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Formulas are presented for calculating the relative velocity distributions in effusive, orthogonal
crossed beams and in effusive, counterpropagating beams experiments, which are two important
geometries for the study of collision processes between atoms. In addition formulas for the
distributions of collision rates and collision energies are also given.

1. Introduction

Studies of atomic collisions—and in particular collisions between laser-excited atoms—have
produced a large amount of information on atomic interactions. Numerous investigations
on excited-atom collisions have been performed at thermal temperatures in vapor cells [1–
6] and in atomic beams with different geometries [2, 7–13]. Typically, the cell experiments
give results averaged over all collision directions and over the thermal velocity distribution,
whereas the beam experiments allow more information to be extracted from the collision
process, for example, the dependence of the collision dynamics on the atomic polarization.

The collision velocity is an important parameter in a collision process, and a
knowledge of the relative collision velocities in the experimental setups is therefore essential
for a careful analysis of a crossed beams experiment. This is often done using numerical
simulations, but more insight can be obtained from analytical solutions using kinetic gas
theory.

Two important cases are experiments where the two effusive beams are either crossed
at right angles or counterpropagating, and for these two cases a number of useful formulas
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are presented for the distribution of relative velocities, collision velocities, and collision
energies.

2. Velocity Distributions

In the following analysis of two crossed or counter-propagating beams, intrabeam collisions
will be neglected, that is, the collisions between the atoms within a single beam (“head-tail”
collisions). Intrabeam collisions in a single beam have been analyzed by Baylis [14], where
formulas for the relative-velocity distribution and moments of the distribution are given. For
crossed beams, numerical results and some related integrals have been given by Berkling
et al. [15] and by Meijer [16]. A single molecular beam from an oven has been treated by
Leiby and Besse [17], and supersonic nozzle beams have been described by Haberland et
al. [18]. Recently Battaglia et al. [19] have described the velocity distribution of thermionic
electrons.

2.1. Relative-Velocity Distributions

The determination of the distribution of relative velocities requires a knowledge of the
velocity distribution of each beam. We will assume that the beams are produced from an
effusive source with a thin-walled orifice and the velocity distribution can then be calculated
from kinetic gas theory as a Maxwell-Boltzmann distribution, which is confined to one
direction through an aperture. The distribution becomes [14]

f(v,m, T) =

(
2m3

πk3T3

)1/2

v2e−mv2/2kT , (2.1)

where v ≥ 0 because it is a beam in one direction. Measurements on atomic beams have
shown that (2.1) is a good description of the velocity distribution [20].

For the general case of two beams, one with a distribution f(v1, m1, T1) and one with
a distribution f(v2, m2, T2), the distribution function F of the relative velocity is found by
convoluting the two distributions. Using vrel for the relative velocity, the convolution is
written as follows:

F(vrel) =
∫∞
0
dv1

∫∞
0
dv2f(v1, m1, T1)f(v2, m2, T2)δ(vrel − |�v1 − �v2|). (2.2)

In an experiment with well-collimated counter-propagating (cp) beams, the length of
the velocity vector |�v1 − �v2| is given by

|�v1 − �v2|cp = v1 + v2, (2.3)

whereas with orthogonal crossed beams (cb) the length is

|�v1 − �v2|cb =
√
v2
1 + v2

2 . (2.4)
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In a single beam (sb), the length is

|�v1 − �v2|sb = |v1 − v2|, (2.5)

and as mentioned in the introduction an analytical expression of Fsb(vrel) has been given by
Baylis [14] for the case when T1 = T2.

With counter-propagating beams, after inserting (2.3) in (2.2) and integrating over v2,
we get (note that the limit of integration has been changed as v1 ≤ vrel, because 0 ≤ v2 =
vrel − v1)

Fcp(vrel) =
∫vrel

0
dv1f(v1, m1, T1)f(vrel − v1, m2, T2). (2.6)

The integration (Several of the integrations were performed using Mathematica.)
yields the result:

Fcp(vrel) =
2

πk3

√
m3

1m
3
2

×
{
k
√
T1T2vrel

(−4km2
2T

2
1 − 3km1m2T1T2 + km2

1T
2
2 +m1m

2
2T1v

2
rel

)
(m1T2 +m2T1)4 exp

(
m1v

2
rel/2kT1

)

+
k
√
T1T2vrel

(−4km2
1T

2
2 − 3km1m2T1T2 + km2

2T
2
1 +m2

1m2T2v
2
rel

)
(m1T2 +m2T1)4 exp

(
m2v

2
rel/2kT2

)

+

√
πk/2

(
3k2m2

2T
3
1T2 + 6k2m1m2T

2
1T

2
2 + 3k2m2

1T1T
3
2 + km3

2T
3
1v

2
rel

)
(m1T2 +m2T1)9/2 exp

(
m1m2v

2
rel/2k(m1T2 +m2T1)

)

+

√
πk/2

(−3km1m
2
2T

2
1T2v

2
rel − 3km2

1m2T1T
2
2v

2
rel + km3

1T
3
2v

2
rel +m2

1m
2
2T1T2v

4
rel

)
(m1T2 +m2T1)9/2 exp

(
m1m2v

2
rel/2k(m1T2 +m2T1)

)

×
[
erf

(
m2
√
T1vrel√

2kT2(m1T2 +m2T1)

)
+ erf

(
m1
√
T2vrel√

2kT1(m1T2 +m2T1)

)]}
.

(2.7)

The unit of the distribution function is s·m−1, and the function has been integrated
analytically from 0 to ∞ to verify that the result is 1 as expected from the normalization.
Unfortunately with typical values for m1,2 and T1,2, the argument of the error-function is not
close to 0 or ∞, so the factor cannot be simplified further.

For orthogonal crossed beams, the result of inserting (2.4) in (2.2) and performing the
integration gives

Fcb(vrel)

=
(

m1m2

4k2T1T2

)3/2

v5
rel exp

(
− (m1T2 +m2T1)v2

rel

4kT1T2

)
0F

reg
1

(
; 2;

(m1T2 −m2T1)2v4
rel

64k2T2
1T

2
2

)
,

(2.8)



4 Advances in Mathematical Physics

where 0F
reg
1 is the regularized hypergeometric function given by

0F
reg
1 (;a; z) =

1
Γ(a)

∞∑
n=0

zn

(a)nn!
. (2.9)

The expressions (2.7) and (2.8) can be integrated to find the mean value of the relative
velocity, which is given as

〈vrel〉 =

∫∞
0 dvrelvrelF(vrel)∫∞

0 dvrelF(vrel)
. (2.10)

Note that because of the normalization of F, the denominator is just 1. The result of
inserting (2.7) in (2.10) and performing the integration yields the surprisingly simple result:

〈vrel〉cp =

√
8kT1
πm1

+

√
8kT2
πm2

, (2.11)

which, however, can be understood as stating that the mean relative velocity is just the sum of
the two mean velocities, 〈vMB〉1,2, of the Maxwell-Boltzmann distribution from the two beam
sources. This value is found from (2.1) and yields

〈vMB〉 =

√
8kT
πm

. (2.12)

For orthogonal crossed beams, the expression for themean relative velocity, using (2.8)
and (2.10), becomes

〈vrel〉cb = 15
√
π

(
m1m2T1T2

(m1T2 +m2T1)2

)3/2√
kT1T2

m1T2 +m2T1
2F1

(
7
4
;
9
4
; 2;

(m2T1 −m1T2)2

(m1T2 +m2T1)2

)
,

(2.13)

where 2F1 is the hypergeometric function given by

2F1(a; b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
. (2.14)
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In the particular case of two identical crossed beams with m = m1 = m2 and T = T1 =
T2, the expressions above can be simplified considerably. For counter-propagating beams, the
relative-velocity distribution (2.7) becomes

Fcp(vrel)

=
mvrel

(−6kT +mv2
rel

)
4πk2T2 exp

(
mv2

rel/2kT
) +

√
m
(
12k2T2 − 4kmTv2

rel +m2v4
rel

)
8
√
πk5/2T5/2 exp

(
mv2

rel/4kT
) erf

⎛
⎝
√

mv2
rel

4kT

⎞
⎠,

(2.15)

and the mean relative velocity is given as

〈vrel〉cp =

√
32kT
πm

= 2〈vMB〉. (2.16)

For identical orthogonal crossed beams, (2.8) reduces to

Fcb(vrel) =
(

m

2kT

)3

v5
rel exp

(
−mv2

rel

2kT

)
, (2.17)

and (2.13) reduces to

〈vrel〉cb =
15π
32

〈vMB〉. (2.18)

Note that 15π/32 = 1.47 � √
2 as would have been expected for orthogonal crossed beams

with the singular velocity 〈vMB〉. The expression (2.17) for identical crossed beams has also
been obtained by Bezuglov et al. [21], Weiner et al. [22], andHuynh et al. [23]. Note, however,
that equation (B6) in Huynh et al. [23] should be replaced by (2.2)–(2.5) of this paper. The
expression (2.15) for identical counter-propagating beams has not been presented previously,
but numerical integrations were performed in Meijer [16] and Huynh et al. [23]. Numerical
results for 〈vrel〉 in identical beams can also be found in Meijer [16]. In Figure 1 examples of
relative velocity distributions are shown for the case of identical beams (sodium with T =
575K) using (2.15) and (2.17) and different beams (sodium with T = 575K and potassium
with T = 475K) using (2.7) and (2.8). The sodium temperature has been chosen to allow for
a comparison with the numerical results of Meijer [16], and the potassium temperature has
been selected to yield approximately the same density as a sodium vapor at 575K.

2.2. Collision-Rate Distributions

The distribution functions F(vrel) describe the distribution of relative velocities of the atom
pairs. However, since atom pairs with low relative velocity will have a lower collision
frequency compared to atom pairs with high relative velocity and since the atomic beams are
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Figure 1: (a) shows relative velocity distributions for two identical beams (sodium with T = 575K), for
crossed beams (cb) and for counter-propagating (cp) beams, respectively. The arrows indicate the mean
relative velocity. (b) shows relative velocity distributions for the two configurations where a sodium beam
with T = 575K collides with a potassium beam with T = 475K.

used to study collision processes, a more important function is the collision-rate distribution
ncol(vrel), that is, the collision rate as a function of relative velocities, which is given by

ncol(vrel) = σ(vrel)vreln0, (2.19)

where σ(vrel) is the collision cross-section and n0 the number density.
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If we assume that σ(vrel) is velocity independent and that n0 is a constant, we obtain
(as also pointed out by Meijer [16]) that the distribution function for the collision rate
simplifies to

Fcol(vrel) = vrelF(vrel). (2.20)

We note that under these assumptions, the distribution function for the collision rate is
identical to the distribution function for the collision velocities and that Fcol with this choice
becomes dimensionless since the units of F are s·m−1.

Now the distribution of the collision rates (or collision velocities) for the two beam
geometries can be found using (2.7) and (2.11) or (2.8) and (2.13). The expressions are not
reproduced here, but in Figure 2 the distributions for the collision velocities for the same
systems as in Figure 1 are shown. By comparing the set of figures it can be seen that the
mean relative velocity is not identical to the mean collision velocity but that the distribution
of collision rates as expected is shifted to higher velocities.

A useful quantity is the mean value of the collision velocity, which is given by

〈vcol〉 =

∫∞
0 dvrelvrelFcol(vrel)∫∞

0 dvrelFcol(vrel)
=

∫∞
0 dvrelv

2
relF(vrel)∫∞

0 dvrelvrelF(vrel)
=

〈
v2
rel

〉
〈vrel〉 .

(2.21)

To find 〈vcol〉, the second moment of vrel, has to be calculated, which for counter-propagating
beams is given by (using that the normalization is 1)

〈
v2
rel

〉cp
=
∫∞
0
dvrelv

2
relF

cp(vrel) =
3kT1
m1

+
3kT2
m2

+ 2

√
8kT1
πm1

√
8kT2
πm2

, (2.22)

and the mean collision velocity is then found from (2.11), (2.21), and (2.22) as

〈vcol〉cp =
8 + (3/2)π

(√
m1T2/m2T1 +

√
m2T1/m1T2

)
4
(√

πm1/8kT1 +
√
πm2/8kT2

) . (2.23)

It is also possible to find the width of the collision velocity distribution from its
definition:

Δvcol =
√〈

v2
rel

〉
Fvcol

− 〈vrel〉2Fvcol
=

√√√√〈v3
rel

〉
〈vrel〉 −

(〈
v2
rel

〉
〈vrel〉

)2

. (2.24)



8 Advances in Mathematical Physics

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0 500 1000 1500 2000 2500 3000
vrel (m/s)

F
v

co
l
(s

/
m
)

1164 m/s

1585 m/s

Na-Na, cb
Na-Na, cp

(a)

0 500 1000 1500 2000 2500 3000
0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

Na-K, cb
Na-K, cp

vrel (m/s)

1007 m/s

1349 m/s

F
v

co
l
(s

/
m
)

(b)

Figure 2: (a) shows collision velocity distributions for identical crossed sodium beams (cb) and counter-
propagating (cp) sodium beams with T = 575K. The arrows indicate the mean relative collision velocity.
(b) shows relative collision velocity distributions for a sodium beamwith T = 575K and a potassium beam
with T = 475K.

The third moment of the relative velocity is found just as the second:

〈
v3
rel

〉
=
∫∞
0
dvrelv

3
relF(vrel). (2.25)
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However, the expression for the third moment is quite large, so the substitutions x = m1T2
and y = m2T1 are used. With this notation one obtains

〈
v3
rel

〉cp
=
(

k

m1m2

)3/2 √
2xy

√
π
(
x + y

)9/2
×
[
3
√
x + y

(
x9/2 − 3x7/2y + x5/2y2 + x2y5/2 − 3xy7/2 + y9/2

)

+

√
1 +

x

y

(
8x5 + 50x4y + 120x3y2 + 137x2y3 + 89xy4 + 15y5

)

+
√
1 +

y

x

(
15x5 + 89x4y + 137x3y2 + 120x2y3 + 50xy4 + 8y5

)]
.

(2.26)

The width of the collision-velocity distribution then becomes

Δv
cp
col

=

√
k

2m1m2
(√

x +√
y
)

×
{√

xy
(√

x +√
y
)

(
x + y

)9/2 ×
[
3
√
x + y

(
x9/2 − 3x7/2y + x5/2y2 + x2y5/2 − 3xy7/2 + y9/2

)

+

√
1 +

x

y

(
8x5 + 50x4y + 120x3y2 + 137x2y3 + 89xy4 + 15y5

)

+
√
1 +

y

x

(
15x5 + 89x4y + 137x3y2 + 120x2y3 + 50xy4 + 8y5

)]

−3π
(
x + y

)
+ 16√xy

4π

}1/2

.

(2.27)

For orthogonal crossed beams, the second moment of Fcb(vrel) is found as

〈
v2
rel

〉cb
=

3k(m1T2 +m2T1)
m1m2

, (2.28)

and the mean collision velocity is found from (2.13), (2.21), and (2.28) as

〈vcol〉cb =

√
k(m1T2 +m2T1)9/2

5
√
π(m1m2)5/2(T1T2)2

1

2F1

(
7/4; 9/4; 2; (m1T2 −m2T1)2/(m1T2 +m2T1)2

) . (2.29)
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The third moment of the relative velocity is given as

〈
v3
rel

〉cb
=

210
√
π
(
km1m2T

2
1T

2
2

)3/2
(m1T2 +m2T1)9/2

2F1

(
9/4; 11/4; 2; (m1T2 −m2T1)2/(m1T2 +m2T1)2

)
,

(2.30)

and the width of the collision-velocity distribution becomes

Δvcb
col =

⎛
⎜⎝ 14kT1T2

m1T2 +m2T1

2F1

(
9/4; 11/4; 2; (m1T2 −m2T1)2/(m1T2 +m2T1)2

)
2F1

(
7/4; 9/4; 2; (m1T2 −m2T1)2/(m1T2 +m2T1)2

)

− k(m1T2 −m2T1)9

25π(m1m2)5(T1T2)4
1

2F1

(
7/4; 9/4; 2; (m1T2 −m2T1)2/(m1T2 +m2T1)2

)2
⎞
⎟⎠

1/2

.

(2.31)

The results are simplified by setting m = m1 = m2 and T = T1 = T2. The second mo-
ments of the relative velocity now become

〈
v2
rel

〉cp
=

8 + 3π
4

〈vMB〉2,
〈
v2
rel

〉cb
=

3π
4
〈vMB〉2.

(2.32)

The mean collision velocities reduce to

〈vcol〉cp =
8 + 3π

8
〈vMB〉, (2.33)

〈vcol〉cb =
8
5
〈vMB〉. (2.34)

By comparison with (2.16) and (2.18), it can be noted that 〈vcol〉cp is 8.9% higher than 〈vrel〉cp
and that 〈vcol〉cb is 8.6% higher than 〈vrel〉cb.

The third moments are

〈
v3
rel

〉cp
=

13π
4

〈vMB〉3,
〈
v3
rel

〉cb
=

105π2

256
〈vMB〉3,

(2.35)
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and the widths of the distributions reduce to

Δv
cp
col =

√
56π − 64 − 9π2

64
〈vMB〉, (2.36)

Δvcb
col =

√
7π
8

− 64
25

〈vMB〉. (2.37)

It is interesting to observe that the ratio Δvcol/〈vcol〉 is independent on T and m
and has a value of about 27% for both configurations. Similar relations for Δvrel can easily
be found using the formulas in this section. Again one finds that the ratio Δvrel/〈vrel〉 is
independent on T andm and has a value of about 30% for the two configurations considered
here.

2.3. Collision-Energy Distributions

A relevant quantity for the physics in the collision processes is collision energy, which is given
by Erel = (1/2)μv2

rel, where μ = m1m2/(m1 +m2) is the reduced mass. To find the distribution
function for the collision energy, we note that the collision rate ncol can bewritten as a function
of the relative energy, and using the chain rule and (2.20), one obtains

ncol(Erel) = ncol(vrel)
dvrel

dErel
= ncol(vrel)

1
μvrel

=
F(vrel)

μ
. (2.38)

Since μ has dimensions of a mass, ncol(Erel) has the dimensions s·m−1·kg−1.
To find the normalization for the distribution of the collision energy we use (2.38) to

calculate

∫∞
0
dErelncol(Erel) =

∫∞
0
dvrelvrelF(vrel) = 〈vrel〉, (2.39)

and the distribution function FEcol for the collision energy is therefore

FEcol(vrel) =
ncol(Erel)
〈vrel〉 =

F(vrel)
μ〈vrel〉 . (2.40)
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Figure 3: (a) shows distributions of collision energies for identical crossed sodium beams (cb) and counter-
propagating (cp) sodium beams with T = 575K. The arrows indicate the mean collision energy. (b) shows
collision energy distributions for a sodium beam with T = 575K and a potassium beam with T = 475K.

The graphs for FEcol(vrel) can then be obtained by a simple transformation of the
ordinate in Figure 2. Another option is to show the distribution using Erel as the argument.
The result of transforming the abscissa in Figure 2 from vrel to Erel and using (2.40) for the
two beam geometries is shown in Figure 3, again for the two systems, Na-Na and Na-K.
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The mean collision energy is then

〈Ecol〉 = 〈Erel〉FEcol
=
∫∞
0
dErelErelFEcol(vrel)

=
1

μ〈vrel〉
∫∞
0
dvrelμvrel

1
2
μv2

relF(vrel) =
μ

2

〈
v3
rel

〉
〈vrel〉 .

(2.41)

By comparison with (2.21), it can be noted that this is different from (1/2)μ〈vcol〉2. Finally,
after deriving 〈E2

col〉 analogous to (2.41), the width of the collision energy distribution can be
found as

ΔEcol =
√〈

E2
rel

〉
FEcol

− 〈Erel〉2FEcol
=

√√√√μ2

4
·
〈
v5
rel

〉
〈vrel〉 −

(
μ

2
·
〈
v3
rel

〉
〈vrel〉

)2

. (2.42)

Using (2.11) and (2.26), the mean collision energy for counter-propagating beams is
found from (2.41) as follows:

〈Ecol〉cp =
k
√
xy

4(m1 +m2)
(√

x +√
y
)(
x + y

)9/2
×
[
3
√
x + y

(
x9/2 − 3x7/2y + x5/2y2 + x2y5/2 − 3xy7/2 + y9/2

)

+

√
1 +

x

y

(
8x5 + 50x4y + 120x3y2 + 137x2y3 + 89xy4 + 15y5

)

+
√
1 +

y

x

(
15x5 + 89x4y + 137x3y2 + 120x2y3 + 50xy4 + 8y5

)]
.

(2.43)
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The fifth moment is given by

〈
v5
rel

〉cp

= 3

√
2
π

(
k

m1m2

)5/2 1(
x + y

)9/2
×
[
x1/2y5/2

√
1 +

x

y

(
466x4 + 744x3y + 631x2y2 + 295xy3 + 35y4

)

+ x5/2y1/2
√
1 +

y

x

(
35x4 + 295x3y + 631x2y2 + 744xy3 + 466y4

)

+
√
x + y

(
16x13/2 + 15x6y1/2 + 144x11/2y − 15x5y3/2 + 5x4y5/2

)

+
√
x + y

(
5x5/2y4 − 15x3/2y5 + 144xy11/2 + 15x1/2y6 + 16y13/2

)]
,

(2.44)

and using (2.42), the width of the collision-energy distribution becomes

ΔE
cp
col

=
k

4(m1 +m2)
(√

x +√
y
)

×
{
6
(√

x +√
y
)

(
x + y

)9/2 ×
[
x1/2y5/2

√
1 +

x

y

(
466x4 + 744x3y + 631x2y2 + 295xy3 + 35y4

)

+ x5/2y1/2
√
1 +

y

x

(
35x4 + 295x3y + 631x2y2 + 744xy3 + 466y4

)

+
√
x + y

(
16x13/2 + 15x6y1/2 + 144x11/2y − 15x5y3/2 + 5x4y5/2

)

+
√
x + y

(
5x5/2y4 − 15x3/2y5 + 144xy11/2 + 15x1/2y6 + 16y13/2

)]

− x2y2(
x + y

)9
[
3
√
x + y

(
x9/2 − 3x7/2y + x5/2y2 + x2y5/2 − 3xy7/2 + y9/2

)

+

√
1 +

x

y

(
8x5 + 50x4y + 120x3y2 + 137x2y3 + 89xy4 + 15y5

)

+
√
1 +

y

x

(
15x5 + 89x4y + 137x3y2 + 120x2y3 + 50xy4 + 8y5

)]2⎫⎬
⎭

1/2

.

(2.45)
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For orthogonal crossed beams, the corresponding relations are

〈Ecol〉cb =
7km1m2T1T2

(m1 +m2)(m1T2 +m2T1)

2F1

(
9/4; 11/4; 2; (m1T2 −m2T1)2/(m1T2 +m2T1)2

)
2F1

(
7/4; 9/4; 2; (m1T2 −m2T1)2/(m1T2 +m2T1)2

) ,

(2.46)

the fifth moment is

〈
v5
rel

〉cb
=

3780
√
πk5/2(m1m2)3/2(T1T2)4

(m1T2 +m2T1)11/2
2F1

(
11/4; 13/4; 2;

(m1T2 −m2T1)2

(m1T2 +m2T1)2

)
, (2.47)

and the width of the collision-energy distribution is

ΔE
cp
col =

√
7km1m2T1T2

(m1 +m2)(m1T2 +m2T1)
1

2F1

(
7/4; 9/4; 2; (m1T2 −m2T1)2/(m1T2 +m2T1)2

)

×
[
92F1

(
7/4; 9/4; 2;

(m1T2 −m2T1)2

(m1T2 +m2T1)2

)
2F1

(
11/4; 13/4; 2;

(m1T2 −m2T1)2

(m1T2 +m2T1)2

)

− 72F1

(
9/4; 11/4; 2;

(m1T2 −m2T1)2

(m1T2 +m2T1)2

)2
⎤
⎦

1/2

.

(2.48)

Finally, the reduced formulas obtained by setting m = m1 = m2 and T = T1 = T2 are
found as

〈Ecol〉cp =
13
4
kT, (2.49)

〈Ecol〉cb =
7
4
kT, (2.50)

〈
v5
rel

〉cp
=

219π2

32
〈vMB〉5, (2.51)

〈
v5
rel

〉cb
=

945π3

2048
〈vMB〉5, (2.52)

ΔE
cp
col =

5√
8
kT, (2.53)

ΔEcb
col =

√
7
8
kT. (2.54)
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Table 1: Values (see text) for counter-propagating identical sodium beams with temperatures T = 575, 823
and 1,000K.

T (K) 〈vrel〉 (m/s) 〈vcol〉 (m/s) Δvcol (m/s) 〈Ecol〉 (meV) ΔEcol (meV) v(Ecol) (m/s)
575 1, 455 1, 585 437 161 88 1, 644
823 1, 741 1, 896 523 230 125 1, 967
1, 000 1, 919 2, 090 576 280 152 2, 168

Note that ΔEcol/〈Ecol〉 is a constant and approximately equal to 0.54 for the two
geometries. As also discussed by Meijer [16], the collision energy may be related to a velocity
(different from the mean collision velocity) given by

v(Ecol) =

√
2〈Ecol〉

μ
, (2.55)

and for the two beam configurations, one then obtains

v(Ecol)cp =

√
13π
8

〈vMB〉, (2.56)

v(Ecol)cb = 〈vMB〉. (2.57)

By comparison with the results above, these velocities are found to be a factor of 1.04
larger than the mean collision velocities and a factor of 1.13 larger than the mean relative
velocities.

2.4. Numerical Values

In Table 1 some numerical results for two identical counter-propagating sodium beams
at three different temperatures are given (using (2.16), (2.33), (2.36), (2.49), (2.53), and
(2.56)). The lowest temperature of 575K is chosen to allow a comparison with the numerical
results obtained by Meijer [16], and our formulas reproduce his results exactly. The higher
temperature of 823K is a typical working temperature in the laboratory [24] and has been
included together with results for 1,000K to indicate the temperature dependence of the
expressions.

3. Conclusion

Atomic (and molecular) beam studies provide valuable information on collision studies,
and the collision parameters such as collision velocities and collision energies are important
quantities. In this work a number of useful and relatively simple analytic formulas are
presented for the cases where two effusive beams are either crossed at right angles or
counterpropagating. In particular the difference between themean relative velocity andmean
collision velocity has been underlined.
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Often an important number in an experiment is the fraction of collision energies that
will be above the threshold for an endothermic reaction. This number can be obtained using
the formula given in the paper and by integrating the distribution function in (2.40).
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