
der Waals (vdW) type interactions. However, no actual chemical bonds are formed.
As the adsorbate gets closer, significant overlaps develop between the surface and
adsorbate electron densities. Hybridization occurs and a surface–reactant chemical
bond is formed. This is chemical adsorption (chemisorption), the first step in most
catalytic processes of industrial relevance.13 Note also that an energy barrier often
separates the physisorbed and chemisorbed states (a transition state), which must be
surmounted for the reaction to proceed to products. Reaction barriers often separate
intermediate reaction steps as well, even in the gas phase. Accurate calculation of
adsorption energies and reaction barriers for virtually any thinkable (and unthinkable)
combination of adsorbate and surface substrate are important targets of DFT for
surface science applications, including catalysis.

The quest: Versatile density functionals

Density functional theory relies in practice on approximations to the exact density
functional, which is supposed to account for exchange–correlation (XC) effects between
electrons. Several levels of XC approximation may be applied, and the challenge is to
obtain the maximum computational accuracy with the computing resources available.
The generalized gradient approximation (GGA) is very popular in surface science due
to a high accuracy-to-cost ratio for many applications, but suffer from a range of
shortcomings. Thus, common GGA functionals are well-suited for computing many
important quantities in chemistry and condensed matter physics, but appear to be
fundamentally unable to accurately describe the physics and chemistry of a surface
at the same time. Moreover, the van der Waals dispersion interactions responsible
for physisorption phenomena are not accounted for by GGAs. Surface science is an
interdisciplinary field, straddling from solid state physics to chemistry and even biology.
Furthermore, the interest in applying DFT to more and increasingly complex problems
in is not likely to decrease in the years to come. Computationally tractable general-
purpose density functionals are therefore a highly active field of research. The work
presented here constitute the first few steps in a novel approach to development of
versatile density functionals for surface science.
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Outline

This thesis is organized “bottom-up”, the fundamentals first and applications last, and
chapters are expected to be read succesively. Chapter 2 introduces the basics of elec-
tronic structure calculations with a focus on the principle and application of density
functional theory, but wavefunction methods are also briefly discussed. Chapter 3 in-
troduces common levels of exchange–correlation approximations from the point of view
of application, while Chapter 4 considers mainly a range of benchmark datasets from
high-level theory or experiments. These are used for evaluating XC approximations
throughout.

In Chapter 5 the vdW-DF approach to dispersion forces in DFT is introduced, and
several variants of this method are evaluated in terms of general applicability within
theoretical chemistry and solid state physics. Moreover, a potential improvement of the
vdW-DF method by inclusion of semilocal correlation contributions to the otherwise
purely local part of the correlation functional is proposed. Calculations of benzene
physisorption on the noble (111) surfaces of Cu, Ag, and Au support this construction
as compared to the original vdW-DF.

Chapter 6 introduces some basic principles of Bayesian statistics and machine learning
methods for efficient but controlled parametrizations of mathematical models. These
tools are applied in Chapter 7, where a methodology for parametrization of general-
purpose density functionals is developed. As a bonus, an ensemble of functionals
designed for systematic error estimation in DFT comes out naturally. This machinery
is applied for generating the BEEF-vdW, a reasonably versatile GGA+vdW density
functional for surface science. Finally, in Chapter 8, the latest developments in our
group towards even better XC models are highlighted. This includes the so-called
meta-GGA XC model space, and promising results have been obtained. This is, how-
ever, work in progress.





Chapter 2

Electronic Structure
Calculations

Successful use of electronic structure calculations rests heavily on useful approxima-
tions for solving the Schrödinger equation for mutually interacting electrons and nuclei.
The challenge is therefore to determine, as accurately as possible given the computa-
tional ressources at hand, the ground state many-body wavefunction for atomistic sys-
tems. This chapter introduces density functional and wavefunction-based methods for
tackling the interacting many-body problem, with emphasis on exchange–correlation
(XC) approximations for density functional theory (DFT). Methodologies for practi-
cal implementation of DFT in computer codes are also discussed. Atomic units are
used throughout, meaning e = ~ = a0 = me = 1 for the unit charge, reduced Planck
constant, Bohr radius, and electron mass, respectively.

2.1 Many-body problem

A fundamental postulate of quantum mechanics is that all information about a system
of particles is contained in the many-body wavefunction |Ψ〉 for the particles.14 In
electronic structure theory these particles are the electrons and nuclei constituting
matter,15 and the wavefunction is in general an eigenstate of the time-independent
and non-relativistic many-body Hamiltonian Ĥ,

Ĥ|Ψn〉 = εn|Ψn〉 (2.1)
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where |Ψn〉 is labeled by the state label n and εn is the corresponding energy eigenvalue.
The ground state wavefunction |Ψ0〉 yields the ground state total energy ε0 for the
fully interacting quantum system.

2.1.1 Electronic Hamiltonian

The many-body Hamiltonian in the Schrödinger equation (2.1) consists of the kinetic
energy of all particles (electrons and nuclei) as well as inter-particle interactions. All
particles are thus correlated, and the ground state position of each depends on the
positions (and spins) of all others in a highly complicated manner. A common and
very reliable simplification is applying the Born–Oppenheimer (BO) approximation:16

Since the nuclei (or ions) are much heavier than electrons, the former may be treated
as infinitely heavy. This corresponds to neglecting the nuclear kinetic energy and any
other quantum interactions involving nuclei. Applying this static-ion approximation
we consider an electronic Hamiltonian,

Ĥ = T̂ + V̂int + V̂ext

= −1

2

∑
i

∇2
i +

1

2

∑
i6=j

1

|ri − rj |
−
∑
i,I

Zi
|ri −RI |

,
(2.2)

where lowercase (uppercase) indices denote electrons (ions). The first operator, T̂ ,
sums up the the electron kinetic energies expressed in terms of the Laplacian with
respect to electron coordinates, V̂int sums all electron–electron interactions, and V̂ext
electron–ion interactions. The latter is the electrostatic potential of the fixed ions
acting on the electrons, which is “external” to them.

The electronic Hamiltonian depends only parametrically on the ion positions RI and
looks rather friendly at first sight, but is far from trivial. It contains many-body quan-
tum mechanical interactions between all electrons, and is not solvable analytically
except in very simple cases, such as the hydrogen atom. The N -electron wavefunction
|Ψ〉 depends on the 3N spatial coordinates and N spin coordinates, and must be anti-
symmetric under electron permutation in order to satisfy the Pauli exclusion principle
for fermions. However complicated, it is the fundamental Hamiltonian in electronic
structure theory. In practice, the vast majority of electronic structure calculations
aims at approximately solving (2.1) for the electronic Hamiltonian (2.2).

2.1.2 Ground state quantities

Solution of the Schrödinger equation (2.1) is an eigenvalue problem for the many-
electron eigenstates. Once these are found, any physical observable O for some state
of the system is the expectation value of the corresponding operator Ô with the wave-
function in question,

〈Ô〉 = 〈Ψ|Ô|Ψ〉, (2.3)



2.1 Many-body problem 7

where |Ψ〉 is assumed normalized, 〈Ψ|Ψ〉 = 1.

The ground state total electronic energy E0 of a system of electrons and static ions
is one primary object of electronic structure calculations. It is the expectation value
of the Hamiltonian operator with the ground state (the N -electron state yielding the
lowest energy), which is the zero-temperature equilibrium state for the interacting
electrons in the potential of the static ions.17

The total electron density n(r) is another important quantity. It is defined such that
n(r)dr is the probaility of finding an electron in the spatial volume element dr around
r. The density operator n̂(r) may be defined in terms of the Dirac delta function,

n̂(r) =

N∑
i=1

δ(r − ri), (2.4)

such that the electron density is an integral over the coordinates of N − 1 electrons,

n(r) =

N∑
i=1

〈Ψ|δ(r − ri)|Ψ〉 = N

∫
d2 . . . dN |Ψ(r, r2, . . . , rN ), (2.5)

where we have implicitly summed over electron spins, n(r) = n↑(r) + n↓(r).

The expectation value of the external potential operator in (2.2) is simply the action
of the external potential vext(r) on the electron density,

〈V̂ext〉 = 〈Ψ|
N∑
i=1

vext(ri)|Ψ〉 =

∫
vext(r)n(r)dr, (2.6)

where the sum is over electrons. The total energy of the electronic Hamiltonian (2.2)
may therefore be written

E = 〈Ĥ〉 = 〈Ψ|Ĥ|Ψ〉 = 〈T̂ 〉+ 〈V̂int〉+

∫
vext(r)n(r)dr, (2.7)

for ground and excited states of the atomistic system.

2.1.3 Hartree–Fock approximation

The Hartree–Fock (HF) approximation is a standard method in electronic structure
theory. Each N -electron eigenstate (ground and excited states) is assumed describable
by a single Slater determinant, an antisymmetrized product of one-electron wavefunc-
tions (orbitals). Each electron i is assumed to move in an effective potential V̂ ieff(r),
set up by the ions and all other electrons,15

V̂ ieff(r) = V̂ext(r) + UH(r) + V̂ ix(r), (2.8)
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where UH(r) the Hartree potential describing the classical electrostatic interaction of
the electron density with itself,

UH(r) =
1

2

∫
n(r)n(r′)

|r − r′| drdr
′. (2.9)

The last term in (2.8), V̂ ix , is the HF exchange interaction accounting for repulsion
between electrons of equal spin due to the Pauli exclusion principle.

The HF Hamiltonian is then written

Ĥi
HF = T̂ + V̂ ieff = T̂ + UH + V̂ext + V̂ ix . (2.10)

If compared to (2.7), it is seen that the sum UH + V̂ ix represents electron–electron
interactions in an orbital dependent fashion, since the exchange potential depends
explicitly on each particular orbital i. We note in passing that the (unphysical) self-
interaction of an electron interacting with itself contained in UH is cancelled out be an
equal but oppositely signed term in V̂ ix when taking the expectation value of Ĥi

HF.

One may apply the variational principle

E0 ≤ 〈Ψ|Ĥ|Ψ〉, (2.11)

in search for the normalized single-determinant HF wavefunction |HF〉 that minimizes
the expectation value of the HF Hamiltonian. Starting from a trial wavefunction, the
self-consistent field method (SCF) is an iterative improvement of |Ψ〉 towards |HF〉 by
minimizing the total energy with respect to all degreees of freedom in the wavefunction.
We return to the SCF method in Section 2.3.

In the HF approximation the true ground state is, however, almost never found. The
HF Hamiltonian neglects all electron–electron correlations except exchange repulsion
between equal-spin electrons (Pauli repulsion). The neglected interactions are in wave-
function theory referred to as correlation, which may even be further grouped into
dynamical and static correlation.18 However, the distinction between exchange and
correlation becomes more fuzzy in approximate density functional approaches to elec-
tronic structure (more about this later).

Lastly, it is important to note that a wealth of high-level quantum chemical approaches
to solving the N -electron Schrödinger equation take the HF solution as a starting point
for elaborate approximations to the neglected correlation interactions. These are not
really the topic of this thesis, but several of the most accurate wavefunction methods
provide quality benchmark data, which are used in the present work for assessing the
abilities of more approximate DFT approaches. Some of the most relevant post-HF
quantum chemical methods are18

• Configuration-interaction (CI) method: The exactN -electron ground state
is approximated by a linear combination of Slater determinants rather than a
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single one as in HF. The CI ground state may be thought of as arising from
increasingly higher-order electron excitations out of the |HF〉 solution, that is,
single, double, triple, etc. excitations.

• Coupled-cluster (CC) method: The linear CI expansion to infinite excita-
tion order (full CI) is recast as a product wavefunction, and the CC solution
is then a linear combination of excited configurations relative to |HF〉. This
method converges faster towards the true wavefunction for increasing excita-
tion order than CI does. The coupled-cluster method with single, double, and
perturbative triple excitations, CCSD(T), is today a standard high-level tool in
quantum chemistry.

• Møller–Plesset (MP) pertubation theory: Simply applying pertubation
theory to second order or higher on the HF ground state leads to estimates of
the missing correlation energy at the MP2, MP3, MP4, etc. levels of theory.
Especially the MP2 method provides a favorable accuracy-to-cost ratio.

The particularly interested reader is referred to the authoritative textbook of Hel-
gaker et al. (Ref. 18).

2.2 Density functional theory

Density functional theory19–21 takes a rather different approach to the interacting
N -electron problem than wavefunction-based methods attempting to refine the HF
solution. The fundamental principle of DFT is that any property of a fully interacting
system of electrons can be viewed as a functional∗ of the ground state electron density
n0(r). It was thus proved in the pioneering work of Hohenberg and Kohn,19 almost
50 years ago, that the scalar function n0(r) in principle determines all ground- and
excited-state properties of the system. In two theorems, now known as the Hohenberg–
Kohn (HK) theorems, they basically showed that there is a one-to-one correspondence
between a given external (ionic) potential and the ground state electron density. That
is, the ground state density of N electrons in some external potential is unique in the
sense that it is not producible by any other external potential. It follows that the
N -electron Hamiltonian is also determined by n0(r) (except for a trivial constant),
and in principle also any N -electron wavefunction of the system.15

HK-DFT is therefore nothing less than a simple but exact theory of correlated many-
body systems, including any system of interacting particles in an external potential.
It leads to the total energy functional EHK[n(r)],

EHK[n] = T [n] + Eint[n] +

∫
vext(r)n(r)dr, (2.12)

∗ If the function y(x)maps the vector argument x to the scalar function value y, the functional
F [y(x)] is a function of the function y(x), and maps x to F through y.
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where n = n(r) for ease of notation. Again, T [n] is the electron kinetic energy,
Eint[n] electron–electron interaction energies, and the last term the energy of the
ionic potential acting on the electrons. Though not a necessary condition, (2.12) is
clearly written assuming validity of the BO approximation. Since T [n] and Eint[n] are
functionals of the electron density only, they constitute a universal functional F [n],
valid for any system of electrons independently of the external potential. We may
therefore write

EHK[n] = F [n] +

∫
vext(r)n(r)dr, (2.13)

F [n] = T [n] + Eint[n]. (2.14)

The HK approach boils down to knowing F [n] and minimizing the total energy (2.13)
with respect to all variations in n(r) (the variational principle). The density n0(r) that
minimizes the total energy functional is the ground state density, ultimately composed
of the ground state N -electron wavefunction |Ψ0〉, and the energy E0 is the ground
state total electronic energy.

However, the HK theorems provide no guidance for constructing F [n], but only prove
its existence, and no exact form of F [n] is known for any system of more than one
electron. Was it not for the subsequent work of Kohn and Sham, who provided a
framework for constructing approximate but useful density functionals for systems of
many electrons, DFT would probably have remained a curiosity of condensed matter
physics.

2.2.1 Kohn–Sham formalism

Kohn and Sham proposed in their seminal 1965 work20 to replace the interacting
many-body system of the Hohenberg–Kohn theorems with a fictitious (auxiliary)
independent-particle system that is more easily solved. The Kohn–Sham (KS) for-
malism is based on the ansatz that the ground state electron density of the fully
interacting system equals that of the auxiliary system. The HK approach can then
be reformulated in terms of solvable independent-particle equations, with all the most
difficult electron–electron interactions collected in a single exchange–correlation func-
tional of the electron density. Any auxiliary Hamiltonian will do the job, as long as it
has the correct density in the ground state!

The KS Hamiltonian is thus one for the fictitious system of non-interacting electrons,

ĤKS = −1

2

N∑
i=1

∇2
i + vs(r), (2.15)

where the effective KS singe-particle potential vs(r) is such that n0(r) of ĤKS equals
that of the real (physical) Hamiltonian (2.2). Once we know vs(r), minimizing ĤKS is
trivial: we simply solve the Schrödinger equation for each single-electron state φi(r)
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in the effective potential, (
−1

2
∇2 + vs(r)

)
φi(r) = εiφi(r), (2.16)

where εi is the energy eigenvalue for electron i. The ground state of (2.15) is the Slater
determinant composed of the N lowest eigenstates φi(r) computed from (2.16).

The KS effective potential consists of the Hartree potential, the external potential,
and the XC potential vxc(r),

vs(r) = vH(r) + vext(r) + vxc(r). (2.17)

This is obviously a mean-field approximation for the electrons, but a particularly clever
one: While the majority of the KS Hamiltonian is exact and reasonably easy to treat
computationally, simple but powerful approximations to the XC potential (and energy)
enable electronic structure calculations for systems containing hundreds or thousands
of electrons.21

2.2.2 Total energy and potentials

The KS total energy density functional is a reformulation of the HK one,

EKS[n] = Ts[n] + UH[n] +

∫
vext(r)n(r)dr + Exc[n]. (2.18)

The KS kinetic energy Ts is evaluated on the independent-particle KS orbitals,

Ts[n] = Ts[{φi}] =

N∑
i=1

〈φi| −
1

2
∇2|φi〉, (2.19)

and is therefore implicitly a functional of the electron density n(r) =
∑N
i=1 |φi(r)|2.

This is an important difference from the Hartree–Fock method, where the kinetic
energy is evaluated on an approximation to the physical many-electron wavefunction.

Comparing the HK total energy expression (2.13) to the KS expression (2.18) we may
write the exchange–correlation energy functional as

Exc[n] = FHK[n]− (Ts[n] + UH[n]) , (2.20)

which can be rearranged to

Exc[n] =
(
〈T̂ 〉 − Ts[n]

)
+
(
〈V̂int〉 − UH[n]

)
, (2.21)

where 〈T̂ 〉 and 〈V̂int〉 are evaluated on the true many-body wavefunction. Writing the
XC energy like this explicitly shows how the important, but complicated, many-particle
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electron–electron interactions in the KS formalism are grouped together in a single
functional: Exc is the difference between the kinetic energy plus internal interaction
energies of the interacting many-electron system, and those of the fictitious KS system
with electron–electron interactions replaced by the classical Hartree energy.

With the XC potential defined as the functional derivative of the XC energy with
respect to the density,

vxc(r) =
δExc[n(r)]

δn(r)
, (2.22)

the KS total energy for N electrons of density n(r) may be written

EKS[n(r)] =

N∑
i=1

〈φi| −
1

2
∇2|φi〉+

∫
vext(r)n(r)dr

+
1

2

∫
n(r)n(r′)

|r − r′| drdr
′ + Exc[n(r)].

(2.23)

It must be emphasized that this expression is exact if an exact exchange–correlation
energy functional of the density is applied. Unfortunately, no exact form suitable for
numerical representation and application exists, so in practice we are forced to resort
to approximate representations of Exc[n(r)]. Thus, the XC energy and potential is
formally the only approximation that must be made in actual KS-DFT simulations of
electronic structure.

2.2.3 Force theorem

The total energy (2.23) is determined by the electron density and parametrically by
the ion positions RI ,

E[n(r)] = E(R1,R2, . . . ,RM ), (2.24)

If the ionic positions does not correspond to an energy minimum, there will be forces
FI acting on the ions,

FI = −∂E[n]

∂RI
= −〈Ψ| ∂Ĥ

∂RI
|Ψ〉 − ∂EII

∂RI

= −
∫
n(r)

∂Vext(r)

∂RI
dr − ∂EII

∂RI
,

(2.25)

where the Hellmann–Feynman force theorem is applied, n(r) is the unperturbed elec-
tron density, and EII is classical ion–ion interactions.15 In practice, efficient algorithms
are used for relaxing the real-space structure of a collection of atoms by minimizing the
first principles forces (2.25) acting on them. This should lead to the global equilibrium
strutureR0

I . Moreover, zero-point energies may be obtained from the vibrational spec-
trum of all atoms around R0

I in the harmonic approximation. This requires calculating
(or approximating) second-order derivatives of the total energy, ∂2E/∂2RI |RI=R0

I
.22
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2.2.4 Adiabatic connection fluctuation-dissipation
formalism

Though rarely used in its entire complexity for DFT calculations, the adiabatic con-
nection fluctuation-dissipation (ACFD) formalism23–25 provides a formally exact ex-
pression for the KS exchange–correlation energy. It does so by combining the principle
of adiabatic connection, where the non-interacting Kohn–Sham system is adiabatically
connected to the fully interacting many-electron one, and the fluctuation-dissipation
theorem of DFT.24,25 The latter relates the response of an electronic system after
an external pertubation to fluctuation properties of the system in its ground state.
The ACFD formalism is therefore closely connected to the field of time-dependent
DFT, where electronic structure pertubations out of the ground state (excitations) are
considered.

The starting point of ACFD theory is the Hamiltonian for N electrons interacting with
each other via Coulomb interaction, while moving in a local external potential vext(r),

Ĥ = T̂ + veff = T̂ + vext + vint, (2.26)
where vint(r, r′) = 1/|r − r′| is the nonlocal Coulomb interaction between electrons.
This fully interacting Hamiltonian has n0(r) as its ground state density. Now, the
basic idea is to establish an adiabatic connection between this Hamiltonian and the
corresponding Kohn–Sham one, ĤKS.26 To that end, we introduce a set of Hamiltoni-
ans Ĥλ which describe electrons interacting through Coulomb interactions scaled with
the scalar λ,

Ĥλ = T̂ + vλeff = T̂ + v̂λext + λvint, (2.27)
where 0 ≤ λ ≤ 1, and the external potential vλext is such that n0(r) is unchanged for
all λ. When λ = 0, these electrons are non-interacting and the fictitious system is
nothing but the Kohn–Sham system, vλ=0

eff = vλ=0
ext = vs = vH + vext + vxc. In the other

limit, for λ = 1, the Hamiltonian is the physical one, vλ=1
eff = vext + vint.

If we denote by |Ψλ〉 the ground state of Ĥλ, the point is now that the total electron–
electron interaction may be expressed as a coupling-constant integral over λ,

Eint = UH + Exc =

∫ 1

0

dλ〈Ψλ|vint|Ψλ〉. (2.28)

Introducing the imaginary-frequency density–density response function χλ(r, r′, iu),
the ACFD expression for the XC energy may then be written27

EACFD
xc = − 1

2π

∫ 1

0

dλ

∫ ∞
0

du ×∫
vint(r, r

′)
[
χλ(r, r′, iu) + n(r)δ(r − r′)

]
drdr′. (2.29)

This may be separated into exact expressions for the exchange and correlation energies.
With χ0 = χλ=0 we find the exact exchange (EXX) energy,

EACFD
x = − 1

2π

∫ ∞
0

du

∫
vint(r, r

′)
[
χ0(r, r′, iu) + n(r)δ(r − r′)

]
drdr′, (2.30)
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the DFT analog of Hartree–Fock exchange, but evaluated on KS orbitals. The remain-
ing part must by definition be a formally exact expression for the correlation energy,

EACFD
c = − 1

2π

∫ 1

0

dλ

∫ ∞
0

du

∫
vint(r, r

′)
[
χλ(r, r′, iu)− χ0(r, r′, iu)

]
drdr′. (2.31)

This is an incredibly complicated formulation of correlation effects. In particular, suit-
able forms of the response function χλ are in general unknown, and (2.31) is in any
case extremely demanding from a computational point of view. However, a simple ap-
proximation for χλ yields the (direct) random phase approximation (RPA),26,27 which
has proven highly useful but is still computationally heavy. This EXX+RPA method is
perhaps the most high-level density funtional method in practical use today. The total
electronic energy is usually evaluated on KS orbitals obtained from calculations using
simpler XC approximations, eliminating the need for constructing the XC potential
for exact exhange and RPA correlation.26,28–31

2.3 Implementation of density functional theory

Assuming a good approximation to exchange–correlation effects is readily at hand,
calculating the ground state density and total energy is done using the iterative self-
consistent field procedure: Starting from some trial electron density n(r) we compute
the KS effective potential vs(r) for all electrons and solve (2.16). But the new singe-
particle solutions φ′i(r) correspond to a different density n′(r) =

∑N
i=1 |φ

′
i(r)|2 than

the input one. The output density is then used in a new and improved guess for an
input density. The SCF loop continues until a self-consistent solution is reached, that
is, until a well-converged ground state electronic structure is obtained.

Efficient computational representations of the physical quantities entering this algo-
rithm (densities, potentials, wavefunctions, etc.) are in practice needed. Common
representations include expansion in atom-centered orbitals or plane waves, and nu-
merical representation on a real-space grid.15 Moreover, physical and numerical ap-
proximations are introduced in order to limit the computational cost of the density
functional calculations. This means that the KS equations are hardly ever represented
in their full complexity. It is therefore fair to say that whereas the choice of XC
approximation for a DFT calculation introduces a strichtly physical approximation,
the computational method employed adds further approximations, physical as well as
numerical.

Wavefunctions are the major problem. Since the atomic wavefunctions are eigenfunc-
tions of the atomic Hamiltonian, they must be mutually orthogonal. The atomic core
states are localized around the ion, while the valence states are more delocalized in
space. However, in order to maintain their orthogonality to the core states, the valence
states must oscillate rapidly in the core region. This makes them hard to represent
computationally. The frozen-core approximation is often applied, meaning that core
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orbitals are not allowed to relax in the SCF procedure. This approximation works well
as long as the core states are not significantly affected by the chemical environment
around the atom, which is the case for most purposes.

Using pseudopotentials is a common implementation of the frozen-core approximation.
The pseudopotential is a smoothly varying potential constructed to mimic the effect
of the ion and the core electrons on the valence electrons. Using pseudopotentials for
all ions and core electrons, one solves the KS equations for the valence electrons only,
decreasing the computational load significantly. On the other hand, the method also
discards all information about the full KS single-particle states close to the ion.

All-electron DFT methods, such as the augmented plane wave (APW) method intro-
duced by Slater,32 do not suffer from this. The approach is to divide space up into
two types of regions: atom-centered augmentation spheres in which wavefunctions are
taken as atom-like partial waves in order to reproduce the afore mentioned rapid os-
cillations, and an interstitial bonding region between all atoms where wavefunctions
are expanded in more smoothly varying envelope functions, e.g., plane waves. The
partial waves and envelope functions are matched with value and derivative at the
augmentation sphere boundaries.15,33

All of the DFT calculations presented here are performed using the gpaw software
package.34–36 It employs the projector-augmented wave (PAW) method of Blöchl,33,37

primarily in a real-space grid implementation. Furthermore, the Atomic Simulation
Environment36,38 has provided a convenient interface to gpaw.

2.3.1 Grid-based projector-augmented wave method

The projector-augmented wave method is a very general approach to practical DFT,
extending the augmented-wave methods as well as the pseudopotential approach.39

The prime feature of PAW is a reformulation of the original all-electron Kohn–Sham
problem with rapidly oscillating wavefunctions |ψn〉 near the atomic cores, into a
problem posed in terms of smooth auxiliary wavefunctions |ψ̃n〉 and cleverly chosen
atomic corrections inside the augmentation spheres. This is illustrated in Fig. 2.1.

2.3.1.1 PAW transformation

The switch of representation is done by introducing a linear transformation T =
1 +

∑
a T̂

a between the true KS single-particle wavefunction and the auxiliary wave-
function. It is defined from the requirement |ψn〉 = T |ψ̃n〉, and accounts for the
inadequate representation of |ψn〉 by |ψ̃n〉 inside the atomic core regions a. This leads
to the following expansion of the true wavefunction,

|ψn〉 = |ψ̃n〉+
∑
a

(|ψan〉 − |ψ̃an〉) = |ψ̃n〉+
∑
i,a

(|φai 〉 − |φ̃ai 〉)〈p̃ai |ψ̃n〉, (2.32)
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where the sums are over atomic corrections inside the augmentation sphere for each
atom. These are formulated in terms of partial waves that exhibit the proper oscillatory
behavior, denoted |φai 〉 and |φ̃ai 〉, and local projectors |p̃ai 〉. The true KS wavefunction
is therefore divided into an interstitial part for valence electrons outside the atomic
cores and atom-centered contributions. This is computationally convenient because
the two may then be treated in different numerical schemes. The electron density is
similarly split up,

n(r) = ñ(r) +
∑
a

[na(r)− ña(r)] . (2.33)

Obviously, the full Kohn–Sham problem is affected by the transformation. The trans-
formed KS Hamiltonian ̂̃H = T †ĤKST contains an auxiliary effective potential ṽeff(r) =
ṽH(r) + ṽxc(r) evaluated on “smooth” auxiliary quantities such as ñ(r), and atomic
corrections. The PAW total energy functional is therefore also separated into a smooth
part Ẽ and atomic corrections ∆Ea,

E = Ẽ +
∑
a

∆Ea = Ẽ +
∑
a

(
Ea − Ẽa

)
, (2.34)

where the atomic corrections can be pre-calculated and stored for each chemical el-
ement such that they are ready for use in the SCF cycle. The main computational
effort can then be focused on the valence electrons.

Figure 2.1: The PAW method. Left: Decomposition of the physical wavefunction
|ψ〉 for the 2σ∗ orbital of the CO molecule in terms of the auxiliary wavefunction |ψ̃〉
in all of space (blue crosses) and expansions of |ψ〉 (thick lines) and |ψ̃〉 (thin lines) in
partial waves inside the augmentation spheres (black circles). Right: 3D schematic of
the decomposition illustrating contributions from valence and core electrons separately.
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2.3.1.2 The gpaw code

The PAW method is implemented in gpaw using a real-space multigrid discretization
of the PAW quantities and transformed KS equations. Physical quantities living in
3D real space (wavefunctions, potentials, densities, etc.) are therefore represented
numerically by their value in points on a grid. Integration of a quantity over space is
approximated by a summation over grid-point values, while differentation with respect
to spatial coordinates are performed within the finite-difference (FD) approximation.
The Laplacian of a quantity in some grid point is therefore approximated from values
of the quantity in the neighboring grid points. The accuracy of the FD approximation
to local derivatives is in principle only determined by the grid-point spacing h and
the number of neighboring grid-point values taken into account by the FD stencil; the
smaller the h and the less “near-sighted” stencil, the better the FD approximation. A
3-point central stencil is default.

For isolated atomistic systems the domain in which the KS equations should be solved
can be restricted to a finite region determined by the decay of the effective potential,
and the appropriate supercell boundary conditions are simple closed (Dirichlet) bound-
ary conditions. For infinite systems the domain is in principle unrestricted. However,
if the system has translational symmetry, the Bloch theorem

ψn,k(r) = eik·run,k(r), (2.35)

is applied to map all wavefunctions of the infinite lattice into the first Brillouin zone
(BZ) described by the Bloch wave vector k. Exploiting symmetry properties of the
supercell we may even restrict calculations to the irreducible part of the BZ. Clever
methods for sampling only a representative set of k-points in reciprocal space have
been devised. Monkhorst–Pack sampling40 is the gpaw default.

2.4 Summary

The Kohn–Sham density functional approach to the many-body problem for mutually
interacting electrons in the potential of static ions has been outlined. This would be
an exact theory for the correlated electrons if the exact exchange–correlation density
functional was known. However, it is not, and even if we did know it, this “divine”
functional would probably be far too demanding for most applications in computa-
tional materials science. We must therefore resort to approximate XC functionals.
Meanwhile, actual implementation of DFT in working computer codes that allow effi-
cient and reliable solution of the KS equations introduce even more approximations.
The projector-augmented wave method implemented in gpaw is a particularly clever
approach to minimizing the casualties when electronic structure quantities are repre-
sented numerically.





Chapter 3

Exchange–Correlation
Approximations in DFT

The remainder of this thesis is concerned with development and application of XC
density functional approximations (DFAs). A veritable zoo of DFAs are currently
available to the DFT user, many of which differ only little, but spanning a wide range
of target applicabilities and computational costs. An overview of the DFA landscape
is here given in terms of Perdew’s metaphorical ladder leading to the exact density
functional, with emphais on the types of condensed matter interactions and classes of
matter that are well described by these approximations.

3.1 Strong and weak bonding

The main mechanisms behind inter-atomic bonding in matter are often divided into
five groups;15,41 Ionic, covalent, metallic, van der Waals (vdW) like, and hydrogen
bonds. The first three result from strong interactions between nuclei and their electron
densities, and are characterized by relatively small bond lengths and significant density
overlaps.42 They are responsible for the stability of most of the matter surrounding us,
counteracting repulsion due to ion–ion electrostatics (Coulomb) and Pauli exclusion
for short ion–ion distances.

Bonds in ionic crystals (e.g., solid NaCl) are formed from elements with a large differ-
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ence in electronegativity. Charge transfer leads to approximately closed-shell ions and
significant electrostatic attractions. Covalent bonds in molecules and solid crystals
arise from a complete redistribution of the electronic structure due to hybridization
between pairs of overlapping electron valence states. Completely new states (bonding
and antibonding) result from this. The covalent bond is therefore often described as
“charge sharing” between atoms. Lastly, metallic bonds are formed in the solid state
when valence electrons are delocalized over the entire crystal. The positive ions are
therefore “immersed” in a communal sea of electrons with which they interact, the
Fermi gas of (nearly) free conduction electrons. In DFT, the homogeneous electron
gas41 is therefore a natural starting point for DFAs suitable for describing the elec-
tronic structure of many solids. However, while the chemical bond is predominantly
covalent, strong bonding in the solid state is often mixed, and may simultaneously
have metallic, covalent, and ionic character.

Hydrogen bonding and vdW interactions are most often considerably weaker than
the interactions described above, but have important contributions to the stability
of biological matter (e.g., proteins and DNA), as well as rare-gas chemistry and soft
condensed matter in general. The hydrogen bond is an attractive interaction between
two species that arises from a link of the form A−H· · ·B, where A and B are strongly
electronegative atoms such as F, O, and N. It is thus a longer-ranged and directional
interaction caused by electrostatic interactions between the polarized hydrogen atom
(the electronegative host A has largely snatched the single electron of H) and the
electronegative species B. Interaction energies are usually of the order 0.1 eV,41 which
may be compared to the dihydrogen covalent bond strength of 4.8 eV.

Finally, van der Waals forces are the weakest interactions considered here, but also
ones that are virtually always present, even in the limit of large separation between the
interacting fragments with no density overlap. These arise primarily from spontaneous
charge density fluctuations, resulting in transient electromagnetic fields that induce
dipole and multipole moments in distant charge densities. In quantum mechanical
terms the fluctuations are related to zero-point motion of the electrons. The correlation
of the temporary fields leads to net forces of attraction, which are long-ranged and
decay algebraically with separation. We consider only the non-retarded regime where
the finite speed c of light does not retard the correlation of separated fields, that is,
the distance R between interacting fragments is small enough that the light transit
time γ = R/c� τ , where τ is the response time of charges.30,42

There are several ways to derive the physical contributions to vdW interactions. A par-
ticularly illustrative decomposition is based on a partubation theory (PT) treatment
of the electrostatic potential between two fragments A and B with non-overlapping
charge densities. To second order it yields the Casimir–Polder formula for the inter-
action between A and B,

EAB = − 1

2π

∫ ∞
0

du

∫
dr1dr

′
1dr2dr

′
2

× V (r′2 − r1)χA(r1, r
′
1, iu)V (r′1 − r2)χB(r2, r

′
2, iu), (3.1)

where the first integral is over all imaginary frequencies, and χA is the density response
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of A. In the particularly simple case of isotropic systems, a multipole expansion of the
Coulomb potential V leads to lowest order to the well-known vdW dispersion energy,

Edisp = C6R
−6, (3.2)

where R = |rA − rB | and C6 depends on the polarizabilities of the fragment densi-
ties. This is also known as the London dispersion energy and is the purely quantum
mechanical effect of induced multipole–induced multipole interactions (a long-range
correlation effect). Lower-order interaction energies (CnR−n with n < 6) arising from
electrostatatics between permanent poles and induction between permanent and in-
duced poles may also be derived, and higher-order PT leads to even more contributions
to the vdW energy (CnR−n with n > 6).27,42,43 However, dispersion is the first term
that never completely vanishes, not even for strongly overlapped electron densities,
and we identify the van der Waals energy with London dispersion throughout.

3.2 A density functional hierarchy

The five-rung “Jacob’s ladder” of Perdew44 represents a systematic classification of the
exchange–correlation approximations available for DFT. Each rung adds new ingredi-
ents to the approximation, and so should enable better density functionals, but also
adds to the computational cost. In order of increasing complexity, the ladder consists
of the local (spin-)density approximation20 (LDA), the generalized-gradient approxi-
mation (GGA), meta-GGA (MGGA), hyper-GGA, and finally the generalized random
phase approximation. The LDA uses only the local density as input, while rungs 2 and
3 introduce semilocal dependence of the density (GGA) and the KS orbitals (MGGA).
Hyper-GGAs introduce nonlocal dependence of the occupied KS orbitals in the exact
exchange energy density, and fifth-rung approximations calculate correlation energies
from the unoccupied KS orbitals. The latter is computationally heavy, but RPA-type
methods are the only DFAs in this five-rung hierarchy that can possibly account for
vdW dispersion between non-overlapped electron densities.17,45 It is useful to consider
the ladder a progression of increasingly more complex models of the exact density
functional.

LDA The XC energy is in general written as a spatial integral over the XC energy
density per particle εxc = εx + εc,

Exc =
∑
σ=↑,↓

∫
εxcn(r)dr. (3.3)

where εxc usually depends on the electron density n(r) = n↑(r) + n↓(r) and other
quantities. However, the local density approximation takes the XC energy density in
the point r as that af the homogeneous electron gas (HEG) with that density,

ELDA
xc =

∫
εHEGxc (n(r))n(r)dr. (3.4)



22 Exchange–Correlation Approximations in DFT

A simple but exact analytic form for LDA exchange energy is known, and accurate
parametrizations of LDA correlation exist.15

The LDA has had great success in the solid state physics community, where it has
proven surprisingly reliable. One reason for this is that the valence electrons in many
solid crystals are nearly a HEG, but favorable cancellation of erros between exchange
and correlation is also part of the explanation. However, several atomistic systems of
common interest, e.g., molecules, are far from homogeneous, and LDA is a poor model
of the exact XC functional for such systems. The predicted thermochemistry is simply
too incorrect; intra-molecular covalent bond energies are vastly overestimated.46 No
surprise, the LDA was never really adopted in the quantum chemistry community.

GGA The first obvious improvement on LDA is to include the gradient of the elec-
tron density as an ingredient in the DFA. This is most often done within the GGA
method, where the magnitude of the local density gradient |∇n(r)| is used. This
renders GGAs semilocal approximations.

The GGA exchange energy is then formulated in terms of an exchange enhancement
factor Fx(s), depending on the reduced density gradient s = |∇n|/2kFn ∈ [0,∞],
where kF = (3π2n)1/3 is the Fermi wave vector of the HEG. The function Fx(s)
locally scales εHEGx (n) depending on the density gradient,

εGGA
x (n,∇n) = εHEGx (n)Fx(s(n,∇n)),

EGGA
x [n,∇n] =

∫
εHEGx (n)Fx(s)n(r)dr.

(3.5)

The lowest-order terms in the expansion of Fx(s) for slowly varying densities are15

Fx(s) = 1 +
10

81
s2 +

146

2025

(
|∇2n|

(2kF )2n

)2

+ · · · . (3.6)

The Laplacian of the density and higher-order derivatives are not included in GGA
DFAs. This form obeys the LDA limit Fx(s = 0) = 1 for vanishing density gradients.
Another known constraint is the Lieb–Oxford lower bound,47 which implies Fx(s) ≤
1.804. A wealth of different GGA exchange approximations have been devised, that is,
different functional forms of Fx(s). The Perdew–Burke–Ernzerhof48 (PBE) exchange
functional is a standard example of semilocal exchange.

GGA correlation approximations are usually more complicated, but also relies on cor-
rection the LDA correlation in a density gradient dependent fashion. The PBE and
the Lee–Yang–Parr49 (LYP) correlation functionals are particularly popular.

In total, the GGA may be considered an extrapolation of LDA to the slowly-varying
high-density (small-s) regime, and are often capable of improving over LDA on many
accounts with little extra computational overhead. GGAs are now a standard tool in
computational chemistry and materials science. It is, however, important to note the
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limitations of such a model. The s-parameter is simply a measure of inhomogeneity,
and the GGA attempts to derive information about the system from this parameter
(does the density belong to a system which is nearly a HEG, or a system which is
quite far from the HEG?). Though the electron density distribution, and thereby the
distribution of s-values, in ionic and metallic solid crystals may often be different,50,51

this is merely an indirect indication of the interactions at play. Given a density with
a local reduced gradient s = 2, the GGA can not tell whether the atomistic system is
a solid or a molecule.

The DFA zoo is particularly populated with GGAs. Some functional forms for Fx(s)
are found well suited for studies in solid state physics because they do not deviate too
strongly from LDA in the small-s regime, while GGAs tailored for studies in theoretical
chemistry may be substantially different. Popular variants include PBE and its PW91
predecessor,52,53 as well as the PBEsol54 and RPBE55 revisions of PBE. While PBEsol
was designed as a “GGA for solids” with the aim of accurately capturing bonding in
the solid state, the RPBE exchange model was targeted at studies in chemistry.55,56

Lastly, also the combination of the B88 exchange of Becke57 and LYP correlation,
commonly denoted BLYP, has had a great impact on bringing DFT to the quantum
chemistry community.

MGGA The third rung on Jacob’s ladder expands on GGA by adding to the list
of ingredients the Laplacian of the electron density and/or the kinetic energy density
(KED) τ(r) of the occupied KS orbitals,

τσ(r) =
1

2

occ.∑
i

|∇φiσ(r)|2. (3.7)

The MGGA exchange enhancement factor is therefore of the form Fx(n,∇n,∇2n, τ),
and has the possibility of more variational freedom in the space of its arguments than
the more limited GGA exchange. The KED may be expressed in a dimensionless form
as α =

(
τ − τW

)
/τHEG ∈ [0,∞], where τW = |∇n|2/8n is the von Weizsäcker KED,

and τHEG = 3
10

(3π2)2/3n5/3 is the KED of the homogeneous electron gas. The limit
α = 0 corresponds to τ = τW, which is characteristic of electron densities with single-
electron (iso-orbital) character,58 that is, densities not belonging to a HEG, whereas
α = 1 means τ = τHEG. The local KED is thus able to discriminate between the
“environment” of different densities even though they are characterized by the same s.
Much unlike GGAs, the MGGA exchange model is therefore able present densities of
identical s but different τ with different enhancement factors. Thus, the model space
of MGGA exchange is considerably expanded as compared to that of GGA.

Since the KED is a semilocal functional of the occupied KS orbitals, which are read-
ily available in most DFT calculations, MGGA approximations are usually cossidered
semilocal DFAs17 (as opposed to fully nonlocal ones) and the extra computational
overhead of evaluating the MGGA total energy and orbital-dependent XC potential is
modest if the method of Neumann et al. is used (Ref. 59). Significant MGGA func-
tionals include the VSXC of Voorhis and Scuseria,60 the TPSS58 and its revTPSS61

revision, and the M06-L of Zhao and Truhlar.62
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Hyper-GGA and hybrids Fourth-rung density functionals introduce the exact
exchange energy density, a fully nonlocal functional of the occupied KS orbitals. Hy-
brid functionals, which mix a fraction of EXX into otherwise lower-rung DFAs, are
very popular in quantum chemistry because of their good description of molecular
thermochemistry.63–65 However, the long-ranged nature of the Coulomb potential ren-
ders hybrid DFAs computationally demanding for calculations on periodic crystals,
especially metallic systems. Screening out the long-range part of the Coulomb po-
tential for EXX is one possible solution (range separation).66 The most well-known
hybrid DFA is probably B3LYP,67 but there are many others, including PBE068 and
the HSE family of range-separated hybrids.66,69

3.3 Strategies for DFA development

Put in simple terms, two paradigms for developing new and improved density func-
tionals are dominant: that of constraint satisfaction by reduction and that of fitting
to empirical data.45,70 Both have contributed greatly to the successful applications of
DFT in many different fields. Reductionists impose constraints based on analytic prop-
erties of the exact density functional, and strive for nonempirical functionals that fulfill
as many constraints as possible on each rung of Jacob’s ladder. The LDA limit and
LO bound are examples of such constraints, but other exact constraints are known.17

Empirically oriented DFA developers use experimental or high-level theoretical train-
ing data to optimize the XC model description of one or more materials properties.
Note that the term “materials properties” is here used in the widest possible meaning,
covering all from molecular bond energetics to, e.g., band gaps of solid crystals and
stabilities of surface facets against reconstruction.

Reduction is arguably the most systematic approach to density functional develop-
ment, and has had a significant impact on KS-DFT. However, choices are often made
as to what types of physics and chemistry the DFA should describe well. The several
revisions of PBE are good examples of this: The PBEsol revision sacrificed accuracy
for chemical bonds but improved the desciption of equilibrium crystal volumes by
imposing the second-order gradient expansion for exchange (Fx(s)→ 1 + 10/81s2 for
s→ 0), while the revPBE modification of PBE exchange biased the XC model towards
describing total energies of free atoms and chemical bonding in small molecules. The
consequence was significantly worse predictions of equilibrium crystal volumes.

The empirical approach is fundamentally a matter of explicitly making these choices,
and parametrize and train an XC model to suit personal preferences for performance in
practice. This makes overfitting the training data and transferability of the optimized
DFA to systems and materials properties not contained in the training data a central
issue,45 which we shall return to in Chapter 7.
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3.4 Challenges to current density functionals

Two major issues with standard lower-rung density functionals are briefly discussed:
The complete lack of the physics of vdW dispersion interactions in rung 1–3 DFAs,
and the ever haunting issue of self-interaction. These are largely absent in RPA-like
approaches (and in the exact density functional, obviously) but for large-scale materials
design studies from first principles we are currently forced to resort to the lower rungs
of Jacob’s ladder for workhorse DFAs.71

Dispersion It was realized early on that the local LDA and semilocal GGAs are
not able to successfully account for dispersion interactions.72 This should be no sur-
prise; the physics of dispersion is nowhere to be found in such XC models. Particularly
GGAs, where the enhancement of exchange interactions over the LDA ones usually
acts repulsively, often predict no attraction between fragments which are known to be
dispersion bonded. However, since hydrogen bonds are fundamentally electrostatic ef-
fects over not-too-long distances, describing these are not completely outside the realm
of GGA-DFT, and several semilocal DFAs are known to do so reasonably well. On the
other hand, LDA exchange alone can actually produce significant (and often vastly
exaggerated) dispersion-like attractions from density–density overlap effects. This is
spurious and outright wrong since pure dispersion is solely a correlation effect.72–74

Lastly, since MGGA approximations are essentially semilocal, there is not much hope
for them to reliably produce dispersion forces either. It should be noted that a reason-
able emulation of short-range dispersion has been reported for the M06-L MGGA,62,75

but reliable description of medium- to long-range dispersion should not be expected.

Self-interaction Most current DFAs are not self-interaction free, that is, the spu-
rious interaction of an electron with itself in the Hartree energy is not cancelled out
by exchange functionals other than EXX. This can have significant implications, and
is largely responsible for underestimated molecular reaction energy barriers, erroneous
single-particle properties like ionization potentials and electron affinities, and underes-
timated band gaps of solid crystals. Self-interaction corrections attempting to remedy
this issue is a highly active field of research, efficient application of the Perdew–Zunger
approach dating back to 1981 being particularly popular.15,76,77

3.5 Summary

A truly general-purpose density functional for the energetics of condensed matter in-
teractions faces a tough challenge: The important inter-atomic and inter-fragment
forces range from strong interactions for large density–density overlaps between atoms
in close vicinity, leading to ionic, covalent, and metallic types of bonding in molecules
and the solid state, to weaker but long-ranged van der Waals type interactions in more
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sparse systems. The London dispersion force is special in that it is the lowest-order
vdW-type interaction that is ubiquitous. The XC density functional levels of theory
have been introduced in the context of Jacob’s ladder of Perdew, which forms the basis
for the reductionist’s approach to DFA development, where satisfaction of constraints
on approximate XC functionals imposed by the exact functional is modus operandi. On
the other hand, empirically oriented DFA developers seek to optimize DFAs by fitting
to benchmark data. Two current challenges to DFT were furthermore highlighted; the
complete lack of the physics of vdW dispersion interactions in lower-level DFAs, and
the ever haunting issue of self-interaction. While the former is a central topic of this
thesis, the latter is not considered in further detail.



Chapter 4

Representations of
Condensed Matter

Interactions

Reliable compilations of materials properties and chemical observables are very impor-
tant for validation and development of density functionals. If accurate enough, such
datasets are representations of the condensed matter interactions we meet in every-day
applications of DFT. The exact density functional obviously captures these correctly
[exactly if the data is exact and a strictly exact all-electron DFT code is used (such one
probably does not exist)], and the question is often how well our XC approximations
work in practice and how these may be improved. This chapter presents datasets to
be used throughout the rest of this thesis, as well as the computational procedures
employed to calculate the different quantities.

4.1 Datasets of materials properties

Benchmark data may be experimentally determined or calculated from high-level the-
ory such as CCSD(T). The latter may not yield exact benchmarks in the true meaning
of the word, but the most elaborate wavefunction methods are accurate enough to
be considered essentially exact for molecular properties. The CCSD(T) “model chem-
istry” is a standard for benchmark data that may be directly compared to DFT results.
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Experimental data are often not as accurate as theoretical benchmarks, but many
atomistic systems are simply impossible to treat with expensive wavefunction theory,
e.g., the extended lattices of solid crystals. Careful experiments, preferably at low
temperature and possibly with extrapolation to the zero Kelvin limit and corrections
for zero-point motion of atoms, must then be resorted to.

The benchmark datasets used in this work are either adapted from literature or com-
piled here from published works. They are presented in the following. Certain addi-
tional information, particularly extensive tables, are placed in Appendix A.1.

4.1.0.3 G3/99 and G2/97: Molecular formation energies

The molecular formation enthalpies of the G3/99 thermochemical test set of Curtiss
and co-workers78 represent intramolecular bond energetics. It has become very popular
for benchmarking and calibrating electronic structure methods. The 223 molecules
may be divided into three subsets denoted G3-1, G3-2, and G3-3 comprising 55, 93,
and 75 molecules, respectively. The G3-1 and G3-2 subsets constitute G2/97, in which
case the two subsets may be denoted G2-1 and G2-2, respectively.

The formation enthalpies are experimentally determined. In accordance with the pro-
cedure of Ref. 79 they are extrapolated to zero Kelvin by correcting for thermal and
vibrational contributions. Thermal corrections and zero-point energies from Refs. 79
and 46 are used. The result is 233 electronic-only static-nuclei formation energies
∆fE, i.e., negatively signed atomization energies, which are directly comparable to
predictions from ground state DFT. Contributions to ∆fE from spin-orbit effects are
not corrected for. This is expected to be of little overall consequence.79

Theoretical G3/99 formation energies are calculated from the difference between molec-
ular and atomic total energies as

∆fE = EM −
∑
A

EA, (4.1)

where A runs over all atoms in the molecule M , while EM and EA are ground state
molecular and atomic total energies, respectively.

4.1.0.4 RE42: Molecular reaction energies

Molecular formation energies lend themselves well to compilation of gas phase reaction
energies. The RE42 compilation contains 42 zero-Kelvin reaction energies involving
45 different molecules from G3/99. A complete list of the reactions and reaction
energies ∆rE is given in Table A.1 in the Appendix. Theoretical reaction energies are
calculated from total electronic energies as

∆rE =
∑
P

EP −
∑
R

ER, (4.2)
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where the sums run over reactant (R) and product (P ) molecules.

4.1.0.5 DBH24/08: Molecular reaction barriers

As discussed in the Introduction to this thesis, chemical reactant and product states
are often separated by an energy barrier, which must be surmounted if the reaction
is to proceed. The DBH24/08 set of Zheng et al.80 comprises 12 forward (Vf ) and
12 backward (Vb) benchmark barriers for simple gas phase reactions. Ground- and
transition-state molecular geometries, calculated using the quadratic configuration in-
teraction with single and double excitations (QCISD) wavefunction method, are from
Ref. 81. Density functional barrier heights are computed from the transition state
total energy (E‡) and the initial (Ei) and final (Ef ) state total energies as

Vf = E‡ − Ei,
Vb = E‡ − Ef .

(4.3)

4.1.0.6 S22 and S22x5: Noncovalent bonding

The S22 dataset of Hobza and co-workers82 represents van der Waals interactions
and hydrogen bonding by considering noncovalent bonding between molecular dimers
and complexes. It has been widely used for assessment65,83–88 and parametriza-
tion62,85,89–92 of density functional methods for vdW type interactions, though it
may be somewhat superseded by the newer and larger S66 set.93,94 The S22 set con-
sists of CCSD(T) interaction energies between relatively small molecular complexes,
but includes also noncovalent bonding between the somewhat larger DNA and RNA
bases adenine, thymine, and uracil, as well as 2-pyridoxine and 2-aminopyridine. It
is therefore biased towards biomolecular structures, but is very useful for benchmark-
ing electronic structure methods in general. The 22 complexes are divided into three
groups according to the type of interaction predominantly responsible for stabilizing
the complex; hydrogen bonding, dispersion interactions, and a mixture of dispersion
and electrostatic interactions. This categoratization was made on the basis of interac-
tion energy decompositions using the symmetry-adapted pertubation theory method.

MP2 or CCSD(T) geometries at equilibrium intermolecular separations from the orig-
inal work in Ref. 82 are used. Benchmark CCSD(T) interaction energies with extrap-
olation to the complete basis set (CBS) limit were reported in that same publication.
However, most likely due to the computing resources available at the time, different
basis sets were used for small and large complexes. Later works95,96 have therefore
revised the S22 interaction energies, employing larger and identical basis sets for all
complexes at the original geometries. For the larger complexes the reported basis set
effects are significant, so the CCSD(T)/CBS energies of Takatani et al.95 are adopted
here as the current best-estimate of the true S22 interaction energies.

Recently the S22x597 extension was proposed. In addition to the near-equilibrium
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intermolecular distances, S22x5 contains for each complex four non-equilibrium bind-
ing energies. Thus, CCSD(T) potential-energy curves (PECs) for each complex are
mapped out at relative interaction distances d of 0.9, 1.0, 1.2, 1.5, and 2.0 as compared
to S22, totalling 110 interaction energies on 22 PECs. For convenience we here divide
S22x5 into five subsets according to interaction distance, e.g., “S22x5-0.9”.

The computational procedure used for S22x5 was identical to the S22 one,97 so we ex-
pect the basis set deficiencies to persist in S22x5. The non-equilibrium data points on
each PEC are therefore corrected according to the difference between original and
revised S22x5-1.0 CCSD(T) energies. This correction scheme is described in Ap-
pendix A.1, where Table A.4 also lists the resulting energy corrections. These are
very small on average but significant for certain larger complexes.

Each S22x5 density functional interaction energy Edint is computed as the difference
between the total electronic energy of the interacting complex Ed0 and those of its two
isolated molecular constituents, Ed1 and Ed2 ,

Edint = Ed0 − Ed1 − Ed2 , (4.4)

which obviously applies to S22 also (d = 1). Computational accuracy is enhanced by
keeping all atoms in the monomers in the same positions in the supercell as those atoms
have when evaluating the total energy of the complex. With the sign convention in
(4.4) stable intermolecular bonding is here taken to mean negative interaction energy.

4.1.0.7 Crystalline solids

Energetic and structural properties of crystalline solids are represented by four different
sets of experimental data. Three of these comprise lattice constants as well as cohesive
energies, and one contains only cohesive energies. The four sets reflect a gradual
progress from small experimental datasets without corrections for zero-point effects
towards larger sets of low-temperature data with appropriate zero-point corrections.

Sol20 crystals Contains lattice constants and cohesive energies of 20 Period 3–6
pure crystals in the fcc, bcc, hcp, and diamond structures. The included elements are
found in Fig. 5.4 (p. 45). Zero-point effects are not considered.

Sol34Ec Cohesive energies of 34 Period 2–6 pure crystals in fcc, bcc, diamond, and
hcp lattices. Zero-point effects are not considered.

Sol27 It was recently shown50 that removal of thermal and zero-point contributions
to experimentally determined lattice constants and bulk moduli may be important
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when benchmarking density functional methods. Experimental zero-Kelvin lattice con-
stants and cohesive energies (Ec) contain zero-point vibrational contributions, leading
to zero-point anharmonic expansion (ZPAE) of the lattice and zero-point vibrational
energy (ZPVE) contributions to Ec. As discussed in Ref. 98, an estimate of the ZPVE
may be obtained from the Debye temperature ΘD of the solid according to

ZPVE = −9

8
kBΘD. (4.5)

The vibrational contribution is subtracted from the cohesive energy, leading to in-
creased stability of the crystal towards atomization. The same reference derived a
semi-empirical estimate of the ZPAE contribution to the volume of cubic crystals. A
recent study69 calculating the ZPAE from first principles largely validates this ap-
proach.

The Sol27LC and Sol27Ec sets of zero Kelvin lattice constants and cohesive energies
of 27 fcc, bcc, and diamond structured bulk solids are appropriately corrected for
zero-point phonon effects. Details are given in Table A.3.

Sol53 Our use of solid state datasets peaks with the Sol53 lattice constants (Sol53LC)
and Sol53 cohesive energies (Sol3Ec), which are essentially extensions of the Sol27
sets to include also mixed-element compounds in the rock-salt, cesium chloride, and
zincblende cubic crystal structures. The low-temperature zero-point exclusive data are
from Refs. 69 and 99 (Sol53LC) and Ref. 69 (Sol53Ec), respectively.

Equilibrium quantities The crystal cohesive energy for a given lattice constant
a is calculated from

Ec = EA − EB , (4.6)

where EA is the total energy of the free atom and EB the bulk total energy per
atom. The equilibrium (maximum) cohesive energy of a stable solid is thus a positive
quantity. Equilibrium lattice constants a0 are determined from fitting the SJEOS98

equation of state to cohesive energies sampled in five points in a small interval around
the maximum of the Ec(a) curve. For hcp-structured crystals the c/a lattice constant
ratio is fixed at the experimental one.

4.1.0.8 CE17 and CE27: Chemisorption on solid surfaces

The CE17 and CE27 datasets contains chemisorption energies of simple molecules
on late transition-metal surfaces. They are derived from temperature programmed
desorption experiments or from microcalorimetry, most often at low coverage. The
27 chemisorption energies in CE27 have been critically chosen from literature with
emphasis on reliability as well as covering a reasonably wide range of substrates and
adsorbates. CE17 is a subset of CE27. All data is listed in Table A.2 along with details
regarding adsorption mode, adsorption site, and references.
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Most of the surface reactions are associative adsorption processes at 0.25 ML coverage.
In that case the chemisorption energy ∆E is computed according to

∆E = EAM − EM − xEA, (4.7)

where EAM is the total electronic energy of the adsorbate A on metal surface M , and
EA and EM total energies of the isolated adsorbate and metal surface, respectively.
The constant x equals 1 for associative adsorption and N2 dissociation on Fe(100),
while x = 1

2
for dissociative H2 chemisorption. In the case of NO dissociation on

Ni(100) at 0.25 ML coverage the chemisorption energy is

∆E = EAM + EBM − 2EM − EAB, (4.8)

where AB is the NO molecule.

Computational setup With these definitions of chemisorption energies we con-
sider extended surface slab models with 2×2 atoms in each layer and 5 layers in
total. The slabs are periodic in the surface plane and a vacuum width of 20 Å sepa-
rates periodically repeated slabs perpendicularly to the surface planes. Well-converged
chemisorption energies are obtained using a 10×10×1 k-point mesh and a real-space
grid spacing around 0.16 Å. Self-consistently determined lattice constants are used
for the slabs. During structure relaxations the bottom two layers of the 2×2×5 slab
models are fixed in the bulk structure.

4.2 General computational procedures

Self-consistent density functional calculations using gpaw are in general performed
using grid-point spacings of 0.16 Å for high-quality computations of simple properties
such as molecular binding energies. Properties of solid crystals are calculated using
somewhat denser grids with a spacing around 0.13 Å and dense Monkhorst–Pack k-
point sampling (at least 12 × 12 × 12 reducible points in the first BZ) and 0.1 eV
Fermi smearing of electron occupations. Real-space structure relaxation is applied to
the G3/99 molecules (including G2/97) and CE17/CE27 chemisorption systems with
0.05 eV/Å as the criterion of maximum Hellmann–Feynman force on each relaxing
atom. Molecular and single-atomic systems are centered in supercells with at least
7 Å vacuum to the box boundaries. Vacuum widths of 10 Å are applied for the S22x5
complexes. All calculations are spin-polarized when appropriate.



Chapter 5
van der Waals Density

Functionals

The semilocal nature of GGA XC models is unable to correctly capture long-ranged
van der Waals dispersion. Including dispersion forces in DFT is therefore a vibrant
field of research these days, and several approaches have been proposed. These range
from computationally free-of-charge force-field methods to extremely heavy methods
such as the random phase approximation with exact exchange and others.

Meanwhile, the so-called van der Waals density functionals (vdW-DFs) attempt to
unite the best of both worlds; computational efficiency for relevant system sizes, and
accurate description of dispersion forces. Interest is increasing in the materials science
community to apply such computational methods, and we here review the character-
istics of the vdW-DF approach and evaluate its general applicability in surface science
studies.

5.1 Rutgers–Chalmers correlation approximation

The vdW-DF100–102 family of density functionals aims at capturing short- to medium-
range van der Waals interactions in an approximate but computationally feasible fash-
ion using only the electron density and its gradients as input. At the heart of the
original vdW-DF approach100 is the Rutgers–Chalmers (RC) nonlocal correlation ap-
proximation. This has proven useful in several studies of condensed matter systems
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with significant vdW-type interactions, and it is generally acknowledged that the RC
approximation captures the leading term, E ∼ C6R

−6, of the nonretarded dispersion
energy. Moreover, the introduction of efficient numerical implementations83,103–105

for evalutating the RC correlation energy has rendered vdW-DF calculations near-
standard in the present day electronic structure toolbox. In fact, several vdW-DF
variants using the RC approach now exist, and we shall consider most of them in later
chapters.

A vdW-DF type XC approximation is in general written

EvdW-DF
xc [n,∇n] = EGGA

x + E0
c + Enl

c , (5.1)

where EGGA
x is a suitably chosen GGA exchange functional, E0

c := ELDA
c is usually

chosen to be LDA correlation, and Enl
c [n,∇n] is the RC nonlocal correlation functional,

which allows a mutual interaction between all densities in space. The approximation
Ec = ELDA

c + Enl
c is obviously the crucial difference between vdW-DFs and GGAs.

Regardless of the exchange functional used in vdW-DF calculations, the method pro-
vides an approximate correction to the LDA correlation energy of a non-uniform elec-
tron density. Starting out from the ACFD expression for the exact ground state
correlation energy, Eq. (2.31), which is repeated here,

EACFD
c = − 1

2π

∫ 1

0

dλ

∫ ∞
0

du

∫
vint(r, r

′)
[
χλ(r, r′, iu)− χ0(r, r′, iu)

]
drdr′, (5.2)

a few approximations and assumptions lead to a nonlocal but compact approximation
to the non-LDA part of the ACFD correlation energy,27,31,100

Enl
c =

1

2

∫∫
n(r)φ(r, n,∇n; r′, n′,∇n′)n(r′)drdr′, (5.3)

where n′ = n(r′). This is a 6-dimensional integral over the interaction kernel φ, which
depends on the densities and density gradients in all pairs of spatial points r and r′.

The main steps taken in going from the ACFD expression (5.2) to the approximation
(5.3) are introduction of

1. an approximate subtraction of LDA correlation from the ACFD correlation ex-
pression,

2. an approximate coupling-constant integration over λ of what remains, resulting
in

Enl
c =

1

2π

∫ ∞
0

duTr ln
[
ε−1 (1− vintχ̃)

]
, (5.4)

where vint is the electron–electron Coulomb interaction, χ̃ the density response,
ε a dielectric function relating the polarization due to a pertubation of the
potential to an induced charge density, and u the imaginary frequency,

3. a second-order expansion of (5.4) in powers of S = 1− ε−1,
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4. a model dielectric function ε based on a plasmon-pole type approximation.

The resulting interaction kernel, φ, has several appealing features.100 Since the asymp-
totic form is

φ ∼ |r − r′|−6 for |r − r′| → ∞, (5.5)

the nonlocal correlation energy has the desired −C6R
−6 form for well-separated den-

sities which is missing in local approximations. Symmetry properties of φ also leads
to the nice feature that Enl

c = 0 when ∇n(r) = 0, that is, the nonlocal correlation
energy vanishes for HEG-like densities, such that the total XC energy in (5.1) reduces
to the LDA one,

EvdW-DF
xc [n,∇n = 0] = ELDA

xc [n]. (5.6)

The density gradient dependence of the interaction kernel enters through a local wave
vector denoted q0(r). It is defined as the Fermi wave vector modulated by an energy
ratio,

q0(r) =
ε0
xc

εLDAx

kF(r), (5.7)

where εLDAx = εLDAx [n], and ε0
xc = ε0

xc[n,∇n] contains a gradient correction,

ε0
xc = εLDAxc − εLDAx

[
Z

9

(
∇n
kFn

)2
]
, (5.8)

with Z = −0.8491. In fact, the kernel may be written in terms of the density–density
separation r12 = |r1 − r2| and the local wave vectors q1 = q0(r1) and q2 = q0(r2),
which may even be reduced to the two dimensionless variables d1 = r12 · q1[n1,∇n1]
and d2 = r12 · q2[n2,∇n2], where ni = n(ri).

Even though Enl
c uses only semilocal density information as input, it is still computed

from a 6D spatial integral over all possible density pairs (the factor of 1/2 in (5.3) ac-
counts for double-counting). Moreover, the corresponding KS correlation potential101

vnlc = δEnl
c /δn is needed for self-consistent calculations. This is a significant compu-

tational task. However, the fast Fourier transformation procedure of Román-Pérez
and Soler (Ref. 104) has proven particularly suited for efficient evaluation of Enl

c and
vnlc in periodic DFT calculations, and is adopted in gpaw. In essence, the interaction
kernel is approximately factorized and the 6D real-space integral is transformed to a
3D integral over convolutions in reciprocal space.

5.2 vdW-DF variants

The choice of GGA exchange functional is the final approximation of vdW-DF type
calculations. As outline above the vdW-DF method was designed primarily to yield the
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correct −C6R
−6 asymptotics for well-separated fragments, where inter-fragment ex-

change interactions are supposed to be repulsive or neglible, as shown by HF potential-
energy curves (PECs) for weakly interacting molecular and noble-gas dimers.106,107

However, it was realized early on that HF (or EXX) itself is not necessarily a good
match to the vdW-DF correlation.108,109 Far too strong interaction energies are found
when using the DFA Exc = EHF

x + ELDA
c + Enl

c , as compared to MP2 or CCSD(T)
wavefunction calculations. Even though the vdW-DF correlation model is derived
from the exact ACFD expression, inadequate cancellation of errors between exchange
and correlation may be the reason for this.102 Furthermore, such a procedure would
be computationally intractable for most extended systems anyway due to the cost of
evaluating HF/EXX.

Instead, a suitably chosen or designed GGA exchange functional is used, EGGA
x in

(5.1). The revPBE exchange was initially chosen due to its close resemblence to HF
in simple test cases.100,102 This defines the original vdW-DF as

EvdW-DF
xc = ErevPBE

x + ELDA
c + Enl

c , (5.9)

which has been successfully applied in a range of sparse matter studies, but also has its
flaws. Most notably, this particular combination of exchange and correlation models
predicts in general too long equilibrium distances between interacting fragments, and
underestimate the strength of hydrogen bonds.90,102

Improvements of vdW-DF have mainly taken three different approaches: (i) optimiza-
tion of the GGA exchange approximation employed, (ii) modification of the nonlocal
kernel and a new choice of GGA exchange, and (iii) fundamental modification of the
nonlocal correlation approximation.

Exchange-optimized vdW-DF variants Several GGA exchange functionals
have been constructed especially for use in vdW-DF type calculations. The optPBE
and optB88 exchanges of Ref. 89 are optimized versions of the PBE48 and B8857 ex-
change functionals, respectively, and the corresponding vdW-DF variants are denoted
optPBE-vdW and optB88-vdW. They were generated by fitting the parameters in the
exchange enhancement factors such as to minimize the optPBE-vdW and optB88-vdW
errors on the S22 benchmark dataset of noncovalent interactions. Very recently also
the optB86b-vdW was proposed.51

Another vdW-DF variant is C09-vdW.84 In order to reduce the short-range exchange
repulsion partly responsible for the poor vdW-DF equilibrium distances, a less steep
form of Fx(s) was adopted for small reduced-density gradients (similar in spirit to the
PBEsol GGA exchange), and an asymptotic approach to the revPBE upper bound,
Fx(s → ∞) = 2.245, was enforced for large s. A smooth function was fitted to
interpolate between the two regimes. C09-vdW improves over vdW-DF on the S22
set, and provides a more accurate prediction of the interlayer distance in graphite,
albeit at the cost of a somewhat overestimated interlayer binding energy.84,110
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Figure 5.1: Various literature GGA exchange enhancement factors. The LDA is
indicated by the bottom dashed line, and the Lieb–Oxford bound at the top.

vdW-DF2 revision The vdW-DF2 functional is a revision of the original vdW-
DF.90 It employs not only a different GGA exchange model but also a slightly modified
nonlocal correlation kernel. As discussed around (5.7) and (5.8), a semilocal energy
fraction determines the local wave vector q0(r). In vdW-DF2 the correlation kernel
is modified to employ a stronger gradient dependence for determining q0 by choosing
Z = −1.887 in (5.8). Furthermore, following studies showing that PW86 exchange111

particularly closely emulates HF for weakly bonded systems,73,107 this GGA exchange
functional was chosen for vdW-DF2.112

From now on the vdW-DF family of DFAs shall be understood as consisting of vdW-
DF, vdW-DF2, optPBE-vdW, optB88-vdW, and C09-vdW. A few of the relevant
exchange enhancement factors are shown in Fig. 5.1.

VV09 and VV10 approximations A rather different route towards improving
van der Waals density functional theory has been taken by Vydrov and Van Voorhis,
who have proposed several modifications of the original vdW-DF framework.91,113–115

The vdW-DF-09113 introduced a different model for the dielectric function and a few
other simplifications, leading to a nonlocal correlation kernel with an empirical param-
eter. Together with a density dependent gradient correction the Enl

c of vdW-DF-09
was then applied as a correction to a range-separated hybrid functional. Later on, the
VV09 correlation approximation was proposed.114,115 It is based on a different ana-
lytic form for the interaction kernel, and employs a rather elaborate damping function
such as to match the spin-dependent Enl-VV09

c with LDA correlation. More recently
also the VV10 revision has appeared.91 It builds on many of the ideas from the VV09
development, but differs by employing two empirical parameters that allow high accu-
racy and saturation of the nonlocal correlation model for short-range density–density
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interactions, i.e., in the covalent regime. It is therefore intended as a correction to
existing GGA correlation functionals, and yields impressive performance for nonco-
valently as well as covalently bonded molecular systems.91,116 However, an efficient
scheme for self-consistent evaluation of the VV10 nonlocal correlation for extended
systems (crystalline solids, metallic surfaces, etc.) has yet to appear. This DFA has
therefore not been applied in any of the studies reported here.

5.3 Explicit dispersion corrections

Another category of approaches to accouting for dispersion in DFT is addition of more
or less empirical corrections to the KS total energy expression. Some of the simplest
of these so-called DFT-D methods are those of Grimme,117,118 where the correction
is based on the assumption that the total dispersion interaction can be described as a
sum of contributions from all pairs of atoms,

EDFT-D = EKS + Edisp,

Edisp = −s6

∑
pairs

fdamp(R)C6R
−6, (5.10)

where R is the distance between the atoms in a pair and C6 a dispersion coefficient.
The Fermi-type damping function fdamp(R) is fitted such as to avoid the singularity
for R → 0 and to match Edisp to the XC functional chosen for calculating EKS. The
scaling factor s6 is also fitted. Such a force-field type energy is very easily calculated,
even for systems containing thousands of atoms, but is obviously outside the realm of
KS-DFT. It is not electron density dependent and does not provide a potential for the
KS equations. In particular, the dispersion coefficients should be electronic structure
dependent rather than constant and empirically determined.

Later developments within DFT-D does, however, offer improvements by using system-
dependent C6 coefficients. The starting point is often the Casimir–Polder formula (3.1)
in a simplified form, which then relates the CAB6 coefficient for dispersion interactions
between fragments A and B to their polarizabilities, which may be calculated from first
principles in several ways. These methods include the exchange-hole dipole moment
approach of Becke and Johnson,119,120 the TS09 method of Tkatchenko and Schef-
fler,121 Grimme’s DFT-D3 method,92 and the approach of Sato and Nakai for their
local-response dispersion model,122 amongst others. Higher-order multipole terms may
also be included, as well as nonadditive three-body terms.92

None of these methods were applied in the present studies.
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5.4 Assessment of vdW-DF variants

With a growing number of vdW-DF type methods appearing in literature it is im-
portant to be able to discriminate between them in terms of computational accuracy
and general applicability. This section summarizes two studies (Paper I and Paper
II) of the reliability of the vdW-DF family for predicting various condensed matter
quantities, as compared to the standard PBE and RPBE GGA functionals. The ques-
tion of whether or not to include semilocal correlation contributions in vdW-DF type
calculations is also discussed, that is, other choices than E0

c = ELDA
c for (5.1).

5.4.1 Standard materials properties

Three datasets are chosen to represent three vastly different materials properties of
common interest in computational physics and chemistry: the G2-1 molecular forma-
tion energies, the S22 noncovalently bonded complexes, and the Sol20 lattice constants
and cohesive energies of crystalline solids. These were all introduced in Section 4.1.

Most density functional computations presented in this section were done using self-
consistent RPBE electron densities. Total energies for all other DFAs were thus eval-
uated non-self-consistently. Earlier studies have largely validated this approach to
vdW-DF type calculations.89,101

5.4.2 Explicit semilocal correlation for vdW-DF

It is interesting to investigate whether purely local LDA correlation is necessarily
the optimum choice for E0

c . It is the obvious choice if correlation double-counting is
to be completely avoided; the nonlocal correlation kernel vanishes in the local limit,
φ(r, r′, |r−r′|)→ 0 for |r−r′| → 0, indicating that Enl

c , by design, has no strictly local
contributions. However, semilocal approximations often prove reasonably reliable in
interatomic bonding situations dominated by non-vdW type interactions. To conserve
this property in vdW-DF variants one must therefore rely on Enl

c to contain (at least)
the corrections to LDA correlation offered by successful GGA functionals for strongly
interacting systems. Does Enl

c accomplish this? And does explicit inclusion of GGA
correlation contributions to the vdW-DF method offer a generally improved description
of interacting matter anyhow?

To investigate this, the RPBE+nl functional is tentatively introduced here,

ERPBE+nl
xc = ERPBE

x + EPBE
c + Enl

c

= ERPBE
xc + Enl

c ,
(5.11)

which replaces LDA correlation with semilocal PBE correlation in the vdW-DFmethod.
This is obviously a vdW-extension of RPBE, and poses a risk of correlation double-
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counting. Indeed, some overlap between GGA and nonlocal correlation interactions is
quite probable, but RPBE+nl is here tested for illustrative purposes only. To facilitate
comparison, a vdW-DF variant using RPBE exchange is also used. This approximation
was called RPBE-vdW in Ref. 123. Finally, an XC model mixing local and semilocal
correlation approximations for RPBE-vdW is introduced and denoted RPBEc2/3+nl.
Details of this model are given later on, in Section 5.4.3.4.

5.4.3 Comparative assessment

All tested density functionals are evaluated and compared on the basis of the mean-
signed and mean absolute deviation from benchmark quantities (MSD and MAD,
respectively), as well as their relative counterparts (MSRD and MARD). The sign
convention is

deviation = DFT− benchmark. (5.12)

5.4.3.1 S22 complexes

Figure 5.2 shows signed deviations from CCSD(T) benchmarks of S22 interaction
energies, Eint. Deviation statistics for each DFA are listed in Table 5.1. It is seen that
both PBE and RPBE in particular underestimate Eint on average (positive MSD and
MSRD), while the functionals including nonlocal correlation contributions improve on
GGA results, as previously found in Ref. 89 and other studies using the S22 set. The
improvement when applying RPBE-vdW instead of RPBE is particularly illustrative
since only the treatment of correlation is changed, that is, the substitution EPBE

c →
ELDA
c + Enl

c is made. As seen in Table 5.1 the effect of this substitution is massive,
decreasing the MSRD by more than a factor of 10 (101%→ 8%). This illustrates that
the vdW-DF approach is indeed able to capture noncovalent interactions otherwise
out of the realm of ordinary GGAs. Also note from Fig. 5.2 that vdW-DF2 improves

Table 5.1: Statistics of the S22 interaction energy deviations shown in Fig. 5.2. All
energies in meV.

Exc MSD MAD MSRD MARD

PBE 120 120 59% 59%
RPBE 225 225 101% 101%
RPBE-vdW 57 61 8% 21%
vdW-DF 71 72 20% 25%
vdW-DF2 48 48 15% 17%
optPBE-vdW 3 20 −8% 12%
RPBE+nl −37 39 −29% 29%
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Figure 5.2: Deviations of calculated S22 interaction energies from the CCSD(T)
benchmarks of Takatani et al.95 The complexes are divided into three groups accord-
ing to the predominant type of bonding: hydrogen, dispersion, and mixed bonding.
Positive energy deviation means interaction energy underestimate as compared to the
benchmark.

on vdW-DF for the energetics of hydrogen bonds in particular, as also reported in Ref.
90.

Using an exchange functional that is explicitly fitted to the S22 benchmark data the
optPBE-vdW functional performs very well with a MAD of 20 meV. The corresponding
relative deviations are also quite small, and the optPBE-vdW data points in Fig. 5.2 are
significantly closer to the zero-line than those of its vdW-DF predecessor, particularly
for dispersion dominated complexes.

Interestingly, exchanging LDA for PBE correlation, RPBE+nl yields a smaller MAD
than that of the RPBE-vdW, and proves highly useful for hydrogen bonding. This
remarkable result is obtained without any modification of the exchange functional but
comes about solely from the use of semilocal rather than strictly local correlation in
conjunction with Enl

c . However, a significant tendency to overestimate the strength
of dispersion dominated bonding is apparent from the middle part of Fig. 5.2, where
some RPBE+nl deviations reach almost −90 meV. Also the negative RPBE+nl MSD
and MSRD in Table 5.1 indicate a mean overbinding of this XC model, which is most
likely due to some degree of correlation double-counting.

Self-consistent calculations were also performed with a few of the DFAs, and was
found to change the statistics in Table 5.1 by only a few meV, so non-self-consistent
calculations are adequate for the present purpose of DFA cross-comparison.
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Table 5.2: Stastistics of the G2-1 formation energy deviations shown in Fig. 5.3.
Negative deviation signifies intramolecular overbinding. All energies in eV.

Exc MSD MAD MSRD MARD

PBE −0.26 0.34 −4.1% 5.7%
RPBE 0.10 0.23 0.1% 3.6%
RPBE-vdW −0.12 0.17 −2.8% 3.4%
vdW-DF −0.16 0.18 −3.0% 3.5%
vdW-DF2 −0.18 0.20 −3.1% 3.8%
optPBE-vdW −0.44 0.45 −6.4% 6.7%
RPBE+nl −0.11 0.27 −2.7% 5.1%

5.4.3.2 G2-1 molecules

Figure 5.3 shows deviations of computed molecular formation energies from the G2-1
benchmarks. Statistics are listed in Table 5.2. It is easily seen that RPBE offers on
average a quantitatively more accurate prediction of intramolecular bond strengths
as compared to PBE: The RPBE yields a smaller G2-1 MAD and a modest average
underbinding of the molecules (MSD > 0). This should not surprise since improved
predictions of molecular bond strengths was a main argument for the design of the
RPBE exchange approximation and its revPBE predecessor.55,56

Conversely, the five van der Waals functionals all tend to overbind on average. Even so,
the MAD for all except optPBE-vdW are smaller than or comparable to that of RPBE,
and the MARD of RPBE-vdW, vdW-DF, and vdW-DF2 appear very reasonable. On
the other hand, the optPBE-vdW model, with an exchange component somewhat less
repulsive in the small-s regime than the other exchange functionals considered here,
is clearly overbinding the G2-1 dataset. Only a few optPBE-vdW points in Fig. 5.3
are above the zero-line and so almost all of the 0.45 eV MAD stems from overbinding.
This illustrates one possible drawback of fitting density functionals to a single electronic
structure property only. Finally, it is seen from the RPBE and RPBE+nl points in
Fig. 5.3 that the effect of adding the nonlocal correlation term is system dependent:
For nearly all 55 molecules it introduces either essentially no change to the formation
energy, or a negative contribution to ∆fE, which may be rather large (−0.6 eV for
SO2).
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5.4.3.3 Sol20 crystals

Figure 5.4 reports deviations from experimental values of calculated equilibrium lattice
parameters a0 and cohesive energies Ec for the Sol20 crystals. Results are summarized
in Table 5.3.

The PBE approximation appears very well-balanced for these types of materials prop-
erties. The experimental lattice constants are rather accurately reproduced with a
small average overstimate, while cohesive energies are slightly underestimated. The
RPBE predicts softer crystal lattices, resulting in a larger a0 MSD and more negative
Ec MSD.

All of the three functionals RPBE-vdW, vdW-DF, and vdW-DF2 essentially double
the RPBE a0 mean error, vdW-DF2 in this respect performing worst of all considered
DFAs. The optPBE exchange functional appears more attractive for solids than both
the RPBE and revPBE ones. Crystal volumes are smaller on average than with vdW-
DF, and cohesive energies are correspondingly larger. Again, this may be attributed
to the functional form for small reduced density gradients. Similar conclusions were
drawn from a recent study51 of the performance of vdW-DF variants for solid state

Table 5.3: Statistics of the deviations from experimental values of calculated Sol20
lattice constants and cohesive energies shown in Fig. 5.4. For details see text and the
caption for Fig. 5.4.

Exc MSD MAD MSRD MARD

Lattice constants (Å)

PBE 0.036 0.040 0.9% 1.1%
RPBE 0.063 0.065 1.7% 1.7%
RPBE-vdW 0.123 0.123 3.4% 3.4%
vdW-DF 0.113 0.113 3.1% 3.1%
vdW-DF2 0.141 0.141 3.8% 3.8%
optPBE-vdW 0.069 0.071 1.9% 1.9%
RPBE+nl 0.024 0.033 0.6% 0.9%

Cohesive energies (eV/atom)

PBE −0.11 0.33 −4% 9%
RPBE −0.69 0.71 −19% 19%
RPBE-vdW −0.86 0.86 −22% 22%
vdW-DF −0.78 0.78 −20% 20%
vdW-DF2 −0.80 0.80 −21% 21%
optPBE-vdW −0.24 0.33 −7% 9%
RPBE+nl 0.39 0.42 9% 10%
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Figure 5.4: Deviations of the Sol20 materials properties from experimental values.
The 20 bulk solids are ordered ascendingly according to their Periodic Table period and
atomic number. Top: Lattice constant deviations aDFT0 − aexp0 . Experimental values
without zero-point corrections are from Ref. 124. Bottom: Cohesive energy deviations
EDFT
c − Eexp

c with Eexp
c > 0. Experimental data without zero-point corrections from

Ref. 41.
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properties. It is by now widely recognized that the Rutgers–Chalmers functionals
vdW-DF and vdW-DF2 predict in general much too soft crystal lattices, and that this
may be remedied by optimizing the GGA exchange model.

It is seen from Fig. 5.4 and Table 5.3 that explicit inclusion of semilocal correlation
contributions also has the potential to offer such improvements. The RPBE+nl model
appears highly accurate for lattice constants but also vastly overstimate the cohesive
energies. Correlation interaction double-countings may be at play again. However,
in Fig. 5.4 we also see that the so-called RPBEc2/3+nl DFA offers cohesive energies
quite similar to the optPBE-vdW ones, while actually predicting lattice constants even
closer to experimental values.

5.4.3.4 RPBEc2/3+nl

It is apparent from the analysis above that the amount of semilocal correlations in-
troduced in the vdW-DF method (if any) must be balanced against those already
accounted for by Enl

c . The RPBE+nl mean overbinding of the S22 systems and mean
overestimate of bulk cohesive energies are probably due to such issues. From mere
inspection of the data in Tables 5.1–5.3 the RPBEc2/3+nl functional is therefore con-
structed. It mixes LDA end GGA correlation to average out this problem,

ERPBEc2/3+nl
xc = ERPBE

x + 1
3
ELDA
c + 2

3
EPBE
c + Enl

c , (5.13)

where the Enl
c of vdW-DF is used. As shown in Table 5.4 this approximation performs

remarkably well when applied non-self-consistently to the three previously considered
groups of benchmark systems. The S22 interaction energies are very accurately cap-
tured with only a slight average overbinding, while the G2-1 formation energies turn
out similar to those of the vdW-DF variants (i.e., better than optPBE-vdW). More-
over, RPBEc2/3+nl performs comparably to optPBE-vdW for predicting the bulk
solid properties and avoids the significant overbinding of crystals arising when fully
substituting LDA correlation for PBE correlation. In total, this looks like a very
promising density functional approximation. In the following section it is applied in
an example of every-day surface science studies.

Table 5.4: Mean deviations from experiments or high-level theory of calculated quan-
tities performed with the RPBEc2/3+nl density functional defined in (5.13).

Dataset unit MSD MAD MSRD MARD

S22 complexes meV −6 29 −16% 20%
G2-1 molecules eV −0.12 0.20 −2.8% 4.1%
Lattice constants Å 0.052 0.054 1.4% 1.4%
Cohesive energies eV/atom −0.03 0.27 −1% 6%
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5.4.4 Benzene adsorption on the Cu(111), Ag(111), and
Au(111) surfaces

Benzene adsorption on the noble (111) surfaces of Cu, Ag, and Au is mediated pri-
marily by dispersive van der Waals forces. These surfaces are the most close-packed
facets of the first three Group 11 transition metals, sometimes termed the coinage
metals. Such physisorption processes are therefore prime examples of the inability of
ordinary rung 1–3 density functionals in correctly describing dispersion, and accurate
description of physisorption is one main target for vdW-DFT. Several DFAs are here
tested for their ability to capture the benzene/M(111) interactions (M = Cu, Ag, Au)
responsible for physisorption. Apart from the DFAs applied in the preceeding section,
these include the LDA, TPSS, and revTPSS functionals, the latter two of which are
meta-GGA type approximations.

5.4.4.1 Experiments

Experimental evidence suggests that benzene (C6H6) interacts only weakly with the
Cu(111), Ag(111), and Au(111) surfaces at low temperatures, resulting in relatively
small adsorption energies and neglible distortion of the molecular geometry upon ad-
sorption.125–132 This is a signature of the decisive role of vdW dispersion in these three
adsorption systems. At low coverage, the weak adsorbate–surface interactions cause
C6H6 to adsorb with its aromatic ring parallel to the noble surfaces in a physisorbed
state from which it can desorb reversibly. Low-energy electron diffraction (LEED) ex-
periments at low coverage and temperature indicate benzene desorption from primarily
three-fold hollow adsorption sites.

Figure 5.5: Side-view of the atomic geometry for benzene adsorption on the noble
Cu(111) surface. Five metal layers are used in the Cu(111) repeated slab model and the
C6H6 molecule adsorbs with its aromatic ring parallel to the surface at the equilibrium
adsorbate–metal distance d.
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Actual measurements of the low-coverage benzene adsorption energy Eads on Cu(111),
Ag(111), and Au(111) are scarce, but some numbers may be found in the surface
science literature. In the case of C6H6/Au(111), an adsorption energy of −0.64 eV
was found in temperature-programmed desorption (TPD) experiments by Koel and co-
workers (Ref. 130). Another experiment reports Eads = −0.6 eV (Ref. 133), though not
properly documented in that reference. Literature experimental adsorption energies
for benzene on Ag(111) are somewhat more scattered. Using Redhead analysis,∗ Wöll
and co-workers (Ref. 133) converted the 160 K benzene desorption temperature from
Ref. 134 to Eads = −0.42 eV on Ag(111). However, later TPD experiments have found
somewhat stronger benzene–Ag(111) binding energies: Eads = −0.58 eV was inferred
in Ref. 130, while Rockey and co-workers (Ref. 132) found adsorption energies of
−0.57 eV and −0.52 eV for physisorption of benzene in two different rotations in
three-fold hollow sites on Ag(111). Since there is no reason to doubt the reliability of
these later experiments, the experimental value Eads = −0.57 eV is here adopted for
C6H6/Ag(111). Lastly, benzene adsorption on the Cu(111) surface was investigated by
Stevens and co-workers in Ref. 127. It was concluded that the C6H6/Cu(111) binding is
weaker than −0.62 eV. Later, Wöll and co-workers (Ref. 131) used TPD spectra of Ref.
135 to determine the adsorption energy more accurately, obtaining Eads = −0.59 eV.
In summary, the experimental low-temperature and low-coverage adsorption energies
of benzene on Cu(111), Ag(111), and Au(111) are reasonably taken as −0.59 eV,
−0.57 eV, and −0.64 eV, respectively. Unfortunately, there are no experimental data
available about the equilibrium benzene–M(111) distance.

5.4.4.2 Computational details

Potential-energy curves (PECs) for C6H6/M(111) physisorption are calculated using
3×3×5 metal slabs, which are repeated periodically in the surface planes to model the
M(111) surfaces. For each slab, the top-three metal layers are relaxed with PBE. The
fully relaxed benzene molecule is placed with its molecular plane parallel to the relaxed
surface in a hcp three-fold hollow adsorption site at the benzene–metal distance d =
4.0 Å (see Fig. 5.5) and then relaxed again. With the resulting intramolecular geometry
fixed, the adsorption energy is then computed for varying interaction distances, d =
2.4–6.0 Å, using different DFAs. The model system geometries are therefore those
found self-consistently with PBE. We expect this to have only a minor impact on the
PECs for other DFAs.

5.4.4.3 Benzene–M(111) potential-energy curves

Figures 5.6–5.8 illustrate the calculated PECs for benzene physisorption on Cu(111),
Ag(111), and Au(111), respectively. In all three figures, the experimental adsorption
energy is indicated by a horizontal dashed line. The minima of PECs obtained with the

∗ Redhead analysis: A simple relation between the activation energy for desorption of the
adsorbate and the measured temperature of maximum desorption rate.
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computationally more expensive MP2 wavefunction method are shown for comparison.
These data are from Ref. 133, where a cluster model approach was employed for C6H6

adsorption in the ontop adsorption site.
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Figure 5.6: Potential-energy curves for benzene adsorption on the Cu(111) surface
obtained using different density functionals. The black dot indicates the PEC mini-
mum found in Ref. 133 using the MP2 wavefunction method. Horizontal dashed line
indicates the experimental adsorption energy.
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Figure 5.7: Benzene/Ag(111) PECs calculated using different XC models.
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As the RPBE PECs are everywhere repulsive (positive Eads) it is again demonstrated
that ordinary RPBE calculations does not even attempt to account for dispersion-
mediated binding. The same is true for TPSS, while PBE and revTPSS do predict
some, but insignificant, stabilization of the benzene molecule on the coinage metals.
Decomposition of the PBE and LDA PECs into exchange and correlation contributions
(not shown in the figures) indicate that the shallow PEC minima for PBE stems from
correlation only, ruling out spurious exchange-mediated attraction. The opposite is
the case for LDA, where exchange is solely responsible for the minima. Such spurious
effects of LDA exchange are well known (e.g., Refs. 72–74), and especially the LDA
PEC for C6H6/Cu(111) adsorption in Fig. 5.6 is strongly exaggerated as compared to
the vdW-DF type PECs, and is overly deep when compared to experiment.

Turning attention to the XC models containing a nonlocal correlation term, significant
adsorption energy minima are introduced in Figs. 5.6–5.8. Calculated equilibrium
C6H6–M(111) distances and adsorption energies are listed in Table 5.5 along with
experimental and MP2 data.

The general trends across Table 5.5 appear somewhat different for the case of Cu(111)
than for Ag(111) and Au(111). Note that experimental measurements of Eads for
C6H6/Cu(111) is particularly scarce (there is essentially only one). Furthermore, it
was found in Ref. 133 that adsorbate-to-substrate charge donation is by far strongest in
the case of Cu(111). Therefore, disregarding Cu(111) for a while, the following general
trends are observed for benzene on Ag(111) and Au(111). First of all, the RPBE-
vdW, vdW-DF, and vdW-DF2 adsorption energies are all roughly 20–25% too small as
compared to experiments. Second, it is well known that vdW-DF tends to overestimate
noncovalent binding separations,90 so we should probably expect the C6H6–M(111)
equilibrium distance to be somewhat smaller than the 3.6–3.7 Å consistently found
with vdW-DF. Note that vdW-DF2 accomplishes this but without any extra binding.

Table 5.5: Equilibrium benzene–M(111) distances d (Å) and adsorption
energies Eads (eV).

Bz/Cu(111) Bz/Ag(111) Bz/Au(111)

XC d Eads d Eads d Eads

MP2a 3.6 −0.35 3.7 −0.33 3.8 −0.31
RPBE-vdW 3.7 −0.52 3.7 −0.46 3.6 −0.50
vdW-DF 3.7 −0.48 3.7 −0.43 3.6 −0.48
vdW-DF2 3.5 −0.45 3.5 −0.43 3.5 −0.48
optPBE-vdW 3.3 −0.63 3.3 −0.58 3.3 −0.64
RPBE+nl 2.8 −0.94 3.0 −0.82 3.0 −0.90
RPBEc2/3+nl 3.2 −0.72 3.2 −0.64 3.2 −0.70
Exp.b – −0.59 – −0.57 – −0.64
a Ref. 133.
b Refs. 130–132.
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Figure 5.8: Potential-energy curves for benzene physisorption on the Au(111) surface
calculated using different rung 1–3 density functionals as well as XC models including
the Rutgers–Chalmers nonlocal correlation approximation. As for C6H6 on Cu(111)
and Ag(111), the PEC minimum predicted by the MP2 wavefunction method appears
to fall very close to the LDA PEC, though far from the LDA minimum.

Of the van der Waals XC functionals considered here, only the optPBE-vdW and the
RPBEc2/3+nl appear to perform well for C6H6 on Ag(111) and Ag(111). Both pre-
dict smaller separations than vdW-DF, and optPBE-vdW in particular proves highly
accurate for the physisorption energetics. The PECs for both DFAs furthermore show
an asymptotic approach to the non-interacting limit (d → ∞) that is very similar to
those of RPBE-vdW and vdW-DF, which are expected to be reasonably accurate in
this limit of vanishing density–density overlap between adsorbate and surface.

5.5 Discussion and summary

The vdW-DF approach to inclusion of vdW dispersion interactions in DFT is promis-
ing. It employs the Rutgers–Chalmers density dependent nonlocal correlation, an
approximate but computationally tractable representation of the beyond-LDA part of
the exact ACFD correlation energy. In contrast to the many DFT-D methods, which
add a more or less empirical dispersion correction to the KS total energy, the RC corre-
lation approximation provides a KS potential and thus also Hellmann–Feynman forces.
In standard vdW-DF variants it is combined with a GGA exchange approximation and
strictly local LDA correlation.
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It is clear from this study and many others that vdW-DF introduces stabilizing in-
teractions between noncovalently bonded fragments, as it was designed to do. Such
interactions are not at all accounted for by, e.g., the RPBE density functional, which
has become popular for studies in surface chemistry and catalysis. However, it is also
clear that the three vdW-DF variants RPBE-vdW, vdW-DF, and vdW-DF2 do not
offer quantitative agreement with high-level theory for noncovalent bonds when avail-
able. Those three XC models furthermore predict much too soft crystal lattices. Even
though molecular formation energies are described at the RPBE level, this arguably
hampers truly general applicability of these three DFAs in theoretical surface science.

The optPBE-vdW approximation amends some of these issues by explicitly fitting an
exchange functional for use in the vdW-DF method. This approach works very well
for noncovalent bonds and crystalline solids, but also leads to severe overestimates
of intramolecular binding energies of the G2-1 molecules. Offhand, this questions
the applicability of such exchange-optimized vdW-DF variants in studies involving
chemical transformations, a dominant field in materials science. This is investigated
more closely in Chapter 7.

Including semilocal correlation contributions in the vdW-DF approach was here ex-
plored as an alternative approach towards a generally applicable, high-accuracy van
der Waals density functional. Not surprising, fully substituting LDA for GGA correla-
tion produces significant correlation double-countings, so local and explicitly semilocal
correlations must be balanced. The RPBEc2/3+nl construction accomplishes this very
well when assessed in terms of quantitative performance on the benchmark datasets
considered here. Moreover, together with optPBE-vdW, this approach convincingly
outperforms RPBE-vdW, vdW-DF, and vdW-DF2 for studies of benzene physisorp-
tion on the noble Ag(111) and Au(111) surfaces. Note that these are rather generic
examples of target applications of vdW density functionals. For C6H6/Cu(111) the
picture is, however, less clear-cut.

Even so, the rest of this thesis takes the point of view that high-performance and
general-purpose van der Waals density functionals should be obtained from optimizing
the exchange approximation and the fraction of GGA correlation used in E0

c .



Chapter 6

Statistical Background and
Machine Learning Methods

Having in the previous chapter investigated the performance of vdW-DF variants with
different exchange approximations and the possible influence of semilocal correlation
contributions, the rest of this thesis reports on methods to construct completely new
XC models through semi-empirical fitting. Before diving into this it is useful to first
consider some of the statistical methods underlying these works.

This chapter is therefore concerned with the basics of the approach to statistical mod-
elling later used for developing density functionals with built-in error estimation, which
involves a combination of methods inspired by Bayesian statistics and tools developed
in the field of machine learning. Fear not, we shall not undertake a complete review
of these topics. Instead, methodologies are sketched with emphasis on the underlying
philosophy. This chapter is based on the thorough exposition in Ref. 136.

6.1 Bayesian statistics

Statistical modelling is essentially all about maximizing our confidence that some
mathematical model can be used for predicting future events or results of measure-
ments, that is, the value of data drawn from some distribution. However, often we only
have a finite (and possibly small) number of data samples available from this distribu-
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tion, and the data drawn from it may even be noisy and subject to uncertainty. This is
a common situation when modelling experimentally determined data. Moreover, the
distribution underlying the data may be essentially unknown to us, making it hard to
assess wether the final model really captures the essential characteristics of the distri-
bution, or if it merely fits the random noise. The latter would be an overfitted model
with limited or no ability to reliably predict the outcome of future “measurements” of
data. This is a very dangerous situation for the statistical modeller, but there are ways
around it. We start off with some basic probability theory before discussing aspects
of the present approach to statistical modelling.

6.1.1 Basic probability theory

The two basic rules for working with probabilities are the product rule and the sum
rule. If we consider two random variables X and Y , the product rule states that the
joint probability P (X,Y ) of both variables taking on some variables (say, x and y) is
given by the probability P (Y ) that Y = y, times the conditional probability P (X|Y )
that X = x, given that Y has already taken on the value y,

P (X ∩ Y ) = P (X,Y ) = P (X|Y )P (Y ). (6.1)

The sum rule states that the probability for a random variable X may be found from
summing over joint probabilities,

P (X) =
∑
Y

P (X,Y ), (6.2)

where the sum is over mutually exclusive possibilities for Y .

Let us now consider the situation where we have a dataset D of target data which
we will attempt to describe using a model M with the parameters a (a vector). The
present discussion implicitly assumes the existence of some “true” model M which
generated the target data, and it is our aim to represent M with the parametrized
model M(a). Even though the target data were generated by the true model, the
“measurement” process may have introduced noise on the data. In that case we can
never be absolutely certain of what the model parameters should be. However, using
the product rule (6.1) and the relation P (X,Y ) = P (Y,X), we can define a probability
distribution P (Ma|D) for the parameters given the known data,

P (Ma|D) =
1

P (D)
P (D|Ma)P (Ma) ∝ P (D|Ma)P (Ma). (6.3)

This is the well-known Bayes’ theorem, which plays as central role in the field of
machine learning and computational pattern recognition (e.g., Refs. 137–140). The
Bayesian understanding of probabilities is different from the better-known frequentist
interpretation. While the frequentist view is that the probability of an event is the
limit of its relative frequency in a large number of trials, in a Bayesian interpretation
it is rather a measure of plausability. Thus, the relation (6.3) may be written

posterior ∝ likelihood× prior, (6.4)
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which relates the posterior probability P (Ma|D) to the likelihood P (D|Ma) and the
prior probability P (Ma). In a Bayesian setting, these probabilities have the following
interpretation: The prior is the probability that model M(a) is a good model before
the data D are known, the likelihood is the conditional probability that model M(a)
actually generated data D, given that M(a) is a good model, and the posterior is
the probability that M(a) is in fact a good model after all evidence (data) has been
considered.

6.1.2 Maximum-likelihood solutions

Let us consider now the situation where we have sampled Nd data points with Gaussian
noise of width σ0 from the true model M. We will fit these data with a third-order
polynomial z,

z(x,v) = v0 + v1x+ v2x
2 + v3x

3 =

3∑
j=0

vjx
j , (6.5)

where v is the coefficient vector model solution to be determined using the maximum
posterior method, that is, by maximizing the posterior in (6.3) and (6.4).137

Assuming unit prior probability, maximizing the posterior amounts to maximizing the
likelihood. We are then looking for the maximum-likelihood (ML) model solution.
Now, since the data points are normal distributed with a width of σ0, the relation
between posterior and likelihood may be explicitly written in terms of a Gaussian
distribution with variance σ2

0 ,

P (Mv|D) ∝ P (D|Mv) ∝ exp

(
−
∑
n

{z(xn,v)− yn}2

2σ2
0

)
. (6.6)

Maximizing this probability amounts to minimizing the sum in the exponential, which
is identical to minimizing the conventional least-squares loss function L(v),

L(v) =
1

2

Nd∑
n

{z(xn,v)− yn}2. (6.7)

6.1.2.1 Overfitting

As already alluded to, a well-known problem with fitting models is overfitting. If the
model is too complex (contains too many parameters), and/or the set of target data is
too small, the least-squares (or ML) best-fit models may be highly unrealistic and thus
useless for reliable predictions of new data not contained in the dataset. Examples
of this are shown in Fig. 6.1, where ML solutions when fitting a sine function using
polynomial degrees of 3, 7 and 11 are plotted. The models, denoted M3 (–), M7 (–),
and M11 (–), respectively, become increasingly oscillatory as the polynomial order
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Figure 6.1: Maximum-likelihood solutions when fitting a noisy sine function (black
curve) with polynomials of degrees 3 (red), 7 (green) and 11 (blue). The error bars on
the Nd black target data points indicate the width σ0 of the Gaussian noise. Adapted
from Ref. 136.

increases, and for M11 it is clear that the flexible model space is used to fit the noise
rather than the underlying sine function. That model is clearly more complex than
necessary, indicating overfitting and thus a loss of model generalization.139 On the
other hand, any first-order polynomial approximation would be a poor representation
of a noise-free sine function as well. Such model would be underfitted.

6.1.3 Prior expectation and regularization

Model space complexity is obviously the real issue with models M7 and M11 in Fig. 6.1;
the M11 solution is clearly allowed to adjust to the noise and scarcely looks like a sine
function. However, our a priori expectations when optimizing linearly expanded mod-
els is often well-behaved solutions with reasonable expansion coefficients and modest-
valued derivatives. The prior distribution of Bayes’ theorem allows us to express such
expectations before even considering the target data (before evaluating the likelihood).
This can be cleverly used to tune the model complexity by making certain parts of a
highly flexible model space unlikely and effectively inaccessible.

A simple choice for the prior probability takes the form of the squares of all coefficients,

P (Mv) = exp

(
−v

Tv

2σ2
p

)
= exp

(
−ω2vTv

)
, (6.8)

where vTv = ‖v‖2 =
∑
j v

2
i is the length of v, and σp is the width of the Gaussian

prior, here expressed in terms of the prior strength ω2 =
(
2σ2

p

)−1
> 0. Minimizing the
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posterior (6.4) with this prior amounts to minimizing a loss function C of the form

C(v, ω) =
∑
n

{z(xn,v)− yn}2

2σ2
0

+ ω2vTv, (6.9)

such that the regularization term R = ω2vTv penalizes the occurence of large coeffi-
cients in the minimizing solution v0. This particular choice of a quadratic regularizer is
well documented in statistical literature under such different names as ridge regression,
parameter shrinkage, and weight decay.137 For ω2 � 1 the regularizer will quench the
large coefficients in models M7 and M11 in Fig. 6.1, leading to significantly less over-
fitted models at the expence of sligthly worse fitness of the models in the least-squares
sense.

However, we can only make this statement because we already know the true model
in Fig. 6.1 (a sine). The next section deals with the more general case where we do
not knowM, and where we can not even be sure that the employed model space can
reasonably representM, whatever it is.

6.2 Machine learning procedures for linear model
parametrization

Until now we have implicitly assumed models linearly expanded in a set of expansion
functions, e.g., polynomials, and we shall continue to do so, but a more explicit de-
scription of the model space is now needed. Furthermore, error estimators developed
for machine learning are used for determining the regularization strength.

6.2.1 Regularized cost function

We aim at approximating the true modelM(x), which generated the Nd target data
points in dataset D, by the objective function f(x), which is linearly expanded in Np
basis functions fn(x),

f(x) =

Np∑
n

fn(x)an = fT (x)a, (6.10)

where a is a column vector of expansion coefficients and fT (x) a row vector of basis
functions. The model prediction zai of the target data point yi at xi is therefore
zai = fT (xi)a, which in matrix notation for all data points is written z = Aa, where
A is a Nd×Np matrix Ain = fn(xi). Using these definitions we now write a regularized
cost function of the form (6.9) as

C(a, ω) = C̃(a) +R(a, ω)

= (Aa− y)T (Aa− y) +R(a, ω),
(6.11)
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where C̃(a) is the maximum-likelihood part and R(a, ω) the regularizer. The model
solution α that minimizes the cost function for some regularization strength ω2

0 , that
is, C(α) = mina C(a, ω0) ≡ C0, is found from requiring the first derivative of the cost
be zero with respect to all an.

However, C(a, ω) contains much more information than simply the model solution.
The Hessian matrix H = C′′, more formally defined by

Hkl(a) =
∂2C(a, ω)

∂ak∂al

∣∣∣∣
a=α,ω=ω0

, (6.12)

describes the cost function curvature around α. Since C(a, ω) is quadratic in the
model parameters it may in the model space vicinity of α be expressed in terms of the
Hessian as

C(a, ω) = C0 +
1

2
(a−α)T H (a−α) . (6.13)

Importantly, an eigenvector decomposition of the Hessian for the ML part of the
cost function alone, C̃(a), allows identification of strong (large eigenvalue) and weak
(small eigenvalue) eigenmodes of C̃(a). These correspond directly to strong and weak
directions in model space, and gives rise to the concept of sloppy models,141 that is,
models containing one or more poorly determined parameters. A sloppy mode is thus
a direction in model space which may dramatically change its weight in the model
solution without significantly changing the apparent quality of the fit (the ML cost).
Such a parameter is not sufficiently constrained by the target data, and thus poorly
determined. This may give rise to overfitting issues when the trained model is used
to predict data outside the training data. Similar conclusions may be drawn from
considering a singular value decomposition of C̃(a), see Refs. 136 and 142.

The regularizer has a direct impact on the eigenvalue spectrum of the ML cost func-
tion; it adds a curvature scaled with ω2 to all modes in the Hessian. Thereby, small
eigenvalues of C̃(a) are lifted while large eigenvalues are essentially unaffected. For
intermediate regularization strength this means that sloppy cost function modes (small
eigenvalues) are effectively frozen out of the regularized cost function C(a, ω), leaving
behind only the most important modes. For very strong regularization (ω2 →∞) the
simple ridge regression regularizer forces the length of α to zero, most often leading
to a far too simplistic model where also the important modes have been suppressed.

6.2.1.1 Effective number of parameters

Since regularization limits the effective degrees of freedom in model space contributing
to the model solution, it is natural to speak of the effective number of parameters left
in the model after regularization, Neff. For the ridge regression regularizer the effective
number of model parameters may be calculated from the eigenvalues wn of the ML
cost function Hessian,139

Neff(ω2) =
∑
n

wn
wn + ω2

, (6.14)
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with the limits

lim
ω2→0

Neff =
∑
n

1 = Np,

lim
ω2→∞

Neff =
∑
n

0 = 0. (6.15)

Thus, the effective number of parameters can be intuitively understood as the number
of eigenmodes in the cost function that are not (significantly) affected by regularization.

6.2.2 Estimators of the generalization error

Given some regularization method, all we need to do is determine a suitable regulariza-
tion strength, that is, to choose the desired model complexity. Now, what characterizes
the optimum regularization strength? Since we anticipate to apply this machiney for
development of semilocal exchange-correlation approximations for density functional
theory, where we know a priori that the exact XC functional will not be available in
the model space, avoiding overfitting such simple XC models is very important. We
therefore wish to suppress the most sloppy model eigenmodes (which are harmful to
transferability of the fit) without freezing out the strongest ones (which are essential to
quantitative performance of the XC model). Determining the scale of ω2’s that satisfy
these requirements for model selection is not trivial, and definite or analytic solutions
to this problem does not exist. However, resampling methods developed for machine
learning applications are useful tools for this problem.137

If the true model is known we may define the expected prediction error PE when the
fit µ(x) attempts to estimate the data point yi =M(xi) by µ(xi) in terms of the bias
and variance of µ(x),139

PE = σ2
ε + Bias2 + Var = 〈〈{µD(x)−M(x)}2〉D〉x, (6.16)

where σ2
ε is an irreducible error due to noise on the data, and the right-hand expression

is the deviation between the best-fit model for dataset D and the true model, averaged
over datasets and data points. The squared bias quantitifies the deviation between the
average best-fit model and the true model, while the variance is the expected squared
deviation of the prediction from its mean. The variance is in general high for flexible
models with many parameters, since these are able to adapt to different datasets
representing the true model differently. On the other hand, the bias expresses the
inability of an approximate model to represent the true model even for large datasets
with low noise levels, and is in geneeral high for overly simple models. However, since
we do not in general knowM(x), we can not directly evaluate and minimize (6.16).

Assessment of the overall quality of a model is key in many machine learning prob-
lems, e.g., regression, pattern recognition, and classification. Efficient methods have
therefore been developed for estimating the model PE on real-life datasets. This is a
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well-documented scientific field in itself (e.g., Refs. 137,139,143,144), but only a small
subset of the methods are of interest here.

The most simple estimator of the prediction error is the apparent error rate err,

err =
1

Nd

Nd∑
i

{µ(xi)− yi}2, (6.17)

which is the data-point average of the squared error for model µ, and similar to the
least-squares loss function. It is well-known and easily understood that err tends to
underestimate the true generalization error (the PE), since the data used for training
the model is here also used for testing it. The apparent error is thus an overly optimistic
estimate of the generalization error.

Bootstrapping is a prominent class of resampling methods that attempt to alleviate
this problem. In particular, the bootstrap “.632 estimator” proposed by Efron in Ref.
145 is designed to provide a balanced representation of the bias–variance tradeoff and
reliable estimates of the PE. The essential feature is random generation of new datasets
from the original target data by drawing Ns samples of Nd data points from D while
allowing for repetition. The bootstrap out-of-bag estimator Err is then defined as

Err =
1

Nd

∑
i∈D

1

Ni

∑
D̃|i/∈D̃

{µD̃(xi)− yi}2, (6.18)

where Ni is the number of bootstrap samples D̃ that do not contain data point i. The
parenthesis thus evaluates the squared error on model predictions only for models µD̃
which were not trained on target data i. However, Err is itself an overly pessimistic
estimate of the generalization error, so the total .632 estimator is defined as a weighted
average of err and Err,

EPEBS.632 =
(
0.368 · err + 0.632 · Err

)1/2
, (6.19)

where the weights stem from considering the asymptotic (Nd → ∞) probability
P ≈ 1 − e−1 = 0.632 that a data point will be included in a particular bootstrap
sample.139 The bootstrap .632 estimator (6.19) is used here to determine the optimum
model complexity, that is, optimum model solutions with a minimum of overfitting,
by minimizing EPEBS.632 over the regularization strength.

6.3 Error estimation

The maximum-likelihood solutions considered here maximize the probabiliaty distribu-
tion for the model parameters in Bayes’ theorem, which peaks at the best-fit solution
α. The concept of an ensemble of model solutions around the optimum one is there-
fore intrinsic to the present approach to model parametrization. As the number of
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target data points Nd increases, the ensemble contracts around α, and for Nd → ∞
the ensemble spread vanishes, even though M(α) may be a poor model. The spread
of the maximized posterior distribution can clearly not be used for inferring the actual
errors made by the model when applied to predict new data.

Nevertheless, a model ensemble with error estimation capabilities may be rather useful,
so we simply design one. Considering a model M̃ with optimized parameters ã, we
seek to define a probability distribution P̃ (a) to be used to estimate errors for model
M̃(ã). If we consider a data point y(x), this point has a deviation from the model
given by ∆y(x) = ỹ(x) − y(x). We would therefore like the distribution P̃ (a) to
exhibit a width of about this size for the prediction of y(x). In other words, if we
define δya(x) = ya(x) − ỹ(x) for the deviation between the model given by a and ã,
we would prefer if the distribution obeyed 〈δya(x)2〉 = ∆y(x)2, that is, the spread of
the ensemble predictions should reproduce the actual error. This can not be obtained
at every data point, but if we make this a requirement on average for all data points,∑

i

〈(δyai )
2〉 =

∑
i

∆y2
i , (6.20)

a probability distribution P̃0 for the model parameters in terms of the cost function
may be derived,136

P̃0 ∝ exp (−C/T ) , (6.21)

where the “temperature” T scales the ensemble fluctiations so that errors between
model and target data are on average reproduced. The temperature may be expressed
in terms of the minimized cost function and the effective number of parameters in the
model,

T = 2
∑
i

∆y2
i /Np = 2C0/Np, (6.22)

which implies C0 = NpT/2. The latter form shows that each of the Np harmonic
degrees of freedom in the cost function contributes T/2 to the cost, as well-known
from the equipartition theorem of statistical physics. Several more details may be
found in Ref. 142.

6.4 Summary and a standard procedure

The basics of the approach to statistical modelling used in the following chapters for
developing density functionals with error estimation ensembles have been introduced.
Apart from the design of the ensemble, the whole methodology is aimed at tackling
overfitting issues when parametrizing highly flexible models in manifestly incomplete
model spaces. It is here appropriate to summarize the use of a regularized cost function,
an estimator of the model generalization error, and scaling of the fluctuations in the
Bayesian ensemble such as to enable error estimation, in a “standard procedure” for
XC model fitting.
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Given is the simple situation of a single dataset of electronic structure materials prop-
erties. With the aim of generating an DFA suitable for accurate but transferable DFT
based predictions of the materials properties represented by the target data, as well
as an error estimation ensemble, a highly flexible linear-expansion XC model space is
employed. To minimize the risk of overfitting, which will most certainly be the result
of parameter adjustment without regularization, an optimum model complexity must
therefore be determined. The bootstrap .632 estimator is used for this in a procedure
where the regularized cost function is minimized over a wide range (several orders
of magnitude) of k different regularization strengths in the set {ω2

k}, yielding the set
of model solutions {αk}. The solution corresponding to the ω2

k that minimizes the
estimator is identified as the “globally” optimum model αopt in this multi-objective
optimization problem of simultaneously minimizing model bias and variance. The cost
function at αopt and the effective number of parameters in the solution form the basis
for generation of a Bayesian error estimation ensemble around αopt.



Chapter 7

A Semi-empirical Approach
to Density Functional

Development

The machine learning methods introduced in the previous chapter are here applied
in a novel approach to semi-empirical density functional development. The goal is
a general-purpose density functional for surface science and catalysis studies, which
should accurately describe bond breaking and formation in chemistry, solid state
physics, and surface chemistry, and should also account for van der Waals disper-
sion interactions. In this approach we consider XC functionals more or less accurate
models of the exact density functional, and strive for computationally efficient but re-
liable XC models. From this point of view, the basis function expansion of XC model
space, model selection procedure, and high-quality target dataset(s) representing the
materials properties of main interest, are essential.

An error estimation ensemble of model solutions for the final XC model, named BEEF-
vdW, is also generated. A normal DFT calculation does not provide any information
about the uncertainty of the result from using an approximate DFA. One method to
obtain an estimate of the uncertainty is performing several calculations using different
functionals, and observe the variations in the prediction of the quantity of interest. An
ensemble of functionals designed to provide this error estimate is a more systematic
approach.
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7.1 Pitfalls of fitting density functionals

The semi-empirical approach to DFA development was introduced in broad terms
in Section 3.3. It has become a popular path to specialized XC functionals of high
accuracy for the intended applications, and a wealth of semi-empirically adjusted func-
tionals on nearly all levels of Jacob’s ladder exist today.70

A few different methods of DFA parametrization are in general use. On the simplest
level the parameters in existing DFAs, which may originally have been “nonempiri-
cally” chosen from physical arguments, are reoptimized towards specific applications.
The exchange-modified vdW-DF variants in Section 5, as well as the revPBE GGA
and many others, are examples of this. Linear combinations of existing DFAs, as in the
B3LYP and PBE0 hybrids, and smooth switching between exchange functionals as in
C09-vdW and the AM05 and HTBS146 GGAs, are other simple approaches. These are
often taken far further in more or less full expansions of the functional. The expansion
coefficients in a suitably chosen basis function expansion of, e.g., the GGA exchange
enhancement factor, are then optimized by model training on one or more bench-
mark datasets representing the target materials properties for the resulting XC model.
Polynomial basis functions expressed in dimensionless electronic structure dependent
variables are often used. Spin-dependent scaling of the LDA correlation energy den-
sity may be similarly expanded, and the total XC models may end up containing more
than 40 parameters.64,147 Some well-known DFAs generated this way include VSXC,
the HCTH family, and the Minnesota functionals of the Truhlar group, which include
the M06-L meta-GGA.62,65 However, as the number of parameters increases, and the
polynomial order in particular, this procedure entails an increasing risk of overfitting.

This was realized early on by Becke and others.64,148 Using polynomial expansions of
GGA exchange and correlation in least-squares fitting procedures, polynomial orders
above 4 were found to yield increasingly oscillatory and unphysical XC functionals.
Becke described this in Ref 64 as “a transition to mathematical nonsense”. Never-
theless, semi-empirical DFAs containing many parameters continue to be constructed
with only limited attention to the overfitting issue. Figure 7.1 illustrates a heavily
overfitted GGA exchange enhancement factor. Though the XC model performs very
well on the dataset it was fitted to (G3/99), we should expect the generalization er-
ror to be large when considering quantities very different from those included in the
training dataset.

Transferability of a DFA parametrization depends not only on the degree of overfit-
ting to a single set of molecular or condensed matter properties, but also on how many
physically different properties the approximate model was trained on. A key issue is
here model tradeoffs arising from a “competition” between vastly different datasets in
determining the XC model solution. Such a competition is unavoidable when employ-
ing a rather incomplete XC model space, such as GGA, and the result is necessarily an
XC model compromise. Implicitly acknowledging this, many semi-empirically oriented
DFA developers assign more or less arbitrary weights to each dataset.62,147,149 Here we
take a more elaborate but less biased approach to choosing the optimum compromise.
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Figure 7.1: An overfitted GGA exchange enhancement factor (black). The model
was least-squares optimized on the G3/99 molecular formation energies using a 10th-
order polynomial expansion forced to respect the HEG limit. Combined with PBE
correlation this GGA is apparently very good for thermochemistry, yielding a mean
absolute deviation of 0.16 eV on the G3/99 molecules, significantly lower than the
0.21 eV MAD for B3LYP,46 a standard high-accuracy hybrid XC functional in quantum
chemistry. But alas, the DFA is overfitted in the sense that we should not expect good
transferability of this performance when considering quantities very different from
molecular formation energies, or even formation energies of molecules not included in
the G3/99 set.

7.2 GGA+vdW model space

Following the results of Section 5.4, where introduction of semilocal correlation contri-
butions to the vdW-DF method was found useful, the XC model space to be employed
here is GGA exchange and a linear combination of LDA and PBE correlation in con-
junction with nonlocal correlation of the vdW-DF2 type.

As already reviewed in Section 3.2, the GGA exchange energy density εGGA
x (n,∇n)

is expressed in terms of the exchange energy density of the homogenous electron gas,
εHEGx (n), and the exchange enhancement factor Fx(s). The latter is (usually) a rea-
sonably well-behaved function of the reduced density gradient s,

s =
|∇n|
2kFn

∝ |∇n|
n4/3

, 0 ≤ s ≤ ∞, (7.1)

and the total GGA exchange energy is written EGGA
x [n,∇n] =

∫
εHEGx (n)Fx(s)n(r)dr.

A highly flexible exchange model space is obtained by expanding Fx(s) in a basis of
Mx Legendre polynomials Bm(t(s)) of orders 0 to Mx − 1 in a transformed reduced
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density gradient t(s),

t(s) =
2s2

q + s2
− 1 , −1 ≤ t ≤ 1,

Fx(s) =
∑
m

amBm(t(s)),
(7.2)

where am are expansion coefficients and q = 4. The first few basis functions are
illustrated in Fig. 7.2. Note that t(s) is essentially a Padé approximant to the PBE
Fx(s). In fact, choosing Fx(s) := 1.4+0.4 ·t(s) with q := κ/µ = 0.804/0.21951 ≈ 3.663
would quite accurately approximate the PBE Fx(s), However, for simplicity, we choose
q = 4 which does not make much difference, and note that due to the mapping t(s),
PBE exchange is nearly expandable in the two lowest-order polynomial basis functions
B0(t(s)) and B1(t(s)).

The total GGA exchange energy is therefore expanded as

EGGA
x [n,∇n] =

∑
m

am

∫
εUEGx (n)Bm(t)n(r)dr,

=
∑
m

amEm [n,∇n] ,
(7.3)

where Em is the exchange energy corresponding to Bm.

Semilocal approximations to electron correlation effects beyond GGA exchange are
not easily cast in terms of a single variable, such as s. In fact, the popular PBE GGA
correlation approximation is far from simple, and even depends on the relative spin
polarization. Meanwhile, correlation energy contributions to most materials properties
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Figure 7.2: Legendre polynomial exchange basis functions Bm(t(s)) illustrated for
polynomial orders 0 to 6. Though not explicitly illustrated, the PBE exchange en-
hancement factor is almost expanded as Fx(s) := 1.4 ·B0 + 0.4 ·B1 = 1.4 + 0.4 · t(s).
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of interest here are significantly smaller than the exchange ones.15 This motivates the
use of the rather simple correlation model space given by

Ec [n,∇n] = αcE
LDA
c + (1− αc)EPBE

c + Enl
c , (7.4)

where purely local Perdew–Wang150 correlation is mixed with the PBE semilocal cor-
relation through the parameter αc, and the relative amount of contributions from Enl

c

is kept constant and equal to one.

In total, the XC model space consequently consists of GGA exchange expanded in
Legendre polynomials in addition to local, semilocal, and nonlocal correlation,

Exc =

Mx−1∑
m=0

amEm + αcE
LDA
c + (1− αc)EPBE

c + Enl
c , (7.5)

where Mx = 30, and the total number of parameters is M = Mx + 1 = 31.

Note that none of the commonly imposed constraints on GGA exchange are invoked,
e.g., the HEG limit Fx(0) = 1 and recovery of the correct gradient expansion for
slowly varying densities, nor the Lieb–Oxford bound Fx(s → ∞) = 1.804 for large
electron density gradients and/or small densities. However, the sum of LDA and PBE
correlation is constrained to unity, and should preferably fulfill 0 ≤ αc ≤ 1.

7.3 XC model selection and model compromises

Choices are obviously made when developing semi-empirical density functionals. These
are both explicit and implicit choices pertaining to what the functional is to be de-
signed for, that is, for the selection of an optimum exchange–correlation model that
captures the materials properties of main interest when applying the approximation.
We aim here to explicate some of these choices, and develop a set of principles for the
model selection process. The main point is that an XC model compromise is inevitably
faced when attempting to describe significantly different quantities in chemistry and
condensed matter physics using an incomplete model space. We acknowldge this sit-
uation and attempt to deal with it. The alternative is overfitting the XC model, or
generation of individual-purpose density functionals rather than general-purpose ones.

DFA development is in this approach divided into two steps. First an individual model
selection for a number of datasets is carried out, and subsequently a simultaneous
model selection is made, compromising between the individual fits.

7.3.1 Individual materials properties

Model training for individual datasets is conducted using the “standard procedure” of
Section 6.4. That is, a regularized cost function in the model parameters is minimized
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for given regularization strength ω2. The model solution that minimizes the bootstrap
.632 estimator of the generalization error is identified as the optimum solution, which
should represent an appropriate bias–variance tradeoff and avoid overfitting the XC
model.

7.3.1.1 Tikhonov regularization

The simple redge regression regularizer was introduced in Section 6.1.3. It is quadratic
in the model parameters and simply punishes large solution vector coefficients, which
is often sufficient to limit overfitting. However, experience tells us that fitting ex-
change approximations in the quite incomplete GGA model space requires special at-
tention to the smoothness of the obtained solutions. Indeed, significantly non-smooth
exchange solutions have been shown to degrade transferability of fitted exchange func-
tionals to systems outside the training data, even though an EPE minimization was
performed.136 Such effects should clearly be avoided, and physically it is also very
reasonable to require Fx(s) to be a smooth and preferably injective function of s, after
all, why should it not be so?

The Tikhonov regularization method151 is therefore applied. This regularizer is also
quadratic in the coefficient vector a, but instead of penalizing according to ‖a‖2, it
penalizes non-smooth variations away from a suitably chosen prior vector ap. The
Tikhonov regularizer we write as

RT(a, ω2) = ω2Γ2 (a− ap)2 , (7.6)

where Γ is the Tikhonov matrix, and the parenthesis measures the difference between
coefficients in a and the prior vector. The Tikhonov matrix is primarliy defined from
a smoothness criterion on the exchange basis functions, even though it also contains
entries for the correlation parameter αc.

Consider first the exchange part of Γ, which is defined from the overlap of the second
derivative of the exchange basis functions with respect to t(s),

Γ2
ij =

∫ 1

−1

d2Bi(t)

dt2
d2Bj(t)

dt2
dt. (7.7)

Note that this overlap is zero for the order 0 and 1 basis functions, which are therefore
considered “infinitely smooth” and not affected by the Tikhonov regularizer. Instead,
the integrated squared second derivative of the exchange fit is directly penalized for
any finite regularization strength. This can be understood as penalizing a measure
of non-smoothness of the fitted exchange enhancement factor. In effect, the Γ matrix
scales the ω2 acting on each basis function in (7.6). One subtle detail about RT(a, ω2)
is particularly important to note: Since the exchange part of Γ acts in the transformed
t(s)-space, the transformation (7.2) causes the regularization penalty on exchange to
be strongest in the large-s regime, where information from the target data about the
optimum behavior of Fx(s) is expected to be scarce.50,55 The correlation part of Γ has
one in the diagonal and zeros in the off-diagonal elements.
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7.3.1.2 Cost function and bootstrapping

The cost function to be minimized for the i’th dataset consists of the maximum-
likelihood cost and the Tikhonov regularizer,

Ci(a) = C̃i(a) +RT(a, ω2)

= (Xia− yi)2 + ω2Γ2 (a− ap)2 ,
(7.8)

where Ci(a) = Ci(a, ω
2) for brevity. In accordance with (7.5), the data matrix Xi

consists of XC contributions to a materials property for each system in the dataset from
the M basis functions. These are evaluated non-self-consistently on RPBE electron
densities. The target vector yi contains the target XC contribution to each quantity
in the set.

The role of the Tikhonov regularizer in this cost function is emphasized: It suppresses
solution vector coefficients for higher-order exchange basis functions unless they are
essential for obtaining a satisfactory fit. This leads to a model selection preference
for solutions that are smooth variations away from the the prior vector ap, which is
the XC model solution for ω2 → ∞. The prior we therefore also call the origo for
regularization. The exchange part of ap is chosen as 1.4 ·B0(t) + 0.4 ·B1(t), while the
prior for correlation is αc = 0.75.

In order to minimize the cost function (7.8) it is transformed by Γ−1. Ones are
therefore inserted in the first two diagonal elements of Γ to avoid numerical issues.
The solution vector ai that minimizes Ci is found from

ai = Γ−1
(
X ′i

T
X ′i +L2ω2

)−1(
X ′i

T
yi + ω2L2a′p

)
, (7.9)

where X ′i = XiΓ
−1, a′p = Γap, and L2 is the identity matrix with zeros in the first

two diagonal elements. Well-behaved correlation solutions are enforced by requiring
0 ≤ αc ≤ 1.

The bootstrap .632 procedure introdued in Section 6.2.2 is conducted using 500 ran-
domly generated target data samples for each ω2. The regularization strength that
minimizes the estimator is found by a smooth fitting of the slightly scattered estimator
plot near its minimum. To properly regularize the S22x5 subsets with long interaction
distances, a condition Fx(s =∞) ≥ 1 is enforced.

7.3.1.3 Individually trained XC models

Table 7.1 and Fig. 7.3 show details and statistics for XC models obtained when the
model selection procedure outlined above is applied to molecular, solid state, sur-
face chemical, and vdW dominated energetics as represented by the CE17, RE42,
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Table 7.1: Model selection results of individually training the XC model in (7.5)
to 10 different datasets. Meff is the effective number of parameters in a model, see
(7.23). The s = 0 and s → ∞ limits of the obtained exchange enhancement factors
are also shown. MSD, MAD and STD are mean signed, mean absolute, and standard
deviation, respectively, all in meV. Note that these are non-selfconsistent results.

αc Meff Fx(0) Fx(∞) MSD MAD STD

CE17 0.90 4.7 0.97 2.15 −10 96 116
RE42 1.00 4.2 1.06 1.21 19 168 207
DBH24/08 0.00 3.7 1.14 3.14 1 116 142
G2/97 0.27 7.2 1.10 2.53 −13 109 149
Sol34Ec 0.00 7.7 0.97 1.25 −4 168 208
S22x5-0.9 0.81 3.2 0.96 1.68 0 9 11
S22x5-1.0 0.82 3.1 0.98 1.87 0 8 10
S22x5-1.2 0.40 5.7 1.04 2.38 0 4 6
S22x5-1.5 0.85 4.0 1.02 1.91 −1 3 4
S22x5-2.0 1.00 3.3 0.95 1.37 2 3 3

DBH24/08, G2/97, and Sol34Ec datasets, as well as the five S22x5 subsets (all intro-
duced in Section 4.1). Each model is therefore trained on a single materials property
only, and their features differ significantly.

The DBH24/08 set appears to favor GGA exchange that substantially violates the
LDA limit (Fx(0) = 1.14) along with inclusion of full PBE correlation (αc = 0). The
model furthermore overshoots the LO bound significantly (Fx(∞) = 3.14). The XC
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Figure 7.3: Exchange enhancement factors of the individually trained XC models
listed in Table 7.1.
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model optimized to the G2/97 set shows similar trends with respect to GGA exchange
and PBE correlation, but is less extreme.

In the other end of the spectrum is the model optimized to the Sol34Ec cohesive
energies. These favor GGA exchange starting out slightly below Fx = 1, then reaching
a maximum at s ≈ 2, and finally declining slowly towards Fx = 1.25. Best agreement
with experimental cohesive energies is found with full PBE correlation in addition to
nonlocal correlation. The occurrence of a maximum in the exchange enhancement
factor should, however, not be overemphasized. It has been shown50,55 that only
small GGA exchange contributions to chemical and solid state binding energetics can
be attributed to reduced density gradients above 2.5. In the region of large s, where
the smoothness criterion on exchange is strongly enforced, the regularization term in
the cost function (7.8) will therefore be dominant in determining the solution for such
systems. The regularizer may therefore well determine the behavior of Fx(s) in the
large-s regime.

For the remaining datasets in Table 7.1, the optimized XC models appear reasonable,
with all exchange enhancement factors starting out near the LDA limit and interme-
diate correlation mixing parameters.

It is illustrative to investigate how the XC models perform for datasets on which they
were not trained. The standard deviation, here denoted STD, is a natural measure
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Figure 7.4: Color map of the relative standard deviations obtained when non-self-
consistently applying the XC models found individually for each training dataset, listed
on the abscissa, to all 10 training datasets along the ordinate.
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of performance, and should be understood as the root-mean-square deviation defined
in (7.25) on p. 83. We also define the relative standard deviation rSTD on some
dataset with some XC model as the STD obtained by that model relative to the
STD of the model that was fitted to that dataset. The rSTD is thus a measure of
model transferability. Figure 7.4 shows a color map of the rSTD for all 10 XC models
evaluated on all 10 training datasets. The diagonal from bottom left to top right
is, by definition, ones. In a background of blue and yellow-green squares, the map
features two distinct areas of mostly reddish squares. To the far right, the S22x5-
2.0 model yields rSTD > 5 for all other sets than DBH24/08, and rSTD ≈ 28 for
S22x5-0.9. Furthermore, a 5 × 4 square in the top left corner illustrates that XC
models trained on chemical or solid state datasets perform significantly worse on vdW
type energetics, than models fitted to the latter. It is also interesting to see that
the S22x5-2.0 rSTDs are largely unaffected by changing XC models (top horizontal
row). With little density–density overlap between many of the S22x5-2.0 complexes,
the constant nonlocal correlation in all 10 models is likely the main XC contribution
to intermolecular binding.

In summary, the deviation statistics in Table 7.1 illustrate that the XC model space
considered here most certainly spans the model degrees of freedom necessary to ob-
tain well-performing density functionals with smooth exchange enhancement factors
and sound correlation components. However, Fig. 7.3 clearly illustrates that different
materials properties are best captured by significantly different XC models in this in-
complete model space, and a high degree of transferability between the datasets should
not be expected for several of the models.

7.3.2 Several materials properties

Fundamentally, a compromise has to be made between how well different materials
properties are reproduced by the same semi-empirical density functional on the lower
rungs of Jacob’s ladder. This is expressed as a compromise between how well the func-
tional quantitatively performs on different training datasets. What the compromise
should be can only be determined by the target applications of the functional, and
one challenge is to make this choice as explicit as possible. This section presents one
route towards a methodology for optimizing an XC model to simultaneously describe
several different materials properties.

7.3.2.1 Characteristics of the model compromise

We first establish aspects of the XC model compromise by considering the problem of
simultaneously fitting two datasets. The obvious approach is to let the compromise
be described by a total cost function Λ(a), given as the sum of the two individual cost
functions,

Λ(a) =W1C1(a) +W2C2(a), (7.10)
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where Wi is the weight on dataset i.

The model solution b that minimizes Λ(a) is found by setting the derivative to zero:
Since the summed cost function is quadratic in a, as the individual cost functions Ci
are, we may express it in terms of the individual solutions ai as

Λ(a) =
∑
i=1,2

Wi

(
C0
i +

1

2
(a− ai)THi(a− ai)

)
, (7.11)

where C0
i = Ci(ai) is the minimized cost of dataset i, and Hi is the Hessian of Ci(a),

see Section 6.2.1. The minimizing solution b may then be found from the individual
solutions ai as

b =

(∑
i=1,2

WiHi

)−1(∑
i=1,2

WiHiai

)
. (7.12)

Now, the regularized cost functions for each training dataset, Ci(a), contain informa-
tion about the costs associated with deviating from ai along all directions in model
space. The individual costs all increase when moving away from ai due to deteriora-
tion of the fits, increased overfitting, or a combination of both. Define now the relative
cost for each dataset, denoted rCost[ i ], as the individual cost for set i evaluated at
the compromising solution b relative to the individual cost at ai, hence

rCost[ i ] =
Ci(b)

Ci(ai)
=
Ci(b)

C0
i

≥ 1. (7.13)

Thus defined, the relative cost for each training dataset is a simple measure of how
unfavorable it is for the set to be fitted by the compromising solution b instead of ai.

The main panel of Fig. 7.5 illustrates XC model compromises between the G2/97
and S22x5-1.0 datasets. The curve maps out the relative costs on both materials
properties obtained from model solutions b when systematically varying the weights
in Λ(a). The weight fraction f is introduced, see the figure caption. Note also the
different scaling of the figure axes. A wide range of poorly compromising models
can obviously be produced, sacrificing a lot of relative cost on one set while gaining
little on the other. However, if both materials properties represented by the datasets
are considered important, the optimum (or least inferior) compromise is somewhere
midway between the asymptotic extrema. The unfortunate conclusion must be that
the present GGA+vdWmodel space does not offer the possibility of very high accuracy
for the G2/97 formation energies and the S22x5-1.0 interactions energies at the same
time, when we demand smooth exchange enhancement factors and sound correlation
components (not even with exchange models that deviate from the LDA limit).

7.3.2.2 Least inferior compromise

We are thus faced with the challenge of choosing the least inferior compromise possible
given a number of different training datasets. Extending the approach of Fig. 7.5 to
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several datasets and look for candidate optima in a multi-dimensional space of relative
costs is clearly not feasible in general, nor a particularly unbiased methododology.
Switching our representation of XC model compromises to a space of relative standard
deviations offer no improvements; it is still a multi-objective optimization problem.

The insert in Fig. 7.5 directs us to a viable and efficient approach. The product of
the relative costs varies with f in a particular, but intuitively reasonable, manner: To
the right along the abscissa, where the fraction increasingly favors G2/97, the rCost
product increases rapidly. These model solutions are seriously disfavored by the S22x5-
1.0 set, which is also seen in the color map, Fig. 7.4. To the left along the abscissa in
the Fig. 7.5 inset, the increase of the rCost product is much smaller, but a minimum
is located in between. At least one intermediate minimum is always present, since the
slopes in the two asymptotic regions in the main panel are −∞ and 0, respectively.
This property is induced by the variational property around the two original minima
of the individual cost functions. Similar conclusions apply to any combination of two
or more datasets that do not favor the same directions in the incomplete model space.
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Figure 7.5: Main panel: XC model compromises between the G2/97 and S22x5-1.0
datasets illustrated in terms of relative costs (rCost) for both sets when the weight
fraction f = W[G2/97]/W[S22x5-1.0] is varied and the summed cost function (7.10)
minimized. A range a different solutions are obtained, many of which are essentially
fitting one dataset only (rCost ≈ 1) while sacrificing model performance on the other
(rCost � 1). A red dot marks the point of equal rCost. The fact that an XC model
with rCost[G2/97] = rCost[S22x5-1.0] = 1 is not obtainable illustrates the neccessity
of a model compromise. Insert: The product of relative costs display a minimum (blue
dot) for a certain weight fraction.
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7.3.2.3 Minimizing the product of relative costs

We find in general that the condition of minimizing the product of relative costs is well-
suited for choosing cost function weights for arbitrary numbers of training sets, if the
aim is a general-purpose XC model. This condition, which is identical to minimizing
the product of costs, is applied henceforth by minimizing a product cost function Φ(a),

Φ(a) =
∏
i

Ci(a)wi , (7.14)

where wi is a constant weight, and Ci is again an individual cost function. The
minimizing solution c is the desired model solution for arbitrary numbers of training
datasets. The constant weight wi is an important feature of Φ(a), since it allows
inclusion of training sets which are perceived significantly less important than others.
It is thus chosen from personal preferences given the purpose of the functional, and
we shall see that c minimizes the product of costs given this choice.

For the case of two datasets, the stationary point between the two individual solutions
in model space is found by differentiating the logarithm of Φ(a) with respect to a, and
solving ∑

i

wi
Ci

dCi
da

= 0. (7.15)

Using the method outlined above for Λ(a), the solution vector that minimizes Φ(a) is
found in terms of the individual solutions as

c =

(∑
i

wi
Ci
Hi

)−1(∑
i

wi
Ci
Hiai

)
, (7.16)

where Ci = Ci(c), and wi simply scales the individual costs. We see that this solution
corresponds to Wi := wi/Ci in (7.11) and (7.12). Thus, minimizing the product of
costs has introduced a natural weight C−1

i , while wi still leave room for deliberately
biasing the model solution.

From here on, the product solution is therefore used to find the desired XC model
solution: Since Ci is evaluated at c, the latter is found iteratively, using C−1

i as an
iterator while searching for a converged minimum of the product cost function, given
the constant weights.152

7.3.2.4 BEEF-vdW density functional

The BEEF-vdW exchange–correlation functional was designed using the set of weights
w listed in Table 7.2. In principle these should all equal one, however, correlations
between some of the datasets have led us to lower the constant weight on some of
them: Since the RE42 set is based on G2/97 molecules, the data in RE42 is correlated
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Table 7.2: The BEEF-vdW model compromise. The effective weight in determining
the XC model solution is w/C for each dataset, as iteratively found from minimizing
the product cost function (7.14). The relative standard deviation (rSTD) is the ratio
of the STD at the BEEF-vdW compromise to the STD at the regularized individual
solution in Table 7.1. The relative cost (rCost) are defined similarly, but includes
regularization, see Eq. (7.13).

w w/C rCost rSTD

CE17 1.0 1.80 1.7 1.3
RE42 0.5 0.62 2.5 1.8
DBH24/08 1.0 0.65 4.9 2.3
G2/97 0.5 0.62 2.6 1.6
Sol34Ec 1.0 0.43 7.5 2.8
S22x5-0.9 0.1 0.01 28.6 5.4
S22x5-1.0 0.1 0.04 9.1 2.9
S22x5-1.2 0.1 0.09 3.5 2.1
S22x5-1.5 0.1 0.08 4.1 2.1
S22x5-2.0 0.1 0.18 1.8 1.5

with some of the data in G2/97. Both weights were therefore lowered to 0.5. The
same reasoning applies to the S22x5 subsets, where the same complexes are found in
all five subsets, albeit at different interaction distances. A weight of 1/5 = 0.2 on each
S22x5 subset would therefore be natural, but for reasons of performance of the final
functional, constant weights of 0.1 were chosen.

The resulting model compromise is also tabulated in Table 7.2, showing the effective
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Figure 7.6: The BEEF-vdW exchange enhancement factor compared to those of a
few standard GGA exchange functionals. The corresponding BEEF-vdW correlation
functional is composed of 0.6 LDA, 0.4 PBE, and 1.0 nonlocal correlation.
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Table 7.3: Expansion coefficients am for the BEEF-vdW Legendre exchange basis
functions Bm. The correlation mixing parameter, αc in (7.5), is 0.6001664769.

m am m am

0 1.516501714 15 −8.018718848×10−4

1 4.413532099×10−1 16 −6.688078723×10−4

2 −9.182135241×10−2 17 1.030936331×10−3

3 −2.352754331×10−2 18 −3.673838660×10−4

4 3.418828455×10−2 19 −4.213635394×10−4

5 2.411870076×10−3 20 5.761607992×10−4

6 −1.416381352×10−2 21 −8.346503735×10−5

7 6.975895581×10−4 22 −4.458447585×10−4

8 9.859205137×10−3 23 4.601290092×10−4

9 −6.737855051×10−3 24 −5.231775398×10−6

10 −1.573330824×10−3 25 −4.239570471×10−4

11 5.036146253×10−3 26 3.750190679×10−4

12 −2.569472453×10−3 27 2.114938125×10−5

13 −9.874953976×10−4 28 −1.904911565×10−4

14 2.033722895×10−3 29 7.384362421×10−5

dataset weight w/C, rCost, and rSTD for all datasets used in model training. It is
clearly seen that especially the S22x5-0.9 interaction energies are hard to fit simulta-
neously with the other sets within the XC model space employed here: The relative
cost for the set is high, allowing the model to adapt mostly to the other datasets by
lowering w/C for this set. This is furthermore reflected in the rSTD of 5.4, indicating
that the BEEF-vdW performance on this dataset is significantly worse than obtained
in the individual fit to the S22x5-0.9 complexes reported in Table 7.1. Even so, the
remaining S22x5 subsets appear to share XC model space with the datasets repre-
senting formation and rupture of interatomic bonds to a significantly greater extent.
Therefore, even a reasonably accurate description of the balance of strong and weak
interactions in the S22x5-0.9 complexes is nearly incompatible with at least one of the
other sets of materials properties, when demanding well-behaved DFAs in the present
model space.

Table 7.3 lists the BEEF-vdW expansion coefficients. The suppression of high-order
solution coefficients by the Tikhonov regularizer is clearly seen. The correlation func-
tional consists of 0.6 LDA, 0.4 PBE, and 1.0 nonlocal correlation. The qualitative
shape of the BEEF-vdW exchange enhancement factor is shown in Fig. 7.6, with
s = 0 and s→∞ limits of 1.034 and 1.870, respectively. Thus, BEEF-vdW exchange
does not exactly comply with the LDA limit for s = 0, but is 3.4% higher. The en-
hancement factor is above most GGA exchange functionals up to s ≈ 2.5, from where
it approaches the LO bound with a small overshoot in the infinite limit.

The lack of exact fulfillment of the LDA limit for exchange indicates a conflict between
this limit, the training data, and the employed preference for smooth exchange models.
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The G2/97 and DBH24/08 chemical datasets are found to give particular preference
to exchange models with Fx(0) ≈ 1.1, and enforcing Fx(0) = 1.0 for these sets leads
to severely non-smooth exchange solutions for s → 0. Similar behavior was found in
Ref. 136. Note that MGGA approximations are able to achieve exchange models with
Fx(0) 6= 1.0 for densities different from the HEG, while stille obeying the LDA limit for
HEG-like densities. The BEEF-vdW Fx(s) also has small “bump” at s ≈ 1.3. This is
not essential to the quality of the model and is not expected to harm its transferability.
However, completely removing such features require overly strong regularization.

7.4 Bayesian error estimation enesemble

As outlined in Section 6.3, the concept of an error estimation ensemble of models is
fundamental to the present approach to model optimization. The construction of such
an ensemble for the BEEF-vdW model is here presented. Note that a very similar
approach was employed in Ref. 153 for the purpose of generating ensembles for rather
simple, but not necessarily optimum, GGA exchange–correlation approximations.

In summary, the object of primary interest is the probability distribution P for the
model parameters a given the model θ and training data D,

P (a|θD) ∼ exp(−Φ(a)/τ), (7.17)

where Φ(a) is the product cost function of (7.14), and τ is the ensemble temperature.
Given D, a model perturbation δa has a certain probability associated with it, and this
defines an ensemble of different XC functionals around BEEF-vdW. The temperature
is to be chosen such that the spread of the ensemble model predictions of the training
data reproduces the errors observed when using BEEF-vdW self-consistently.

Ensemble matrix

As in Section 6.3, the ensemble is defined through the cost function Hessian scaled
with the temperature, yielding the ensemble matrix Ω−1,

Ω−1 = τH−1, (7.18)

with eigenvalues w2
Ω−1 and eigenvectors VΩ−1 . Using an ensemble of k vectors vk, each

of lengthM with elements randomly drawn from a normal distribution with zero mean
and variance one, the BEEF-vdW ensemble coefficient vectors ak are then computed
according to

ak = VΩ−1 · 1wΩ−1 · vk. (7.19)

However, the temperature and the Hessian are needed.
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Hessian The BEEF-vdW Hessian is calculated directly from

H = 2

N∑
i

wi
Ci(ap)

Γ−1
(
X ′i

T
X ′i + ω2

iL
2
)

Γ−1T , (7.20)

where the sum is over training datasets and ω2
i is the regularization strength that

minimized the individual cost Ci.

Temperature and effective number of parameters As in (6.22) the tem-
perature is related to the effective number of parameters in the model, here calculated
from the effective regularization ω2

eff,

ω2
eff =

N∑
i

wi
Ci(c)

ω2
i . (7.21)

Additionally, diagonalization of the combined square of the transformed data matrix

Σ′ = V T

(
N∑
i

wi
Ci(c)

X ′i
T
X ′i

)
V , (7.22)

where Σ′ contains the eigenvalues along the diagonal and V the eigenvectors, allows
the effective number of parameters left in the model after regularization, Meff, to be
computed as

Meff =

M∑
m

Σ′m
2

Σ′m
2 + ω2

effL
2
m

. (7.23)

SinceMeff = 7.11 in the BEEF-vdW model compromise, more than 75% of the initially
31 model degrees of freedom have been suppressed by regularization.

The temperature calculation itself is slightly modified from that in (6.22) and Ref. 153
in order to construct an unbiased error estimation. This reflects that a larger error is
expected when BEEF-vdW is applied to systems not included in the training datasets.
The temperature is therefore calculated as

τ = 2
C(c)

Meff
· N

N −Meff
, (7.24)

where N is the total number of systems in the training sets. The second term is close
to unity since N �Meff.
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Figure 7.7: Bayesian ensemble of XC functionals around BEEF-vdW. Main panel:
Black solid line is the BEEF-vdW exchange enhancement factor, while the orange lines
depict Fx(s) for 50 samples of the randomly generated ensemble. Dashed black lines
mark the exchange model pertubations that yield DFT results ±1 standard deviation
away from BEEF-vdW results. Insert: Histogram of the distribution of correlation
parameters in an ensemble containing 20,000 samples. The distribution is centered
around αc = 0.6.

Application

An illustration of the resulting BEEF-vdW ensemble is shown in Fig. 7.7. For each data
point in each dataset this ensemble may be applied non-self-consistently to BEEF-vdW
electron densities. The spread of the ensemble predictions of a quantity is then the
ensemble estimate of the BEEF-vdW standard deviation on that quantity. Naturally,
the exchange enhancement ensemble expands after s ≈ 2, where most of the chemistry
and solid state physics have already happened.50,55

The predictive performance of the Bayesian ensemble has been evaluated using 20 000
ensemble functionals. In practice, however, far fewer draws from the ensemble distri-
bution suffice for well-converged error estimates at a neglible computational overhead.
Estimated standard deviations on the training datasets are compared to those from
self-consistent calculations in Table 7.4. The ensemble performance on the dataset level
should be assessed in combination with observing the error predictions on a system-to-
system basis. Figure 7.8 illustrates the BEEF-vdW ensemble error estimates for the
RE42 reaction energies, and compares BEEF-vdW results to those of other function-
als. Similar figures for more datasets are found in the Supplemental Material (SM) for
Paper II (the SM is not included here).

On the dataset level, the overall predictive performance of the Bayesian ensemble is
satisfactory. The ensemble errors in Table 7.4 are slightly overestimated for the CE17,
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Table 7.4: Comparison of self-consistent BEEF-vdW standard deviations to those
predicted by the ensemble of functionals around BEEF-vdW. All energies in meV.

BEEF-vdW Ensemble estimate

CE17 143 209
RE42 372 253
DBH24 331 144
G2/97 242 312
SolEc34 576 436
s22x5-0.9 171 197
s22x5-1.0 94 181
s22x5-1.2 36 137
s22x5-1.5 8 67
s22x5-2.0 5 18

G2/97, and S22x5-0.9 datasets, while the ensemble underestimates the errors for RE42,
DBH24/08, and Sol34Ec. For the remaining S22x5 subsets the error estimates are too
large.

Importantly, Fig. 7.8 illustrates strengths and weaknesses of the present approach to
error estimation. Many of the reaction energies are accurately reproduced by BEEF-
vdW and the ensemble estimates a relatively small error on those data. However,
some of the reactions for which BEEF-vdW yields larger errors are assigned too small
error bars. The water-gas shift reaction CO+H2O→CO2+H2 is one of these. The
reason for this is indicated by the fact that all tested GGA, MGGA and vdW-DF type
functionals yield nearly identical reaction energies for this reaction. One simply has
to move rather far in XC model space to find a functional that predicts a reaction
energy significantly different from the BEEF-vdW result. This causes the ensemble to
underestimate the actual error for that reaction. Since the hybrid functionals appear
to break the overall trends observed for the lower-rung functionals in Fig. 7.8, inclusion
of exact exchange in the model space might remedy such limitations of the BEEF-vdW
functional and its Bayesian ensemble.
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RE42

1,4-cyclohexadiene+2H2  → cyclohexane
benzene+H2  → 1,4-cyclohexadiene
1,3-cyclohexadiene → 1,4-cyclohexadiene
CH4 +CO+H2  → ethanol
CH4 +CO2  → acetic acid
CO+H2 O → formic acid
iso-butane → trans-butane

allene+2H2  → propane
propene+H2  → propane
propyne+H2  → propene
oxirane+H2  → ethene+H2 O
ketene+2H2  → ethene+H2 O
ethyne+H2  → ethene
ethanol → dimethylether
4CO+9H2  → trans-butane+4H2 O
2 methanol+O2  → 2CO2 +4H2

CO2 +3H2  → methanol+H2 O
CO+2H2  → methanol
2CO+2NO → 2CO2 +N2

thioethanol+H2  → H2 S+ethane
methylamine+H2  → CH4 +NH3

3O2  → 2O3

CH4 +CO2  → 2CO+2H2

CH4 +H2 O → methanol+H2

CH4 +2F2  → CF4 +2H2

CH4 +2Cl2  → CCl4 +2H2

H2 +O2  → H2 O2

SO2 +3H2  → SH2 +2H2 O
O2 +H2  → 2OH
2OH+H2  → 2H2 O
O2 +4HCl → 2Cl2 +2H2 O
CH4 +NH3  → HCN+3H2

CO2 +4H2  → CH4 +2H2 O
CO+3H2  → CH4 +H2 O
2CO+O2  → 2CO2
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N2 +2H2  → N2 H4
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Figure 7.8: Deviations ∆ = ∆rE
DFT−∆rE

exp between the RE42 molecular reaction
energies calculated using representative XC functionals and experiment. Color codes
are BEEF-vdW: black, GGA: blue, MGGA: green, vdW-DF type: red, and hybrid:
yellow. BEEF-vdW ensemble error estimates are indicated by horizontal error bars.
The numbers are the self-consistent BEEF-vdW deviations from experiment.
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7.5 Benchmark study

The following is a comparative assessment of BEEF-vdW and a selection of literature
XC functionals of the LDA, GGA, MGGA, vdW-DF, and hybrid types. These are
listed in Table 7.5 along with a simple characterization. The vdW-DF variants are
here assigned to rung 3.5 on Jacob’s ladder. In terms of computational complexity, the
vdW-DF method contains fully nonlocal density–density information without explicit
use of the Kohn–Sham orbitals. From this point of view it should fit between rungs
3 and 4. Note that nonlocal exchange approximations, designed to partially mimic
exact exchange at a reduced computational cost, have recently been proposed in Refs.
154 and 155 as belonging to a rung 3.5.

The benchmark datasets used are partly the sets on which BEEF-vdW was trained, and
partly other high-quality data. This totals to the G3/99, RE42, CE27, DBH24/08,
S22x5, Sol27Ec, and Sol27LC datasets. The G3/99 extension of G2/97 and both
Sol27 sets of solid state materials properties were introduced in Section 4.1. Note that
hybrid functionals have not been applied to the extended systems in CE27, Sol27Ec,
and Sol27LC.

Statistics on deviations of computed quantities from experimental or high-level theo-
retical references, ∆x, are evaluated for each density functional in terms of the mean
signed (MSD), mean absolute (MAD), and root-mean-square deviation (RMSD, stan-
dard deviation):

∆x = DFT− reference,

MSD =
1

N

N∑
i

∆xi,

MAD =
1

N

N∑
i

|∆xi|,

RMSD =

(
1

N

N∑
i

(∆xi)
2

)1/2

,

(7.25)

which may have relative counterparts (MSRD, MARD, RMSRD) defined by the rela-
tive deviation ∆rx,

∆rx =
∆x

|reference| , (7.26)

which conserves the sign on the error. Most of the statistics are tabulated in Ta-
bles A.5–A.8 in Appendix A.2 (pages 113–116).

All data are futhermore available online in the Computational Materials Repository
(CMR).158 The repository contains all information about the individual DFT calcu-
lations which form the basis for the results presented here, including atomic configu-
rations and gpaw specific parameters. Access to search, browse, and download these
data is provided through the CMR web-interface.159
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Table 7.5: A selection of density functionals at the LDA
(1), GGA (2), MGGA (3), vdW-DF (3.5), and hybrid (4)
rungs of Jacob’s ladder.

Type Targeta Ref.

LDA 1 – 150
PBE 2 general 48
RPBE 2 chemistry 55
BLYP 2 chemistry 49,57
HCTH407 2 chemistry 149
PBEsol 2 solid state 54
WC 2 solid state 156
AM05 2 solid state 157
TPSS 3 general 58
revTPSS 3 general 61
vdW-DF 3.5 vdW 100
vdW-DF2 3.5 vdW 90
optPBE-vdW 3.5 vdW 89
optB88-vdW 3.5 vdW 89
C09-vdW 3.5 vdW 84
B3LYP 4 chemistry 67
PBE0 4 chemistry 68
a Should be understood as a very general characterization
of the main target of a functional, and does not consider
underlying principles of design.

Molecular formation energies

The G3/99 thermochemical test set has become standard for validating density func-
tional methods, and the present calculations are well in line with published benchmark
data for this set.46 Deviation statistics are illustrated in Fig. 7.9, where RMSD, MSD,
and MAD are indicated by gray, white, and red bars, respectively. The data are tab-
ulated in Table A.6, which also includes statistics for G2/97 and the G3-3 extension
(G3/99 = G2/97 + G3-3).

With a MSD of −5.25 eV, the local spin-density approximation (not shown in Fig. 7.9)
grossly overestimates the G3/99 molecular formation energies. The interatomic bonds
in a molecule are therefore much too strong within LDA. Significant improvements are
found for the GGAs in Fig. 7.9, where DFAs mainly designed to capture molecular en-
ergetics (RPBE, BLYP, HCTH407) yield MADs below 0.6 eV, while those targeted at
solid-state properties (AM05, PBEsol, WC) perform significantly worse: their MSEs
are large and negative, indicating severe overbinding. The TPSS and revTPSS MGGA
approximations perform very well for predicting the G3/99 thermochemistry, and sig-
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Figure 7.9: Bar plot comparison of the performance of popular GGA, MGGA, vdW-
DF, and hybrid density functionals when predicting the formation energies of the
G3/99 thermochemical test set. The dashed blue line indicates the BEEF-vdW MAD.
LDA statistics are not shown, as they are far out of the scale.

nificantly improve over their PBE ancestor and the “GGAs for chemistry”.

Turning to the vdW-DF variants, good description of the G3/99 formation energies
is also found for vdW-DF and vdW-DF2. This, however, is not the case for the
optPBE-vdW, optB88-vdW, and C09-vdW functionals, for which the GGA exchange
components were optimized with vdW-dominated energetics in mind. This approach
apparently leads to intramolecular overbinding, as previously noted in Sec. 5.4.3.

For comparison, Fig. 7.9 also shows deviation statistics for the B3LYP and PBE0
hybrids. As the wide application of hybrid XC functionals in the quantum chemistry
community suggests, B3LYP and PBE0 accurately describe molecular bond energetics,
the B3LYP parametrization performing best with a MAD of 0.21 eV. It is furthermore
seen that also the BEEF-vdW XC model performs very well in predicting molecular
thermochemistry. With a MAD of 0.19 eV and MSE nearly zero, it is the most accurate
DFA tested on G3/99, closely followed by B3LYP. Note that G3/99 contains 75 extra
molecules as compared to G2/97, the latter of which BEEF-vdW was trained on.
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Figure 7.10: Bar plot comparison of density functional performance for calculating
the RE42 molecular reaction energies. The dashed blue line indicates the BEEF-vdW
MAD. The corresponding LDA statistics (not shown) are 1.62, −0.55, and 1.06 eV for
RMSD, MSD, and MAD, respectively.

Molecular reaction energies

Figure 7.10 summarizes deviation statistics for the RE42 dataset, which are also found
in Table A.6. Even though the reaction energies are derived from G3/99 formation en-
ergies, the former appear difficult to capture accurately with LDA, GGA, MGGA, and
vdW-DF type functionals. None of them yield a RMSD less than 0.3 eV. The B3LYP
hybrid proves significantly more accurate in this respect. Interestingly, the optPBE-
vdW and optB88-vdW functionals, which both severely overestimate the G3/99 for-
mation energies, prove as reliable for calculating gas-phase reaction energies as the
best GGA (RPBE), and compare very well to TPSS. Apparently, cancellation of erros
between reactants and products, which are both too strongly bound intramolecularly,
leads in his case to very reasonably determined reaction energies. The BEEF-vdW
yields a marginally higher MAD than optB88-vdW (0.29 eV vs. 0.26 eV), but a non-
zero MSE.
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Figure 7.11: Bar plot comparison of density functional deviation statistics on repro-
ducing the CE27 experimental chemisorption energies. The dashed blue line indicates
the BEEF-vdW MAD. The corresponding LDA statistics (not shown) are 1.42, −1.33,
and 1.33 eV for RMSD, MSD, and MAD, respectively.

Chemisorption on solid surfaces

The deviation statistics for the CE27 dataset are very important in this study since
accurate surface chemistry is one main target for a truly general-purpose density func-
tional. The computed statistics are illustrated in Fig. 7.11, and tabulated in Table A.7
along with those of CE17. Note that BEEF-vdW was trained on CE17, while the CE27
set contains 10 extra target data points, mostly covering dissociative H2 adsorption.

With MADs ≥ 0.7 eV, the GGAs designed for application in solid state physics prob-
lems are clearly overbinding simple adsorbates to solid surfaces (negative MSEs). As
expected, the chemically biased DFAs are significantly more reliable for calculation
of chemisorption energies, RPBE performing best with a MAD of 0.11 eV for both
CE17 and CE27. Also vdW-DF and vdW-DF2 yield MADs of 0.20 eV or less and
small MSEs on CE27, while the two MGGAs overbind on average. Again, a signif-
icant overbinding is found for the three exchange-modified vdW-DF flavors, though
optPBE-vdW compares well to TPSS for predicting this materials property.

Lastly, it is clearly seen from Fig. 7.11 that BEEF-vdW is among the DFAs offering
most accurate predictions of chemisorption energies of simple adsorbates on solid sur-
faces. The standard deviation is down to 0.19 eV, and the MSE is nearly zero, very
similarly to BLYP.
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Figure 7.12: Bar plot comparison of density functional deviation statistics on pre-
dicting the DBH24/08 benchmark molecular reaction barrier heights. The dashed blue
line indicates the BEEF-vdW MAD.

Molecular reaction barriers

The DBH24/08 reaction barrier heights belong to a class of systems for which a frac-
tion of exact exchange is known to increase computational accuracy significantly over
GGAs.77,160 This is supported by the DBH24/08 data in Fig. 7.12, where the two hy-
brids clearly outperform the lower-rung DFAs. Considering the corresponding statis-
tics for BEEF-vdW as well as for the individual DBH24/08 XC model reported in
Table 7.1, where a MAD of 0.12 eV was obtained, it is clear that the BEEF-vdW
model has moved significantly away from the part of model space favored by these
barrier heights. Nevertheless, BEEF-vdW is among the best non-hybrid functionals
for such quantities, but only marginally better than many others. Exact exchange
or self-interaction corrections would probably enable significantly better performance
on this set, but at least BEEF-vdW is not overfitted in an attempt to make up for
the missing directions in model space, even though the XC model was trained on this
materials property.
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Figure 7.13: Bar plot comparison of density functional deviation statistics on repro-
ducing the S22x5 CCSD(T) interaction energies. The dashed blue line indicates the
BEEF-vdW MAD.

Noncovalent interactions

Next in line are computed deviations from the S22x5 noncovalent interaction energies.
Statistics for these are illustrated in Fig. 7.13, and tabulated in Table A.7. Note that
the figure considers the total S22x5 set.

As previously found in Section 5.4.3 and several literature studies of the original S22
dataset (e.g., Refs. 83,89–91), vdW dominated interactions are well described by vdW-
DF type density functionals, especially those with an optimized exchange component.
With MADs of 21 meV or less over all 110 points on the 22 potential-energy curves,
the optPBE-vdW, optB88-vdW, and C09-vdW functionals prove highly accurate in
this respect. The vdW-DF2 also captures vdW interactions well, but the positive MSE
signifies that most of the deviations from the CCSD(T) benchmark energies stem from
underbinding. For vdW-DF and BEEF-vdW this is somewhat more pronounced.

None of the tested MGGA or hybrid DFAs are supposed to truly capture vdW disper-
sion interactions, which constitute a major part of the bonding in S22x5. However, two
of the most weakly gradient enhancing GGAs, PBEsol and WC, appear in Fig. 7.13
to yield deviation statistics comparable to those of vdW-DF and BEEF-vdW. Does
these GGAs then account for long-range dispersion forces? The answer is no, they
are merely exaggerating the energetics of interactions between somewhat overlapping
densities of gas-phase species. This is easily realized when considering the appreciable
LDA overbinding of the S22x5 complexes (MSD < 0). Note that this spurious LDA
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behavior was also observed for benzene physisorption on (111) coinage-metal surfaces
in Figs. 5.6–5.8 (pages 49–51).

These issues are more closely investigated in Fig. A.1 in Appendix A.2, where relative
deviation statistics are shown for the S22x5 subsets at d ∈ [0.9, 1.0, 1.5] (top, middle,
and bottom panel, respectively). Data is also listed in Table A.8 for vdW-DF variants
and BEEF-vdW. One main conclusion to be drawn from that figure is that though per-
forming reasonably well on S22x5 as a whole, the vdW-DF, vdW-DF2, and BEEF-vdW
functionals severely underestimate the interaction energies of the S22x5-0.9 complexes
(MARDs of 198%, 143%, and 214%, respectivaly), whereas the exchange-optimized
vdW-DF variants appear rather accurate. Note that this subset also ended up with
the smallest weight in the BEEF-vdW model compromise after applying the model se-
lection procedure. The choice of GGA exchange approximation for use in the vdW-DF
method therefore has a massive impact on the description of the d = 0.9 complexes.
However, we have also seen that these “locally” optimum choices may generalize poorly
to prediction of chemical observables dominated by stronger covalent interactions.

Properties of solid crystals

We consider finally the performance of the tested DFAs for predicting the Sol27 lattice
constants and cohesive energies of pure cubic crystal lattices. Figures 7.14 and 7.15
summarize the deviation statistics. The data are tabulated in Table A.5 as well.
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Figure 7.14: Bar plot comparison of density functional deviation statistics on re-
producing the Sol27LC semi-experimental lattice constants of mono-atomic solids in
cubic crystal structures. The dashed blue line indicates the BEEF-vdW MAD.
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Figure 7.15: Bar plot comparison of density functional deviation statistics on pre-
dicting the Sol27Ec semi-experimental cohesive energies of mono-atomic solids in cubic
crystal structures. The dashed blue line indicates the BEEF-vdW MAD.

The lattice constant statistics in Fig. 7.14 are in clear favor of the AM05, PBEsol,
and WC GGA functionals, but also C09-vdW and to some extend the revTPSS ap-
proximation. Their standard deviations are small and the MSEs are close to zero Å.
However, Fig. 7.15 shows that these remarkably accurate predictions of equilibrium
crystal volumes come at the price of overall overestimated cohesive energies.

The picture is opposite for vdW-DF and vdW-DF2. Lattice constants are overesti-
mated, and more so than with any other XC functional tested, vdW-DF2 yielding a
RMSD of 0.18 Å. Furthermore, those two DFAs notably underestimate the cohesive
energies, so the vdW-DF and vdW-DF2 density functionals severely underestimate av-
erage interatomic bond strength in the rather broad range of bulk solids constituting
the Sol27 set. The “opt”-vdW functionals appear to offer a more balanced description
of solid state energetics than that of C09-vdW. As PBE and TPSS, these two vdW-DF
variants yield the most accurate cohesive energies without (very) large MSDs on the
corresponding lattice constants. These findings closely match those reported in recent
studies assessing the performance of GGA, MGGA, and vdW-DF type XC functionals
for solid state properties (see Refs. 50,51,99,161,162).

Benchmarking finally BEEF-vdW, we find in Figs 7.14 and 7.15 that it performs
reasonably well for cohesive energies and lattice constants, though still predicting softer
crystal lattices than the optimized vdW-DF variants. With BEEF-vdW these two bulk
materials properties are, however, significantly closer to agreement with experiments
than predictions by vdW-DF, vdW-DF2, and most of the GGAs designed mainly for
chemistry.
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7.6 Examples of BEEF-vdW application

Following the extensive benchmark study of the previous section, it is suitable to
consider also cases of actual application, especially when the overall goal is versatile
density functionals. Two applications of BEEF-vdW to problems of current inter-
est in the surface science community are here discussed: graphene adsorption on the
close-packed Ni(111) surface, and the trends observed when applying lower-rung den-
sity functionals in calculations of the binding energy of CO to Pt(111) and Rh(111)
substrates as well as the surface energy of those substrates.

7.6.1 Graphene adsorption on Ni(111)

The remarkable electronic properties of monolayer graphene165–167 and its potential
application in electronics technology166,168 motivate investigation of the interactions
between graphene sheets and metallic surfaces. The nature of graphene adsorption
on metals is highly metal-dependent, some surfaces binding graphene only weakly
and others forming strong covalent bonds to the carbon sheet.169,170 The Ni(111)
surface belongs to the latter group, graphene forming a (1× 1) overlayer at a graphene–
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Figure 7.16: Potential-energy curves for graphene adsorption on the Ni(111) surface.
Random phase approximation data are from Refs. 163 (RPA1) and 164 (RPA2). The
gray area indicates the region spanned by the estimated standard deviations along the
BEEF-vdW PEC.
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metal distance d = 2.1 Å.171 Furthermore, a bandgap is induced in graphene upon
adsorption, underlining the strong hybridization responsible for changing the electronic
structure of the carbon sheet.172,173

Several theoretical studies have investigated the graphene/Ni(111) potential-energy
curve, with mixed results.110,174–179 However, based on RPA calculations, it is by now
established that this particular adsorption process is a delicate competition between
strong interactions close to the surface and vdW forces further from the surface.163,164

Figure 7.16 shows calculated PECs for graphene adsorption on Ni(111) using LDA,
MGGA, and vdW-DF type density functionals, as well as BEEF-vdW. Computational
details are given in Appendix A.3 Additionally, two sets of RPA data are shown for
comparison, indicating that graphene adsorption on Ni(111) is characterized by a
physisorption minimum at d = 3.0–3.5 Å and a chemisorbed state at d ≈ 2.2 Å,
the latter in good agreement with experiments.171 However, as previously found in
literature for GGAs and vdW-DF variants (e.g., Refs. 110,163,164,178), rung 1–2
density functionals, as well as vdW-DF and vdW-DF2, fail to simultaneously describe
both qualitative features. This is here shown to be the case for the rung 3 TPSS
and revTPSS approximations also. Conversely, the optPBE-vdW and optB88-vdW
PECs in Fig. 7.16 are increasingly closer to RPA data. The BEEF-vdW PEC shows
qualitatively similar features, but the local minimum at d = 2.25 Å is very shallow
and yields a positive adsorption energy.

Figure 7.16 also shows ensemble error estimates along the BEEF-vdW PEC. Especially
two aspects of these are of interest. First of all, the error bars do not straddle the zero
line for large graphene–metal distances, indicating that confidence in the presence of a
physisorption minimum is high. Secondly, the error bars, indicated by the shaded area,
enlarge notably at smaller distances from d = 2.6 Å and inwards, reflecting that these
BEEF-vdW data points are associated with a significantly larger uncertainty. Recalling
how the ensemble error estimate is designed (Sec. 7.4), the error estimates indicate
that the graphene/Ni(111) PEC is very sensitive to the choice of XC functional in the
chemically interesting range. Put differently, the ensemble suggests that we should
not trust the BEEF-vdW prediction of a positive PEC for d < 2.7 Å as a definite
result. This would be a very nice piece of information if the characteristics of the
graphene/Ni(111) system were more or less unknown to us on beforehand.

7.6.2 Surface chemistry and stability

As outlined in the introduction to this thesis, chemisorption energies of molecules on
surfaces are vital quantities in heterogeneous catalysis and surface science. However,
accurate computation of surface energies, Eγ , can be critical as well, since minimiza-
tion of surface energy is a driving force determining the morphology and composition
of surfaces, interfaces, and nanoparticles.13 GGA density functionals, however, of-
ten underestimate Eγ , and the GGAs yielding most accurate surface energies also
vastly overbind molecules to surfaces.180 It thus appears that accurate computation of
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chemisorption energies on a surface as well as the stability of that surface is not pos-
sible with the same GGA approximation, underscoring a fundamental incompleteness
of the GGA XC model space.

The issue is here investigated for vdW-DF variants and BEEF-vdW. Figure 7.17 shows
ontop chemisorption energies of CO on Pt(111) and Rh(111) against surface energies of
those substrates, calculated using GGA, MGGA and vdW-DF type DFAs, and BEEF-
vdW with error estimation. These are compared to RPA results and experimental
data.

As also observed elsewhere,180,184 the GGA data points fall along an approximately
straight line, which is significantly offset from the experimental data, thus illustrating
the issue discussed above. This is here shown to be the case for vdW-DF variants also.
The dashed vdW-DF lines are parallel to the solid GGA lines, and are only slightly
offset from the latter, especially for Rh(111). The vdW-DF and vdW-DF2 data points
are quite close to RPBE. Larger surface energies are found with the exchange-modified
vdW-DF variants, albeit at the expense of overestimated chemisorption energies. Note
that such a correlation should be expected from Figs. 7.11 and 7.15 and a linear relation
between Eγ and the solid cohesive energy.13

Though BEEF-vdW contains the vdW-DF2 nonlocal correlation functional as an es-

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Pt(111) Eγ (eV/atom)

−2.0

−1.9

−1.8

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

C
O

/P
t(1

11
)

∆
E

(e
V

)

HCTH407BLYP

RPBE

PBE

AM05

WC

PBEsol

TPSS
revTPSS

C09-vdW

optB88-vdW

optPBE-vdW

vdW-DF
vdW-DF2

BEEF-vdW

RPA
exp

0.5 0.6 0.7 0.8 0.9 1.0 1.1
Rh(111) Eγ (eV/atom)

−2.2

−2.0

−1.8

−1.6

−1.4

C
O

/R
h(

11
1)

∆
E

(e
V

)

HCTH407

BLYP RPBE

PBE

AM05

WC
PBEsol

TPSS

revTPSS

C09-vdW

optB88-vdW

optPBE-vdW

vdW-DF

vdW-DF2

BEEF-vdW

RPA exp

Figure 7.17: Ontop CO chemisorption energies ∆E versus surface energies Eγ for
Pt(111) and Ru(111). Red and blue lines are linear fits to GGA and vdW-DF type
data points, respectively. MGGA data in green. RPA data from Ref. 180 in yellow.
Estimated standard deviations are indicated by error bars around the orange BEEF-
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deviation from the BEEF-vdW point for both quantities. Experimental surface ener-
gies from liquid-metal data (Refs. 181 and 182), and experimental CO chemisorption
energies from Ref. 183.
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sential component, the former predicts larger surface energies than the latter without
sacrificing accuracy of the CO–metal binding energy. We expect that this ability of
BEEF-vdW to “break” the vdW-DF line is primarily due to the larger GGA model
space. Furthermore, the BEEF-vdW error estimates appear very reasonable (shaded
areas and orange error bars in Fig. 7.17). The experimental CO chemisorption energies
are straddled for both Pt(111) and Rh(111), and the error estimates along Eγ almost
fill out the gap between the GGA lines to the left and the RPA and C09-vdW surface
energies to the right.

Lastly, it is seen from the green TPSS and revTPSS data points in Fig. 7.17, as also
noted in Ref. 184, that the third rung of Jacob’s ladder may offer the possibility of
quite accurate surface energies with only moderately overbound surface adsorbates.

7.7 Discussion and summary

A machine learning inspired approach to semi-empirical density functional develop-
ment has been presented and evaluated. Focus has been on general applicability of the
resulting DFA to both strong and weak interactions in chemistry and condensed mat-
ter physics, including surface chemistry. Transferability and avoiding overfitting are
thus key issues, and the present methodology therefore relies primarily on 1) a variety
of datasets chosen to represent vastly different interactions and bonding situations, 2)
a very flexible XC model space expansion at a computationally feasible GGA+vdW
level of approximation, and 3) XC model selection procedures designed to “tame” the
flexible model space and yield XC approximations which properly compromise between
describing different types of physics and chemistry.

The combination of Tikhonov regularization and bootstrap cross-validation is a pow-
erful route to smooth and high-performance GGA exchange models. The cost function
for a single dataset has both weak (sloppy) and strong (important) eigenmodes in a
sufficiently flexible model space, and regularization is used to suppress the weak modes
in order to facilitate a physically sensible model and maximize transferability. The reg-
ularized model ensemble thus contracts around the strong modes, and the optimum
model can, to some extent, be regarded an average of the ensemble solutions. For
single datasets, this leads to accurate and well-behaved XC models, where effectively
3–8 of the initially 31 parameters are allowed to survive.

However, it is also clear that computationally efficient general-purpose XC functionals
must compromise between describing physically and chemically different materials
properties in an incomplete model space. Determining the optimum model tradeoff is
thus a complex multi-objective problem, but a simple principle for finding the position
in model space of one properly compromising DFA was formulated an applied. The
three most important aspects of semi-empirical DFA design were thus considered in
detail: datasets, model space, and model selection. This resulted in the BEEF-vdW
approximation.



96 A Semi-empirical Approach to Density Functional Development
0.

19
eV

0.
59

eV
0.

90
eV

0.
27

eV
0.

24
eV

0.
28

eV
1.

44
eV

0.
21

eV

G3

0.
16

eV
0.

11
eV

0.
40

eV
0.

38
eV

0.
18

eV
0.

20
eV

0.
45

eV

CE27

0.
26

eV
0.

27
eV

0.
33

eV
0.

35
eV

0.
28

eV
0.

31
eV

0.
37

eV
0.

17
eV

DBH24/08

0.
29

eV
0.

26
eV

0.
30

eV
0.

33
eV

0.
39

eV
0.

40
eV

0.
26

eV
0.

15
eV

RE42
0.

45
eV

0.
58

eV
0.

27
eV

0.
37

eV
0.

60
eV

0.
64

eV
0.

25
eV

Sol27Ec

0.
08

Å
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Figure 7.18: Bar plot comparison of the accuracy of different density functionals in
predicting various materials properties. For each dataset, the bars illustrate propor-
tionally scaled mean absolute deviations. B3LYP calculations were not performed for
extended systems.

A benchmark of BEEF-vdW against popular GGA, MGGA, vdW-DF type, and hy-
brid XC functionals for energetics in chemistry and condensed matter physics was
conducted. The results are summarized in Fig. 7.18, and show that the BEEF-vdW
model compromise is indeed a very agreeable one. For none of the datasets is the av-
erage BEEF-vdW error among the largest, while several other functionals are highly
biased towards certain types of materials properties. This is especially true for vdW-
DF2 and optB88-vdW, displaying severely erroneous description of binding energetics
for bulk solids and molecules, respectively. However, the BEEF-vdW description of
vdW-dominated energetics certainly leaves room for improvement when compared to
exchange-optimized vdW-DF variants.

A BEEF-vdW error estimation ensemble was also generated. It is designed to provide
an easily obtainable (non-self-consistent) estimate of the computational error. It is
based on a probability distribution for the model parameters, and was applied in
the benchmark as well as in qualitative assessments for molecular surface adsorption,
surface energies, and graphene adsorption on Ni(111). Since the ensemble is confined
to live in an incomplete model space, but was designed to reproduce training set errors
by fluctuations within this space, one may think of the error estimates as somehow
midway between a systematic sensitivity analysis and actual evaluation of the errors
on predictions by DFT.



Chapter 8

meta-BEEF Density
Functionals

The approach to semi-empirical density functional development presented in the previ-
ous chapter is here applied to the more complex case of a meta-GGA exchange model
space. This naturally involves an extension of the regularization methodology used for
generating BEEF-vdW, but also allows for significant simplifications of the search for
an optimum model compromise.

The contents of this chapter constitute the forefront of an ongoing effort to improve over
the BEEF-vdW XC model, and all presented methods and results from applying them
are preliminary. As these lines are written, thousands of CPU cores are converting
electrons to zeros and ones to advance the project, which is run by Keld T. Lundgaard
and the author in collaboration with Karsten W. Jacobsen and Thomas Bligaard.

8.1 Expanded exchange model space

The semi-local exchange–correlation energy is written in the usual way as an integral
over the XC energy density per particle, Exc =

∑
σ

∫
εxc(nσ,∇nσ, τσ)nσ(r)dr, where

nσ is the local electron spin density, ∇nσ its gradient, and τσ = 1
2

∑
i |∇φiσ|

2 the local
KS spin-orbital kinetic energy density. The MGGA exchange energy is then expressed
in terms of an exchange enhancement factor Fx(n,∇n, τ) = Fx(s, α), where we have
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dropped the spin arguments, s is the dimensionless reduced density gradient, and α a
dimensionless form of the KED, see Section 3.2.

The semilocal exchange model space is therefore exptended from that in the previous
chapter by including the electronic-structure dependent parameter α, and we aim now
for a 2D basis expansion of Fx(s, α). This is easily done by introducing an expansion
in products of one-dimensional Legendre polynomials Bm(ts(s)) and Bn(tα(α)),

Fx(s, α) =
∑
m

∑
n

amnBm(ts(s))Bn(tα(α)), (8.1)

where the polynomials depend on the transformed quantities ts(s) and tα(α),

ts(s) =
2s2

q + s2
− 1,

tα(α) =
(1− α2)3

1 + α3 + α6
,

(8.2)

which are both confined to the range [−1, 1], and q = 0.804/(10/81) = 6.5124. These
transformations have been chosen to easily represent the exchange gradient expansion
of the slowly varying HEG. The first was used in the PBEsol exchange functional,54

while the latter has recently been introduced by Sun and co-workers185 to capture the
gradient expansion up to 4th order. Note that this property is only strictly conserved
in (8.1) for am,n=0 = 1 and am,n>0 = 0, which is in general not the case here.

The correlation model space of BEEF-vdW is largely retained, that is, a linear com-
bination of LDA, GGA, and nonlocal correlation of the vdW-DF2 type,

Exc =
∑
m

∑
n

Emnx + θcE
LDA
c + (1− θc)EGGA

c + Enl
c , (8.3)

where Emnx [n,∇n, τ ] =
∫
εHEGx (n)Fmnx (s, α)n(r)dr is a basis-function exchange en-

ergy contribution, and the PBEsol correlation is chosen for EGGA
c .

8.2 Model selection

Regularization Several parts of the BEEF-vdW model selection procedure are
reused here, but certain modifications are made. Thus, minimization of the cost func-
tion (7.8) with Tikhonov regularization is employed for training of individual XC
models, and the bootstrap .632 estimator directs us to the optimum regularization
strength. However, the regularizer should now penalize non-smooth exchange model
deviations away from the prior vector in the 2D exchange model space given by s and
α. The exchange part of the Tikhonov matrix is therefore given by the overlap of the
Laplacian in both directions,

Γ2
nmkl =

∫ 1

−1

∫ 1

−1

dts dtα

([
d2

dt2s
+ γ

d2

dt2α

]
BmBn

)([
d2

dt2s
+ γ

d2

dt2α

]
BlBk

)
, (8.4)
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where the scaling factor γ ∼ 102 is used to penalize non-smoothness in the tα-space a
few orders of magnitude more than in the ts-space. The correlation mixing parameter
θc should in principle not be regularized at all. However, this will not do numerically, so
the diagonal entry γ′ for θc in the Tikhonov matrix is nonzero but scaled as γ′ ∼ 10−5γ,
so that regularization of θc has essentially no weight as compared to regularization of
exchange. In the bootstrapping procedure, a scan over regularization strengths from
ω2 = 1010 and downwards is performed, and the model solution associated with the
first EPE minimum encountered is chosen as the optimum one.

Summed cost function The model selection procedure for more than one dataset
is pivotal, and a neatly simplified procedure is used here. The BEEF-vdW XC model
compromise was found by iteratively minimizing a weighted product cost function,
which was composed of individually regularized models in their quadratic form. Here
we choose to directly regularize the compromising XC models using a summed cost
function,∗

C =
∑
i

wi
kiQ2

i

(Xia− yi)2 + ω2Γ2(a− ap)2, (8.5)

where ki is the number of systems in the i’th dataset, Qi is the RMS deviation for an
individual fit to dataset i, and wi is the dataset weight. The first cost function term
is thus a normalized and weighted error. Following the discussion of optimum XC
model compromises in the previous chapter, the weights wi must then be determined.
Since the cost function (8.5) is not explicitly formulated in terms of individually reg-
ularized cost functions, choosing to minimize the product of dataset RMSDs rather
than individual costs is natural. We therefore consider the product P = ΠiSi({wi}),
where Si is the dataset RMSD for the jointly regularized and compromising XC model,
which obviously depends on the set of cost function weights {wi}. The optimum set
is therefore found iteratively by minimizing P over the weights.

A few more details about the procedure are appropriate: Legendre polynomial expan-
sions of exchange to fourth order in ts and tα have been employed, yielding 5× 5 = 25
exchange basis-function contributions to total exchange energies. The order 0 and
1 polynomials in the ts and tα model space directions have been fixed in order to
fulfill the gradient expansion for exchange to second order in s and α. Similarly to
the BEEF-vdW study, the prior vector ap is chosen such that infinite regularization
strength yields an exchange enhancement factor Fx(s→∞, α = 1) = 1.804. The origo
for regularization of the correlation model space is θc = 0.5.

∗ We tried doing this already in the BEEF-vdW work, but found the GGA exchange model
space too limited for this to work properly. The bootstrap .632 is not a good estimator of the
generalization error in situations of heavy overfitting,143 and the resulting EPE-minimized
XC model solutions appeared to reflect this: The exchange solutions were overly oscillatory in
order to accommodate the vastly different datasets, leading us to conclude that the bootstrap
EPE was not able to tell that those solutions were really overfits. Only individually regularized
model solutions ended up properly regularized. Introducing the MGGA exchange model space
and choosing ω2 as the first EPE minimum in a scan from very strong regularization and
downwards remedies this issue.
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Datasets The collection of benchmark datasets used in model training reflects the
overall goal of the XC models to be generated; versatile approximations applicable to a
wide range of condensed matter. The datasets chosen are the G3/99 molecular forma-
tion energies, the RE42 molecular reaction energies, the S22x5 noncovalent interaction
energies, the CE27 reactions energies for chemisorption, and finally the Sol53LC and
Sol53Ec lattice constants and cohesive energies of solid crystals. Note that, as com-
pared to the solid-state sets used in BEEF-vdW training, the Sol53 sets comprise data
for pure solids as well as mixed-element compounds, as discussed in Section 4.1.0.7.

Procedure Development of two new density functionals with built-in error estima-
tion is the prime object in this work — a meta-GGA with MGGA exchange and GGA
correlation (mBEEF), and the natural extension to include the Rutgers–Chalmers non-
local correlation (mBEEF-vdW). An important issue when optimizing the XC models
to a dataset such as CE27 is self-consistency in geometries as well as electron densi-
ties. This was not discussed in connection with the BEEF-vdW development, but is
important in this work. The reason is simple: The one-shot BEEF-vdW fit turned out
to predict crystal lattice constants and geometries in general not significantly different
from those of RPBE. Since RPBE geometries and densities was used for the BEEF-
vdW fit, the non-self-consistent predictions of performance were not far from those
found self-consistently afterwards. This is not the case in the current study, where
the expanded model space offers the possibility of lattice constants significantly closer
to experiment while largely preserving good predictions of thermochemistry. Non-
self-consistent RPBE-density estimates of the performance of the optimized MGGA
functionals on especially CE27 are therefore not adequate.

An iterative approach towards near-self-consistent model optimization is therefore
taken. This procedure starts off with optimizing the mBEEF using PBE densities
for non-self-consistent XC contributions to the data matrix in (8.5). The model re-
sulting from applying the model selection method outlined above is then used to gener-
ate new self-consistent densities including full geometry-optimization of mainly CE27.
This loop should in principle be continued intil self-consistency, and the “globally op-
timized” mBEEF can then serve as base for optimizing the mBEEF-vdW in a simple
manner. This is, however, a lengthy procedure requiring an immense number of DFT
calculations, so the results presented in the next section are for preliminary versions
of the mBEEF and mBEEF-vdW functionals.

8.3 Results

The mBEEF presented here is a “version 2”, that is, it is obtained from optimization on
first GGA electron densitites, and then once on the resulting MGGA-type densitites.
When it became clear just how long time it might take to reach the desired near-self-
consistency, it was decided to start off the cycle for mBEEF-vdW also, taking the
current mBEEF as starting point. The mBEEF-vdW is in that sense a one-shot fit
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Figure 8.1: The mBEEF (blue) and mBEEF-vdW (black) exchange enhancement
factors represented in the 2D (s, α)-space. The main panel illustrates Fx(s, α) along s
for different constant α-values, as well as the prior vector ap (red), which corresponds
to the PBEsol Fx(s). The inset shows the exchange enhancement along the α-direction
for different values of constant s, and the prior for KED dependence at s = 0 in red.
Note that Fx(s = 0, α = 1) = 1 is the only condition for complying with the HEG
limit, which is imposed on both XC models.

and highly preliminary, but promising results have been obtained using both DFAs.

Preliminary functional forms Figure 8.1 shows the exchange enhancement fac-
tors of the two obtained DFAs, mBEEF in blue and mBEEF-vdW in black. Both mod-
els are exceedingly smooth variations away from the prior solution (red), and Fx(s, α)
for mBEEF-vdW in particular is notably different from ap. Note that the HEG limit
Fx(s = 0, α = 1) = 1 is imposed on and smoothly satisfied by the exchange models.
The enhancement factors for iso-orbital like densities (τ ≈ 0) appear rather intent
on Fx(s = 0, α = 0) ≈ 1.05, that is, slowly varying/high density regions different
from the HEG are not treated as a HEG. While the mBEEF obviously employs full
PBEsol correlation, the mBEEF-vdW correlation mixing parameter is θc = 0.38, i.e.,
38% LDA and 62% PBEsol correlation in conjunction with full Enl

c . The effective
numbers of parameters left in the models after regularization are 2.4 (mBEEF) and
5.5 (mBEEF-vdW), where the constant GGA correlation in mBEEF is not included.

Performance on training datasets The performance of mBEEF and mBEEF-
vdW on the training datasets is illustrated in the bar-plot statistics in Fig. 8.2. Note
that mBEEF was not trained on CE27, while mBEEF-vdW was. Since only half of
the required calculations for S22x5 with mBEEF-vdW have finished at thesis deadline,
the illustrated statistics for this DFA are not absolutely complete, but very near so.
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Figure 8.2: Bar plot comparison of the mean accuracy of different density functionals
for predicting the materials properties used for training the mBEEF and mBEEF-vdW
XC approximations. The statistics for each dataset is normalized to the largest RMSD
illustrated for each set. Horizontal blue lines indicate the mBEEF-vdW MAD. Note
that the S22x5 statistics for mBEEF-vdW are based on only half of the 110 target
data points, see text for details.

The missing data are rather randomly distributed over the whole set, and if these are
omitted when computing the statistics for, e.g., optB88-vdW, the results change only
by a few meV.

Some important conclusions can be drawn from Fig. 8.2. The mBEEF is clearly a se-
rious competitor to the established TPSS and revTPSS meta-GGA functionals when
it comes to broad applicability: On all five relevant sets of materials properties does it
appear to offer equal or better computational accuracy, and predicts significantly less
overestimated CE27 chemisorption energies. This indicates a clear step forward from
the GGA model space in terms of the model compromises available. Many GGAs have
been generated (and discarded) in our group, but never before has such a general-
purpose semilocal DFA emerged from our efforts. Furthermore, the mBEEF-vdW
extension of mBEEF improves significantly on the Sol53Ec cohesive energies, and ap-
pears highly accurate for capturing the vdW interactions in S22x5, but is worse on the
CE27 set. This model compromise is therefore a different one than for mBEEF, which
should not surprise, as two extra datasets (CE27 and S22x5) have been introduced in
the multi-objective minimization problem, as well as extra degrees of freedom in the
correlation model space. If desired, more favorable CE27 statistics might be obtainable
by taking a few more steps in the optimization cycle towards near-self-consistency, but
probably at the expence of worse performance on other datasets and/or a less smooth
model solution with more effective parameters. Whatever the personal prefence, the
statistics in Fig. 8.2 lend promise to general-purpose density functionals well beyond
what the more simple GGA+vdW model space can reasonably offer.
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Figure 8.3: Potential-energy curves for graphene adsorption on the Ni(111) surface.
Most data are from Fig. 7.16, but here the mBEEF (dark blue) and mBEEF-vdW
(black) PECs are added. The gray area indicates the region around the mBEEF-vdW
PEC spanned by the corresponding ensemble error estimates.

We consider in the next few paragraphs how mBEEF and mBEEF-vdW perfom in
the familiar cases of graphene adsorption on Ni(111) and the correlation between the
computed CO chemisorption energy on Pt(111) and Rh(111) and surface energy of the
substrates.

Graphene adsorption on Ni(111) The mBEEF and mBEEF-vdW PECs for
benzene adsorption on the Ni(111) surface are shown in Fig. 8.3 along with many of the
PECs previously presented in Fig. 7.16. The blue mBEEF PEC captures a chemisorp-
tion minimum small for graphene–metal distances, but as expected not the stable
physisorption state predicted by RPA. On the other hand, similarly to optB88-vdW,
the mBEEF-vdW PEC is very close to RPA data, and clearly predicts the presence of
two PEC minima. The mBEEF-vdW error estimation ensemble furthermore supports
the presence of both bonding states and narrows significantly for d→∞.

Surface chemistry and stability Predictions by mBEEF and mBEEF-vdW of
the CO adsorption energy against surface energy for the Pt(111) and Rh(111) sub-
strates are illustrated in Fig. 8.4 along with previously considered data. The meta-
GGA functionals, including mBEEF, are able to produce significantly larger (and more
accurate) estimates of surface energies than GGAs of similar accuracy for chemisorp-
tion energies. Again, the terms of a model compromise have changed from the GGA
case. The change when moving to the mBEEF-vdW model space is not overwhelming.
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Figure 8.4: Chemisorption energy vs. surface energy for CO on Pt(111) and Rh(111).
These data were also shown in Fig. 7.17, but here data points for mBEEF (green dia-
mond) and mBEEF-vdW (cyan diamond) are added. Estimated standard deviations
are indicated by error bars around the the mBEEF-vdW data points, and all points
(Eγ ,∆E) inside the gray areas are within one standard deviation from the mBEEF-
vdW point for both quantities.

8.4 Discussion and summary

It is apparent from the individually trained XC models in Chapter 7 that significantly
different materials properties favor different directions in the GGA+vdW model space,
and the individual GGA exchange enhancement factors obtained were very different,
also in the s < 4 regime determining most bonding energetics in the solid state and
chemistry. This makes XC model compromising at that level of theory largely a game
of choosing to describe either chemistry or solids well, which is also reflected in the
BEEF-vdW model compromise.

Recent literature suggests that the MGGAmodel space may improve over the GGA one
at a modest extra computational cost. By applying our machine learning approaches
to the MGGA and MGGA+vdW model spaces, both containing MGGA exchange and
the latter also linear-combination correlation with nonlocal contributions, it was here
shown that the MGGA step on Jacob’s ladder offers a new ballpark for compromising
XC model solutions, and one in which the HEG limit for exchange is easily fulfilled with
smooth general-purpose density functionals. Furthermore, neatly following the several
demonstrations of the ambiguity of a suitable functional form of GGA exchange for
vdW-DF calculations, meta-GGA exchange was here found a very promising partner
for our linear-combination correlation models. We expect this conclusion to hold in
general, and using properly optimized MGGA exchange for the “hot seat” in the more
restricted Rutgers–Chalmers method should enable significant improvements as well.



Chapter 9

Summary and Outlook

This thesis is based on three published papers and preliminary results from an onging
extension of particularly the last of these studies. The overall theme is computationally
tractable approximations for the exchange–correlation density functional of KS-DFT,
and the first few steps towards development of highly versatile density functionals
targeted at general application in computational surface science and heterogeneous
catalysis have been taken.

Such density functional approximations should accurately describe bond breaking and
formation in chemistry, solid state physics, and the surface chemistry interface between
them, but also capture the vdW dispersion forces responsible for somewhat more exotic
phenomena in materials science. Dispersion is not accounted for by conventional XC
approximations.

Broad assessments of the vdW-DF method for inclusion of vdW interactions in DFT
were here conducted, and they validated its applicability for describing the energetics
of chemical bonds. However, optimization of the exchange functional employed is
needed for high-accuracy prediction of noncovalent bond energies. Such optimization
leads to improved description of bonding in the solid state as well, but at the expense
of significant intramolecular overbinding. Inclusion of explicitly semilocal correlation
contributions to the vdW-DF method were here proposed as an alternative path to
improvements, yielding strikingly uniform refinements over the significantly different
materials properties considered. Application to studies of benzene physisorption on
the noble (111) surfaces of Cu, Ag, and Au supported this notion.
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A machine learning inspired approach to semi-empirical density functional develop-
ment was developed and applied. With the aim of a general-purpose van der Waals
density functional with built-in error estimation on computed quantities, a highly
flexible GGA+vdW model space expansion was explored. Issues of preserving trans-
ferability of the final DFA and avoiding overfitting were tackled by a combination
of Tikhonov regularization and bootstrap cross-validation, leading to a powerful pro-
cedure yielding smooth and high-performance XC models that retain only the most
important degrees of freedom. However, it was also shown that such computation-
ally efficient XC models must necessarily compromise between describing physically
and chemically different materials properties in an incomplete model space. A simple
principle for determining the position in this space of a properly compromising model
was formulated an applied. Benchmarking the resulting BEEF-vdW functional largely
validated it as a general-purpose approximation, but also underscored the model com-
promises made. A corresponding error estimation ensemble of XC models was designed
for computationally cheap estimates of the DFT error on predicted quantities, and was
applied in studies of graphene adsorption on Ni(111) and the correlation between DFT
predictions of molecular CO adsorption and surface energies.

The exchange–correlation model compromises necessary at the GGA level of theory
are often grave. The DFA designer must choose between high computational accuracy
for bonding in chemistry, the solid state, or none of them. By applying the developed
methodology to the MGGA and MGGA+vdW model spaces it was shown that MGGA
offers a highly favorable ballpark for compromising models. This is therefore a promis-
ing path towards truly versatile van der Waals density functionals with built-in error
estimation for surface science applications. Introduction of self-interaction corrections
of some sort to the model space may prove advantageous in the long run as well.
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Appendix

A.1 Datasets

Table A.1: Gas-phase molecular reactions and reaction energies (in eV) constituting
the RE42 dataset. The experimental reaction energies are compiled from the G3/99
static-nuclei formation energies. ∆rE < 0 means exothermic.

Reaction ∆rE

N2 + 2H2 → N2H4 0.41
N2 + O2 → 2NO 1.88
N2 + 3H2 → 2NH3 −1.68
O2 + 2H2 → 2H2O −5.45
N2 + 2O2 → 2NO2 0.62
CO + H2O→ CO2 + H2 −0.31
2N2 + O2 → 2N2O 1.57
2CO + O2 → 2CO2 −6.06
CO + 3H2 → CH4 + H2O −2.80
CO2 + 4H2 → CH4 + 2H2O −2.50
CH4 + NH3 → HCN + 3H2 3.32
O2 + 4HCl→ 2Cl2 + 2H2O −1.51
2OH + H2 → 2H2O −6.19
O2 + H2 → 2OH 0.74
SO2 + 3H2 → SH2 + 2H2O −2.62
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Reaction ∆rE

H2 + O2 → H2O2 −1.68
CH4 + 2Cl2 → CCl4 + 2H2 0.19
CH4 + 2F2 → CF4 + 2H2 −8.60
CH4 + H2O→ methanol + H2 1.33
CH4 + CO2 → 2CO + 2H2 3.11
3O2 → 2O3 2.92
methylamine + H2 → CH4 + NH3 −1.15
thioethanol + H2 → H2S + ethane −0.71
2CO + 2NO→ 2CO2 + N2 −7.94
CO + 2H2 → methanol −1.48
CO2 + 3H2 → methanol + H2O −1.17
2 methanol + O2 → 2CO2 + 4H2 −3.11
4CO + 9H2 → trans-butane + 4H2O −9.00
ethanol→ dimethylether 0.53
ethyne + H2 → ethene −2.10
ketene + 2H2 → ethene + H2O −1.92
oxirane + H2 → ethene + H2O −1.56
propyne + H2 → propene −2.00
propene + H2 → propane −1.58
allene + 2H2 → propane −3.64
iso-butane→ trans-butane 0.08
CO + H2O→ formic acid −0.39
CH4 + CO2 → acetic acid 0.28
CH4 + CO + H2 → ethanol −0.91
1,3-cyclohexadiene→ 1,4-cyclohexadiene −0.01
benzene + H2 → 1,4-cyclohexadiene −0.01
1,4-cyclohexadiene + 2H2 → cyclohexane −2.94
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Table A.2: The 27 experimental reaction energies ∆E for chemisorption
on late transition metal surfaces constituting the CE27 dataset. The
somewhat smaller CE17 dataset is a subset of CE27. Reactions in CE17
are marked with a "?". All chemisorption energies are in eV per adsorbate
at a surface coverage of 0.25 ML, except where otherwise noted. The
adsorption mode is indicated by "m" (molecular) or "d" (dissociative),
along with the adsorption site. Chemisorption energies for O have been
evaluated as 1

2
{∆E(O2) − Eb(O2)} with Eb(O2) = 118 kcal/mol195 for

the dioxygen bond energy.

mode site ∆E reference(s)

CO/Ni(111) ? m fcc −1.28 183
CO/Ni(100) m hollow −1.26 186
CO/Rh(111) ? m top −1.45 183
CO/Pd(111) ? m fcc −1.48 183
CO/Pd(100)a ? m bridge −1.60 186–189
CO/Pt(111) ? m top −1.37 183
CO/Ir(111) ? m top −1.58 183
CO/Cu(111) ? m top −0.50 183
CO/Co(0001) ? m top −1.20 183
CO/Ru(0001) ? m top −1.49 183

O/Ni(111) ? m fcc −4.95 189
O/Ni(100) ? m hollow −5.23 189
O/Rh(100) ? m hollow −4.41 189
O/Pt(111) ? m fcc −3.67 190

NO/Ni(100) ? d hollow −3.99 186
NO/Pd(111) ? m fcc −1.86 191
NO/Pd(100) ? m hollow −1.61 192
NO/Pt(111) m fcc −1.45 190

N2/Fe(100)b d hollow −2.3 193

H2/Pt(111) ? d fcc −0.41 194
H2/Ni(111) d fcc −0.98 194
H2/Ni(100) d hollow −0.93 194
H2/Rh(111) d fcc −0.81 194
H2/Pd(111) d fcc −0.91 194
H2/Ir(111) d fcc −0.55 194
H2/Co(0001) d fcc −0.69 194
H2/Ru(0001)c d fcc −1.04 194
a ∆E is the average of −1.58, −1.67, −1.69, and −1.45 eV.
b The coverage of atomic nitrogen is 0.5 ML.
c ∆E is the average of −0.83 and −1.24 eV, both from Ref. 194.
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Table A.3: Experimental solid state properties of 27 cubic bulk
solids. The ZPAE exclusive Sol27LC zero-Kelvin lattice constants a0

(Å) are from Ref. 99, while the zero-Kelvin Sol27Ec cohesive energies
Ec (eV/atom) are from Ref. 41 and corrected for ZPVE contributions.
Strukturberichtsymbols are indicated in parenthesis for each solid. A1:
fcc, A2: bcc, A3: hcp, A4: diamond.

Sol27LC Sol27Ec

Solid a0 Ec ZPVEa

Li (A2) 3.451 1.66 −0.033
Na (A2) 4.209 1.13 −0.015
K (A2) 5.212 0.94 −0.009
Rb (A2) 5.577 0.86 −0.005
Ca (A1) 5.556 1.86 −0.022
Sr (A1) 6.040 1.73 −0.014
Ba (A2) 5.002 1.91 −0.011
V (A2) 3.024 5.35 −0.037
Nb (A2) 3.294 7.60 −0.027
Ta (A2) 3.299 8.12 −0.023
Mo (A2) 3.141 6.86 −0.044
W (A2) 3.160 8.94 −0.039
Fe (A2) 2.853 4.33 −0.046
Rh (A1) 3.793 5.80 −0.047
Ir (A1) 3.831 6.98 −0.041
Ni (A1) 3.508 4.48 −0.044
Pd (A1) 3.876 3.92 −0.027
Pt (A1) 3.913 5.86 −0.023
Cu (A1) 3.596 3.52 −0.033
Ag (A1) 4.062 2.97 −0.022
Au (A1) 4.062 3.83 −0.016
Pb (A1) 4.912 2.04 −0.010
Al (A1) 4.019 3.43 −0.041
C (A4) 3.544 7.59 −0.216
Si (A4) 5.415 4.69 −0.063
Ge (A4) 5.639 3.89 −0.036
Sn (A4) 6.474 3.16 −0.019
a ZPVE corrections are calculated according to Eq. (4.5) using Debye
temperatures from Ref. 41.
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S22x5 interaction energies

The revised CCSD(T) interaction energies of Ref. 95 are used for the S22 dataset.
However, all points on the 22 PECs in the S22x5 extension were originally calculated
using a somewhat less accurate CCSD(T) procedure. In order to shift the equilibrium
point on each S22x5 PEC to the revised S22 energies, and approximately correct
the remaining data points, a modification of the (possibly) slightly inaccurate S22x5
interaction energies is here introduced as

Edint := εdint ×
E1.0
int

ε1.0
int

, (A.1)

where Edint and εdint denote modified and original S22x5 energies at the relative in-
termolecular distance d, respectively. For E1.0

int = ε1.0
int Eq. (A.1) obviously reduces to

Edint = εdint for all distances. The obtained corrections to εdint are listed in Table A.4.
The maximum correction of 11.4% amounts to 25.6 meV for the indole–benzene com-
plex in a stacked geometry, while the total mean signed correction to all the 110
interaction energies is 0.1 meV.
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Table A.4: Corrections to the original S22x5 interaction energies, Edint − εdint, com-
puted from Eq. (A.1). Reported statistics are most negative (min), most positive
(max), mean signed (msc), and mean absolute (mac) interaction energy correction at
each distance. Furthermore, the total mean signed (MSC) and total mean absolute
(MAC) energy correction over all 110 energies is reported in the bottom rows. All
energies in meV.

Relative interaction distance, d
Complex E1.0

int /ε
1.0
int 0.9 1.0 1.2 1.5 2.0

1 −1.0% −1.0 −1.3 −1.0 −0.5 −0.1
2 −1.0% −1.9 −2.2 −1.8 −1.0 −0.4
3 −1.1% −8.0 −9.1 −7.6 −4.5 −1.8
4 −1.1% −6.5 −7.3 −6.1 −3.7 −1.6
5 −1.1% −9.2 −10.0 −8.4 −5.1 −2.2
6 −1.8% −11.8 −13.0 −10.8 −6.4 −2.5
7 −2.3% −14.7 −16.0 −13.0 −7.3 −2.5
8 0.0% 0.0 0.0 0.0 0.0 0.0
9 −1.2% −0.4 −0.8 −0.4 −0.1 0.0
10 3.2% 1.5 2.1 1.6 0.7 0.2
11 6.8% 0.4 8.3 5.7 1.6 0.2
12 6.9% 5.1 13.5 9.0 2.9 0.6
13 1.3% 3.8 5.6 3.6 1.4 0.4
14 11.4% 10.5 25.6 17.8 5.3 0.5
15 4.6% 15.9 24.3 16.4 6.5 1.8
16 −1.4% −0.7 −0.9 −0.7 −0.3 −0.1
17 −0.6% −0.8 −0.9 −0.7 −0.4 −0.1
18 1.3% 1.1 1.3 1.0 0.5 0.2
19 −0.7% −1.2 −1.3 −1.1 −0.6 −0.2
20 3.2% 3.1 3.9 3.1 1.6 0.5
21 2.1% 4.5 5.2 4.4 2.5 1.0
22 −0.6% −1.6 −1.8 −1.5 −0.9 −0.4

min −2.3% −14.7 −16.0 −13.0 −7.3 −2.5
max 11.4% 15.9 25.6 17.8 6.5 1.8
msc 1.2% −0.5 1.1 0.4 −0.4 −0.3
mac 2.5% 4.7 7.0 5.3 2.4 0.8

MSC 0.1
MAC 4.0
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A.2 Benchmark statistics

Table A.5: Deviation statistics for the Sol27Ec cohesive energies (eV/atom) and
Sol27LC lattice constants (Å). Zero-point vibrational effects have been removed from
both experimental datasets.

Sol27Ec (27) Sol27LC (27)

Method MSD MAD STD MSD MAD STD

LDA 0.89 0.89 1.08 −0.07 0.07 0.10
PBE −0.10 0.27 0.38 0.05 0.06 0.07
RPBE −0.54 0.58 0.71 0.11 0.11 0.13
PBEsol 0.43 0.45 0.63 −0.01 0.03 0.04
BLYP −0.79 0.80 0.89 0.11 0.11 0.14
AM05 0.25 0.36 0.51 0.01 0.03 0.04
WC 0.37 0.41 0.57 0.00 0.03 0.04
HCTH407 −0.59 0.67 0.82 0.08 0.10 0.14
TPSS 0.08 0.27 0.36 0.05 0.05 0.08
revTPSS 0.31 0.37 0.50 0.03 0.04 0.07
vdW-DF −0.54 0.60 0.72 0.12 0.12 0.14
vdW-DF2 −0.58 0.64 0.75 0.12 0.14 0.18
optPBE-vdW −0.12 0.27 0.38 0.06 0.08 0.10
optB88-vdW 0.01 0.25 0.36 0.04 0.08 0.09
C09-vdW 0.42 0.43 0.59 0.01 0.05 0.06
BEEF-vdW −0.37 0.45 0.59 0.08 0.08 0.11
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Table A.8: Detailed statistics on the deviations of calculated S22x5 interaction en-
ergies from CCSD(T) benchmarks using van der Waals density functionals in all five
points along the intermolecular potential-energy curve. Mean signed and mean ab-
soulte deviations are in meV. Mean signed relative (MSRD) and mean absolute relative
(MARD) deviations are also listed.

Method MSD MAD MSRD MARD

d = 0.9

vdW-DF 140 140 198% 198%
vdW-DF2 99 99 143% 143%
optPBE-vdW 29 31 28% 35%
optB88-vdW 17 19 26% 26%
C09-vdW −13 21 −13% 35%
BEEF-vdW 136 137 214% 214%
d = 1.0

vdW-DF 70 71 20% 25%
vdW-DF2 43 44 13% 15%
optPBE-vdW −1 20 −9% 13%
optB88-vdW 5 13 3% 6%
C09-vdW −3 13 1% 6%
BEEF-vdW 72 74 20% 28%
d = 1.2

vdW-DF 4 32 −16% 23%
vdW-DF2 5 13 −2% 7%
optPBE-vdW −25 28 −29% 30%
optB88-vdW −4 13 −6% 9%
C09-vdW −3 13 −8% 11%
BEEF-vdW 6 27 −12% 18%
d = 1.5

vdW-DF −13 15 −39% 40%
vdW-DF2 2 4 4% 6%
optPBE-vdW −20 20 −44% 44%
optB88-vdW −3 6 −12% 13%
C09-vdW −6 11 −26% 28%
BEEF-vdW −5 6 −13% 14%
d = 2.0

vdW-DF −4 4 −20% 20%
vdW-DF2 5 5 34% 34%
optPBE-vdW −5 5 −20% 21%
optB88-vdW 1 2 3% 8%
C09-vdW −2 2 −13% 15%
BEEF-vdW 2 3 27% 28%
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Figure A.1: Bar plot comparison of relative deviations in density functional calcula-
tions of the S22x5 CCSD(T) interaction energies. The dashed blue line indicates the
BEEF-vdW MARD.
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A.3 Graphene adsorption on Ni(111): Computa-
tional details

Adsorption of graphene on Ni(111) was modelled using a 1 × 1 × 5 surface slab, a
Ni(fcc) lattice constant of 3.524 Å as determined with the PBE density functional,
and 20 Å vacuum width. The top three atomic layers were fully relaxed with PBE
using a grid spacing of 0.15 Å and a (20× 20× 1) k-point mesh. Carbon atoms were
placed in atop and fcc adsorption sites, respectively.
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Abstract Density functional theory has become a popular

methodology for the analysis of molecular adsorption on

surfaces. Despite this popularity, there exist adsorption

systems for which commonly used exchange–correlation

functionals fail miserably. Particularly those systems where

binding is due to van der Waals interactions. The adsorp-

tion of benzene on Au(111) is an often mentioned such

system where standard density functionals predict a very

weak adsorption or even a repulsion, whereas a significant

adsorption is observed experimentally. We show that a

considerable improvement in the description of the

adsorption of benzene on Au(111) is obtained when using

the so-called RPBE-vdW functional.

Keywords Benzene � Au(111) � Van der Waals �
RPBE-vdW � Density functional theory

1 Introduction

The adsorption of aromatic molecules on transition metal

surfaces is a topic of great interest in surface science.

Understanding the interactions of an aromatic adsorbate

with a metallic surface also has important industrial

applications. Catalytic conversion of aromatic compounds

is a key reaction in many petrochemical processes [1, 2]

and has been studied experimentally for decades [3].

Benzene is the smallest aromatic molecule, and the

close-packed (111) surface of gold is among the least

reactive surfaces known. For coverages up to one mono-

layer (ML) of benzene on Au(111) there appears to be a

general consensus that benzene adsorbs with its molecular

plane parallel to the surface in a physisorbed state from

which it can desorb reversibly [4, 5]. The physisorption is

believed to be mediated by dispersive van der Waals (vdW)

interactions. Contrary to the case of adsorption of benzene

on the much more reactive Pt(111) surface, Wöll and co-

workers [4, 6] observed no non-planar benzene distortion

(bending of C–H bonds) in near edge X-ray absorption fine

structure (NEXAFS) studies of benzene monolayers phys-

isorbed on Au(111). From temperature programmed

desorption (TPD) experiments, Koel and co-workers [5]

used a desorption peak temperature of 239 K to estimate

the desorption energy of physisorbed benzene on Au(111)

to 0.64 eV (14.7 kcal/mol) at a sub-monolayer coverage.

Theoretical first principles calculations have also been

applied to the benzene/Au(111) interaction. Indeed, density

functional theory (DFT) using exchange and correlation

(xc) functionals within the generalized gradient approxi-

mation (GGA) has well proven its usefulness for describing

many strongly interacting systems [7] also with respect to

adsorption on transition and noble metal surfaces [8, 9]

where in particular the RPBE xc-functional [10] has proven

useful. However, when the adsorbate-substrate interaction

is dominated by van der Waals interactions, the GGA-level

of theory proves insufficient for calculating adsorption

energies [11, 12]. This is clearly exemplified in a recent

DFT study [13] of benzene adsorbed on (111) surfaces of

Cu, Ag, and Au. At all three surfaces the binding energy

was dramatically underestimated and often fell below the
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anticipated accuracy of the methodology itself. Even

though other qualitative features of experimental results

were reproduced by the calculations, the largest calculated

adsorption energy of benzene on Au(111) was -0.08 eV

(-1.92 kcal/mol). Insufficient description of the correla-

tion effects responsible for vdW interactions was the rea-

son for this. Similar conclusions were drawn from another

recent GGA-DFT study of benzene/Au(111) interactions

[14]. These authors furthermore concluded that GGA-DFT

is well-suited for describing the ground state electronic

structure of closed-shell molecules such as benzene on

metallic surfaces, but that the adsorption structure (e.g.,

equilibrium adsorbate-metal distance) not necessarily is

correctly captured due to the absence of van der Waals

interactions in the calculations.

Ab initio MP2 calculations have been applied with some

success to describe the vdW-interactions between benzene

and Au(111). In recent MP2 calculations benzene adsorp-

tion on the (111) surfaces of Cu, Ag, and Au was consid-

ered [15]. The calculated adsorption energy for the

Au(111) surface of -0.31 eV at an equilibrium benzene–

metal distance of 3.6 Å was somewhat weaker than the

experimental value of -0.6 eV reported in the same study.

A density functional that includes the nonlocal correla-

tion effects responsible for van der Waals interactions has

recently been developed [16]. This van der Waals density

functional (vdW-DF) describes the exchange and correla-

tion energy as a sum of GGA exchange and a correlation

term consisting of both local correlation (evaluated in the

local density approximation) and nonlocal correlation

(depending nonlocally on the electron density) [17]:

Exc n½ � ¼ EGGA
x n½ � þ E0

c n½ � þ Enl
c n½ � ð1Þ

The nonlocal correlation term is expressed as

Enl
c n½ � ¼ 1

2

Z
dr~1dr~2nðr~1Þ/ðq1; q2; r12Þnðr~2Þ ð2Þ

where / is the vdW-DF kernel, r12 ¼ r~1 � r~2j j and q1 and

q2 are the values of a universal function q0 nðr~Þ; r~nðr~Þ
���

���
� �

evaluated at the two points r~1 and r~2. The vdW-DF has

recently been used to treat a number of diverse systems

such as, e.g., layered structures, dimers, adsorbed mole-

cules, carbon nanotubes, metal organic frameworks, and

DNA with promising results [17]. In this study we use

RPBE [10] exchange for the GGA exchange term in the

vdW-DF. This approximation was called RPBE-vdW in

Ref. [18], where it was also shown to give adsorption-

energy values that deviate only about 0.04 eV from the

vdW-DF values for a number of different cyclic molecules

adsorbed on the basal plane of MoS2.

In the present study we use first principles DFT calcu-

lations with the RPBE-vdW functional to calculate the

adsorption energy of benzene on the Au(111) surface.

2 Computational Methods

We used the grid-based real-space code GPAW [19] for all

the reported calculations. It is an implementation of the

projector augmented wave (PAW) method of Blöchl [20],

which is an all-electron full-potential method within the

frozen core approximation. The Atomic Simulation Envi-

ronment (ASE) [21] provided an interface to GPAW. Wave

functions, electron densities and potentials are represented

on grids in real space and a grid spacing of 0.20 Å was

used in all directions of the supercell. Brillouin-zone

integrations were performed using a 4 9 4 9 1 Monk-

horst–Pack grid [22] and a Fermi smearing of 0.1 eV, and

Pulay density mixing [23] was used.

All RPBE-vdW calculations were done non self-consis-

tently; the RPBE xc-functional was used to obtain self-

consistent GGA electron densities where after the vdW-DF

scheme of Eq. 1 was applied to those densities as a post-

GGA correction using RPBE exchange. The inclusion of

vdW interactions in DFT calculations in other studies have

shown to modify the total energy significantly without

appreciably affecting the self-consistent electronic structure

itself [13, 14, 24, 25]. Therefore, we assume that performing

geometry optimizations within RPBE and a posteriori

applying the RPBE-vdW to the density to be a reasonably

reliable procedure for obtaining total energies. Evaluation of

Enl
c n½ � (Eq. 2) by direct summation in real space has an

operation count that scales as N2 for system size N, which

turned out to require computation times of about 50% of

those required for self-consistent RPBE calculations.

Instead, we have implemented the fast Fourier transforma-

tion (FFT) evaluation technique introduced by Román-Pérez

and Soler [26] where the scaling is N log N. We have used 20

interpolation points, qa, distributed between zero and qc =

5.0 according to the formula qaþ1 � qað Þ ¼ k qa � qa�1ð Þ
with k = 1.2. The logarithmic divergence of the vdW-DF

kernel / is cut off smoothly at r12 q2
1 þ q2

2

� �1=2\1:0 with

/ q1; q2; 0ð Þ set to 0.5. For more details, see Ref. [26]. With

the non self-consistent FFT evaluation of the vdW-DF

parallelized over the 20 interpolation points, we typically

find that the required computational time amounts to 0.5%

of that required for a self-consistent RPBE calculation, thus

becoming insignificant.

The three model systems treated in this study are (1)

benzene adsorbed on the Au(111) surface [C6H6/Au(111)],

(2) the Au(111) surface before adsorption [Au(111)] and

(3) gas phase benzene [C6H6]. The extended Au(111)

surface was modeled by an orthorhombic supercell with 16

atoms per metal layer. The surface lattice cell was repeated

periodically in the surface plane to create an infinite slab,

while non-periodic boundary conditions were employed in

the direction perpendicular to the slab. The benzene mol-

ecule was added parallel to the surface with the center of
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the C6 ring at an on-top site directly above a central Au

atom. A schematic top-view of this adsorption geometry is

depicted in Fig. 1.

All geometry relaxation was done by minimizing the

Hellmann–Feynman forces using the RPBE xc-functional.

The two top layers of the Au(111) slab were allowed to

relax freely while the bottom layers further from the sur-

face were fixed at the bulk Au lattice constant of 4.21 Å,

likewise determined within RPBE. With the parallel-ori-

ented benzene placed 3.65 Å above the (111) surface the

adsorption system was relaxed while constraining the

benzene atoms to only relax in the plane parallel to the

surface. Experimental [4, 6] and theoretical [14] studies

have shown that the non-planar distortions of the benzene

molecule upon adsorption on Au(111) are negligible. The

van der Waals interaction responsible for physisorption is

not expected to depend significantly on the adsorption

geometry and theoretical studies of benzene adsorption on

coinage metals often consider this completely planar ben-

zene geometry in the on-top adsorption site [15, 27, 28].

Defining the benzene–Au(111) separation as the distance

between the center of the aromatic ring and the top-layer

Au atom residing exactly beneath the center of the C6 ring

unambiguously defines the molecule-surface distance. Gas

phase benzene was fully relaxed in a non-repeated cell with

more than 6 Å vacuum to the cell boundaries. This deter-

mined the equilibrium geometry of gas phase benzene to be

completely planar with bond lengths of 1.404 Å and

1.092 Å for C–C and C–H bonds, respectively.

The finite grid spacing in real-space DFT calculations

leads to the so-called egg-box effect where the total energy

of a system depends on the positions of all atoms in the

system relative to the grid points [29]. The effect can be

reduced by reducing the grid spacing. However, since each

atom in the system may introduce an egg-box error upon

translation of all atoms in the supercell, the sum of egg-box

errors may be significant when large systems are consid-

ered. Care was taken to avoid sources of numerical errors

from egg-box effects in all calculations. As adsorption

energies are calculated from comparison of the total

energies of the C6H6/Au(111), Au(111) and C6H6 model

systems, egg-box effects were minimized within each

adsorption energy by, as far as possible, positioning the

atoms in corresponding model systems in identical posi-

tions relative to the 3D real-space mesh.

3 Results and Discussion

In order to enable high accuracy and reliability in calcu-

lating the benzene adsorption energy on Au(111) care was

taken to ensure the reliability of the employed model

systems.

In DFT slab calculations with non-periodic boundary

conditions perpendicular to the surface plane the electronic

structure is forced to extinction at the supercell boundaries

above and below the slab. It is therefore important to use

vacuum layers thick enough to eliminate the risk of artifi-

cial quenching of the self-consistent electron density in

both directions. The benzene adsorption energy, Eads, we

define as

Eads ¼ E
C6H6=Auð111Þ
tot � E

Auð111Þ
tot � EC6H6

tot ð3Þ

such that Eads\0 corresponds to bonding. In Fig. 2 is

shown the convergence of the calculated adsorption energy

of benzene on Au(111) as the vacuum layer above and

below the adsorption and the slab system is increased. The

computations were done by first relaxing the C6H6/Au(111)

model system with benzene initially placed in the on-top

site 3.65 Å above the Au(111) surface. Vacuum layers of

6.33 Å were used above the C6H6 adsorbate and below the

Au slab. Minor geometry changes were observed for the

two top metal layers while the benzene did not relax its

bond lengths at all. The central gold atom (colored red in

Fig. 1) moved 0.04 Å towards the surface upon relaxation,

causing the equilibrium benzene–metal distance to be

3.69 Å. The equilibrium geometry of the Au(111) surface

before adsorption was determined by removing the ben-

zene molecule from the supercell of the relaxed C6H6/

Au(111) system and relaxing the bare surface. Self-con-

sistent RPBE adsorption energies for these geometries were

then obtained using different vacuum layer thicknesses and

the corresponding RPBE-vdW adsorption energies were

Fig. 1 Top-view of benzene adsorption over a central gold atom (in

red) in the 16-metal atom rectangular surface cell
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computed. We see from Fig. 2 that both the RPBE and the

RPBE-vdW adsorption energy are converged to within

10 meV for vacuum layers exceeding 6 Å above and below

the system. RPBE repulsion of 0.13 eV was derived for the

three-layer Au(111) slab while Eads turned out exothermic

by -0.42 eV within the RPBE-vdW.

To investigate the dependence of Eads on the number of

metal layers in the Au(111) slab we calculated the benzene

adsorption energy for slabs containing up to ten Au layers

(160 Au atoms in total). The geometries of the top-two

metal layers in the C6H6/Au(111) and Au(111) model

systems were taken from those previously found for three

metal layers while the remaining layers were kept in their

bulk geometry. The vacuum layers above and below the

systems were at least 6.33 Å (with small variations intro-

duced by the constant grid spacing).

The results are shown in Fig. 3 where the calculated

benzene adsorption energies on Au(111) are plotted against

the number of metal layers in the slab. Over the range of

3–10 metal layers both the RPBE and the RPBE-vdW

adsorption energy fall within a 20 meV energy window.

Calculations using the three-layer Au(111) slab therefore

capture the RPBE-vdW benzene/Au(111) interactions well.

Having established that closed-boundary DFT calcula-

tions with vacuum layers exceeding 6 Å above and below

the three-metal-layer benzene/Au(111) adsorption system

yields converged adsorption energies we calculated the

benzene adsorption energy on the (111) surface plane of

Au for a range of benzene–metal distances. Adsorption

distances, d, in the range 0.75–6.05 Å were considered for

the three-layer Au(111) substrate. While only varying the

benzene–metal distance we kept the model system and

supercell geometries fixed for calculation of Eads for each

d. To ensure computational accuracy over this range of

separations a slightly enlarged supercell in the direction

perpendicular to the surface plane was used. This implies

that the vacuum layers above and below the adsorption

system exceeded 6 Å for the case of the largest benzene–

metal separation, d = 6.05 Å. With this enlarged supercell

the previously determined equilibrium geometry of the

C6H6/Au(111) model system with d = 3.69 Å yielded no

relaxation. The geometries of the Au(111) and C6H6 ref-

erence model systems were determined by relaxation after

removing the adsorbate and substrate from the enlarged

supercell, respectively, as described above. This led to no

relaxation of the bond lengths in gas phase benzene. The

only atoms moving in the supercell when changing d were

those of the C6H6 adsorbate.

The calculated RPBE-vdW adsorption energies are

plotted against the benzene–Au(111) distance in Fig. 4.

The bottom of a van der Waals type potential energy curve

is mapped out. The minimum of the binding energy curve

is found at d = 3.7 Å, making this the calculated equilib-

rium adsorption distance of benzene on the Au(111) sur-

face when van der Waals interactions are taken into

Fig. 2 Convergence of the RPBE and RPBE-vdW adsorption energy

of benzene in the on-top site of Au(111) as the vacuum layers

employed in the supercell are enlarged. For any vacuum layer [6 Å

above and below the adsorption system the adsorption energy is

converged to within 10 meV

Fig. 3 Convergence of the RPBE and RPBE-vdW adsorption energy

of benzene as the number of metal layers in the slab is increased from

one through ten. For slabs comprised of three or more Au layers the

calculated adsorption energies fall within a 20 meV energy window
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account. The corresponding adsorption energy for the

parallel-oriented C6H6 on Au(111) is -0.42 eV. To our

knowledge, this is the first electronic structure study of

benzene on Au(111) reporting an adsorption energy this

close to the experimental data available, appearing to agree

on C6H6/Au(111) adsorption energies of *0.6 eV. Also,

the equilibrium binding energy obtained in the present

study of benzene adsorption in the on-top site on Au(111)

is an order of magnitude larger than that obtained for the

same adsorption site in a recent GGA-DFT study of C6H6/

Au(111) interface interactions [13]. The inclusion of dis-

persive interactions by using the RPBE-vdW is clearly seen

from Figs. 2 and 3 to be the reason for this significant

improvement; with RPBE-vdW corrections the adsorption

energies are shifted down into the region of bonding.

Furthermore, the van der Waals type binding energy curve

in Fig. 4 shows that dispersive interactions are indeed

important in benzene adsorption on Au(111). The calcu-

lated adsorption distance of 3.7 Å is similar to those found

in MP2 calculations for benzene on the (111) surfaces of

Au, Ag and Cu [15] and to DFT calculations using the

vdW-DF of benzene adsorption on graphene [24] and on

the basal plane of MoS2 [18].

4 Conclusions

The experimentally observed temperature programmed

desorption spectra for benzene on Au(111), combined with

Redhead analysis, indicate a desorption energy of 0.64 eV

for benzene on Au(111) [5]. Such TPD/Redhead experi-

ments have some inherent uncertainty. It is certain from

these experiments and standard density functional calcu-

lations, however, that GGA density functional theory sig-

nificantly underestimates the adsorption energy of benzene

on Au(111). Our fast implementation of the vdW-DF non-

local correlation functional enables us to obtain a signifi-

cantly improved adsorption energy for the purely van der

Waals bonded benzene on Au(111) system. The improve-

ment is comparable to the improvements observed using

the computationally more expensive correlated electron

method MP2, but is achievable at essentially no additional

cost. It can also be applied to much larger systems than

MP2, which we illustrate by applying the method to sys-

tems with up to 160 gold atoms.
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Abstract The van der Waals density functional (vdW-

DF) family of exchange–correlation functionals is a

promising step towards accounting for van der Waals

interactions in density functional theory. This approach

consists of a nonlocal correlation term in addition to

semilocal generalized gradient approximation exchange

and local density approximation correlation. It has proven

useful for describing vdW bonded complexes but unfor-

tunately deteriorates the prediction of solid-state properties

such as bulk lattice parameters and cohesive energies, as

compared to the underlying GGA functional. By consid-

ering a broad range of different condensed matter systems

including weakly interacting complexes as well as strongly

bonded molecules and bulk solids, we show that inclusion

of gradient-corrected correlations in vdW-DF-type calcu-

lations may not only improve the accuracy for vdW bonded

systems, but also amend vdW-DF deficiencies in predicting

structural properties of solids. Based on this insight we

construct a prototype vdW-DF which demonstrates high

accuracy in describing the dispersive interactions respon-

sible for benzene adsorption on the noble Au(111) surface.

Keywords Density functional theory � van der Waals �
vdW-DF � RPBE ? nl � RPBEc2/3 ? nl � Au(111) �
Benzene

1 Introduction

Density functional theory (DFT) [1] is a prominent elec-

tronic structure method within condensed matter physics

and computational chemistry, where DFT offers a high

ratio of accuracy to computational cost. The great success

of modern generalized gradient approximations (GGAs) to

exchange and correlation among electrons in strongly

interacting systems has contributed significantly to this [2].

However, description of van der Waals (vdW) interactions

within DFT appears more challenging and much research

aims at designing exchange–correlation (xc) functionals

that capture the often weak and long-ranged dispersion

forces with reasonable accuracy [3].

A promising step towards including dispersion in DFT

was the introduction of the Langreth–Lundqvist (LL) van

der Waals density functional (vdW-DF) xc-functional

which depends nonlocally on the electronic density [4, 5].

The vdW contribution to the DFT total energy is calculated

as a double-integral over all electronic densities in space,

mutually interacting through a correlation kernel. In the LL

vdW-DF scheme this nonlocal correlation energy, Ec
nl, is

added to a GGA exchange and local density approximation

(LDA) correlation:

EvdW�DF�type
xc ¼ EGGA

x þ ELDA
c þ Enl

c : ð1Þ

Several studies indicate the usefulness of the vdW-DF for

weakly interacting systems [6]. Nevertheless, there is still

room for improvement in accuracy and a range of different

GGA exchange functionals have been proposed for Ex
GGA

in Eq. 1 [7–9]. Meanwhile, it appears that the possible role

of applying GGA semilocal correlation in the LL vdW-DF

functional rather than the strictly local LDA correlation

may have been overlooked. Indeed, recent work of Vydrov

and Van Voorhis [10, 11] have successfully applied semilocal
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correlation along with a modified expression for the nonlocal

correlation.

In this study we first investigate the use of semilocal

correlation in the Langreth–Lundqvist vdW-DF method

when applying it to three very different groups of con-

densed matter systems; the S22 benchmark dataset of

weakly interacting complexes [12], the G2-1 database of

molecular formation energies [13], and a broad range of 20

bulk solids for which we calculate equilibrium lattice

parameters and cohesive energies. In short, we find that

exchanging LDA correlation for GGA correlation intro-

duces an S22 overbinding that is comparable to vdW-DF-1

and vdW-DF-2 underbinding, offers comparable perfor-

mance for the G2-1 molecules, and greatly amends vdW-

DF-1 and vdW-DF-2 deficiencies in predicting structural

properties of solids. This approach does, however, intro-

duce notable overbinding in some cases. We therefore

construct a simple vdW-DF using a suitable amount of

semilocal correlations. This functional offers not only a

balanced description of the three above mentioned groups

of systems but also demonstrates high accuracy in

describing benzene physisorption on the noble Au(111)

surface.

The six different exchange–correlation functionals

considered in the first part of this study are listed in

Table 1. The only pure GGA functional is the RPBE. The

following four xc functionals are all of the vdW-DF-type

defined in Eq. 1 but with different exchange components.

Furthermore, we tentatively introduce here an exchange–

correlation functional pairing PBE GGA [15] correlation

with nonlocal correlation:

ERPBEþnl
xc � ERPBE

x þ EPBE
c þ Enl

c ¼ ERPBE
xc þ Enl

c ; ð2Þ

where Ec
nl is that of the original vdW-DF-1. This is obvi-

ously a vdW-extension of the RPBE functional and we

shall here term it RPBE ? nl.

In acknowledging the risk of some degree of correlation

double-counting, i.e. some possible overlap between GGA

and nonlocal correlation interactions, we emphasize the

tentative nature of parts of this study.

2 Computational Details

All calculations are done using a locally modified version

of the GPAW density functional package [18] and the

Atomic Simulation Environment [19]. GPAW is a real-

space grid implementation of the PAW formalism [20] for

all-electron DFT calculations within the frozen-core

approximation. For calculations presented in Sect. 3 we use

selfconsistent RPBE electronic densities in non-selfcon-

sistent calculations for all other xc functionals. The GPAW

implementation of a fast Fourier transformation method

[21] for evaluation of Ec
nl in Eqs. 1 and 2 is described

elsewhere [22]. A nonlocal interaction cutoff of 10 Å is

used along with real-space grid-spacings of 0.12–0.16 Å.

Non-periodic supercell boundary conditions are applied in

calculations for S22 and G2-1 systems as well as for single

atoms in vacuum. Extended bulk lattices are treated peri-

odically in all directions through Brillouin-zone integra-

tions on a 12 9 12 9 12 Monkhorst-Pack [23] k-space

grid and 0.1 eV Fermi smearing. Calculations for the S22

dataset employ supercells with minimum 10 Å vacuum in

all directions, implying interaction energies converged at

the meV level.

For evaluating and comparing the performance of dif-

ferent xc-functionals the statistical quantities we compute

throughout this work are the mean deviation (MD) and

mean absolute deviation (MAD) from reference quantities

as well as their relative counterparts (MRD and MARD).

3 Results

3.1 S22 Weakly Bonded Dimers and Complexes

The S22 benchmark dataset of Hobza and co-workers

contains high-level coupled-cluster and second-order

Møller-Plesset (CCSD(T)/MP2) geometries and

CCSD(T) interaction energies for 22 van der Waals bonded

dimers and complexes. Geometries from the original S22

work in Ref. [12] are used while for reference interaction

Table 1 Overview of the composition of the exchange–correlation functionals, Exc, considered in the first parts of this study, in terms of their

exchange, Ex, and correlation, Ec, parts

Exc Ex
GGA Ec

LDA Ec
GGA Ec

nl

RPBE RPBE [14] 9 PBE [15] 9

RPBE-vdW RPBE [14] LDA 9 H

vdW-DF-1 revPBE [16] LDA 9 H

vdW-DF-2 PW86 [17] LDA 9 Ha

optPBE-vdW optPBE [7] LDA 9 H

RPBE ? nl RPBE [14] 9 PBE [15] H

a The vdW-DF-2 nonlocal correlation kernel is slightly modified [9]
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energies we have chosen the recently revised

CCSD(T) data of Sherrill and co-workers from Ref. [24].

Shown in Fig. 1 are deviations of S22 interaction energies

(Eint, negative quantity) computed using all introduced

vdW functionals from the CCSD(T) references. The aver-

aged deviations are listed in Table 2, which also includes

RPBE entries. It is seen that RPBE greatly underestimates

Eint, while the vdW functionals improve on GGA results,

as previously noted in e.g. Ref. [7]. We also note that the

vdW-DF-2 improves on vdW-DF-1 interaction energies,

especially for hydrogen bonds, as earlier reported in Ref.

[9]. Using an exchange functional that is explicitly fitted to

the S22 benchmark data the optPBE-vdW functional per-

forms best with a MAD of 20 meV. Interestingly,

exchanging LDA for PBE correlation, the RPBE ? nl

functional yields a smaller MAD than that of the RPBE-

vdW, and proves highly useful for hydrogen bonding. We

stress that this remarkable result is obtained without any

fitting of the exchange functional but comes about solely

from the use of semilocal rather than strictly local corre-

lation. It is, however, apparent from the middle part of

Fig. 1 and the signed errors (MD, MRD) in Table 2 that

RPBE ? nl tends to overestimate dispersion bonding.

Since the van der Waals calculations in this study are in

general done non-selfconsistently we have also performed

selfconsistent calculations for the S22 dataset and find that

this would cause a difference of at most a few meV to the

statistics in Table 2. We may also compare the vdW-DF-2

S22 interaction energies published in Ref. [11] to the

coupled-cluster reference energies used in this study, and

find a vdW-DF-2 MAD of 42 meV as compared to the 48

meV obtained for vdW-DF-2 in this study using GPAW.

Furthermore, if we use as refence the original S22 inter-

action energies of Ref. [12] we find an optPBE-vdW MAD

of 15 meV, which is in excellent agreement with the 15

meV reported for optPBE-vdW in Ref. [7], where those

somewhat older CCSD(T) data were used as benchmark.

We may therefore safely conclude that the non-selfcon-

sistent GPAW calculations presented here are accurate

enough for the present purpose of cross-comparing

xc-functionals.

3.2 G2-1 Molecular Atomization Energies

We furthermore consider the G2-1 compilation of standard

enthalpies of formation for 55 simple molecules in MP2

optimized geometries adapted from Ref. [13]. Using

experimental formation enthalpies at 298 K, thermal cor-

rections and zero-point energies from Refs. [13] and [25]

we derive G2-1 reference electronic-only atomization

energies. The obtained deviations from this G2-1 reference

dataset using all introduced xc functionals are depicted in

Fig. 2 and summarized in Table 2. As might be expected,

the RPBE functional does rather well on average. The five

van der Waals functionals all tend to overbind on average

but the MAD for all except the optPBE-vdW are compa-

rable to that for RPBE, thus hampering recommendation of

one over all the others for DFT calculations on molecular

systems. However, the optPBE-vdW functional, with an

exchange component somewhat more attractive than the

other exchange functionals considered here, is clearly

overbinding the G2-1 dataset. Only a few optPBE-vdW

points in Fig. 2 are above the zero-line and so almost all of

the 0.45 eV MAD stems from overbinding. This illustrates

one possible drawback of fitting density exchange–corre-

lation functionals to a single electronic-structure property

only.

Fig. 1 Deviations of calculated interaction energies from

CCSD(T) reference interaction energies in the S22 benchmark

database. For details of the reference energies and geometries of

the indexed dimers and complexes as well as their grouping into

hydrogen bonded, dispersion bonded and mixed bonding, respec-

tively, see Refs. [12] and [24]. Positive energy deviation means

interaction energy underestimate as compared to the benchmark

Table 2 Statistics of the S22 interaction energy deviations shown in

Fig. 1

xc-functional MD MAD MRD (%) MARD (%)

RPBE 225 225 101 101

RPBE-vdW 57 61 8 21

vdW-DF-1 71 72 20 25

vdW-DF-2 48 48 15 17

optPBE-vdW 3 20 -8 12

RPBE ? nl -37 39 -29 29

Positive energy deviation means interaction energy underestimate as

compared to the benchmark. All energies in meV
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3.3 Bulk Solid-State Properties

We show in Fig. 3 and summarize in Table 4 the devia-

tions from experimental values of calculated equilibrium

lattice parameters, a0, and cohesive energies, Ecoh, for 20

fcc, bcc, hcp, or diamond structured bulk solids. For each

solid a0 was obtained from fitting cohesive energies for a

range of unit cell volumes to a third-order polynomium.

For hcp-structured crystals the c/a lattice parameter ratio

was fixed at the experimental one. Zero-point phonon

effects have not been corrected for. The RPBE functional is

found to overestimate lattice parameters with 1.7% on

average, with a corresponding 19% underestimate of

cohesive energies. All of the three functionals RPBE-vdW,

vdW-DF-1, and vdW-DF-2 essentially double this equi-

librium lattice parameter overestimate, vdW-DF-2 in this

respect performing worst of all considered xc functionals.

The optPBE exchange functional appears more attractive

for solids than both the RPBE and revPBE ones. The a0

deviation for optPBE-vdW is at the RPBE level, while the

performance for cohesive energies is significantly better

than RPBE. Similar conclusions were drawn from a recent

study [28] of the performance of Langreth–Lundqvist type

vdW-DF functionals for solid-state properties. While opt-

PBE-vdW was found to perform at the PBE level with an

MAE of 0.064 Å for the lattice constants in a somewhat

different test set than the one used here, the vdW-DF-1 and

vdW-DF-2 functionals did significantly worse with MADs

of 0.105 and 0.116 Å, respectively. Those figures are well

in line with the ones reported here.

It is furthermore seen from Table 4 that the RPBE ? nl

functional proves highly accurate for lattice parameters and

provides a cohesive energy overestimate slightly larger

than the optPBE-vdW underestimate. The RPBE ? nl and

optPBE-vdW functionals are therefore found to be signif-

icantly more accurate for structural properties of solid

crystals than the GGA-type RPBE as well as the remaining

van der Waals functionals. The RPBE ? nl mean overes-

timate of cohesive energies does, however, point at possi-

ble correlation interaction double-countings.

3.4 Discussion

From the results presented above it is first of all apparent

that the Langreth–Lundqvist vdW-DF scheme introduces

attractive van der Waals interactions in the weakly bonded

S22 systems. These interactions are not accounted for by

GGA exchange–correlation functionals. It is also clear,

however, that with mean S22 interaction energy underes-

timates around 50–70 meV the three vdW-DF-type func-

tionals RPBE-vdW, vdW-DF-1, and vdW-DF-2 do not

offer quantitative agreement with high-level theory for

weak bonds. Furthermore, those three functionals signifi-

cantly overestimate equilibrium lattice constants of bulk

solids in essentially doubling the RPBE mean deviation for

this property. The somewhat underestimated RPBE-vdW,

vdW-DF-1, and vdW-DF-2 cohesive energies follow this

trend of bulk solid underbinding, which arguably hampers

truly general applicability of these three functionals within

theoretical surface science.

Fig. 2 Deviations of electronic-only molecular atomization energies from experimental reference values derived from the G2-1 database of

formation enthalpies of 55 simple molecules. Negative energy deviation signify intra-molecular overbinding
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The optPBE-vdW functional amends these issues by

explicitly fitting an exchange functional for use in the

vdW-DF method. This approach works very well for weak

bonds as well as bulk solid structural properties but also

leads to severe overestimates of intra-molecular binding

energies of the G2-1 molecules. This probably renders the

optPBE-vdW inappropriate for studies involving chemical

transformations, a dominant field within condensed matter

physics and chemistry.

The RPBE ? nl functional offers an alternative

approach towards a generally applicable, high-accuracy

vdW-DF through the use of semilocal correlation contri-

butions rather than exchange fitting. Using PBE correlation

instead of LDA correlation in the LL vdW-DF scheme, the

RPBE ? nl overestimates the S22 interaction energies on

average and completely changes the systematic trend with

RPBE-vdW, vdW-DF-1, and vdW-DF-2 S22 underbinding

in Fig. 1. The semilocal correlations introduce binding in

bulk solids as well, leading to highly accurate lattice

parameters at the expense of somewhat overestimated

cohesive energies. Regarding molecular systems the

RPBE ? nl G2-1 atomization energies are comparable to

the non-fitted vdW-DF-type functionals, which again

compare well to RPBE GGA calculations.

3.5 A Convenient High-Performance vdW-DF

It is apparent from the above analysis that the amount of

semilocal correlations introduced in the vdW-DF method

must be balanced against those already accounted for in the

fully nonlocal correlation term of Eq. 1 such that correla-

tion double-counting is avoided. The RPBE ? nl mean

overbinding of the S22 systems and mean overestimate of

bulk cohesive energies are due to such issues. From mere

inspection of the data in Tables 2, 3 and 4 we therefore

construct a vdW-DF mixing LDA end GGA correlation to

average out this problem. In this work we shall term it the

RPBEc2/3 ? nl functional:

ERPBEc2=3þnl
xc � ERPBE

x þ 1

3
ELDA

c þ 2

3
EPBE

c þ Enl
c ð3Þ

As shown in Table 5 this functional form performs

remarkably well when applied non-selfconsistently to the

three previously considered groups of benchmark systems.

The S22 interaction energies are very accurately captured

with only a slight average overbinding, while the G2-1

molecular formation energies turn out similar to those of

the vdW-DF-type functionals (and better than the optPBE-

vdW). Moreover, the RPBEc2/3 ? nl functional performs

comparably to optPBE-vdW for predicting bulk solid

properties and avoids the significant overbinding of solids

arising when fully substituting LDA correlation for PBE

correlation. As discussed above we expect insignificant

changes to these conclusions had the RPBEc2/3 ? nl

density functional calculations been done selfconsistently.

4 Benzene Physisorption on Au(111)

Benzene adsorption on the noble (111) surfaces of Cu, Ag,

and Au is mediated primarily by dispersive van der Waals

forces and so offers a prime example of the inability of

ordinary GGA-DFT in describing vdW interactions. We

here assess the ability of the RPBE, RPBE-vdW, vdW-DF-

1, vdW-DF-2, optPBE-vdW, and RPBEc2/3 ? nl density

functionals in describing benzene/Au(111) interactions.

Experimentally benzene is found to interact only weakly

with the Cu(111), Ag(111), and Au(111) surfaces, resulting

a

b

Fig. 3 Deviations of calculated solid-state properties from experimental

values for 20 solids, ordered ascendingly according to their periodic table

period and atomic number. a Lattice parameter deviations a0
DFT - a0

exp.

Experimental values without zero-point corrections adapted from Ref.

[26]. b Cohesive energy deviations Ecoh
DFT - Ecoh

exp with Ecoh
exp [0. Exper-

imental values without zero-point corrections adapted from Ref. [27]
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in relatively small adsorption energies and negligible dis-

tortion of the benzene (C6H6) molecular geometry upon

adsorption [29–35]. This is a signature of the decisive role

of dispersion interactions in these three adsorption systems.

For the case of benzene on Au(111) at low coverage the

weak adsorbate–surface interactions cause the C6H6 to

adsorb with its molecular plane parallel to the surface in a

physisorbed state from which it can desorb reversibly [29–

31]. The adsorption energy of benzene on Au(111) was

found to be -0.64 eV (-14.7 kcal/mol) at a sub-mono-

layer coverage in temperature programmed desorption

(TPD) experiments by Koel and co-workers [30]. Another

experiment reports Eads = -0.6 eV [36].

In a collaboration with others the authors recently con-

ducted a thorough study of C6H6/Au(111) adsorption using

the RPBE-vdW functional non-selfconsistently on RPBE

electronic densities [22]. The GPAW code was used in that

study as well, and it was found that while the RPBE xc

functional predicts essentially no bonding of benzene to the

(111) gold surface, the RPBE-vdW introduces a significantly

exothermic adsorption energy of -0.42 eV at an equilibrium

C6H6–Au(111) distance of d = 3.7 Å. This latter result

compares well to recent results obtained with the computa-

tionally more expensive MP2 wavefunction-based method,

where the adsorption energy Eads = -0.31 eV at d = 3.6 Å

was found for the benzene adsorption on Au(111) in Ref.

[36]. From these studies it may be concluded that benzene

does indeed physisorb weakly onto the Au(111) surface

without formation of actual chemical bonds. However, as

encouraging the DFT RPBE-vdW and wavefunction MP2

methods may appear for describing the C6H6/Au(111)

interactions, none of them offer quantitative agreement with

experiments in terms of adsorption energy.

We here present selfconsistent potential-energy curves

(PECs) for C6H6/Au(111) physisorption obtained using the

RPBE xc functional as well as the RPBE-vdW, vdW-DF-1,

vdW-DF-2, optPBE-vdW, and RPBEc2/3 ? nl van der

Waals functionals. An orthorhombic 4 9 4 9 4 metal slab

with 16 Au atoms per metal layer and 4 layers in total is

repeated periodically in the surface plane to model a

Au(111) surface. The two top metal layers are relaxed by

minimizing the Hellmann-Feynman forces. The fully

relaxed benzene molecule is placed with its molecular

plane parallel to the Au(111) surface (see Fig. 4), and the

adsorption energy is computed for varying adsorbate–metal

distances, d = 2–6 Å. Vacuum layers of 10 Å are used

above and below the metal slab and computations are done

at a real-space grid spacing of 0.16 Å. Brillouin-zone

integrations are performed using a 4 9 4 9 1 Monkhorst-

Pack k-space grid and a Fermi smearing of 0.1 eV. The

most important differences of the computational method

used here from the method used in our previous work on

the benzene/Au(111) system are that (1) we use here more

dense real-space grids for representing wavefunctions,

densities, and potentials, (2) we use here four metal layers

in the surface model rather than three, and (3) all calcu-

lations are now performed selfconsistently. We expect the

present calculations to be somewhat more accurate than the

previously reported ones.

Table 3 Statistics of the G2-1 molecular atomization energy devia-

tions shown in Fig. 2

xc-functional MD MAD MRD (%) MARD (%)

RPBE 0.10 0.23 0.1 3.6

RPBE-vdW -0.12 0.17 -2.8 3.4

vdW-DF-1 -0.16 0.18 -3.0 3.5

vdW-DF-2 -0.18 0.20 -3.1 3.8

optPBE-vdW -0.44 0.45 -6.4 6.7

RPBE ? nl -0.11 0.27 -2.7 5.1

Negative energy deviation means intra-molecular overbinding. All

energies in eV

Table 4 Statistics of the deviations from experimental values of

calculated lattice parameters and cohesive energies for bulk solids

shown in Fig. 3

xc-functional MD MAD MRD (%) MARD (%)

Lattice parameters (Å)

RPBE 0.063 0.065 1.7 1.7

RPBE-vdW 0.123 0.123 3.4 3.4

vdW-DF-1 0.113 0.113 3.1 3.1

vdW-DF-2 0.141 0.141 3.8 3.8

optPBE-vdW 0.069 0.071 1.9 1.9

RPBE ? nl 0.024 0.033 0.6 0.9

Cohesive energies (eV/atom)

RPBE -0.69 0.71 -19 19

RPBE-vdW -0.86 0.86 -22 22

vdW-DF-1 -0.78 0.78 -20 20

vdW-DF-2 -0.80 0.80 -21 21

optPBE-vdW -0.24 0.33 -7 9

RPBE ? nl 0.39 0.42 9 10

For details see text and the caption for Fig. 3

Table 5 Mean deviations from experiments or high-level theory of

calculated quantities performed with the RPBEc2/3 ? nl density

functional defined in Eq. 3

Dataset Unit MD MAD MRD

(%)

MARD

(%)

S22 complexes meV -6 29 -16 20

G2-1 molecules eV -0.12 0.20 -2.8 4.1

Lattice constants Å 0.052 0.054 1.4 1.4

Cohesive energies eV/atom -0.03 0.27 -1 6
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We show in Fig. 5 the obtained potential-energy curves for

benzene on Au(111). As the RPBE PEC is almost everywhere

repulsive (positive Eads) we once again see that ordinary

RPBE calculations does not account for vdW-mediated

binding. As previously noted the RPBE-vdW changes the

GGA picture by introducing an adsorption energy minimum.

We find Eads = -0.47 eV at d = 3.7 Å within RPBE-vdW.

The vdW-DF-1 functional behaves very similarly and pre-

dicts an adsorption energy of -0.46 eV at d = 3.6 Å. Both

adsorption energies are roughly 25% too small when com-

pared to the Eads = -0.64 eV obtained from TPD experi-

ments in Ref. [30]. Furthermore, it is well known that the

vdW-DF-1 tends to overestimate equilibrium binding sepa-

rations [9 and references therein] so we should probably

expect the C6H6–Au(111) equilibrium distance to be slightly

smaller than 3.6 Å. It is seen from Fig. 5 that the vdW-DF-2

functional indeed accomplishes this as it predicts d = 3.5 Å.

This makes sense as the vdW-DF-2 was designed in part to

improve on the vdW-DF-1 equilibrium separations [9]. The

vdW-DF-2 functional does, however, not predict a suffi-

ciently deep potential-energy curve for the benzene/Au(111)

system and the obtained adsorption energy of -0.44 eV is no

better than that of its vdW-DF-1 predecessor.

Of the van der Waals exchange–correlation functionals

considered here only the optPBE-vdW and the RPBEc2/3 ? nl

appears to perform well for the dispersive C6H6/Au(111)

interactions. Both predict an equilibrium separation of 3.4 Å

with adsorption energies straddling the experimental adsorp-

tion energy window, optPBE yielding Eads = -0.60 eV and

RPBEc2/3 ? nl predicting Eads = -0.64 eV. The PECs for

both functionals furthermore show an asymptotic approach to

the non-interacting limit (d??) that is very similar to those of

the RPBE-vdW and vdW-DF-1. For a quantitatively correct

GGA-DFT description of the benzene–Au(111) interactions

within the electron density dependent vdW-DF scheme it thus

appears necessary to employ either an exchange functional that

is explicitly fitted to a database of van der Wals interactions or a

conveniently chosen mixture of local and semilocal correlation.

The optPBE-vdW is an example of the former, while the

RPBEc2/3 ? nl developed in this work is one possible

example of the latter.

5 Conclusions

Accounting for van der Waals interactions in DFT is cur-

rently a vibrant field of research. Several approaches to the

field exist, one of which is the Langreth–Lundqvist vdW-

DF density-dependent inclusion of nonlocal correlation

interactions. We find that even though the vdW-DF method

does introduce important attractive interactions between

van der Waals bonded complexes, which are completely

missing in the commonly used RPBE GGA-type approxi-

mation to effects of exchange and correlation among

electrons, the vdW-DF scheme is not inherently accurate at

a quantitative level when compared to advanced wave-

function theory. Moreover, structural properties of bulk

Fig. 4 Side-view of the atomic geometry for benzene adsorption on

the noble Au(111) surface. Four metal layers are used in the Au(111)

repeated slab model and the C6H6 molecule adsorbs with its

molecular plane parallel to the surface at the equilibrium adsor-

bate–metal distance d

Fig. 5 Selfconsistently calculated potential-energy curves for ben-

zene adsorption on the noble Au(111) surface obtained from the

density functionals listed. The RPBE GGA predicts essentially no

binding while the van der Waals functionals introduce significantly

exothermic adsorption energy maxima below the zero-line. However,

only the optPBE-vdW and RPBEc2/3 ? nl density functionals are in

quantitative agreement with the experimental adsorption energies

falling in the range -0.6 to -0.64 eV
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solids are poorly described within this method resulting in

significant overestimates of bulk lattice parameters and far

too small bulk cohesive energies. These issues may be

amended by explicitly fitting the exchange functional used

for vdW-DF calculations. This, however, comes at the

expense of severe overestimates of intra-molecular bond

energies. By introducing the RPBEc2/3 ? nl functional,

which introduces 2/3 of the PBE semilocal correlation

functional to the vdW-DF method, we show that a suitable

amount of gradient-corrected correlations in vdW-DF-type

calculations may provide high accuracy for weak van der

Waals bonds as well as structural properties of strongly

bonded solids, all while preserving the GGA-level

description of intra-molecular bonding.

We furthermore consider benzene physisorption on the

noble Au(111) surface, for which the adsorption is medi-

ated by dispersion interactions. While the non-fitted

vdW-DF-type functionals RPBE-vdW, vdW-DF-1, and

vdW-DF-2 yield adsorption energies that are *25% too

small, the exchange-fitted optPBE-vdW as well as the

RPBEc2/3 ? nl, not using a fitted exchange part but

explicitly containing some semilocal correlations, both

agree with experimental adsorption energies for benzene

on Au(111). This emphasizes our view that explicit intro-

duction of at least some semilocal correlation to the vdW-

DF scheme constitutes a vital step forward towards a

generally applicable method for van der Waals DFT, i.e. an

exchange–correlation density functional that performs well

for vdW interactions while preserving or even improving

on the performance of GGA functionals for more strongly

interacting systems. The apparent success of the RPBEc2/

3 ? nl construction illustrates this.
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4. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI

(2004) Phys Rev Lett 92(24):246401

5. Thonhauser T, Cooper VR, Li S, Puzder A, Hyldgaard P, Lang-

reth DC (2007) Phys Rev B 76(12):125112

6. Langreth DC et al (2009) J Phys Condens Matter 21(8):084203

7. Klimes J, Bowler DR, Michaelides A (2010) J Phys Condens

Matter 22(2):022201

8. Cooper VR (2010) Phys Rev B 81(16):161104(R)

9. Lee K, Murray ED, Kong L, Lundqvist BI, Langreth DC (2010)

Phys Rev B 82(8):081101(R)

10. Vydrov OA, Van Voorhis T (2009) J Chem Phys 130:104105

11. Vydrov OA, Van Voorhis T (2010) J Chem Phys 133:244103

12. Jurecka P, Sponer J, Cerny J, Hobza P (2006) Phys Chem Chem

Phys 8(17):1985

13. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) J

Chem Phys 106(3):1063

14. Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59(11):

7413

15. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77(18):

3865

16. Zhang YK, Yang WT (1998) Phys Rev Lett 80(4):890

17. Perdew JP, Yue W (1986) Phys Rev B 33(12):8800

18. Mortensen JJ, Hansen LB, Jacobsen KW (2005) Phys Rev B

71(3):035109

19. Bahn SR, Jacobsen KW (2002) Comput Sci Eng 4(3):56
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A methodology for semiempirical density functional optimization, using regularization and cross-validation
methods from machine learning, is developed. We demonstrate that such methods enable well-behaved exchange-
correlation approximations in very flexible model spaces, thus avoiding the overfitting found when standard
least-squares methods are applied to high-order polynomial expansions. A general-purpose density functional for
surface science and catalysis studies should accurately describe bond breaking and formation in chemistry, solid
state physics, and surface chemistry, and should preferably also include van der Waals dispersion interactions.
Such a functional necessarily compromises between describing fundamentally different types of interactions,
making transferability of the density functional approximation a key issue. We investigate this trade-off between
describing the energetics of intramolecular and intermolecular, bulk solid, and surface chemical bonding, and the
developed optimization method explicitly handles making the compromise based on the directions in model space
favored by different materials properties. The approach is applied to designing the Bayesian error estimation
functional with van der Waals correlation (BEEF–vdW), a semilocal approximation with an additional nonlocal
correlation term. Furthermore, an ensemble of functionals around BEEF–vdW comes out naturally, offering an
estimate of the computational error. An extensive assessment on a range of data sets validates the applicability
of BEEF–vdW to studies in chemistry and condensed matter physics. Applications of the approximation and its
Bayesian ensemble error estimate to two intricate surface science problems support this.
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I. INTRODUCTION

Kohn-Sham density functional theory1,2 (KS–DFT) is a
widely celebrated method for electronic-structure calcula-
tions in physics, chemistry, and materials science.3,4 Indeed,
modern DFT methods have proven valuable for elucidating
mechanisms and fundamental trends in enzymatic and het-
erogeneous catalysis,5–13 and computational design of chem-
ically active materials is now within reach.14–17 Successful
use of DFT often relies on accurate but computationally
tractable approximations to the exact density functional for the
exchange-correlation (XC) energy. The generalized gradient
approximation (GGA) is very popular due to a high accuracy-
to-cost ratio for many applications, but suffers from a range
of shortcomings. Thus, common GGA functionals are well
suited for computing many important quantities in chemistry
and condensed matter physics, but appear to be fundamentally
unable to accurately describe the physics and chemistry of a
surface at the same time.18 Moreover, van der Waals (vdW)
dispersion interactions are not accounted for by GGAs,19 and
spurious self-interaction errors can be significant.20–22 The
interest in applying DFT to more and increasingly complex
problems in materials science is not likely to decrease in the
years to come. Much effort is therefore devoted to improve on
current density functional approximations.

The five-rung “Jacob’s ladder” of Perdew23 represents a
classification of the most popular density functional meth-
ods. Each rung adds new ingredients to the density func-
tional approximation (DFA), and so should enable better

approximations, but also adds to the computational cost. In
order of increasing complexity, the ladder consists of the
local spin-density approximation1 (LDA), GGA, meta-GGA
(MGGA), hyper-GGA, and finally the generalized random
phase approximation (RPA). The LDA uses only the local
density as input, while rungs 2 and 3 introduce semilocal
dependence of the density (GGA) and the KS orbitals
(MGGA).24 Hyper-GGAs introduce nonlocal dependence of
the occupied KS orbitals in the exact exchange energy density,
and fifth-rung approximations calculate correlation energies
from the unoccupied KS orbitals. The latter is computationally
heavy, but RPA-type methods are the only DFAs in this five-
rung hierarchy that can possibly account for vdW dispersion
between nonoverlapped densities.24

The failure of lower-rung DFAs in capturing dispersion
forces has spurred substantial developments in recent years.19

Such interactions are spatially nonlocal in nature, and several
different approaches to add “vdW terms” to lower-rung
DFAs now exist.25–28 The vdW–DF nonlocal correlation25

is a particularly promising development in this field. It is a
fully nonlocal functional of the ground-state density, and has
proven valuable in a wide range of sparse matter studies.29

However, the vdW–DF and vdW–DF2 (Ref. 30) methods
yield much too soft transition-metal crystal lattices,31,32 and
the correct choice of GGA exchange functional to use in
vdW–DF type calculations is currently investigated.30,32–34

One approach to choosing GGA exchange is comparison to
Hartree-Fock exchange35,36 and consideration of the behavior
of the exchange functional in the limit of large density
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gradients.35 Where does the vdW–DF approximation belong in
a hierarchy such as Jacob’s ladder? In terms of computational
complexity, the method contains fully nonlocal density-density
information without explicit use of the KS orbitals. From
this point of view, it should fit between rungs 3 and 4, and
we assign it here to rung 3.5. Note that nonlocal exchange
approximations, designed to partially mimic exact exchange at
a reduced computational cost, have recently been proposed37,38

as belonging to a rung 3.5.
Put in simple terms, two paradigms for developing density

functionals are dominant: that of constraint satisfaction by
reduction24 and that of fitting to empirical data.39–42 Both
have contributed greatly to the success of DFT. Reductionists
impose constraints based on analytic properties of the exact
density functional, and strive for nonempirical functionals that
fulfill as many constraints as possible on each rung of Jacob’s
ladder. Empirically oriented DFA developers use experimental
or high-level theoretical training data to optimize the DFA
description of one or more materials properties. Reduction is
arguably the most systematic approach to density functional
development, and has had a significant impact on the field
of KS–DFT. However, choices are often made as to what
types of physics and chemistry the DFA should describe
well.43,44 The empirical approach is fundamentally a matter of
explicitly making these choices, and parametrize an XC model
to suit personal preferences for computational performance.
This makes overfitting the training data and transferability of
the optimized DFA to systems and materials properties not
contained in the training data a central issue.24

The risk of overfitting was realized early on by Becke and
others.40,45 Using polynomial expansions of GGA exchange
and correlation in least-squares-fitting procedures, polynomial
orders above four were found to yield increasingly oscillatory
and unphysical XC functionals, that is, “a transition to
mathematical nonsense.”45 Nevertheless, semiempirical DFAs
containing many parameters have been constructed42,46,47

with little attention to the overfitting issue. Transferability
of a DFA parametrization depends not only on the degree
of overfitting to a single set of molecular or condensed
matter properties, but also on how many physically different
properties the approximate model was trained on. Optimizing
XC parametrizations to several different properties naturally
leads to a “competition” between data sets in determining
the model solution, i.e., an XC model compromise. Implicitly
acknowledging this, each data set is often assigned more or
less arbitrary weights.46,47 In our view, such an approach is not
guaranteed to yield the optimum model compromise.

In this study, we apply machine-learning methods to avoid
the above-mentioned pitfalls of semiempirical density func-
tional development. Regularization of a very flexible polyno-
mial GGA exchange expansion is at the heart of the developed
approach. We furthermore investigate the characteristics of
XC model compromises in a GGA + vdW model space, and
formulate and apply an explicit principle for how an XC
model trade-off should be composed. Using several training
data sets of quantities representing chemistry, solid state
physics, surface chemistry, and vdW dominated interactions,
the Bayesian error estimation functional with van der Waals
(BEEF–vdW) exchange-correlation model is generated. The
three most important aspects of semiempirical DFA design are

thus considered in detail: data sets, model space, and model
selection. The developed approach furthermore leads to an
ensemble of functionals around the optimum one, allowing an
estimate of the computational error to be calculated. Lastly,
BEEF–vdW is evaluated on systems and properties partly
not in the training sets, and is also applied in two small
surface science studies: calculating potential-energy curves for
graphene adsorption on the Ni(111) surface, and investigation
of the correlation between theoretical chemisorption energies
and theoretical surface energies of the substrate.

II. DATA SETS

Several sets of energetic and structural data describing
bonding in chemical and condensed matter systems are used
throughout this study. These data sets are either adapted from
literature or compiled here from published works, and are
briefly presented in the following. Additional information is
found in the Appendix.

(a) Molecular formation energies. The G3/99 (Ref. 48)
molecular formation enthalpies of Curtiss and co-workers
represent intramolecular bond energetics. Experimental room-
temperature heats of formation are extrapolated to 0 K,
yielding 223 electronic-only static-nuclei formation energies.
The G2/97 (Ref. 49) set of 148 formation energies is a subset
of G3/99.

(b) Molecular reaction energies. Molecular formation ener-
gies lend themselves well to compilation of gas-phase reaction
energies. The RE42 data set of 42 reaction energies involves
45 different molecules from G2/97.

(c) Molecular reaction barriers. The DBH24/08 (Ref. 50)
set of Zheng et al., comprising 12 forward and 12 backward
benchmark barriers, is chosen to represent gas-phase reaction
barriers.

(d) Noncovalent interactions. The S22 (Ref. 51) and S22x5
(Ref. 52) sets of intermolecular interaction energies of nonco-
valently bonded complexes calculated at the coupled-cluster
level with single, double, and perturbative triple excitations
[CCSD(T)] were compiled by Hobza and co-workers. Particu-
larly, the S22 set has become popular for assessment34,53–58 and
parametrization30,33,47,54,59,60 of density functional methods for
vdW–type interactions. The S22x5 set consists of potential-
energy curves (PECs) for each S22 complex, with interaction
energies at relative interaction distances d of 0.9, 1.0, 1.2,
1.5, and 2.0 as compared to S22, totaling 110 data points.
For convenience, this study divides S22x5 into five subsets
according to interaction distance, e.g., “S22x5-0.9.”
The accuracy of the original S22 and S22x5 energies have
certain deficiencies, so the revised S22x5-1.0 energies of
Takatani et al.61 are used instead. The remaining (nonequilib-
rium) data points on each CCSD(T) PEC are correspondingly
corrected according to the difference between original and
revised S22x5-1.0 energies, as elaborated on in the Appendix.

(e) Solid state properties. Three sets of 0-K experimental
solid state data are used, here denoted Sol34Ec, Sol27LC, and
Sol27Ec. The first comprises cohesive energies of 34 period
2–6 bulk solids in fcc, bcc, diamond, and hcp lattices. Zero-
point phonon effects have not been corrected for. Conversely,
the Sol27LC and Sol27Ec sets contain lattice constants and
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cohesive energies, respectively, of 27 cubic lattices, both
corrected for zero-point vibrational contributions.

(f) Chemisorption on solid surfaces. The CE17 and
CE27 data sets comprise experimental reaction energies for
chemisorption of simple molecules on the (111), (100), and
(0001) facets of late transition-metal surfaces at low coverage.
The CE17 set is a subset of CE27.

III. COMPUTATIONAL DETAILS

Self-consistent density functional calculations are per-
formed using GPAW,62–64 a real-space grid implementation of
the projector augmented-wave method.65 The ASE (Refs. 64
and 66) package provides a convenient interface to GPAW.
Grid-point spacings of 0.16 Å are employed for high-quality
computations of simple properties such as molecular bind-
ing energies. Properties of bulk solids are calculated using
somewhat denser grids with a spacing of 0.13 Å. Real-space
structure relaxation is applied to the G3/99 molecules and
CE27 chemisorption systems with 0.05 eV/Å as the criterion
of maximum force on each relaxing atom. Molecular and
single-atomic systems are placed in a box with at least 7 Å
vacuum to the box boundaries, except for the S22x5 complexes
for which the vacuum width is 10 Å. Further details on the
computational procedure employed are found in the Appendix.

IV. MODEL SPACE

The GGA exchange energy density εGGA
x (n,∇n) is conve-

niently expressed in terms of the exchange energy density of
the uniform electron gas εUEG

x (n) and an exchange enhance-
ment factor Fx(s), depending on the local density as well as
its gradient through the reduced density gradient s,

s = |∇n|
2kF n

, 0 � s � ∞,

εGGA
x (n,∇n) = εUEG

x (n)Fx[s(n,∇n)], (1)

EGGA-x[n,∇n] =
∫

εUEG
x (n)Fx[s(n,∇n)]dr,

where n = n(r), kF = (3π2n)1/3 is the Fermi wave vector of
the UEG, and EGGA−x is the semilocal GGA exchange energy.

In this study, a highly general exchange model space is
obtained by expanding the GGA exchange enhancement factor
in a basis of Mx Legendre polynomials Bm[t(s)] of orders 0
to Mx − 1 in a transformed reduced density gradient, denoted
t(s):

t(s) = 2s2

4 + s2
− 1, − 1 � t � 1

F GGA
x (s) =

∑
m

amBm[t(s)],

EGGA-x[n,∇n] =
∑
m

am

∫
εUEG
x (n)Bm[t(s)]dr (2)

=
∑
m

amEGGA-x
m [n,∇n],

where am are expansion coefficients, and EGGA-x
m is the

exchange energy corresponding to the Legendre basis function
Bm. The polynomial basis is constructed such that the boundary

limits t = [−1,1] are zero for all m > 1 basis functions.
Therefore, these limits are determined by the order 0 and 1
basis functions only.

Semilocal approximations to electron correlation effects
beyond GGA exchange are not easily cast in terms of a single
variable, such as s. The correlation model space is chosen
to be a linear combination of the Perdew-Burke-Ernzerhof
(PBE) (Ref. 67) semilocal correlation functional, purely local
Perdew-Wang68 LDA correlation, and vdW–DF2 (Ref. 30)
type nonlocal correlation. The latter is calculated from a double
integral over a nonlocal interaction kernel φ(r,r′),

Enl-c [n] = 1

2

∫
n(r)φ(r,r′)n(r′)dr dr′, (3)

which is evaluated using the fast Fourier transformation
method of Román-Pérez and Soler,69 implemented in GPAW

as described in Ref. 70.
In total, the XC model space consequently consists of GGA

exchange expanded in Legendre polynomials as well as local,
semilocal, and nonlocal correlation,

Exc =
Mx−1∑
m=0

amEGGA-x
m + αcE

LDA-c

+ (1 − αc)EPBE-c + Enl-c, (4)

where Mx = 30, and the total number of parameters is M =
Mx + 1 = 31.

None of the commonly imposed constraints on GGA
exchange are invoked, e.g., the LDA limit of Fx(s) and
recovery of the correct gradient expansion for slowly varying
densities, nor the Lieb-Oxford (LO) bound71,72 for large
electron density gradients. However, as seen from Eq. (4),
the sum of LDA and PBE correlation is constrained to unity.

V. MODEL SELECTION

Choices are made when developing a semiempirical density
functional. These are both explicit and implicit choices
pertaining to what the functional is to be designed for, that is,
for the selection of an optimum exchange-correlation model
that captures the materials properties of main interest when
applying the approximation. This study aims to explicate the
choices, and to develop a set of principles for the model
selection process. These principles are used to guide the in-
evitable compromise between how well significantly different
quantities in chemistry and condensed matter physics are
reproduced by an incomplete XC model space. Development
of an XC functional is in this approach divided into two steps.
First an individual model selection for a number of data sets is
carried out, and subsequently a simultaneous model selection
is made, compromising between the individual fits.

A. Individual materials properties

1. Regularizing linear models

Model training is formulated in terms of finding the expan-
sion coefficient vector that minimizes a cost function without
overfitting the data. This may be viewed as determining the
optimum trade-off between bias and variance of the model.73

The cost function contains two terms: a squared error term and
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a regularization term. One simple regularization suitable for
varying the bias-variance ratio is one that “penalizes” the cost
function for model solutions that differ from a suitably chosen
prior solution. This effectively removes sloppy74 eigenmodes
of the cost function by adding curvature to all modes, and
thereby limits the effective number of parameters in the model
solution. As the regularization strength is continuously de-
creased from infinity towards zero, the model parameters that
minimize the cost function are allowed to differ increasingly
from the prior solution. In a sufficiently large model space,
the solution that reproduces the data best without overfitting
is in general found for intermediate regularization strength. A
slightly more elaborate regularization is used in this study, as
outlined later on.

Finding the optimum model is then a matter of determining
the optimum regularization strength. This may be done by
minimizing the estimated prediction error (EPE) for varying
regularization strength. The EPE provides a statistical estimate
of the validity of a model outside the space of its training data,
and can be obtained by a large variety of resampling methods.
We obtain it using bootstrap resampling.75 Even though
common error quantities, such as the standard deviation (STD),
will in general decrease for regularization strengths smaller
than that which minimizes the EPE, the corresponding model
solutions are likely to be increasingly overfitted. Minimizing
the EPE and not the STD is therefore preferred for determining
well-behaved XC functionals.

2. Details of the procedure

The standard Tikhonov regularization method73 is chosen
to control overfitting. A cost function for the ith data set is
therefore defined as

Ci(a) = (Xia − yi)
2 + ω2�2(a − ap)2, (5)

where Xi is a data matrix, a the coefficient vector, yi a target
vector of training data, ω2 the regularization strength, � is
denoted the Tikhonov matrix, and the prior vector ap is the
origo for regularization, i.e., the model solution for ω2 → ∞
and thus the model space reference point for regularization.

In accordance with Eq. (4), the data matrix consists of XC
contributions to a materials property for each system in the ith
data set from the M basis functions. These are evaluated non-
self-consistently on revised PBE (RPBE) (Ref. 76) densities.
The target vector contains the target XC contribution to each
quantity in the set. The Tikhonov matrix is defined from a
smoothness criterion on the basis functions. The exchange part
of � is the overlap of the second derivative of the exchange
basis functions with respect to the transformed reduced density
gradient

�2
ij =

∫ 1

−1

d2Bi(t)

dt2

d2Bj (t)

dt2
dt. (6)

Defined this way, the Tikhonov matrix directly penalizes
the integrated squared second derivative of the exchange
fit for finite regularization strength. This can be understood
as penalizing a measure of nonsmoothness of the fitted
exchange enhancement factor. In effect, the � matrix scales the
regularization strength acting on each exchange basis function,
such that higher-order basis functions are suppressed when

minimizing the cost function. This leads to a model selection
preference for solution vectors with small coefficients for
higher-order polynomials, unless they are essential for obtain-
ing a satisfactory fit. Physically, it is very reasonable to require
Fx(s) to be a smooth and preferably injective function of s,
and significantly nonsmooth exchange solutions have been
shown to degrade transferability of fitted exchange functionals
to systems outside the training data.77 The correlation part of �

has one in the diagonal and zeros in the off-diagonal elements.
Since � acts in the transformed t(s) space, the transformation
in Eq. (2) causes the regularization penalty on exchange to be
strongest in the large-s regime, where information from the
data matrix about the optimum behavior of Fx(s) is expected
to be scarce.76,78

In order to minimize the cost function in Eq. (5), it is
transformed by �−1. Ones are therefore inserted in the first
two diagonal elements of � to avoid numerical issues. The
solution vector ai that minimizes Ci is written as

ai = �−1(X′
i

T X′
i + L2ω2

i

)−1(
X′

i

T yi + ω2L2a′
p

)
, (7)

where X′
i = Xi�

−1, a′
p = �ap, and L2 is the identity matrix

with zeros in the first two diagonal elements. Singular value
decomposition of X′

i
T X′

i is used to calculate the inverse matrix.
The LDA and PBE correlation coefficients in the XC model
are constrained to be between 0 and 1, implying αc ∈ [0,1]
for the correlation coefficient in Eq. (4). In the cases that this
is not automatically fulfilled, it is enforced by recalculating
the solution while fixing αc to the nearest bound of the initial
solution.

The exchange part of the prior vector is chosen as the
linear combination of the order 0 and 1 polynomial basis
functions that fulfills the LDA limit at s = 0 and the LO
bound for s → ∞. With the exchange basis transformation
in Eq. (2), the prior for exchange is quite close to the PBE
exchange enhancement factor. For ω2 → ∞, we therefore
nearly recover PBE exchange, while lower regularization
strengths allow increasingly nonsmooth variations away from
this prior solution. The optimum model is expected to include
at least some semilocal correlation,31 so the origo of correlation
is αc = 0.75.

As previously mentioned, the optimum regularization is
found by minimizing the estimated prediction error for varying
ω2. Bootstrap resampling of the data matrix with the .632
estimator75,79 is used. It is defined as

EPE.632 =
√

0.368 · êrr + 0.632 · Êrr, (8)

where êrr is the variance between the target data and the
prediction by the optimal solution ai , and Êrr measures the
variance on samples of data to which solutions were not fitted
in the resampling. Both are determined as a function of ω2,
and Êrr is given by

Êrr = 1

Nμ

∑
μ

1

Ns|μ/∈s

∑
s|μ/∈s

(xμbs − yμ)2, (9)

where μ is an entry in the data set, Nμ the number of data
points, s a bootstrap sample of Nμ data points, and Ns|μ/∈s the
number of samples not containing μ. The parentheses calculate
the difference between the prediction xμbs of the data point μ

by the best-fit coefficient vector bs and the μth target value yμ.
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TABLE I. Model selection results of individually training the XC model of Eq. (4) to 10 different data sets. Meff is the effective number of
parameters in a model [see Eq. (21)]. The s = 0 and s → ∞ limits of the obtained exchange enhancement factors are also shown. MSD, MAD,
and STD are mean signed, mean absolute, and standard deviation, respectively, all in meV. Note that these are non-self-consistent results.

αc Meff Fx(0) Fx(∞) MSD MAD STD

CE17 0.90 4.7 0.97 2.15 −10 96 116
RE42 1.00 4.2 1.06 1.21 19 168 207
DBH24/08 0.00 3.7 1.14 3.14 1 116 142
G2/97 0.27 7.2 1.10 2.53 −13 109 149
Sol34Ec 0.00 7.7 0.97 1.25 −4 168 208
S22x5-0.9 0.81 3.2 0.96 1.68 0 9 11
S22x5-1.0 0.82 3.1 0.98 1.87 0 8 10
S22x5-1.2 0.40 5.7 1.04 2.38 0 4 6
S22x5-1.5 0.85 4.0 1.02 1.91 −1 3 4
S22x5-2.0 1.00 3.3 0.95 1.37 2 3 3

The best-fit solution is found by minimizing the cost function
with the data in sample s only.

In the bootstrap resampling procedure, 500 randomly
generated data samples are selected independently for each ω2.
The regularization strength that minimizes the .632 estimator is
found by a smooth fitting of the slightly scattered estimator plot
near the minimum. To properly regularize the S22x5 subsets
with long interaction distances, a condition Fx(s = ∞) � 1 is
enforced.

3. Individually trained XC models

Table I and Fig. 1 show details and statistics for the
optimized XC models obtained when the procedure outlined
above is applied to molecular, solid state, surface chemical, and
vdW dominated energetics. Each model is therefore trained
on a single materials property only, and their features differ
significantly.

The DBH24/08 set appears to favor GGA exchange that
substantially violates the LDA limit [Fx(0) = 1.14] along
with inclusion of full PBE correlation (αc = 0; no LDA
correlation). The model furthermore overshoots the LO bound
F LO

x = 1.804 significantly [Fx(∞) = 3.14]. The XC model
optimized to the G2/97 set shows similar trends with respect
to GGA exchange and PBE correlation, but is less extreme.
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FIG. 1. (Color online) Exchange enhancement factors of the
individually trained XC models listed in Table I.

In the other end of the spectrum is the model optimized to
the Sol34Ec cohesive energies. These favor GGA exchange
starting out slightly below Fx = 1, then reaching a maximum
at s ≈ 2, and finally declining slowly towards Fx = 1.25.
Best agreement with experimental cohesive energies is found
with full PBE correlation in addition to nonlocal correlation.
The occurrence of a maximum in the exchange enhancement
factor should, however, not be overemphasized. It has been
shown76,78 that only small GGA exchange contributions to
chemical and solid state binding energetics can be attributed
to reduced density gradients above 2.5. In the region of large
s, where the smoothness criterion on exchange is strongly
enforced, the regularization term in the cost function [Eq. (5)]
will therefore be dominant in determining the solution for such
systems. The regularization may therefore well determine the
behavior of Fx(s) for large density gradients.

For the remaining data sets in Table I, the optimized XC
models appear reasonable, with all exchange enhancement
factors starting out near the LDA limit. It is illustrative to
investigate how the XC models perform for data sets on
which they were not trained. The standard deviation is a
natural measure of performance. Defining the relative standard
deviation rSTD on some data set with some XC model, as
the STD obtained by that model divided by the STD of the
model that was fitted to that data set, rSTD is a measure
of transferability. Figure 2 shows a color map of the rSTD
for all 10 training data sets with all 10 trained models. The
diagonal from bottom left to top right is, by definition, ones.
In a background of blue and yellow-green squares, the map
features two distinct areas of mostly reddish squares. To
the far right, the S22x5-2.0 model yields rSTD > 5 for all
other sets than DBH24/08, and rSTD ≈ 28 for S22x5-0.9.
Furthermore, a 5 × 4 square in the top left corner illustrates that
XC models trained on chemical or solid state data sets perform
significantly worse on vdW–type energetics than models fitted
to the latter. It is also interesting to see that the S22x5-2.0
rSTDs are largely unaffected by changing XC models. With
little or no density-density overlap between many of the
S22x5-2.0 complexes, the constant nonlocal correlation in all
10 models is likely the main XC contribution to intermolecular
binding.

In summary, the deviation statistics in Table I illustrate that
the XC model space considered here most certainly spans the
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FIG. 2. (Color online) Color map of the relative standard devia-
tions obtained when non-self-consistently applying the XC models
found individually for each training data set, listed on the abscissa,
to all 10 training data sets along the ordinate.

model degrees of freedom necessary to obtain well-performing
density functionals with smooth exchange enhancement
factors and sound correlation components. However, a high
degree of transferability between the data sets should not be
expected for several of the models.

B. Several materials properties

Fundamentally, a compromise has to be made between
how well different materials properties are reproduced by the
same semiempirical density functional. This is expressed as
a compromise between how well the functional quantitatively
performs on different training data sets. What the compromise
should be can only be determined by the target applications
of the functional, and one challenge is to make this choice as
explicit as possible. This section presents one route towards a
methodology for optimizing an XC model to simultaneously
describe several different materials properties. First, the nature
of the model compromise is illustrated for the case of
simultaneously fitting two data sets using a summed cost
function with varying weights on the two sets. However, in
the end, a product cost function is found more convenient for
determining the optimum weights according to the directions
in model space favored by different data sets.

1. Model compromise

Consider first the problem of simultaneously fitting two
data sets, and let the model compromise be described through
the total cost function, given as the sum of the two individual
cost functions:

�(a) = W1C1(a) + W2C2(a), (10)

where Wi is a weight on data set i. The coefficient vector
solution b that minimizes �(a) is found by setting the

derivative to zero: Since the summed cost function is quadratic
in a, as the individual cost functions Ci are, it may be expressed
in terms of the individual solutions ai as

�(a) =
∑
i=1,2

Wi

(
C0

i + 1

2
(a − ai)

T Hi(a − ai)

)
, (11)

where C0
i = Ci(ai) is the minimized cost of data set i, and

Hi is the Hessian of Ci(a). The minimizing solution b is thus
found from the individual solutions ai as

b =
(∑

i=1,2

WiHi

)−1 (∑
i=1,2

WiHiai

)
. (12)

However, a principle for guiding the choice of weights is
needed.

Let us consider establishing a compromise based on explicit
principles. The regularized cost functions for each training
data set Ci(a) contain information of the costs associated with
deviating from the individually found model solutions ai along
all directions in model space. The individual costs all increase
when moving away from ai due to deterioration of the fits,
increased overfitting, or a combination of both. Define now
the relative cost for each data set, rCost[ i ], as the individual
cost for set i evaluated at the compromising solution b relative
to the individual cost at ai , hence

rCost[ i ] = Ci(b)

Ci(ai)
= Ci(b)

C0
i

� 1. (13)

Thus defined, the relative cost for each training data set is a
simple measure of how unfavorable it is for each data set to be
fitted by the compromising solution b instead of the individual
solutions ai .

The main panel of Fig. 3 illustrates XC model compromises
between the G2/97 and S22x5-1.0 data sets. The curve maps
out the relative costs on both data sets obtained from model
solutions b when systematically varying the weights in �(a).
The weight fraction f is introduced (see caption of Fig. 3).
A wide range of poorly compromising models can obviously
be produced, sacrificing a lot of relative cost on one set while
gaining little on the other. However, if both materials properties
represented by the two data sets are considered important,
the optimum weightening is somewhere midway between the
asymptotic extrema.

The inset in Fig. 3 shows how the product of the relative
costs varies with f . To the right along the abscissa, where
the fraction increasingly favors the G2/97 set, the rCost
product increases rapidly. To the left, the increase is much
smaller, but a minimum is located in-between. At least one
intermediate minimum is always present since the slopes in
the two asymptotic regions are −∞ and 0, respectively. This
property is induced by the variational property around the
two original minima of the individual cost functions. Similar
conclusions apply to any combination of two or more data sets
that do not favor the same directions in the incomplete model
space.

We find in general that the condition of minimizing the
product of relative costs is well suited for choosing cost
function weights for arbitrary numbers of training data sets, if
the aim is a general-purpose model. This condition, which
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FIG. 3. (Color online) Main panel: XC model compromises
between the G2/97 and S22x5-1.0 data sets illustrated in terms of
relative costs (rCost) for both data sets when the weight fraction f =
W[G2/97]/W[S22x5-1.0] is varied and the summed cost function
Eq. (10) is minimized. A range of compromising solutions are
obtained, many of which are essentially fitting one data set only
(rCost ≈ 1) while sacrificing model performance on the other (rCost
� 1). A red dot marks the point of equal rCost. The fact that an XC
model with rCost[G2/97] = rCost[S22x5-1.0] = 1 is not obtainable
illustrates the necessity of a model compromise. Inset: The product
of relative costs display a minimum (blue dot) for a certain weight
fraction.

is identical to minimizing the product of costs, is applied
henceforth.

2. Product cost function

A product cost function for arbitrary numbers of training
data sets is here defined, such that the minimizing solution c
yields a desired minimum of the product of costs. The cost
function is written as

	(a) =
∏

i

Ci(a)wi , (14)

where wi is a constant weight, and Ci is again an individual
cost function. The constant weight is an important feature of
	(a) since it allows inclusion of training data sets which are
perceived significantly less important than others. It is thus
chosen from personal preferences given the purpose of the
functional, and we shall see that c minimizes the product of
costs given this choice.

For the case of two data sets, the stationary point between
the two individual solutions in model space is found by
differentiating the logarithm of 	(a) with respect to a, and
solving ∑

i

wi

Ci

dCi

da
= 0. (15)

Using the method outlined above, the model solution that
minimizes 	(a) is found in terms of the individual solutions
as

c =
(∑

i

wi

Ci

Hi

)−1 (∑
i

wi

Ci

Hiai

)
, (16)

where Ci = Ci(c), and wi simply scales the individual costs.
We see that this solution corresponds to letting Wi in Eq. (11)
equal wi/Ci . Thus, minimizing the product of costs has
introduced a natural weight C−1

i , while wi still leave room
for deliberately biasing the model solution.

From here on, the product solution is therefore used to find
the desired XC model solution: Since Ci is evaluated at c, the
optimum solution is found iteratively, using C−1

i as an iterator
while searching for a converged minimum of the product cost
function, given the constant weights wi .80

3. BEEF–vdW density functional

The BEEF–vdW exchange-correlation functional was de-
signed using the set of weights w listed in Table II. In principle,
these should all equal one, however, correlations between some
of the data sets have led us to lower the constant weight
on some of them: Since the RE42 set is based on G2/97
molecules, the data in RE42 are correlated with some of
the data in G2/97. Both weights were therefore lowered to
0.5. The same reasoning applies to the S22x5 subsets, where
the same complexes are found in all the five sets, albeit at
different interaction distances. A weight of 1/5 = 0.2 on each
S22x5 subset would therefore be natural, but for reasons of
performance of the final functional, constant weights of 0.1
were chosen. The prior vector was the same for the combined
functional as for the individual models.

The resulting model compromise is also tabulated in
Table II, showing the effective data-set weight w/C, rCost,
and rSTD for all data sets used in model training. It is clearly
seen that especially the S22x5-0.9 interaction energies are hard
to fit simultaneously with the other data sets within the XC
model space employed here: The relative cost for the set is
high, allowing the model to adapt mostly to the other data sets
by lowering w/C for this set. This is furthermore reflected in
the rSTD of 5.4, indicating that the BEEF–vdW performance
on this data set is significantly worse than obtained in the
individual fit to the S22x5-0.9 systems reported in Table I.
Even so, the remaining S22x5 subsets appear to share XC

TABLE II. The BEEF–vdW model compromise. The effective
weight in determining the XC model solution is w/C for each data
set, as iteratively found from minimizing the product cost function
[Eq. (14)]. The relative standard deviation (rSTD) is the ratio of the
STD at the BEEF–vdW compromise to the STD at the regularized
individual solution in Table I. The relative costs (rCost) are defined
similarly, but includes regularization [see Eq. (13)].

w w/C rCost rSTD

CE17 1.0 1.80 1.7 1.3
RE42 0.5 0.62 2.5 1.8
DBH24/08 1.0 0.65 4.9 2.3
G2/97 0.5 0.62 2.6 1.6
Sol34Ec 1.0 0.43 7.5 2.8
S22x5-0.9 0.1 0.01 28.6 5.4
S22x5-1.0 0.1 0.04 9.1 2.9
S22x5-1.2 0.1 0.09 3.5 2.1
S22x5-1.5 0.1 0.08 4.1 2.1
S22x5-2.0 0.1 0.18 1.8 1.5
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TABLE III. Expansion coefficients am for the BEEF–vdW Leg-
endre exchange basis functions of order m. The correlation mixing
parameter, αc in Eq. (4), is 0.6001664769.

m am m am

0 1.516501714 × 100 15 −8.018718848 × 10−4

1 4.413532099 × 10−1 16 −6.688078723 × 10−4

2 −9.182135241 × 10−2 17 1.030936331 × 10−3

3 −2.352754331 × 10−2 18 −3.673838660 × 10−4

4 3.418828455 × 10−2 19 −4.213635394 × 10−4

5 2.411870076 × 10−3 20 5.761607992 × 10−4

6 −1.416381352 × 10−2 21 −8.346503735 × 10−5

7 6.975895581 × 10−4 22 −4.458447585 × 10−4

8 9.859205137 × 10−3 23 4.601290092 × 10−4

9 −6.737855051 × 10−3 24 −5.231775398 × 10−6

10 −1.573330824 × 10−3 25 −4.239570471 × 10−4

11 5.036146253 × 10−3 26 3.750190679 × 10−4

12 −2.569472453 × 10−3 27 2.114938125 × 10−5

13 −9.874953976 × 10−4 28 −1.904911565 × 10−4

14 2.033722895 × 10−3 29 7.384362421 × 10−5

model space with the data sets representing formation and
rupture of interatomic bonds to a significantly greater extent.
Thus, accurate description of the balance of strong and weak
interactions in the S22x5-0.9 complexes is nearly incompatible
with at least one of the other sets of materials properties, when
demanding well-behaved exchange and correlation functionals
in the present model space.

Table III lists the BEEF–vdW expansion coefficients. The
correlation functional consists of 0.6 LDA, 0.4 PBE, and 1.0
nonlocal correlation. The qualitative shape of the BEEF–vdW
exchange enhancement factor is shown in Fig. 4, with s = 0
and s → ∞ limits of 1.034 and 1.870, respectively. Thus,
BEEF–vdW exchange does not exactly obey the LDA limit for
s = 0, but is 3.4% higher. The enhancement factor is above
most GGA exchange functionals up to s ≈ 2.5, from where it
approaches the LO bound with a small overshoot in the infinite
limit.
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FIG. 4. (Color online) The BEEF–vdW exchange enhancement
factor compared to those of a few standard GGA exchange func-
tionals. The corresponding BEEF–vdW correlation functional is
composed of 0.6 LDA, 0.4 PBE, and 1.0 nonlocal correlation.

The lack of exact fulfillment of the LDA limit for exchange
indicates a conflict between this limit, the training data, and the
employed preference for smooth exchange models. The G2/97
and DBH24/08 chemical data sets are found to give particular
preference to exchange enhancement models with Fx(0) ≈
1.1, and enforcing Fx(0) = 1.0 for these sets leads to severely
nonsmooth exchange solutions for s → 0. Similar behavior
was found in Ref. 77. Note that MGGA approximations
are able to achieve exchange models with Fx(0) �= 1.0 for
densities different from the UEG, while still obeying the LDA
limit for UEG-like densities. The BEEF–vdW Fx also has
small “bump” at s ≈ 1.3. This is not essential to the quality
of the model and is not expected to harm its transferability.
However, completely removing such features requires overly
strong regularization.

VI. ENSEMBLE ERROR ESTIMATION

A normal DFT calculation does not provide any information
about the uncertainty of the result from using an approximate
XC functional. One method to obtain an estimate of the
uncertainty is performing several calculations using different
functionals, and observe the variations in the prediction of the
quantity of interest. Another more systematic approach is to
use an ensemble of functionals designed to provide an error
estimate, as discussed in Ref. 81. This method is applied to
the BEEF–vdW model, and the adaptation is briefly presented
here.

Inspired by Bayesian statistics,73 we define a probability
distribution P for the model parameters a given the model θ

and training data D:

P (a|θD) ∼ exp[−C(a)/τ ], (17)

where C(a) is the cost function, and τ is a cost “temperature.”
Given the data D, a model perturbation δa has a certain
probability associated with it, and this defines an ensemble
of different XC functionals. The temperature is to be chosen
such that the spread of the ensemble model predictions of
the training data reproduces the errors observed when using
BEEF–vdW self-consistently. This approach to constructing
the probability distribution is closely related to the maximum
entropy principle.77,82

The ensemble is defined through a Hessian scaled with the
temperature. The Hessian is calculated directly from

H = 2
N∑
i

wi

Ci(ap)
�−1

(
X′

i

T X′
i + ω2

i L2
)
�−1T

, (18)

where the sum is over training data sets. The temperature is
related to the effective number of parameters in the model,
calculated from the effective regularization

ω2
eff =

N∑
i

wi

Ci(c)
ω2

i , (19)

where ω2
i are the regularization strengths for the individual data

sets. Additionally, diagonalization of the combined square of
the transformed data matrix

′ = VT

(
N∑
i

wi

Ci(c)
X′

i

T X′
i

)
V, (20)
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where ′ contains the eigenvalues along the diagonal and V
the eigenvectors, allows the effective number of parameters
left in the model after regularization, Meff , to be computed as

Meff =
M∑
m

′
m

2

′
m

2 + ω2
effL

2
m

. (21)

Since Meff = 7.11 in the BEEF–vdW model compromise,
more than 75% of the initially 31 model degrees of freedom
have been suppressed by regularization.

The temperature calculation is slightly modified from the
method in Ref. 81 in order to construct an unbiased error
estimation. This reflects that a larger error is expected when
BEEF–vdW is applied to systems not included in the training
data sets. The temperature is therefore calculated as

τ = 2
C(c)

Meff
· Ntot

Ntot − Meff
, (22)

where Ntot is the total number of systems in the training
sets. The second term is close to unity since Ntot � Meff .
An ensemble matrix is now found as

�−1 = τ H−1, (23)

with eigenvalues w2
�−1 and eigenvectors V�−1 .

Finally, using an ensemble of k vectors vk , each of length
M with elements randomly drawn from a normal distribution
of zero mean and variance one, the BEEF–vdW ensemble
coefficient vectors ak are calculated from

ak = V�−1 · 1w�−1 · vk. (24)

The BEEF–vdW ensemble matrix is provided in the Supple-
mental Material.83

An illustration of the BEEF–vdW ensemble is shown in
Fig. 5. For each data point in each data set, this ensemble
may be applied non-self-consistently to BEEF–vdW electron

0 1 2 3 4 5
s

0

1

2

F
x

LO

LDA

−1 0 1 2
αc

FIG. 5. (Color online) Bayesian ensemble of XC functionals
around BEEF–vdW. Main panel: Black solid line is the BEEF–vdW
exchange enhancement factor, while the orange lines depict Fx(s)
for 50 samples of the randomly generated ensemble. Dashed black
lines mark the exchange model perturbations that yield DFT results
±1 standard deviation away from BEEF–vdW results. The inset
shows a histogram of the distribution of correlation parameters in
an ensemble containing 20 000 samples. The distribution is centered
around αc = 0.6.

TABLE IV. Comparison of self-consistent BEEF–vdW standard
deviations to those predicted by the ensemble of functionals around
BEEF–vdW. All energies in meV.

BEEF–vdW Ensemble estimate

CE17 143 209
RE42 372 253
DBH24 331 144
G2/97 242 312
SolEc34 576 436
s22x5-0.9 171 197
s22x5-1.0 94 181
s22x5-1.2 36 137
s22x5-1.5 8 67
s22x5-2.0 5 18

densities. The standard deviation of the ensemble predictions
of a quantity is then the ensemble estimate of the BEEF–
vdW standard deviation on that quantity. The exchange
enhancement ensemble expands after s ≈ 2, where most of the
chemistry and solid state physics have already happened.76,78

The predictive performance of the ensemble has been
evaluated using 20 000 ensemble functionals. In practice,
however, a few thousand ensemble functionals suffice for
well-converged error estimates at a negligible computational
overhead. Estimated standard deviations on the training data
sets are compared to those from self-consistent calculations
in Table IV. The ensemble performance on the data-set level
should be assessed in combination with observing the error
predictions on a system-to-system basis. Figure 6 illustrates the
BEEF–vdW ensemble error estimates for the RE42 molecular
reaction energies, and compares BEEF–vdW results to those
of other functionals. Similar figures for more data sets are
found in the Supplemental Material.83

On the data-set level, the overall predictive performance of
the ensemble is satisfactory. The ensemble standard deviations
in Table IV are slightly overestimated for the G2/97, CE17,
and S22x5-0.9 data sets, while the ensemble underestimates
the errors for RE42, DBH24/08, and Sol34Ec. For the
remaining S22x5 subsets, the error estimates are too large.

Importantly, Fig. 6 illustrates strengths and weaknesses
of the present approach to error estimation. Many of the
reaction energies are accurately reproduced by BEEF–vdW,
and the ensemble estimates a relatively small error on those
data. However, some of the reactions for which BEEF–vdW
yields larger errors are assigned too small error bars. The
water-gas shift reaction CO + H2O→CO2 + H2 is one of
these. The reason for this is indicated by the fact that all tested
GGA, MGGA, and vdW–DF–type functionals yield nearly
identical reaction energies for this reaction. One simply has
to move rather far in XC model space to find a functional
that predicts a reaction energy significantly different from the
BEEF–vdW result. This causes the ensemble to underestimate
the actual error for that reaction. Since the hybrid functionals
appear to break the overall trends observed for the lower-rung
functionals in Fig. 6, inclusion of exact exchange in the
model space might remedy such limitations of the BEEF–vdW
functional and its Bayesian ensemble.
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FIG. 6. (Color online) Deviations � = �rE
DFT − �rE

exp between the RE42 molecular reaction energies calculated using representative
XC functionals and experiment. Color codes are BEEF–vdW: black; GGA: blue; MGGA: green; vdW–DF type: red; and hybrid: yellow.
BEEF–vdW ensemble error estimates are indicated by horizontal error bars. The numbers in the middle column are self-consistent BEEF–vdW
deviations from experiment.

VII. BENCHMARKS

The following is a comparative assessment of BEEF–
vdW and a selection of literature XC functionals of the
LDA, GGA, MGGA, vdW–DF, and hybrid types. These are
listed in Table V. The benchmark data sets used are the
six sets to which BEEF–vdW was trained, except Sol34Ec,

as well as the G3-3, CE27, Sol27Ec, and Sol27LC data
sets. The latter sets were introduced in Sec. II. Statistics
on deviations of computed quantities from experimental
or high-level theoretical references are reported for each
density functional in terms of the mean signed (MSD), mean
absolute (MAD), and standard deviation (STD). The sign
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TABLE V. A selection of density functionals at the LDA (1),
GGA (2), MGGAa (3), vdW–DF (3.5), and hybridb (4) rungs of
Jacob’s ladder.

Type Targetc Ref.

LDA 1 68
PBE 2 General 67
RPBE 2 Chemistry 76
BLYP 2 Chemistry 87, 88
HCTH407 2 Chemistry 46
PBEsol 2 Solid state 43
WC 2 Solid state 89
AM05 2 Solid state 90
TPSS 3 General 91
revTPSS 3 General 44
vdW-DF 3.5 vdW 25
vdW-DF2 3.5 vdW 30
optPBE-vdW 3.5 vdW 33
optB88-vdW 3.5 vdW 33
C09-vdW 3.5 vdW 34
B3LYP 4 Chemistry 92
PBE0 4 Chemistry 93

aAttempts to apply the M06-L (Ref. 47) MGGA were unsuccessful
due to convergence issues for a wide range of systems from almost
all considered data sets. Note that problematics of evaluating MGGA
potentials, especially for the M06 family of functionals, are discussed
in recent literature (Refs. 84–86).
bHybrid functionals have not been applied to extended systems.
cShould be understood as a very general characterization of the main
target of a functional, and does not consider underlying principles of
design.

convention is

deviation = DFT − reference. (25)

Computed deviations for all systems in all data sets considered
are tabulated in the Supplemental Material,83 which also
provides the raw DFT data.

All data are furthermore available online in the Computa-
tional Materials Repository (CMR).95 The repository contains
all information about the individual DFT calculations which
form the basis for the results presented here, including atomic
configurations and GPAW specific parameters. Access to search,
browse, and download these data is provided through the CMR
web interface.96

A. Molecular formation energies

The G2/97 and G3/99 thermochemical test sets have
become standards for validating density functional methods,
and the present calculations are well in line with published
benchmark data94 for these sets. Statistics are reported in
Table VI. Considering first G2/97, the LDA grossly overesti-
mates the molecular formation energies. Significant improve-
ments are found with GGAs, where XC functionals designed
to capture molecular energetics (RPBE, BLYP, HCTH407)
yield STDs below 0.5 eV, while those targeted at solid
state properties (PBEsol, WC, AM05) perform significantly
worse: their MSDs are large and negative, indicating severe

overbinding. The TPSS and revTPSS MGGA approximations
perform quite well on this set.

Turning to the vdW–DF variants, good description of the
G2/97 formation energies is also found for vdW–DF and
vdW–DF2. This, however, is not the case for the optPBE–
vdW, optB88–vdW, and C09–vdW functionals, for which
the GGA exchange components are optimized with vdW
dominated energetics in mind. This approach apparently leads
to intramolecular overbinding, as previously noted in Ref. 31.

For comparison, Table VI also includes statistics for
the B3LYP and PBE0 hybrids. As the wide application of
hybrid XC functionals in the quantum chemistry community
suggests, B3LYP and PBE0 accurately describe molecular
bond energetics, and the B3LYP parametrization is found to
be the best DFA for the G2/97 data set. Table VI furthermore
shows that also the BEEF–vdW functional performs very well
in predicting molecular formation energies. With a MAD
of 0.16 eV, BEEF–vdW is highly accurate on the G2/97
thermochemical set, and even outperforms the PBE0 hybrid
on these systems.

Now, let us switch attention to the G3-3 set of 75 molecules,
which the BEEF–vdW model was not trained on. For most
XC functionals tested here, the average deviations on G3-3
are larger than on G2/97. It is, however, noteworthy that
TPSS, revTPSS, vdW–DF, and vdW–DF2 are exceptions to
this trend. Benchmarking BEEF–vdW on G3-3 validates its
good performance in predicting molecular bond energetics.
This conclusion is underlined by the BEEF–vdW deviation
statistics on the full G3/99 compilation. With a MAD of 0.19
eV, it is the most accurate DFA tested on G3/99, closely
followed by B3LYP. Both MGGA functionals as well as
vdW–DF and vdW–DF2 also perform well on this set.

B. Molecular reaction energies

The last column of Table VI summarizes deviation statistics
for the RE42 data set. Even though the reaction energies are
derived from the G2/97 formation energies, the reaction ener-
gies appear difficult to capture accurately with GGA, MGGA,
and vdW–DF type functionals. None of them yield a STD
less than 0.3 eV. The B3LYP hybrid proves significantly more
accurate in this respect. Interestingly, the optPBE–vdW and
optB88–vdW functionals, which both severely overestimate
the G2/97 formation energies, prove as reliable for calculating
gas-phase reaction energies as the best GGA (RPBE), and
compare well to TPSS and BEEF–vdW.

C. Chemisorption on solid surfaces

Deviation statistics for the CE17 and CE27 data sets are
reported in the first two columns of Table VII. The BEEF–vdW
model was trained on CE17, while CE27 contains 10 extra
entries, mostly covering dissociative H2 chemisorption on late
transition-metal surfaces. With MADs � 0.7 eV, LDA and
the GGAs designed for solid state applications are clearly
overbinding simple adsorbates to solid surfaces (negative
MSDs). The RPBE, BLYP, and HCTH407 functionals are
significantly more reliable for calculation of chemisorption
energies, RPBE performing best with a MAD of 0.11 eV for
both CE17 and CE27. Also, vdW–DF and vdW–DF2 yield
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TABLE VI. Deviation statistics on the G2/97, G3-3, and G3/99 thermochemical data sets, as well as the RE42 set of molecular reaction
energies. All energies in eV.

G2/97 (148) G3-3 (75) G3/99 (223) RE42 (42)

Method MSD MAD STD MSD MAD STD MSD MAD STD MSD MAD STD

LDA −3.69 3.69 4.27 −8.35 8.35 8.78 −5.25 5.25 6.16 −0.55 1.06 1.62
PBE −0.64 0.68 0.84 −1.32 1.32 1.48 −0.87 0.90 1.10 −0.08 0.30 0.42
RPBE 0.25 0.40 0.51 0.94 0.96 1.13 0.48 0.59 0.78 0.11 0.26 0.34
PBEsol −1.69 1.70 2.00 −3.94 3.94 4.14 −2.45 2.45 2.90 −0.29 0.48 0.73
BLYP 0.00 0.32 0.43 0.57 0.62 0.76 0.19 0.42 0.56 0.16 0.29 0.37
AM05 −1.77 1.78 2.07 −4.00 4.00 4.19 −2.52 2.52 2.96 −0.21 0.41 0.62
WC −1.24 1.26 1.51 −2.86 2.86 3.03 −1.79 1.80 2.14 −0.24 0.43 0.65
HCTH407 0.09 0.26 0.35 0.48 0.55 0.65 0.22 0.36 0.47 0.06 0.27 0.35
TPSS −0.22 0.28 0.33 −0.26 0.29 0.33 −0.24 0.28 0.33 0.06 0.25 0.32
revTPSS −0.21 0.28 0.34 −0.24 0.26 0.31 −0.22 0.27 0.33 0.16 0.33 0.43
vdW–DF −0.10 0.24 0.33 0.18 0.24 0.32 −0.01 0.24 0.33 0.24 0.39 0.52
vdW–DF2 −0.15 0.28 0.39 0.11 0.26 0.36 −0.06 0.28 0.38 0.24 0.40 0.54
optPBE–vdW −0.84 0.85 0.98 −1.72 1.72 1.82 −1.14 1.14 1.32 0.06 0.27 0.35
optB88–vdW −1.04 1.04 1.20 −2.22 2.22 2.34 −1.44 1.44 1.68 0.02 0.26 0.34
C09–vdW −1.55 1.55 1.80 −3.55 3.55 3.72 −2.22 2.22 2.61 −0.11 0.33 0.45
B3LYPa 0.05 0.14 0.19 0.36 0.37 0.41 0.15 0.21 0.28 −0.05 0.15 0.22
PBE0a −0.10 0.21 0.28 −0.40 0.44 0.55 −0.20 0.29 0.39 0.13 0.33 0.47
BEEF-vdW −0.02 0.16 0.24 0.19 0.25 0.31 0.05 0.19 0.27 0.14 0.29 0.37

aB3LYP and PBE0 data adapted from Ref. 94.

MADs of 0.20 eV of less on CE27, while the two MGGAs
overbind on average. Again, a significant overbinding is found
for the three exchange-modified vdW–DF flavors. Lastly, it is
seen from the CE17 column in Table VII that BEEF–vdW
is among the DFAs offering most accurate predictions of
chemisorption energies of simple adsorbates on solid surfaces.
Since much of this accuracy is retained when moving to CE27,
good transferability is expected when applying BEEF–vdW
to other types of surface processes involving rupture and
formation of chemical bonds.

D. Molecular reaction barriers

The DBH24/08 reaction barrier heights belong to a class
of systems for which a fraction of exact exchange is known to
increase computational accuracy significantly over GGAs.22,97

This is supported by the DBH24/08 data in Table VII,
where the two hybrids clearly outperform the lower-rung
XC functionals. Considering the corresponding statistics for
BEEF–vdW as well as for the individual DBH24/08 XC model
reported in Table I, where a MAD of 0.12 eV was obtained, it is

TABLE VII. Deviation statistics on the CE17 and CE27 chemisorption energies, DBH24/08 reaction barriers, and the S22x5 interaction
energies of noncovalently bonded complexes. All energies in eV, except S22x5, which is in meV.

CE17 (17) CE27 (27) DBH24/08 (24) S22x5 (110)

Method MSD MAD STD MSD MAD STD MSD MAD STD MSD MAD STD

LDA −1.34 1.34 1.39 −1.33 1.33 1.42 −0.58 0.58 0.73 −50 62 110
PBE −0.42 0.42 0.44 −0.40 0.40 0.43 −0.33 0.33 0.43 76 76 132
RPBE −0.02 0.11 0.13 0.00 0.11 0.14 −0.27 0.27 0.34 138 138 227
PBEsol −0.85 0.85 0.87 −0.85 0.85 0.89 −0.44 0.44 0.56 38 53 85
BLYP −0.04 0.13 0.16 0.02 0.15 0.18 −0.33 0.33 0.39 140 140 218
AM05 −0.70 0.70 0.73 −0.69 0.69 0.73 −0.41 0.41 0.53 99 99 157
WC −0.76 0.76 0.78 −0.76 0.76 0.80 −0.41 0.41 0.52 56 63 105
HCTH407 0.11 0.17 0.22 0.15 0.20 0.30 −0.19 0.21 0.31 115 116 218
TPSS −0.32 0.32 0.37 −0.34 0.34 0.41 −0.35 0.35 0.41 100 100 162
revTPSS −0.38 0.38 0.43 −0.38 0.38 0.45 −0.35 0.35 0.41 92 92 141
vdW–DF −0.05 0.12 0.14 0.04 0.18 0.22 −0.27 0.28 0.34 39 52 87
vdW–DF-2 −0.04 0.13 0.18 0.07 0.20 0.26 −0.30 0.31 0.37 31 33 61
optPBE–vdW −0.39 0.39 0.42 −0.31 0.35 0.40 −0.33 0.33 0.41 −4 21 29
optB88–vdW −0.52 0.52 0.56 −0.44 0.45 0.52 −0.37 0.37 0.45 3 10 15
C09–vdW −0.78 0.78 0.81 −0.73 0.73 0.79 −0.41 0.41 0.50 −5 12 18
B3LYP −0.17 0.17 0.21 111 111 180
PBE0 −0.13 0.15 0.19 71 71 124
BEEF–vdW −0.08 0.12 0.14 −0.01 0.16 0.19 −0.26 0.26 0.33 42 50 88
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clear that the BEEF–vdW model has moved significantly away
from the part of model space favored by gas-phase reaction
barrier heights. Nevertheless, BEEF–vdW is among the best
nonhybrid functionals for such quantities.

E. Noncovalent interactions

The last column of Table VII lists deviation statistics for
the S22x5 interaction energies. As previously found in several
studies30,33,53,59 of the original S22 data set, vdW dominated
interactions are well described by vdW–DF type density
functionals, especially those with an optimized exchange
component. With MADs of 20 meV or less over all 110
points on the 22 potential-energy curves, the optPBE–vdW,
optB88–vdW, and C09–vdW functionals prove highly accurate
in this respect. The vdW–DF2 functional also captures vdW

TABLE VIII. Detailed statistics on the deviations of calculated
S22x5 interaction energies from CCSD(T) benchmarks using van der
Waals density functionals in all five points along the intermolecular
potential-energy curve. Mean signed and mean absolute deviations
are in meV. Mean signed relative (MSRD) and mean absolute relative
(MARD) deviations are also listed. Negatively signed deviation
means overbinding on average.

Method MSD MAD MSRD MARD

d = 0.9
vdW–DF 140 140 198% 198%
vdW–DF2 99 99 143% 143%
optPBE–vdW 29 31 28% 35%
optB88–vdW 17 19 26% 26%
C09–vdW −13 21 −13% 35%
BEEF–vdW 136 137 214% 214%
d = 1.0
vdW–DF 70 71 20% 25%
vdW–DF2 43 44 13% 15%
optPBE–vdW −1 20 −9% 13%
optB88–vdW 5 13 3% 6%
C09–vdW −3 13 1% 6%
BEEF–vdW 72 74 20% 28%
d = 1.2
vdW–DF 4 32 −16% 23%
vdW–DF2 5 13 −2% 7%
optPBE–vdW −25 28 −29% 30%
optB88–vdW −4 13 −6% 9%
C09–vdW −3 13 −8% 11%
BEEF–vdW 6 27 −12% 18%
d = 1.5
vdW–DF −13 15 −39% 40%
vdW–DF2 2 4 4% 6%
optPBE–vdW −20 20 −44% 44%
optB88–vdW −3 6 −12% 13%
C09–vdW −6 11 −26% 28%
BEEF–vdW −5 6 −13% 14%
d = 2.0
vdW–DF −4 4 −20% 20%
vdW–DF2 5 5 34% 34%
optPBE–vdW −5 5 −20% 21%
optB88–vdW 1 2 3% 8%
C09–vdW −2 2 −13% 15%
BEEF–vdW 2 3 27% 28%

interactions well, but the positive MSD signifies that most
of the deviations from the CCSD(T) reference energies stem
from underbinding. For vdW–DF and BEEF–vdW, this is
even more pronounced. None of the tested MGGA or hybrid
DFAs convincingly capture vdW interactions. Only the most
weakly gradient enhancing GGAs (PBEsol, WC, AM05) yield
reasonable statistics. Taking into account the appreciable LDA
overbinding of the S22x5 complexes, what appears to be GGA
functionals capturing long-ranged dispersion is more likely a
case of getting it right for the wrong reasons.

For completeness, Table VIII shows detailed S22x5 statis-
tics for vdW–DF variants and BEEF–vdW. Although per-
forming reasonably well on S22x5 as a whole, the vdW–DF,
vdW–DF2, and BEEF–vdW functionals underestimate the
intermolecular binding energies at shortened binding distances
d = 0.9. Also, at d = 1.0 the exchange-modified vdW–DF
flavors offer a better description, but the difference between
the two groups is much reduced. Concerning computational
accuracy, the vdW–DF2 MSD of 43 meV and MAD of 44 meV
for S22x5-1.0 obtained here compare very well to the MSD
and MAD of 40 and 41 meV, respectively, found in a recent
study59 for a revised S22 data set.

F. Solid state properties

Table IX reports a summary of deviation statistics for
calculations of lattice constants (Sol27LC) and cohesive
energies (Sol27Ec). The lattice constant statistics are in clear
favor of the PBEsol, AM05, WC, and revTPSS functionals.
Their standard deviations are small and the MSDs are close
to 0 Å. On average, however, these remarkably accurate
predictions of equilibrium crystal volumes come at the price
of overestimated cohesive energies.

The picture is opposite for vdW–DF and vdW–DF2. Lattice
constants are overestimated and more so than with any other
XC functional tested, vdW–DF2 yielding a standard deviation
of 0.18 Å. Furthermore, those two DFAs notably underestimate
cohesive energies. The less repulsive exchange functionals of
the modified vdW–DF variants lead in general to statistics
similar to those of PBE and TPSS for the two materials
properties in question. These findings closely match those
reported in recent studies32,78,98–100 assessing the performance
of GGA, MGGA, and vdW–DF type XC functionals for solid
state properties.

Benchmarking finally BEEF–vdW, we find in Table IX that
it performs reasonably well for cohesive energies and lattice
constants, though still predicting softer crystal lattices than
the optimized vdW–DF variants. With BEEF–vdW, these two
bulk materials properties are, however, significantly closer to
agreement with experiments than predictions by vdW–DF,
vdW–DF2, and most of the GGAs designed mainly for
chemistry.

VIII. APPLICATIONS

Two applications of BEEF–vdW to problems of current
interest in the surface science community are here presented:
graphene adsorption on the close-packed Ni(111) surface,
and the trends observed when applying lower-rung density
functionals in calculations of the binding energy of CO to
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TABLE IX. Deviation statistics for the Sol27Ec cohesive energies (eV/atom) and Sol27LC lattice constants (Å). Zero-point vibrational
effects have been removed from both experimental data sets.

Sol27Ec (27) Sol27LC (27)

Method MSD MAD STD MSD MAD STD

LDA 0.89 0.89 1.08 −0.07 0.07 0.10
PBE −0.10 0.27 0.38 0.05 0.06 0.07
RPBE −0.54 0.58 0.71 0.11 0.11 0.13
PBEsol 0.43 0.45 0.63 −0.01 0.03 0.04
BLYP −0.79 0.80 0.89 0.11 0.11 0.14
AM05 0.25 0.36 0.51 0.01 0.03 0.04
WC 0.37 0.41 0.57 0.00 0.03 0.04
HCTH407 −0.59 0.67 0.82 0.08 0.10 0.14
TPSS 0.08 0.27 0.36 0.05 0.05 0.08
revTPSS 0.31 0.37 0.50 0.03 0.04 0.07
vdW–DF −0.54 0.60 0.72 0.12 0.12 0.14
vdW–DF2 −0.58 0.64 0.75 0.12 0.14 0.18
optPBE–vdW −0.12 0.27 0.38 0.06 0.08 0.10
optB88–vdW 0.01 0.25 0.36 0.04 0.08 0.09
C09–vdW 0.42 0.43 0.59 0.01 0.05 0.06
BEEF–vdW −0.37 0.45 0.59 0.08 0.08 0.11

Pt(111) and Rh(111) substrates as well as the surface energy
of those substrates.

A. Graphene adsorption on Ni(111)

The remarkable electronic properties of monolayer
graphene103–105 and its potential application in electronics
technology104,106 motivate investigation of the interactions
between graphene sheets and metallic surfaces. The na-
ture of graphene adsorption on metals is highly metal
dependent,107,108 some surfaces binding graphene only weakly
and others forming strong covalent bonds to the carbon sheet.
The Ni(111) surface belongs to the latter group, graphene
forming a (1 × 1) overlayer at a graphene-metal distance of
d = 2.1 Å.109 Furthermore, a band gap is induced in graphene
upon adsorption, underlining the strong hybridization respon-
sible for changing the electronic structure of the carbon
sheet.110,111

Several theoretical studies have investigated the
graphene/Ni(111) potential-energy curve, with mixed
results.112–118 However, based on RPA calculations, it is by
now established that this particular adsorption process is
a delicate competition between strong interactions close to
the surface and vdW forces further from the surface.101,102

Figure 7 shows calculated PECs for graphene adsorption
on Ni(111) using LDA, MGGA, and vdW–DF type density
functionals, as well as BEEF–vdW. Computational details are
given in the Appendix. Additionally, two sets of RPA data are
shown for comparison, indicating that graphene adsorption
on Ni(111) is characterized by a physisorption minimum
at d = 3.0–3.5 Å and a chemisorbed state at d ≈ 2.2 Å,
the latter in good agreement with experiments.109 However,
as previously found,101,102,116,117 rung 1–3 DFAs, as well
as vdW–DF and vdW–DF2, fail to simultaneously describe
both qualitative features. Conversely, the optPBE–vdW and
optB88–vdW PECs are increasingly closer to RPA data. The
BEEF–vdW PEC shows qualitatively similar features, but the
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FIG. 7. (Color online) Potential-energy curves for graphene
adsorption on the Ni(111) surface. Random phase approximation data
are from Refs. 101 (RPA1) and 102 (RPA2). The gray area indicates
the region spanned by the estimated standard deviations along the
BEEF–vdW PEC.
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local minimum at d = 2.25 Å is very shallow and yields a
positive adsorption energy.

Figure 7 also shows ensemble error estimates along the
BEEF–vdW PEC. Especially two aspects of these are of
interest. First of all, the error bars do not straddle the zero line
for large graphene-metal distances, indicating that confidence
in the presence of a physisorption minimum is high. Second,
the error bars enlarge notably at smaller distances from d =
2.6 Å and inwards, reflecting that these BEEF–vdW data points
are associated with a significantly larger uncertainty. Recalling
how the ensemble error estimate is designed (Sec. VI), the
error estimates indicate that the graphene/Ni(111) PEC is very
sensitive to the choice of XC functional in the chemically
interesting range. Put differently, the ensemble suggests that
we should not trust the BEEF–vdW prediction of a positive
PEC for d < 2.7 Å as a definite result, as the estimated errors
are simply too large in this region of the PEC.

B. Surface chemistry and stability

Chemisorption energies of molecules on surfaces are
obviously important quantities in heterogeneous catalysis and
surface science. However, accurate computation of surface
energies Eγ can be critical as well since minimization of
surface energy is a driving force determining the morphology
and composition of surfaces, interfaces, and nanoparticles.123

GGA density functionals, however, often underestimate Eγ ,
and the GGAs yielding most accurate surface energies also
vastly overbind molecules to surfaces.119 It thus appears that
accurate computation of chemisorption energies on a surface
as well as the stability of that surface is not possible with
the same GGA approximation, underscoring a fundamental
incompleteness of the GGA XC model space.

The issue is here investigated for vdW–DF variants and
BEEF–vdW. Figure 8 shows atop chemisorption energies of
CO on Pt(111) and Rh(111) against surface energies of those
substrates, calculated using GGA, MGGA and vdW–DF type
functionals, and BEEF–vdW with error estimation. These
are compared to RPA results and experimental data. As
previously reported,119,124 the GGA data points fall along an
approximately straight line, which is significantly offset from
the experimental data, thus illustrating the issue discussed
above. This is here shown to be the case for vdW–DF variants
also: The dashed vdW–DF lines are parallel to the solid GGA
lines, and are only slightly offset from the latter, especially for
Rh(111). The vdW–DF and vdW–DF2 data points are quite
close to RPBE. Larger surface energies are found with the
exchange-modified vdW–DF variants, albeit at the expense
of overestimated chemisorption energies. Note that such a
correlation should be expected from Tables VII and IX and
a linear relation between Eγ and the solid cohesive energy.123

Although BEEF–vdW contains the vdW–DF2 nonlocal
correlation functional as an essential component, the former
predicts larger surface energies than the latter without sacri-
ficing accuracy of the CO-metal binding energy. We expect
that this ability of BEEF–vdW to “break” the vdW–DF line
is due to the expanded GGA model space as compared to
vdW–DF, the latter of which pairs nonlocal correlation with
LDA correlation. Significant inclusion of semilocal correlation
in vdW–DF type calculations was also found in Ref. 31 to

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pt(111) Eγ (eV/atom)

−2.0

−1.9

−1.8

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2

−1.1

C
O

/P
t(

11
1)

Δ
E

(e
V

)

HCTH407
BLYP

RPBE

PBE

AM05

WC

PBEsol

TPSS
revTPSS

C09-vdW

optB88-vdW

optPBE-vdW

vdW-DF
vdW-DF2

BEEF-vdW

RPA
exp

0.5 0.6 0.7 0.8 0.9 1.0 1.1

Rh(111) Eγ (eV/atom)

−2.2

−2.0

−1.8

−1.6

−1.4

C
O

/R
h(

11
1)

Δ
E

(e
V

)

HCTH407

BLYP RPBE

PBE

AM05

WC
PBEsol

TPSS

revTPSS

C09-vdW

optB88-vdW

optPBE-vdW

vdW-DF

vdW-DF2

BEEF-vdW

RPA exp

FIG. 8. (Color online) Atop CO chemisorption energies �E

versus surface energies Eγ for Pt(111) and Ru(111). Red and
blue lines are linear fits to GGA and vdW–DF type data points,
respectively. MGGA data in green and yellow RPA data adapted
from Ref. 119. Estimated standard deviations are indicated by error
bars around the orange BEEF–vdW data points. All points (Eγ ,�E)
inside the gray areas are within one standard deviation from the
BEEF–vdW point for both quantities. Experimental surface energies
from liquid-metal data (Refs. 120 and 121), and experimental CO
chemisorption energies from Ref. 122.

broadly improve accuracy for several materials properties.
The BEEF–vdW error estimates furthermore appear very
reasonable. The experimental CO chemisorption energies are
straddled for both Pt(111) and Rh(111), and the error estimates
along Eγ almost fill out the gap between the GGA lines to
the left and the RPA and C09–vdW surface energies to the
right. Lastly, it is seen from the green TPSS and revTPSS
data points in Fig. 8, as also reported in Ref. 124, that the
third rung of Jacob’s ladder may offer the possibility of quite
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accurate surface energies with only moderately overbound
surface adsorbates.

IX. DISCUSSION

The presented approach to semiempirical DFA develop-
ment fundamentally considers XC functionals as more or less
accurate models of the exact density functional. From this
point of view, the XC model space expansion and model
selection procedure are essential, as are data sets for calibrating
or benchmarking XC models. The concept of an ensemble
of model solutions is intrinsic to the present model selection
procedure. The cost function for a single data set has both weak
(sloppy) and strong (important) eigenmodes in a sufficiently
flexible model space. Regularization is used to suppress the
weak modes in order to facilitate a physically sensible model
and maximize transferability. The regularized ensemble thus
contracts around the strong modes, and the optimum model
can, to some extent, be regarded an average of the ensemble
solutions. Without Tikhonov regularization of exchange, all
XC approximations obtained in this work would have 31
parameters and wildly oscillating GGA exchange solutions,
corresponding to a least-squares fit of an order-30 polynomial
in the reduced density gradient. Instead, well-behaved models
with 3–8 effective parameters are obtained.

It is important to note that model selection is intricately
connected to the model space. The reduced density gradient
transformation t(s) defines the expansion of GGA exchange. It
thereby also determines how hard the regularization punishes
nonsmoothness in different regions of s space, as well as
how the exchange part of the prior solution transforms to s

space. As previously stated, the prior is the origo for the XC
model solution. Many different priors may be chosen, but we
find it convenient that it transforms to a reasonable exchange
approximation. Then, decreasing regularization from infinity
towards zero leads to increasingly nonsmooth variations away
from this initial guess.

The linear combination correlation model space of local,
semilocal, and nonlocal correlation was anticipated31 to enable
highly accurate calculations for several, if not all, of the data
sets considered. The individually trained models in Table I con-
firm this, some sets favoring full LDA correlation in addition
to nonlocal ditto, other sets preferring full PBE correlation,
while most sets are fitted best by a combination of both.
The corresponding exchange functionals are also significantly
different, so the sets of strong eigenmodes for the regularized
cost functions are very materials property dependent. We argue
here that explicitly considering transferability among different
materials properties is important for producing a single DFA
composed of the most important modes for the combined data
sets, that is, the optimum model compromise must be found.

One approach to this task is minimizing a weighted sum
of the individual cost functions. This is somewhat similar
to weighted training functions used in least-squares-fitting
procedures, but with the critically important addition of regu-
larization. The summed cost function is elegantly minimized
using the individual solutions only, but gives no information
regarding how the weights should be chosen. Clearly, an XC
model trade-off is inevitable, so the weights should be the
ones yielding an optimum compromise. For just two data sets,

a wide range of poor choices of weights can be made, and the
complexity of this choice increases with the number of data
sets. In line with the statistical approach taken in the bulk of
this work, we believe that such choice should not be made
based on experience or intuition alone. Rather, a systematic
methodology for locating one or more points in XC model
space, where a well-behaved and properly compromising
solution resides, is desirable. The condition of minimizing
the product of relative costs for each data set is a reasonable
requirement for the model solution, philosophically as well as
in practice: The condition essentially states that if changing
the solution vector a to a + δa gains a larger relative reduction
in cost on one materials property than is lost in total on all
other properties considered, then a + δa is preferred.

Extensive benchmarking of BEEF–vdW against popular
GGA, MGGA, vdW–DF type, and hybrid XC functionals
shows that the developed methodology is able to produce truly
general-purpose XC approximations. Results are summarized
in Fig. 9, where error statistics for representative functionals
on gas-phase chemical, surface chemical, solid state, and
vdW dominated data sets are illustrated by bars. The BEEF–
vdW model compromise is indeed a very agreeable one.
For none of the data sets is the average BEEF–vdW error
among the largest, while several other functionals are highly
biased towards certain types of materials properties. This is
especially true for vdW–DF2 and optB88–vdW, displaying
severely erroneous description of binding energetics for bulk
solids and molecules, respectively. Furthermore, the figure
shows an overall performance equivalence of BEEF–vdW
and the original vdW–DF for gas-phase and surface chemical
properties, although the former more accurately predicts
bonding in the solid state. Further testing of the functional
might, however, prove interesting. Systems such as ionic
solids, semiconductors, and transition-metal complexes are not
included in the present benchmark, nor are the BEEF–vdW
predictions of molecular ionization potentials and electron
affinities tested. This will be addressed in future work.

We emphasize the strengths and weaknesses of the BEEF–
vdW ensemble error estimate. The ensemble functionals are
based on a probability distribution for the model parameters,
which limits the ensemble to the BEEF–vdW model space
only. This space is incomplete in the sense that it can not
accommodate a physically reasonable XC model yielding zero
error on all systems in all data sets considered, hence the
model trade-off. The BEEF–vdW computational errors are in
general reasonably well estimated, but the energetics of certain
systems is rather insensitive to the choice of XC approximation
within the GGA, MGGA, and vdW–DF type model spaces.
This leads to relatively small error estimates for these systems,
even though the actual computational error may be substantial.

Meanwhile, we find BEEF–vdW and the Bayesian ensem-
ble highly useful in surface science related applications. The
fact that BEEF–vdW appears to yield more accurate surface
energies than GGA or vdW–DF type XC approximations
of similar accuracy for adsorbate-surface bond strengths is
very promising. The error estimate proves very useful in this
case, even though the kinetic energy density of MGGA type
functionals may be needed in the model space if the surface
energy error bars are to span the experimental data. This again
illustrates that the ensemble does not give information beyond
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its model space, as it is solely based on it. However, the
error estimate carries important information in the BEEF–
vdW study of graphene adsorption on Ni(111). The PEC is
qualitatively wrong in the region of chemical bonding for this
intricate case of “solid state adsorption,” and the estimated
errors indeed indicate that this part of the BEEF–vdW PEC
is poorly determined. BEEF–vdW calculations can therefore
not predict with any confidence whether graphene should form
chemical bonds to the Ni(111) substrate in a low-temperature
experiment. It is encouraging that the ensemble is able to
capture this.

X. SUMMARY AND CONCLUSIONS

We have presented and evaluated a machine-learning-
inspired approach to semiempirical density functional de-
velopment. Focus has been on general applicability of the
resulting density functional to both strong and weak interac-
tions in chemistry and condensed matter physics, including
surface chemistry. Transferability and avoiding overfitting are
thus key issues, leading the presented methodology to rely
primarily on (1) a variety of data sets chosen to represent
vastly different interactions and bonding situations, (2) a
very flexible XC model space expansion at a computationally
feasible GGA + vdW level of approximation, and (3) XC
model selection procedures designed to “tame” the flexible
model space and yield XC approximations which properly
compromise between describing different types of physics and
chemistry.

To conclude, we have shown that regularization and cross-
validation methods are very useful for semiempirical density
functional development in highly flexible model spaces. It
is furthermore clear that computationally efficient general-
purpose functionals, targeted at accurately describing sev-
eral physically and chemically different materials properties,

necessarily must compromise between those properties in an
incomplete XC model space. However, the optimum model
trade-off is not easily found from simple intuition. A simple but
powerful principle for determining the position in model space
of a properly compromising XC approximation is therefore
formulated.

Application of the developed methodology has yielded the
BEEF–vdW density functional, and a benchmark of BEEF–
vdW against popular GGA, MGGA, vdW–DF type, and hybrid
XC functionals for energetics in chemistry and condensed
matter physics has been conducted. This benchmark validates
BEEF–vdW as a general-purpose XC approximation, with
a reasonably reliable description of van der Waals forces
and quantitatively accurate prediction of chemical adsorption
energies of molecules on surfaces, while avoiding large
sacrifices on solid state bond energetics. This should make
it a valuable density functional for studies in surface science
and catalysis.

Furthermore, an error estimation ensemble of functionals
around BEEF–vdW comes out naturally of the developed
fitting methodology. The ensemble is designed to provide an
easily obtainable estimate of the XC approximation error. It
is based on a probability distribution for the XC model pa-
rameters, and has been applied in the BEEF–vdW benchmark
and qualitative assessments for molecular surface adsorption,
surface energies, and graphene adsorption on Ni(111).

Finally, the methods developed here should lend themselves
well to other XC model spaces also, including the MGGA level
of theory or self-interaction correction schemes.
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APPENDIX: DETAILS OF DATA SETS AND
COMPUTATIONS

1. G2/97 and G3/99

In accordance with the procedure of Ref. 49, the G3/99
formation enthalpies are corrected for thermal and vibrational
contributions using thermal corrections and zero-point ener-
gies from Refs. 49 and 94. The G3/99 set is divided into three
subsets denoted G3-1, G3-2, and G3-3 comprising 55, 93, and
75 molecules, respectively. The G3-1 and G3-2 subsets con-
stitute G2/97. The G3-3 subset contains a significant fraction
of larger carbon-rich molecules as compared to G2/97.

Theoretical G3/99 formation energies �f E are calculated
from the difference between molecular and atomic total
energies as

�f E = EM −
∑
A

EA, (A1)

where A runs over all atoms in the molecule M , while EM and
EA are ground-state molecular and atomic total energies at
0 K, respectively.

2. RE42

The 42 molecular reaction energies �rE of the RE42 set are
listed in Table X. Theoretical reaction energies are calculated
from the total energies of G2/97 molecules after full geometry
relaxation as

�rE =
∑
P

EP −
∑
R

ER, (A2)

where the sums run over reactant (R) and product (P )
molecules.

3. DBH24/08

Forward (Vf ) and backward (Vb) benchmark reaction
barriers from high-level theory or experiments are adapted
from Ref. 50. Ground- and transition-state molecular ge-
ometries determined from quadratic configuration interaction
calculations with single and double excitations (QCISD) are
from Ref. 136. Density functional barrier heights are computed
from the transition-state total electronic energy (Ets) and the
initial (Ei) and final (Ef ) state total energies as

Vf = Ets − Ei, Vb = Ets − Ef . (A3)

4. S22x5

The original S22 publication51 from 2006 reported
CCSD(T) interaction energies of 22 noncovalently bonded
complexes with extrapolation to the complete basis-set (CBS)
limit. However, different basis sets were used for small and
large complexes. Geometries were determined from MP2 or
CCSD(T) calculations. Later works61,137 have revised the S22
interaction energies, employing larger and identical basis sets
for all complexes without changing the geometries. For the

TABLE X. Gas-phase molecular reactions and reaction energies
(in eV) constituting the RE42 data set. The experimental reaction
energies are compiled from the G2/97 static-nuclei formation
energies. �rE < 0 means exothermic.

Reaction �rE

N2 + 2H2 → N2H4 0.41
N2 + O2 → 2NO 1.88
N2 + 3H2 → 2NH3 −1.68
O2 + 2H2 → 2H2O −5.45
N2 + 2O2 → 2NO2 0.62
CO + H2O → CO2 + H2 −0.31
2N2 + O2 → 2N2O 1.57
2CO + O2 → 2CO2 −6.06
CO + 3H2 → CH4 + H2O −2.80
CO2 + 4H2 → CH4 + 2H2O −2.50
CH4 + NH3 → HCN + 3H2 3.32
O2 + 4HCl → 2Cl2 + 2H2O −1.51
2OH + H2 → 2H2O −6.19
O2 + H2 → 2OH 0.74
SO2 + 3H2 → SH2 + 2H2O −2.62
H2 + O2 → H2O2 −1.68
CH4 + 2Cl2 → CCl4 + 2H2 0.19
CH4 + 2F2 → CF4 + 2H2 −8.60
CH4 + H2O → methanol + H2 1.33
CH4 + CO2 → 2CO + 2H2 3.11
3O2 → 2O3 2.92
methylamine + H2 → CH4 + NH3 −1.15
thioethanol + H2 → H2S + ethane −0.71
2CO + 2NO → 2CO2 + N2 −7.94
CO + 2H2 → methanol −1.48
CO2 + 3H2 → methanol + H2O −1.17
2 methanol + O2 → 2CO2 + 4H2 −3.11
4CO + 9H2 → trans-butane + 4H2O −9.00
ethanol → dimethylether 0.53
ethyne + H2 → ethene −2.10
ketene + 2H2 → ethene + H2O −1.92
oxirane + H2 → ethene + H2O −1.56
propyne + H2 → propene −2.00
propene + H2 → propane −1.58
allene + 2H2 → propane −3.64
iso-butane → trans-butane 0.08
CO + H2O → formic acid −0.39
CH4 + CO2 → acetic acid 0.28
CH4 + CO + H2 → ethanol −0.91
1,3-cyclohexadiene → 1,4-cyclohexadiene −0.01
benzene + H2 → 1,4-cyclohexadiene −0.01
1,4-cyclohexadiene + 2H2 → cyclohexane −2.94

larger complexes, the reported basis-set effects are significant,
so we use here the CCSD(T)/CBS energies of Takatani et al.61

as the current best estimate of the true S22 interaction energies.
The S22x5 (Ref. 52) CCSD(T)/CBS potential-energy

curves were reported more recently. The computational proto-
col was, however, not updated from that used for S22, so we
expect the aforementioned interaction-energy inaccuracies to
persist for S22x5. In order to shift the equilibrium point on each
PEC to the revised S22 energies, and approximately correct
the remaining data points, a modification of the (possibly)
slightly inaccurate S22x5 CCSD(T) interaction energies is here
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introduced as

Ed
int := εd

int × E1.0
int

ε1.0
int

, (A4)

where Ed
int and εd

int denote modified and original S22x5
energies at the relative intermolecular distance d, respectively.
For E1.0

int = ε1.0
int , Eq. (A4) obviously reduces to Ed

int = εd
int for

all distances. The obtained corrections to εd
int are listed in

Table XI. The maximum correction of 11.4% amounts to
25.6 meV for the indole-benzene complex in a stacked
geometry, while the total mean signed correction to all the
110 interaction energies is 0.1 meV.

The modified CCSD(T) interaction energies are used
throughout this study for the S22x5 data set and subsets.
Each density functional interaction energy Ed

int is calculated
as the difference between the total electronic energy of the
interacting complex Ed

0 and those of its two isolated molecular
constituents Ed

1 and Ed
2 :

Ed
int = Ed

0 − Ed
1 − Ed

2 . (A5)

TABLE XI. Corrections Ed
int − εd

int to the S22x5 interaction
energies in Ref. 52 computed from Eq. (A4). Reported statistics are
most negative (min), most positive (max), mean signed (msc), and
mean absolute (mac) interaction energy correction at each distance.
Furthermore, the total mean signed (MSC) and total mean absolute
(MAC) energy corrections over all 110 energies are reported in the
bottom rows. All energies in meV.

Relative interaction distance d

Complex E1.0
int /ε

1.0
int 0.9 1.0 1.2 1.5 2.0

1 −1.0% −1.0 −1.3 −1.0 −0.5 −0.1
2 −1.0% −1.9 −2.2 −1.8 −1.0 −0.4
3 −1.1% −8.0 −9.1 −7.6 −4.5 −1.8
4 −1.1% −6.5 −7.3 −6.1 −3.7 −1.6
5 −1.1% −9.2 −10.0 −8.4 −5.1 −2.2
6 −1.8% −11.8 −13.0 −10.8 −6.4 −2.5
7 −2.3% −14.7 −16.0 −13.0 −7.3 −2.5
8 0.0% 0.0 0.0 0.0 0.0 0.0
9 −1.2% −0.4 −0.8 −0.4 −0.1 0.0
10 3.2% 1.5 2.1 1.6 0.7 0.2
11 6.8% 0.4 8.3 5.7 1.6 0.2
12 6.9% 5.1 13.5 9.0 2.9 0.6
13 1.3% 3.8 5.6 3.6 1.4 0.4
14 11.4% 10.5 25.6 17.8 5.3 0.5
15 4.6% 15.9 24.3 16.4 6.5 1.8
16 −1.4% −0.7 −0.9 −0.7 −0.3 −0.1
17 −0.6% −0.8 −0.9 −0.7 −0.4 −0.1
18 1.3% 1.1 1.3 1.0 0.5 0.2
19 −0.7% −1.2 −1.3 −1.1 −0.6 −0.2
20 3.2% 3.1 3.9 3.1 1.6 0.5
21 2.1% 4.5 5.2 4.4 2.5 1.0
22 −0.6% −1.6 −1.8 −1.5 −0.9 −0.4

min −2.3% −14.7 −16.0 −13.0 −7.3 −2.5
max 11.4% 15.9 25.6 17.8 6.5 1.8
msc 1.2% −0.5 1.1 0.4 −0.4 −0.3
mac 2.5% 4.7 7.0 5.3 2.4 0.8

MSC 0.1
MAC 4.0

TABLE XII. Experimental solid-state properties of 27 cubic bulk
solids. The ZPAE exclusive Sol27LC 0-K lattice constants a0 (Å) are
adapted from Ref. 98. 0-K Sol27Ec cohesive energies Ec (eV/atom)
from Ref. 125 are corrected for ZPVE contributions. Strukturbericht
symbols are indicated in parentheses for each solid. A1: fcc, A2: bcc,
A3: hcp, A4: diamond.

Sol27LC Sol27Ec

Solid a0 Ec ZPVEa

Li (A2) 3.451 1.66 0.033
Na (A2) 4.209 1.13 0.015
K (A2) 5.212 0.94 0.009
Rb (A2) 5.577 0.86 0.005
Ca (A1) 5.556 1.86 0.022
Sr (A1) 6.040 1.73 0.014
Ba (A2) 5.002 1.91 0.011
V (A2) 3.024 5.35 0.037
Nb (A2) 3.294 7.60 0.027
Ta (A2) 3.299 8.12 0.023
Mo (A2) 3.141 6.86 0.044
W (A2) 3.160 8.94 0.039
Fe (A2) 2.853 4.33 0.046
Rh (A1) 3.793 5.80 0.047
Ir (A1) 3.831 6.98 0.041
Ni (A1) 3.508 4.48 0.044
Pd (A1) 3.876 3.92 0.027
Pt (A1) 3.913 5.86 0.023
Cu (A1) 3.596 3.52 0.033
Ag (A1) 4.062 2.97 0.022
Au (A1) 4.062 3.83 0.016
Pb (A1) 4.912 2.04 0.010
Al (A1) 4.019 3.43 0.041
C (A4) 3.544 7.59 0.216
Si (A4) 5.415 4.69 0.063
Ge (A4) 5.639 3.89 0.036
Sn (A4) 6.474 3.16 0.019

aZPVE corrections are calculated according to Eq. (A6) using Debye
temperatures from Ref. 125.

Computational accuracy is enhanced by keeping all atoms
in the molecular fragments in the same positions in the box
as those atoms have when evaluating the total energy of the
complex.

5. Sol27LC and Sol27Ec

It was recently shown78 that removal of thermal and
zero-point contributions to experimentally determined lattice
constants and bulk moduli may be important when benchmark-
ing density functional methods. Experimental zero Kelvin
lattice constants and cohesive energies (Ec) contain zero-point
vibrational contributions, leading to zero-point anharmonic
expansion (ZPAE) of the lattice and zero-point vibrational
energy (ZPVE) contributions to Ec. As discussed in Ref. 138,
an estimate of the ZPVE may be obtained from the Debye
temperature �D of the solid according to

ZPVE = − 9
8kB�D. (A6)

The vibrational contribution is subtracted from the cohesive
energy, leading to increased stability of the crystal towards
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atomization. The same reference derived a semiempirical
estimate of the ZPAE contribution to the volume of cubic
crystals. A recent study18 calculating the ZPAE from first
principles largely validates this approach. The Sol27LC and
Sol27Ec sets of zero Kelvin lattice constants and cohesive
energies of 27 fcc, bcc, and diamond structured bulk solids are
appropriately corrected for zero-point phonon effects. Details
are given in Table XII.

Density functional computation of total energies of the
extended bulk solids is done using a 16×16×16 k-point
mesh for sampling reciprocal space of the periodic lattice and
0.1 eV Fermi smearing of the electron occupation numbers.
Calculations for bulk Fe, Ni, and Co are spin polarized.
The cohesive energy for a given crystal lattice constant a is
calculated from

Ec = EA − EB, (A7)

where EA is the total energy of the free atom and EB is the
bulk total energy per atom. By this definition, the equilibrium
cohesive energy of a stable solid is a positive quantity.
Equilibrium lattice constants of cubic crystals a0 are deter-
mined from fitting the stabilized jellium equation of state
(SJEOS, Ref. 138) to cohesive energies sampled in five points
in a small interval around the maximum of the Ec(a) curve.

6. CE17 and CE27

The CE17 and CE27 data are derived from temperature-
programed desorption experiments or from microcalorimetry,
most often at low coverage. The 27 chemisorption energies
have been critically chosen from literature with emphasis on
reliability as well as covering a reasonably wide range of
substrates and adsorbates. All data are listed in Table XIII
along with details regarding adsorption mode, adsorption site,
and references.

Most of the CE27 surface reactions are molecular ad-
sorption processes at 0.25 ML coverage. In that case, the
chemisorption energy is computed according to

�E = EAM − EM − xEA, (A8)

where EAM is the total electronic energy of the adsorbate A on
metal surface M , and EA and EM total energies of the isolated
adsorbate and metal surface, respectively. The constant x

equals 1 for molecular adsorption and N2 dissociation on
Fe(100), while x = 1

2 for the dissociative H2 chemisorption
reactions. In the case of NO dissociation on Ni(100) at
0.25 ML coverage, the chemisorption energy is

�E = EAM + EBM − 2EM − EAB, (A9)

where AB is the NO molecule.
With these definitions of chemisorption energies, we

consider extended surface slab models with 2×2 atoms in
each layer and five layers in total. The slab models are
periodic in the surface plane and a vacuum width of 20 Å
separates periodically repeated slabs perpendicularly to the
surface planes. Calculations involving Fe, Ni, and Co are
spin polarized. Well-converged chemisorption energies are
obtained using a 10 × 10 × 1 k-point mesh and a real-space
grid spacing around 0.16 Å. The self-consistently determined
lattice constant of the slab solid obviously determines the xy

TABLE XIII. The 27 experimental reaction energies �E for
chemisorption on late transition-metal surfaces constituting the CE27
data set. The somewhat smaller CE17 data set is a subset of CE27.
Reactions in CE17 are marked with a “�”. All chemisorption energies
are in eV per adsorbate at a surface coverage of 0.25 ML, except
where otherwise noted. The adsorption mode is indicated by “m”
(molecular) or “d” (dissociative), along with the adsorption site.
Chemisorption energies for O have been evaluated as 1

2 {�E(O2) −
Eb(O2)} with Eb(O2) = 118 kcal/mol (Ref. 126) for the dioxygen
bond energy.

Mode Site �E Reference(s)

CO/Ni(111) � m fcc −1.28 122
CO/Ni(100) m hollow −1.26 127
CO/Rh(111) � m top −1.45 122
CO/Pd(111) � m fcc −1.48 122
CO/Pd(100) � m bridge −1.60 127–130
CO/Pt(111) � m top −1.37 122
CO/Ir(111) � m top −1.58 122
CO/Cu(111) � m top −0.50 122
CO/Co(0001) � m top −1.20 122
CO/Ru(0001) � m top −1.49 122
O/Ni(111) � m fcc −4.95 130
O/Ni(100) � m hollow −5.23 130
O/Rh(100) � m hollow −4.41 130
O/Pt(111) � m fcc −3.67 131
NO/Ni(100) � d hollow −3.99 127
NO/Pd(111) � m fcc −1.86 132
NO/Pd(100) � m hollow −1.61 133
NO/Pt(111) m fcc −1.45 131
N2/Fe(100)b d hollow −2.3 134
H2/Pt(111) � d fcc −0.41 135
H2/Ni(111) d fcc −0.98 135
H2/Ni(100) d hollow −0.93 135
H2/Rh(111) d fcc −0.81 135
H2/Pd(111) d fcc −0.91 135
H2/Ir(111) d fcc −0.55 135
H2/Co(0001) d fcc −0.69 135
H2/Ru(0001)c d fcc −1.04 135

a�E is the average of −1.58, −1.67, −1.69, and −1.45 eV.
bThe coverage of atomic nitrogen is 0.5 ML.
c�E is the average of −0.83 and −1.24 eV, both from Ref. 135.

dimensions of the slab simulation cell. Since the number of
real-space grid points employed in each direction is discrete,
a grid spacing of exactly 0.16 Å in the x and y directions is
rarely possible for slab calculations. Instead, it may be slightly
smaller or larger, which should not affect the computational
accuracy significantly. During structure relaxations, the bottom
two layers of the 2 × 2 × 5 slab models are fixed in the bulk
structure as found from bulk calculations.

7. Graphene adsorption on Ni(111)

Adsorption of graphene on Ni(111) was modeled using a
1 × 1 × 5 surface slab, a Ni(fcc) lattice constant of 3.524 Å as
determined with the PBE density functional, and 20 Å vacuum
width. The top three atomic layers were fully relaxed with PBE
using a grid spacing of 0.15 Å and a (20 × 20 × 1) k-point
mesh. Carbon atoms were placed in atop and fcc adsorption
sites, respectively.
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