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Preface

This thesis was prepared at the department of Informatics and Mathematical
Modeling of the Technical University of Denmark in partial fulfillment of the
requirements for acquiring the Ph.D. degree in Engineering.

The thesis deals with different aspects of the modeling and forecasting of off-
shore wind power generation. The main focus is on the application of regime-
switching time series models, but also the exploration of weather radar obser-
vations as a new source of information for these models.

The thesis consists of a summary report and a collection of four research papers
written during the period 2009–2012.

Lyngby, November 2012

Pierre-Julien Trombe
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Summary

The present thesis addresses a number of challenges emerging from the in-
creasing penetration of renewable energy sources into power systems. Focus
is placed on wind energy and large-scale offshore wind farms. Indeed, off-
shore wind power variability is becoming a serious obstacle to the integration
of more renewable energy into power systems since these systems are subjected
to maintain a strict balance between electricity consumption and production,
at any time. For this purpose, wind power forecasts offer an essential support
to power system operators. In particular, there is a growing demand for im-
proved forecasts over very short lead times, from a few minutes up to a few
hours, because these forecasts, when generated with traditional approaches,
are characterized by large uncertainty. In this thesis, this issue is considered
from a statistical perspective, with time series models. The primary case study
is the Horns Rev wind farm located in the North Sea.

Regime-switching aspects of offshore wind power fluctuations are investigated.
Several formulations of Markov-Switching models are proposed in order to
better characterize the stochastic behavior of the underlying process and im-
prove its predictability. These models assume the existence of a hidden or un-
observable regime sequence. Estimation methods are presented in both Bayesian
and Frequentist frameworks. Markov-Switching models enable to highlight
structural breaks in the dynamics of offshore wind power generation, with al-
ternating periods of high and low variability. They also yield substantial gains
in probabilistic forecast accuracy for lead times of a few minutes. However,
these models only integrate historical and local measurements of wind power
and thus have a limited ability for notifying regime changes for larger lead
times. For that purpose, there is a long tradition in using meteorological fore-
casts of wind speed and direction that are converted into wind power forecasts.
Nevertheless, meteorological forecasts are not informative on the intra-hour
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wind variability and thus cannot be used in the present context focusing on
temporal resolutions of a few minutes. Instead, this thesis investigates the use
of weather radar observations for monitoring weather conditions in the vicin-
ity of offshore wind farms, with the ambition of establishing a link between
the passage of precipitation systems and high wind variability. The underlying
motivation of this approach is twofold. First, it aims at providing a meteoro-
logical interpretation of the hidden regimes as estimated by regime-switching
models. Second, it aims at determining an observed sequence of regimes based
on the information extracted from the observations supplied weather radar ob-
servations. This approach, combining both meteorological and statistical ex-
pertise, opens up new possibilities for designing prediction systems in wind
energy.



Resumé

Denne afhandling beskriver en række metoder til løsning af række udfordringer,
der opstår når en betydelig mængde vedvarende energiproduktion skal integr-
eres i elsystemet. Fokus er på vindenergi, specielt på store havvindmølleparker.
Et alvorligt problem for en fortsat vækst af elproduktion med havvindmølleparker
er udsving i deres elproduktion, da der stilles store krav til at balancen mellem
elproduktionen og elforbruget skal holdes, uden undtagelser. For at opnå
denne balance er prognoser af elproduktionen fra vindmøller et essentielt red-
skab for systemoperatører. Der er i særlig grad et stigende behov for bedre
prognoser med kort horisont, fra få minutter og op til et par timer frem, da
de nuværende prognoser er behæftet med relativ stor usikkerhed for korte ho-
risonter. I afhandlingen beskrives metoder, til forudsigelse af vindproduktio-
nen på korte horisonter, baseret på statistisk modellering. Det primære cases-
tudie er Horns Rev vindmøllepark i Nordsøen.

Aspekter vedrørende tilstandsskift i variabiliteten af elproduktionen fra havvin-
dmølleparker undersøges. En række formuleringer af Markov-switching mod-
eller foreslås til karakterisering af de underliggende stokastiske processer og
danner basis for forbedrede prognosemodeller. Markov-switching modellerne
er baseret på en antagelse af, at der i processerne er sekvenser af skjulte til-
stande, som kan estimeres, hvilket gøres med både med en frekventistisk og
Baysiansk tilgang. Modellerne gør det muligt af estimere strukturelle skift
i havvindmølle elproduktionens dynamik og identificere perioder skiftende
mellem høj og lav variabilitet. Desuden forbedres kvaliteten af probabilistiske
prognoser med horisonter på op til få minutter betydeligt.

Markov-switching modellerne anvendes med historisk data og lokale obser-
vationer. For at opnå yderligere forbedringer af prognoserne benyttes tradi-
tionelt meteorologiske prognoser af vindhastighed og vindretning. Dette er
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dog ikke optimalt i den nuværende kontekst til beskrivelse af variabiliteten i
vinden med henblik på prognoser med opløsning i minutter og med horison-
ter op til få timer. Derfor er der i afhandlingen beskrevet nye metoder til at
integrere vejrradar observationer med det formål, at etablere en forbindelse
mellem passerende nedbørssystemer og vindvariabilitet ved kraftig vind. Den
underliggende motivation har to vigtige aspekter. For det første, at tilveje-
bringe en meteorologisk fortolkning af de skjulte tilstande, som er estimeret i
Markov-switching modellerne. For det andet, at bestemme en sekvens af til-
stande frem i tiden på baggrund af informationen i vejrradar observationer.
Ved på denne måde at kombinere en meteorologisk og statistisk tilgang åbnes
nye muligheder for at designe prognosesystemer.
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Introduction

Wind energy in the present energy context

With the emergence of new energy demands linked to population growth or
continuous industrial development, the world energy consumption is expected
to keep on growing in the coming decades (see Figure 1). As of today, our so-
ciety is heavily reliant on fossil fuels which account for more than 80% of this
consumption (International Energy Agency, 2011). However, coal, oil and gas
are available in limited quantities and the processes for converting them into
electricity are responsible for large CO2 emissions in the atmosphere, contribut-
ing to global warming. Therefore, the transition towards a more sustainable

Figure 1: World energy consumption. (1980-2010) Historical data, (2010-2030)
Projection. (Source: U.S. Energy Information Administration)
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society is conditioned upon changes in energy consumption and production
patterns.

In that global energy context, renewable energy sources such as sun or wind are
considered credible candidates for meeting new energy demands and partly
substituting fossil fuels. First, because these resources are available in large
quantities. For instance, there is more potential energy in one hour of solar
radiations hitting the atmosphere and the surface of the Earth than the world
consumes in one year. Secondly, because their conversion into electricity is al-
most CO2 free. Thirdly, because their price as a fuel is null. Finally, because
they could enable countries, and particularly, developing countries in becom-
ing more self-sufficient in energy.

Of all alternative and renewable energy sources, wind energy is the one ex-
periencing the fastest growth. Despite the many barriers – social, political,
economic, technical (see Beck and Martinot (2004)) –, a number of countries
such as Spain and Denmark already experience a large penetration, above 10
and 20% respectively, and ambitious targets have been set for the future. Den-
mark plans to meet 35% of its final energy consumption with wind power by
2020, for instance (Danish Ministry of Climate, Energy and Building, 2012).
However, integrating such large amounts of wind power and, more generally,
renewable energy into power systems does not go without problems. In partic-
ular, wind energy characteristics represent a challenge to power system design
and operation (Ackermann et al., 2005).

Integrating wind power into power systems: what is
the issue?

Power systems are managed as dynamical systems containing uncertainty and
subjected to constraints. These systems consist of complex networks of in-
terconnected power generators (e.g., wind farms, coal power plants, hydro
power plants, etc), transmission and delivery lines for dispatching electrical
power to consumers. A first set of constraints is imposed by the layout of these
power systems (i.e., the spatial arrangement of lines and generators) and by
the respective capacities of these generators and lines. An additional constraint
imposes Transmission System Operators (TSOs) to maintain a strict balance be-
tween electricity production and consumption, at any time, in order to ensure
grid stability. In particular, one of the main issues in operating power systems
is to meet peaks in the electricity demand often associated with cold weather in
the winter. The uncertainty in managing power systems stems from the spatio-
temporal variability of the electricity demand (i.e., the load) and generation,
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as well as the availability of power generators. For instance, the behavior of an
electricity consumer is not known in advance, neither is the time when a fault
causes a power plant to stop generating electricity.

The integration of large amounts of wind power into power systems is cur-
rently a challenge because wind differs from conventional fuels (e.g., coal,
gas) in many aspects. Firstly, wind is not dispatchable. This means that wind
power can only be generated in places where wind is available in sufficient
quantities, potentially far from where the power is needed and/or in remote
locations (e.g., out at sea or mountainous regions). Secondly, wind cannot
be stored, and the generated power is either instantaneously integrated into
power systems, potentially forcing conventional power units to decrease or
stop their production, or lost. Thirdly, wind is governed by the dynamics of
the atmosphere which makes it variable. Consequently, its output power is
also variable.

Historically, power systems were designed to handle the variability of the load
while that of the generation was considered of lesser importance, in compari-
son. However, with the growing penetration of wind power, the inherent and
potentially extreme variability of wind power substantially increases the un-
certainty in managing power systems. In that respect, there is not a unique
solution for handling this uncertainty as power systems have different speci-
ficities. Rather, a number of changes can be applied to power system design
and operation to optimize their safe and economic management: (i) the deploy-
ment of energy storage technologies such as pumped storage plants or heat
pumps (Hewitt, 2012), (ii) an increase in backup capacity with more fast-acting
generators such as coal and heat power (CHP) plants, and (iii) new transmis-
sion and interconnection lines, or an increased use of existing ones. Yet, all
these changes go towards a same direction, an extension of the power system
infrastructure which comes at a high cost. Furthermore, an increased use of
CHP plants would not be in line with policies aiming at reducing CO2 emis-
sions. Another possible change is to apply Demand Side Management (DSM)
principles. They consist of introducing more flexibility in the load by induc-
ing changes in electricity consumption patterns, through financial incentives
for instance. However, the deployment of DSM technologies will not be imme-
diate, mainly because of social acceptance issues (e.g., , installation of meter-
ing devices in individual homes, changes in consumer mentality), as discussed
in (Strbac, 2008). Ultimately, the most cost-effective change for reducing that
uncertainty is through an increased use of wind power forecasts. The use of
forecast information offers the advantage of already being a well spread prac-
tise in managing power systems. In particular, TSOs have long relied on the
availability of accurate load forecasts for reducing the uncertainty associated
with the load variability (Gross and Galiana, 1987). Today, wind power fore-
casts are already used by many electrical utilities for their operations and their
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value is clearly acknowledged as they reduce operating costs (Giebel et al.,
2011).

Wind power forecasts

A wealth of approaches and models have been proposed for generating ac-
curate wind power forecasts (Giebel et al., 2011). However, with the growing
share of wind power into power systems, improving the accuracy of these fore-
casts is paramount (Jones and Clark, 2011). Wind power forecasts are required
at different spatio-temporal scales and horizons, depending on their intended
application. Traditionally, five time scales are considered:

1. Ultra short-term (second range): applications include the control of indi-
vidual wind turbine control (e.g., the pitch angle of blades).

2. Very short-term (minute range, up to 1 hour ahead): applications include
the management of the immediate regulating and spinning reserves. The
former reserve is activated over time intervals of 15–20 minutes, after
the system experiences a sudden and large deviation between scheduled
and actual power generation. The latter reserve corresponds to the extra
capacity available by increasing the power output of generators already
connected to the power system.

3. Short-term (hour range, from 0 up to 2-3 days ahead): applications in-
clude the operation of supplemental reserve (e.g., the extra capacity non
connected to the power system that requires a delay to be activated),
scheduling unit commitment and economic dispatch, trading of electric-
ity on energy markets,

4. Medium term (day range, from 0 up to 7 days ahead): economic dispatch
and unit commitment of large power plants.

5. Long-term (week range): applications include planning maintenance oper-
ations of wind farms.

In addition, these forecasts can be issued at different spatial scales, from single
wind farms, to regions or a whole power system. In that respect, wind power
predictability over regions tends to improve with the spatial dispersion of wind
farms, owing to the smoothing effect of wind power variability (Focken et al.,
2002).

A unique type of model or approach cannot be used for meeting the require-
ments over all spatio-temporal scales. Rather, the choice of an approach is
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modulated by the horizon of interest. The first type of approach is physical. It
relies on Numerical Weather Prediction (NWP) models and dynamical equa-
tions of atmospheric flows for generating meteorological forecasts. These fore-
casts can potentially be refined by integrating information on the terrain such
as the roughness or orography. Meteorological forecasts are then converted to
wind power forecasts through an idealized power curve, as shown in Figure 2.
NWP models are usually run from 2 to 4 times a day. The temporal resolution
of NWP forecasts is between 1 and 3 hours. Physical approaches are well suited
for short and medium term forecasts. A good introduction on NWP models is
given in Monteiro et al. (2009). The second type of approach is mathemati-
cal and consists of using statistical models (e.g., time series models, artificial
neural networks) to find out spatio-temporal dependencies between the wind
power production and explanatory variables (e.g., historical observations of
wind or wind power). This type of approach usually outperforms physical ap-
proaches for very short-term forecasts and up to 6 hours ahead. A third type
of approach consists of combining both NWP and statistical models. The NWP
models are first used for generating forecasts of meteorological variables (e.g.,
wind speed and direction, temperature, air density) that can be converted to
wind power forecasts with kernel smoothing techniques a posteriori. This hy-
brid approach is usually used for short and medium term forecasts (Giebel
et al., 2011).

Whatever the spatio-temporal scales and horizons of interest, and irrespec-
tively of the approach employed, several types of forecasts can be issued: deter-
ministic forecasts, probabilistic forecasts and scenarios. Scenarios are out of the
scope of this thesis and thus are not discussed here. Instead, we refer to Pinson
et al. (2009) for a comprehensive introduction on these forecasts. Deterministic
or point forecasts are provided as a single value for each look-ahead time. They
are informative on the conditional expectation of the wind power generation.
This type of forecast remains largely used by TSOs for optimizing the manage-
ment of power system thanks to their high interpretability (Jones and Clark,
2011). However, wind power generation is not perfectly predictable since our
knowledge of the mechanisms governing its variability is incomplete. Con-
sequently, each point forecast contain some uncertainty. This uncertainty can
be expressed in the form of probabilistic forecasts (e.g., predictive densities,
prediction intervals) around point forecasts. An example of such probabilistic
forecasts is given in Figure 3. The additional value of using probabilistic fore-
casts, compared to the sole point forecasts, has been demonstrated in the case
of a wind power producer aiming at trading its production, yielding higher in-
comes (Pinson et al., 2007). More generally, probabilistic forecasts are a prereq-
uisite for optimal decision-making under uncertainty, as discussed in Gneiting
(2008).
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Figure 2: A simple example of an idealized power curve for a single wind
turbine where wind power is a functon of wind speed. The cut-
in speed corresponds to the minimum wind speed for producing
power. Rated speed is the minimum wind speed at which wind
turbines produce rated or maximum power. Cut-out speed is speed
at which wind turbines stop producing power for safety reasons.
(Source: Monteiro et al. (2009))

Figure 3: Example of point forecasts and prediction intervals up to 48 hours
ahead. (Source: www.pierrepinson.com)

Thesis motivation – The Horns Rev experience

Historically, the deployment of wind farms took place onshore, because of
lower costs for installing wind turbines and connecting them to power systems,

www.pierrepinson.com
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in comparison to offshore environments. However, large and unexploited wind
resources over waters, combined to the limited availability of sites for new
wind farm projects onshore and social acceptance issues are pushing the in-
stallation of new wind farms offshore. Figure 4 illustrates the planned increase
of offshore wind power capacity in Europe. Offshore wind farms will more
likely be erected in the form of large and dense clusters of wind turbines such
as the Horns Rev 1 (HR1) wind farm.

Figure 4: Comparison of available and future offshore wind power capacity
in Europe (Sources: Areva, EWEA, media reports).

The HR1 wind farm is the main case study in this thesis. Located in the North
Sea, about 15 km off the West coast of Jutland, Denmark (see Figure 5), it is com-
posed of 80 turbines for a rated capacity of 160 MW. Its yearly production cor-
responds to the consumption of 150000 households using 4000 kWh per year.
When it came into operation in 2002, it was the largest offshore wind farms in
the world. For that reason, it has attracted a considerable attention in the sci-
entific literature. Research works include modeling of wind turbine wakes for
optimizing wind farm layouts (Barthelmie et al., 2009), the observation of wind
farm wakes with satellite SAR images for estimating shadowing effects (Chris-
tiansen and Hasager, 2005), nacelle wind and yaw angle assimilation for short-
term forecasting applications (Draxl et al., 2012), the correction and validation
of NWP models with in-situ measurements (Peña and Hahmann, 2012).

The structural particularity of large-scale offshore wind farms like HR1 stems
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Figure 5: The Horns Rev 1 wind farm is located in the North Sea.
(Source: www.vattenfall.dk)

from the high density of large wind turbines, and thereby large wind power
capacity, within a small geographical area. Corresponding capacity is spread
over a much wider area over land, partly because onshore wind turbines are
smaller and partly because of siting constraints. This particularity translates
into a reduction of the smoothing effect of wind power variability which oc-
curs with the spatial dispersion of wind turbines (Focken et al., 2002). For
instance, wind power generation at HR1 can change by up to 100 MW in 15 to
20 minutes, corresponding to more than 60% of HR1 rated capacity. These large
fluctuations have a strong impact on power system and are rarely observed for
offshore wind farms (Akhmatov, 2007).

Furthermore, wind flow characteristics change as they move from onshore to
offshore environments. In particular, moderate to high wind speeds (i.e., larger
than 8 and 15 m s−1, respectively) are more frequent over waters than over
land. Diurnal cycles are also much less pronounced. Decoupling of flow is
more frequent, translating into stronger vertical shear and different turbulent
regimes (Pryor and Barthelmie, 2002). The meeting of wind flow and wind
farm over waters results into significant differences in wind power fluctuation
patterns in the very short-term when compared to those in onshore environ-
ments, as illustrated in Figure 6. Offshore wind power production is higher on
average and, more importantly, its variability is magnified.

In order to enhance the integration of its output power, a number of controllers
are already implemented at HR1 (Kristoffersen, 2005). Their respective princi-
ples are shown in Figure 7. Absolute power limitation can be activated for avoid-
ing exceeding the scheduled production, and ramp rate limitation can be turned
on for dampening fluctuations of large amplitude, for instance. Moreover, de-
spite their specificities, offshore wind farms have to contribute like any other
power plant to balancing and backing-up operations. That is the purpose of the

www.vattenfall.dk
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Figure 6: Wind power generation at the Horns Rev 1 wind farm and on-
shore wind turbines of corresponding capacity. Temporal resolu-
tion: 5 minutes. (Source: Kristoffersen (2005))

last two controllers, namely balance control and delta control, that are activated
when requested by the TSO. These controllers and, more specifically, the ramp
rate controller requires accurate set points in the form of wind power forecasts
in order to be tuned efficiently and to dampen large wind power fluctuations
in the very short-term.

Thesis objective & outline

The main objectives of this thesis are to propose new models and explore new
methodologies for improving the characterization and predictability of wind
power fluctuations from single wind farms in the very short-term, with spe-
cific lead times up to 1–2 hours, and temporal resolutions of a few minutes.
Wind power forecasts generated with the proposed models could eventually
be integrated into the controllers presented in Figure 7.

This thesis addresses a number of important aspects in agreement with the
latest recommendations or directions for research in wind power forecasting.
First, focus is placed almost exclusively on offshore applications since most of
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Figure 7: Controllers implemented at the Horns Rev 1 wind farm for damp-
ening wind power fluctuations. (Source: Poul Sørensen, Jesper
Kristoffersen (2006) Wind farm control. ECPE Seminar – Renewable
Energies, Kassel, Germany)

the new wind power capacity in Europe is expected to be installed over waters
(see Figure 4). In that respect, a number of nonlinear models are investigated in
order to better account for the specificities of offshore wind power fluctuations.
Second, the scale of interest in this work is the very short-term since the avail-
ability of accurate wind power forecasts at this scale is likely to become essen-
tial for managing wind power systems with large penetrations of wind power,
as discussed in Jones and Clark (2011) and GE Energy (2010). However, the
recent literature reviews on wind power forecasting by Monteiro et al. (2009)
and Giebel et al. (2011) indicate that most of the research efforts have so far con-
centrated on short term applications. In this context, the work presented in this
thesis is a valuable contribution to the field of wind power forecasting in the
very short-term. Third, new meteorological observations (i.e., weather radar
images) are considered as an alternative to traditional inputs (e.g., meteoro-
logical forecasts generated with NWP models). Besides offering the advantage
of being available at higher spatio-temporal resolutions than meteorological
forecasts, the use of these observations may also enable to avoid one of the
main shortcomings of statistical prediction systems based on meteorological
forecasts, that is the propagation of the NWP forecast errors. Fourth and last,
a strong emphasis is put on methodologies for generating probabilistic fore-
casts as it is believed to be the way forward for optimizing the management of
power systems.

This thesis consists of four papers. Papers A and B present two applications
of Markov-Switching Autoregressive (MSAR) model, a class of nonlinear time
series models (Zivot and Wang, 2003). The motivation for applying this class of
models stems from behavioral changes in the dynamics of wind power fluctu-
ations. Different time series models can hence be used to explain wind power
fluctuations at different times. The underlying assumption for using MSAR
models is that wind power fluctuations are governed by a regime sequence
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that is considered hidden or unobservable. The objectives of these two papers
are to improve the characterization of wind power fluctuations and to show
that these models can enable a reduction of the uncertainty associated with
wind power forecasts.

Paper C and D build on the first two papers and investigate the use of weather
radar images as a new source of inputs for statistical models. In particular,
the motivation is to characterize the unobserved regime sequence with mete-
orological observations at high spatio-temporal resolutions. The limitations,
potential and perspectives for the integration of weather radar observations
into prediction systems are discussed in Paper C. A first classification of wind
power regimes with respect to weather radar observations is proposed in D.
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A general probabilistic forecasting framework for
offshore wind power fluctuations

Pierre-Julien Trombe1, Pierre Pinson1, Henrik Madsen1

Abstract

Accurate wind power forecasts highly contribute to the integra-
tion of wind power into power systems. The focus of the present
study is on large-scale offshore wind farms and the complexity of
generating accurate probabilistic forecasts of wind power fluctu-
ations at time-scales of a few minutes. Such complexity is ad-
dressed from three perspectives: (i) the modeling of a nonlin-
ear and non-stationary stochastic process; (ii) the practical im-
plementation of the model we proposed; (iii) the gap between
working on synthetic data and real world observations. At time-
scales of a few minutes, offshore fluctuations are characterized
by highly volatile dynamics which are difficult to capture and
predict. Due to the lack of adequate on-site meteorological ob-
servations to relate these dynamics to meteorological phenom-
ena, we propose a general model formulation based on a statisti-
cal approach and historical wind power measurements only. We
introduce an advanced Markov Chain Monte Carlo (MCMC) es-
timation method to account for the different features observed
in an empirical time series of wind power: autocorrelation, het-
eroscedasticity and regime-switching. The model we propose is
an extension of Markov-Switching Autoregressive (MSAR) mod-
els with Generalized AutoRegressive Conditional Heteroscedas-
tic (GARCH) errors in each regime to cope with the heteroscedas-
ticity. Then, we analyze the predictive power of our model on a
one-step ahead exercise of time series sampled over 10 minute in-
tervals. Its performances are compared to state-of-the-art models
and highlight the interest of including a GARCH specification for
density forecasts.

1DTU Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark
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1 Introduction

Climate change calls for the reduction of greenhouse gas emissions and thus a
growing development of renewable energy sources. Benefiting from favorable
governmental policies and large wind resources, countries in the north-west
of Europe are rapidly increasing their wind power capacities. Historically,
onshore installations have prevailed, but offshore wind energy is now grow-
ing significantly. In Denmark, the latest figures stated that wind power ac-
counted for about 22% of the domestic electricity supply and, out of 3802 MW
wind power capacity, 868 MW were installed offshore (Danish Energy Agency,
2011). The current trend is towards the development of large-scale offshore
projects capable of generating several hundreds of MW each. Indeed, sitting
wind farms out at sea has substantial advantages of (i) more space available;
(ii) a decrease of the frequency and duration of low wind speeds and (iii) an
increased persistence for high wind speeds. Offshore wind farms are then ex-
pected to have higher capacity factors (i.e., the ratio of the actual power output
over a given period of time to the maximum output if the wind farm had been
operated at full capacity) (Pryor and Barthelmie, 2002).

However, in practice, integrating significant amounts of wind power into power
systems remains a challenge and requires dedicated prediction tools for real-
time monitoring, operation scheduling and energy trading. While most of
these applications requires wind power forecasts in an hourly resolution, the
recent deployment of large-scale offshore wind farms has increased the con-
cern for forecasts with particular lead times of 5–10 minutes (Jones and Clark,
2011). Indeed, power generation at large offshore wind farms turns out to be
highly volatile, increasing the risk of imbalance in the power system, in the
very short-term. This originates from the specific design of these wind farms
which concentrate a large amount of wind power capacity within a relatively
small area, increasing the impact of local meteorological phenomena (wind and
rain fronts among others) on their short-term power production. For instance,
measurements from the offshore site of Horns Rev reveal changes in the output
power that may reach an amplitude of 60% the wind farm maximum capacity,
within 15–20 minutes (Akhmatov, 2007). Such levels of fluctuations can rarely
be observed onshore where similar capacities would be spread over a much
wider area, smoothing out the effects of the weather instabilities (Focken et al.,
2002). Consequently, maintaining the short-term balance of the transmission
system (i.e., matching the power supplied by the wind farm and the electricity
demand) and the stability of the power system has become a critical issue and
needs to be handled carefully to prevent potential damages (blackouts, etc.).

At time-scales of a few minutes, wind power forecasts are preferably generated
with statistical models, based on historical data only (Giebel et al., 2011). In
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the present paper, our aim is to introduce a case study of statistical modeling
and forecasting of offshore wind power fluctuations and its related complexity
from three perspectives:

• the modeling of a nonlinear and non-stationary stochastic process for
which we propose a model that allows to capture up to three different
time series effects: autocorrelation, heteroscedasticity and regime switch-
ing (the generic name of our model is MS-AR-GARCH),

• the numerous issues linked to the practical implementation of such model
as it requires an advanced estimation method based on a Markov Chain
Monte Carlo (MCMC) algorithm,

• the gap between applying such model to synthetic data and real world
observations.

This paper is organized as follows. Section 2 summarizes the latest achieve-
ments in wind power meteorology for very short-term applications and states
the motivations for this study. Section 3 introduces the data and shows some
of their major features. Then, in Section 4, specifications for the model we pro-
pose are discussed throughout a brief overview of the literature on Markov-
Switching models which constitute a special class of regime switching models,
and on GARCH models which are generalized forms of heteroscedastic mod-
els. Section 5 gives a detailed description of the estimation method based on a
Markov Chain Monte Carlo algorithm and the reasons for such a choice. Ap-
plications to both synthetic and real data are presented and the accuracy and
robustness of the estimation method are assessed. A forecast evaluation on
real data is performed in Section 6 where the performances of our model are
compared with current benchmark models for very short-term wind power
fluctuations. Finally, Section 7 delivers concluding remarks.

2 Motivations Based on the State-of-the-Art

First, with the planned deployment of large-scale offshore wind farms, there
is an urging need to build up on the existing knowledge on these wind power
fluctuations by characterizing the dynamics and identifying the factors which
drive the wind power fluctuations in the very short-term. As a first step to-
wards this understanding, Akhmatov et al. (2007) reported that at a temporal
resolution of 10 minutes, certain weather conditions at Horns Rev and in par-
ticular northwesterly winds very much favored large wind power fluctuations.
Then, Sørensen et al. (2008) proposed an aggregated model of individual wind
turbines and showed its relative ability to simulate consistent wind power fluc-
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tuations at different time scales, from a few minutes up to 2 hours ahead. Very
recently, a spectral analysis of wind speed measurements at Horns Rev led to
the identification of specific seasonal cycles as key features of wind variabil-
ity (Vincent et al., 2010).

Second, most of the state-of-the-art statistical methods gives focus to large pre-
diction horizons, from 1 hour to a couple of days, and show limited forecast-
ing skills for very short-term horizons, within tens of a minute, at which large
wind power fluctuations must be monitored (Kristoffersen and Christiansen,
2003). This low level of predictability is due to the complex nonlinearities in
the output power dynamics which cannot be captured by conventional models.
Hence, there is a need for dedicated statistical methods capable of generating
accurate forecasts for very short-term horizons. In that regard, our approach
on forecasting is probabilistic and the respective performance of the models
presented in this paper will be evaluated accordingly (Gneiting, 2008).

As a first attempt to deal with the low predictability of the output power of
large-scale offshore wind farm, regime-switching approaches and more specif-
ically Markov-Switching models have received a growing interest within the
wind power community. Since their very first introduction in econometrics by
(Hamilton, 1989), they have been commonly used in many disciplines such as
speech recognition (Rabiner and Juang, 2005) or computational biology (Durbin
et al., 1998), for instance. This class of models is prized for its ability to account
for structural breaks or sudden changes in the process dynamics. In meteorol-
ogy, Markov-Switching models are often used to estimate an unobservable cli-
mate state which ideally governs other climate variables such as wind speed or
wind direction. For the specific case of large-scale offshore wind farms, the in-
ferred states or regimes can be interpreted as changes of the wind farm behav-
ior, in terms of power generation. Besides that, Markov Switching AutoRegres-
sive (MSAR) models are shown to have better point forecast performances than
AutoRegressive Moving Average (ARMA), Smooth Transition AutoRegressive
(STAR) and Self-Exciting Threshold AutoRegressive (SETAR) in Pinson et al.
(2008). Alternatively, a MSAR model is proposed in Pinson and Madsen (2010)
with adaptive estimation of the parameters which allows parameter estimates
to change over time to better account for the long-term variations of the wind
characteristics. Density forecasts generated with that method are shown to be
much sharper and have a better calibration than those generated with AR mod-
els.

Nevertheless, one can argue that keeping the variance constant over time within
each regime stands as a strong limitation for the forecasts sharpness when pe-
riods of different volatility levels alternate. This may mistakenly lead to over-
determination of the optimal number of states when fitting the model to the
data. One class of models capable of relaxing the constant variance assumption
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is the Generalized AutoRegressive Conditional Heteroscedasticity (GARCH)
model, allowing the conditional variance in each regime to follow an ARMA
process (Bollerslev, 1986). The GARCH class of models is appealing because
it can cope with volatility clustering which is a clear issue when studying off-
shore wind power generation at high frequencies. Therefore, the present study
proposes to extend MSAR models with a GARCH specification for the con-
ditional variance dynamic in each regime (hence the resulting model name
MS-AR-GARCH). This extension of the original MSAR model is expected to
allow for a better identification of the volatility clustering effect and to a more
parsimonious parametrization regarding the number of regimes.

3 Data from Large Offshore Wind Farms

The data considered in the present study cover the time period from 16 Febru-
ary 2005 to 25 January 2006 and were recorded at Horns Rev I, the second
largest offshore wind farm in operation in the world at that time. Horns Rev I
is located 15 km away from the west coast of Jutland (Denmark) and consists
of 80 turbines of 2 MW, for a nominal capacity of 160 MW. Original data were
provided as individual time series of wind power measurements for each of
the 80 turbines at one second time intervals.

The original data are averaged in order to generate an aggregated time series
of wind power fluctuations for the entire wind farm. A 10 minute resolution is
arbitrarily chosen within the range of values over which significant power fluc-
tuations are observed (Akhmatov, 2007). Another reason to justify this choice
is that grid operators monitor offshore wind farms at similar temporal reso-
lutions (Kristoffersen and Christiansen, 2003). The sampling procedure first
consists in producing spatio-temporal averages over 10 minute intervals for
which a minimum of 75% of the data are of good quality. These averages are
then normalized by the nominal capacity of the wind farm, following Madsen
et al. (2005). No attempt is made to fill in missing data points and many gaps
remain present in the data. A 10 day episode of this time series is depicted
on Figure 1. It can be noticed that the power generation is a double-bounded
process, below and above. As a matter of fact, the power generation of a wind
farm can neither be negative nor exceed its maximum capacity.

Moreover, technical specificities and constraints of wind turbines make that
wind power generation is not a linear function of the wind speed. The relation-
ship between wind speed and power generation is described by the so-called
power curve. This relationship is often estimated to convert wind speed fore-
casts into wind power forecasts. For a more detailed description of its use in
practice, we refer to Sánchez (2006). More generally, the power curve is con-
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Figure 1: Time series of normalized wind power generation at Horns Rev I
over a 10 day episode in August 2005. The time series is sampled
with a temporal resolution of 10 minutes.

sidered a function of both the wind speed and the wind direction and must
be estimated for every single wind farm. Nevertheless, wind speed and wind
direction are not the only two factors that are believed to govern wind farm be-
havior. In the specific case of large offshore wind farms, it is also commonly as-
sumed that complex local meteorological phenomena have a strong impact on
the power generation. Ongoing research works on these phenomena are still in
an early stage, and identifying them would require to combine both meteoro-
logical and statistical approaches which is not the purpose of this study. As for
now, early assumptions based on empirical observations have described these
phenomena as combinations of intense precipitations and wind gusts (Vincent
et al., 2011).

From Figure 1, one can see periods characterized by very different dynamics
alternate with various frequencies and durations. This latter observation re-
veals the non-stationary behavior of this wind power time series, whatever
the time scale one considers. This issue is further discussed in Vincent et al.
(2010). Non-stationarity is one of the reasons why most linear time series mod-
els show limited prediction skills. This feature is further illustrated in Figure 2
which plots the squared residuals of the best autoregressive model (of order 3),
the associated autocorrelation function (ACF) and the partial ACF (PACF) for
the wind power time series. The model was fitted to the whole time series, but
to enhance visualization of the results, the squared residuals are only plotted
for the period of time spanning from 1 August 2005 to 26 January 2006. First, a
look at the squared residuals highlights the volatility clustering effect, meaning
that large errors tend to be followed by large errors and similarly, small errors
tend to be followed by small errors. It is a feature often observed for data sam-
pled at a high frequency. Then, the ACF of the squared residuals indicates that
the autocorrelation is significant up to very large lags which reveals the het-
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eroscedastic behavior of the errors. Finally, the PACF allows one to evaluate
the number of significant lags for the time series of squared residuals. It in-
dicates that the conditional variance should be modeled as the weighted sum
of approximately the last 20 squared errors. However, for the sake of parsi-
mony, an ARCH process of large order can well be substituted by a GARCH
specification (Bollerslev, 1986). This well spread empirical approach offers the
double advantage of drastically reducing the number of coefficients to be es-
timated while conserving the model adequacy. It also introduces a decreasing
weight structure, from the most recent to the oldest past squared errors, for the
computation of the conditional variance.

4 Model Specifications

4.1 Wind Power Predictive Density

As mentioned in the previous section, the time series of wind power is non-
linear and non-stationary. The smoothing effect outlined when considering a
collection of wind turbines scattered over a wide area does not apply in the
case of a single large-scale offshore wind farm. Furthermore, wind turbines
do not generate electricity for wind speeds below the so called cut-in speed
(∼4 m s−1) or above the the cut-off speed (∼25 m s−1). In addition, for wind
speeds ranging from 15 m s−1 to 25 m s−1, wind turbines operate at full ca-
pacity and produce a constant level of power. Consequently, the power gener-
ation drops to 0 or reaches its maximum in a significant number of occasions.
From a statistical modeling perspective, it means that the process does meet its
lower and upper bounds which generates mass points at the extremities of the
wind power distribution. This prevents the use of a logistic transformation as
adopted in Lau and McSharry (2010) since the mass points would remain, even
after transformation. In view of these limitations, truncated and censored nor-
mal distributions stand as appealing alternatives to the more classical Normal
distribution. Recent developments that use the two former distributions ap-
plied to wind data include (Gneiting et al., 2006, Thorarinsdottir and Gneiting,
2010). However, Markov-Switching models imply the computation of distri-
bution mixtures. For the sake of the estimation method simplicity, we choose
to consider neither the truncation nor the censoring of the Normal distribution
since mixtures of these distributions would be too cumbersome to compute.
For similar reasons, the Generalized Logit-Normal distribution as proposed
in Pinson (2012) was not considered. Finally, we focused on two symmetric
distributions, namely the Student-t and Normal distributions. The Student-
t distribution has the advantage of being more heavy-tailed than the Normal
distribution, making the regimes more stable (Klaasen, 2002). Its drawback
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(a) Squared residuals obtained after fitting an AR(3) model to the wind power time se-
ries.
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(b) Autocorrelation function of the squared residuals.
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(c) Partial autocorrelation function of the squared residuals.

Figure 2: Volatility clustering and heteroscedasticity of the wind power time
series.

is that it has one extra parameter (its degree of freedom) which is difficult to



4 Model Speci�cations 31

estimate (Gray, 1996). The use of the Normal distribution, though known as
not optimal for wind power time series, is therefore considered as a natural
starting point for testing the model in this study. We leave questions on more
appropriate distributions for further research.

4.2 GARCH Models in Meteorology

An overview of the time series analysis literature shows that GARCH models
have been extensively used in econometrics and finance but remains rather un-
popular in other fields. In meteorology, GARCH models are often employed in
a single regime framework and applied to wind speed or air temperature time
series for characterizing their volatility. Tol (1997) first fitted an AR-GARCH
model to daily wind speed measurements from Canada and illustrated the
better in-sample performance of his heteroscedastic model over homoscedas-
tic ones in presence of high volatility in the data. A bivariate GARCH model
was then used in Cripps and Dunsmir (2003) to characterize the wind compo-
nents (u,v) and their variability at a time scale of 1 min and relate them to local
meteorological events in the Sydney harbor. Another meteorological applica-
tion of GARCH models presented the usefulness of a ARMA-GARCH-in-mean
model to estimate the persistence in the volatility of wind speed measurements
at different heights (Ewing et al., 2006).

In contrast to these latter studies whose primary focus is in-sample estima-
tion, Taylor and Buizza (2004, 2006) use AR-GARCH models to generate point
and density forecasts for temperature and weather derivative pricing, respec-
tively. In addition, the recent work by Taylor et al. (2009) also presents out-
of-sample results. It extends the methodology developed in Taylor and Buizza
(2004) and used several types of GARCH models to generate daily wind speed
density forecasts and converts them into wind power forecasts. This work
demonstrates the good ability of GARCH models for generating density fore-
casts when compared to atmospheric models for early look ahead horizons,
from 1 up to 4 days. Another methodology is proposed by Lau and McSharry
(2010) in which an ARIMA-GARCH model is used to generate multi-step den-
sity forecasts of wind power, outperforming current benchmark models in the
short-term, from 15 minutes up to 6–12 hours. Interestingly, all these studies
give empirical evidence of the strong potential of using the GARCH class of
models for predicting weather related variables in the very short-term when
these variables are highly volatile.
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4.3 Existing Markov Switching Models with GARCH Errors

Seminal references of combining Markov-Switching and AutoRegressive Con-
ditional Heteroscedasticity (MS-ARCH) include Cai (1994) and Hamilton and
Susmel (1994). In practice, capturing time-varying variance with a reasonable
number of ARCH terms remains an issue. It often calls for a GARCH specifica-
tion instead in order to reduce the number of coefficients to be estimated. The
difficulty that arises when generalizing MS-ARCH to MS-GARCH relates to
the historical path dependency of the conditional variance which is intractable,
making that generalization almost computationally infeasible.

Nevertheless, there exist a few approaches to avoid that problem. Regarding
maximum likelihood methods, the idea consists in approximating the condi-
tional variance as a sum of past conditional variance expectations as in Gray
(1996). This model was later extended by Klaasen (2002) yielding improved
volatility forecasts. Alternatively, Haas et al. (2004) suggested a new formu-
lation for MS-GARCH models by disaggregating the overall variance process
into separate processes in each regime. Another way of tackling the path de-
pendency problem consists in using Monte Carlo Markov Chain (MCMC) sim-
ulations to infer that path by sampling from the conditional distribution of the
states of the Markov chain. This can be implemented by data augmentation as
described in Fruhwirth-Schnatter (2006). The strength of this approach is that it
can be applied for the estimation of many variants of Markov-Switching mod-
els. Closer to our problem, Henneke et al. (2011), Chen et al. (2009), Bauwens
et al. (2010) proposed three different MCMC algorithms for the Bayesian es-
timation of MS-ARMA-GARCH, MS-ARX-GARCH and MS-GARCH models,
respectively.

Some other difficulties arise when estimating MS-GARCH models. They may
be caused by the structural specification of the model or else by the numer-
ical tools used for parameter estimation. For instance, maximum likelihood
estimation methods implemented with a numerical optimizer often encounter
specific optimization problems due to starting values, inequality constraints
or else local minima. Besides, the two formulations of the MS-GARCH model
developed in Gray (1996) and Klaasen (2002) are based on an approximation
for the recursive update of the conditional variance which leads to further es-
timation complexity. As for the MS-GARCH model in Haas et al. (2004), it
loses its initial appeal of being analytically tractable along with the inclusion of
autoregressive terms in the conditional mean equation which does not match
with our model specification to combine AR and GARCH effects with Markov-
Switching. Along that last comment, it is important to emphasize that most of
the studies involving likelihood estimation of MS-GARCH models have as a
prime concern the capture of the heteroscedasticity present in the time series
and were not designed to cope with data also featuring strong autocorrelation.
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In comparison, Bayesian inference offers an alternative framework which al-
lows to overcome most of likelihood estimation problems:

• the robustness of MCMC samplers to starting values can be evaluated
by running several Markov chains with different starting values and
tested for differences in their outputs,
• inequality constraints can be handled through the definition of prior

distributions (Gibbs sampler) or through a rejection step when the
constraint is violated (Metropolis–Hastings sampler),
• theoretically, local minima pitfalls are avoided by simulating the Markov

chain over a sufficiently large number of iterations (law of large num-
bers),
• misspecification of the number of states of the Markov chain can be as-

sessed by a visual inspection of the parameter posterior distributions
(check for multiple modes).

Moreover, model parametrization limitations linked to the integration of au-
toregressive terms in the mean equation do not apply in Bayesian estimation
and there is no fundamental implementation differences in estimating a MS-
GARCH and a MS-ARMA-GARCH model. Of course, the present study would
be very partial if the main bottlenecks in using MCMC simulations such as
computational greediness or the tuning of the prior distributions were not
mentioned. Therefore, we refer to Subsection 4.4 for a detailed description
of the main implementation issues of MCMC samplers. In addition, stud-
ies on the respective advantages and drawbacks of maximum likelihood and
Bayesian estimation methods are available in Rydén (2008). To conclude this
discussion, let us say that our goal is not to contribute to the pros and cons
debate of maximum likelihood against Bayesian estimation but rather to find
the method that is the most suitable for our problem. In this light, our choice
to estimate the MS-AR-GARCH model in a Bayesian fashion was motivated
by the enhanced flexibility in combining AR and GARCH effects under the
assumption of structural breaks in the process.

4.4 The Model Definition

To model the stochastic behavior of a given time series of wind power {yt}, a
MS(m)-AR(r)-GARCH(p,q) model is proposed as follows:

yt = θ
(St)
0 +

r

∑
i=1

θ
(St)
i yt−i +

√
htεt (1)

ht = α
(St)
0 +

q

∑
i=1

α
(St)
i ε2

t−i +
p

∑
j=1

β
(St)
j ht−j (2)
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where {ht} is the conditional variance at time t, {εt} is a sequence of indepen-
dently distributed random variables following a Normal distribution N (0,1)
and S = (S1, . . . ,ST) is a first order Markov chain with a discrete and finite
number of states m and transition probability matrix P of elements:

Pr(St = j|St−1 = i) = pij for i, j = {1, . . . ,m} (3)

For full flexibility, all AR and GARCH coefficients are chosen to be state depen-
dent. In addition, to ensure positivity of the conditional variance, constraints
on the model coefficients are imposed as follows:

α
(k)
0 ≥ 0, α

(k)
i > 0, β

(k)
j ≥ 0 for i = {1, . . . , p}, j = {1, . . . ,q}, k = {1, . . . ,m} (4)

Finally, the following inequality constraints are applied to ensure covariance
stationarity:

0 <
q

∑
i=1

α
(k)
i +

p

∑
j=1

β
(k)
j < 1 for k = {1, . . . ,m} (5)

From here on, we adopt the following notations:

y = (y1,y2, . . . ,yT) (6)
y[1,t] = (y1, . . . ,yt) (7)

S[1,t] = (S1, . . . ,St) (8)

S 6=t = (S1, . . . ,St−1,St+1, . . . ,ST) (9)

πk = (pk1, . . . , pkm)
′

for k = {1, . . . ,m} (10)

θ(k) = [θ
(k)
0 , . . . ,θ(k)r ]

′
for k = {1, . . . ,m} (11)

α(k) = [α
(k)
0 , . . . ,α(k)q , β

(k)
1 , . . . , β

(k)
p ]

′
for k = {1, . . . ,m} (12)

Θ = [θ(1), . . . ,θ(m),α(1), . . . ,α(m),π1, . . . ,πm] (13)

5 MCMC Implementation

Bayesian inference applied to complex models and large amounts of data has
been strongly enhanced by the development of computational methods such as
Markov chain simulations. Besides providing a robust and easy-to-implement
solution to circumvent the path dependency problem when estimating the MS-
GARCH class of models, MCMC techniques offer broader possibilities such as
incorporating existing information on the parameter distributions and estimat-
ing their full conditional posterior distributions, for instance. Their major in-
terest is the possibility to divide the set of unknown parameters Θ into smaller
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blocks to sample from the block conditional posterior distributions instead of
sampling from the complex and joint posterior of the full set of parameters. For
a practical presentation of MCMC techniques, we refer to Gilks et al. (1996).

Estimating MS-AR-GARCH models in a Bayesian framework is a procedure
that implies sampling from the augmented parameter distribution p(S,Θ|y):

p(S,Θ|y) ∝ p(y|S,Θ)p(S|Θ)p(Θ) (14)

This can be achieved through a 3 step procedure by implementing a MCMC
algorithm that iterates as follows:

• sample the regime sequence by data augmentation,
• sample the transition probabilities from a Dirichlet distribution,
• sample the AR and GARCH coefficients with the Griddy-Gibbs sampler.

5.1 Sampling the Regime Sequence

Generating sample paths of the regime sequenceS for Markov-Switching mod-
els is facilitated by a class of techniques known as data augmentation. The
early idea by Tanner and Wong (1987) is to recursively consider each of the
latent state variables St of the hidden Markov chain as missing and compute
its conditional distribution p(St|S 6=t,Θ). It becomes then possible to generate
a random draw from that conditional distribution with the Gibbs sampler as
in Robert et al. (1993). This procedure is called single-move sampling and re-
quires the number of regimes m to be known and finite. Later variants for Hid-
den Markov Models (HMM) and Markov-Switching models are respectively
reviewed in Scott (2002) and Fruhwirth-Schnatter (2006).

At a given time t, the conditional distribution of the latent state variable St is
obtained as follows:

∀ k ∈ {1, . . . ,m}, P(St = k|y,S 6=t,Θ) =
P(y,St = k,S 6=t,Θ)

P(y,S 6=t,Θ)

=
P(y|St = k,S 6=t,Θ)P(St = k,S 6=t,Θ)

P(y|S 6=t,Θ)P(S 6=t,Θ)
(15)

=
P(y|St = k,S 6=t,Θ)P(St = k|S 6=t,Θ)

P(y|S 6=t,Θ)

And after discarding the scaling factor P(y|S 6=t,Θ), we obtain:

P(St = k|S 6=t,y,Θ) ∝ P(y|St = k,S 6=t,Θ)P(St = k|S 6=t,Θ) (16)
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In the equation above, two different quantities have to be computed. First,
P(y|St = k,S 6=t,Θ) is the complete data likelihood, conditioned on the chain
being in state k at time t and given the full set of parameters Θ and can be
calculated as follows:

P(y|St = k,S 6=t,Θ) =
T

∏
t=max(r,p,q)

P(yt|,St = k,S[1,t−1],y[1,t−1],Θ)

=
T

∏
t=max(r,p,q)

1√
2πht

exp

(
−
(yt − θ

(St)
0 −∑r

i=1 θ
(St)
i yt−i)

2

2ht

)
(17)

with ht being defined as in Equation (2).

Second, the Markov property applies on P(St = k|S 6=t,Θ). Given a sample S 6=t
of the entire regime sequence but at time t, the state variable St only depends
on St−1, and St+1 only depends on St:

P(St = k|S 6=t,Θ) = P(St = k|St−1 = i,St+1 = j)

=
pik pkj

∑m
k=1 pik pkj

(18)

Finally, the Gibbs sampler (Geman and Geman, 1984) is used to generate a
random sample of the latent state variable St from its updated conditional dis-
tribution. The state of the Markov chain at time t can then be updated and this
sampling procedure is recursively repeated for the remaining state variables of
the hidden Markov chain.

Because of the path dependency structure of MS-GARCH models, computing
marginal likelihood of the state variables is not feasible as it is for MSAR or
MS-ARCH models (Fruhwirth-Schnatter, 2006). Hence, the posterior distribu-
tions of the state variables can only be obtained in the form of smoothed prob-
abilities. Let us recall that one can derive different quantities for the optimal
inference of the regime sequence:

• the filtered probabilities P(St = k|y[1,t],Θ) which infer the state variable St
conditioning upon the vector of parameters and all past and present in-
formation y[1,t],
• the smoothed probabilities P(St = k|y,Θ) which are the outputs of the infer-

ence of St using the past, present and future information y = y[1,T],
• the predicted probabilities P(St+1 = k|y[1,t],Θ) which correspond to the one-

step ahead inference St+1 at time t and only use past information y= y[1,t].

For a given state variable St, its posterior distribution P(St = k|y) is computed
by averaging the number of occurrences of the Markov chain being in state k
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at time t over the N iterations of the algorithm:

P(St = k|y) = 1
N

N

∑
n=1

1{S(n)
t = k} for k = {1, . . . ,m} (19)

with S(n)
t being the draw of St at the nth iteration of the MCMC algorithm.

5.2 Transition Probability Matrix Sampling

Sampling the transition probability matrix P is done by using a Dirichlet dis-
tribution (Fruhwirth-Schnatter, 2006). The key assumption is that the rows of
P are mutually independent since P only depends on the regime sequence S.
Therefore, they can be sampled in a random order. Given an independent prior
distribution p(πk) and using Bayes’ theorem, we obtain the conditional distri-
bution of the kth row of P as follows:

p(πk|y,S,Θ−πk ) ∝ p(πk)p(πk|S)

∝ p(πk)
T

∏
r
(dk1)

ηk1 . . . (dkm)
ηkm

(20)

where the ηki’s correspond to the numbers of one-step transitions from regime
k to regime i in the hidden Markov chain and the dki’s are the parameters of the
multivariate distribution modelling the transition probabilities.

For a 2 state Markov chain, the Beta distribution is traditionally used as prior
for binomial proportions, with parameters dk1 and dk2, resulting in the condi-
tional distribution of the kth row of P being Beta distributed:

p(πk|y,S,Θ−πk ) ∼ B(ηk1 + dk1,ηk2 + dk2) (21)

For a m state Markov chain, and m ≥ 2, the posterior Beta distribution can be
generalized to a Dirichlet distribution (Chib, 1996):

p(πk|y,S,Θ−πk ) ∼ D(ηk1 + dk1,ηk2 + dk2, . . . ,ηkm + dkm) (22)

with dk1,dk2, . . . ,dkm being the parameters of the Dirichlet distribution used as
prior.

The posterior estimates of the transition probabilities are obtained as the em-
pirical means of the posterior densities:

p̂ij =
1
N

N

∑
n=1

p(n)ij for i, j = {1, . . . ,m} (23)

with p(n)ij being the random draw of pij at the nth iteration of the MCMC algo-
rithm.
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5.3 AR and GARCH Coefficient Sampling

Existing MCMC algorithms for the estimation of MS-AR-GARCH models are
proposed in Henneke et al. (2011) and Chen et al. (2009). Alternatively, it
is possible to apply a MCMC algorithm for MS-GARCH models presented
in Bauwens et al. (2010) and include extra autoregressive terms in the mean
equation, instead of a single intercept. The difference in those three algo-
rithms lays in the sampler used for the estimation of the autoregressive and het-
eroscedastic coefficients. The two formers sample the posterior distributions
of the model coefficients with the Metropolis–Hastings sampler (MH) whereas
the latter uses the Griddy Gibbs sampler (GG). The MH sampler (Hastings,
1970) is based on an acceptance/rejection rule and was designed to generate
samples from a target distribution. However, the rate of acceptance can turn
out to be very small for complex models and slow down the convergence of the
chain. As for the GG sampler (Ritter and Tanner, 1992), it is based on a princi-
ple similar to the Gibbs sampler. The key idea is to discretize the support of the
parameter to be estimated. At each knot point, the likelihood of the parameter
is evaluated and by a numerical integration rule, the conditional distribution
of the parameter can then be approximated.

Unlike the MH sampler, the GG sampler does not require to define the ana-
lytical form of the posterior distribution a priori. It is notably useful when
the conditional posterior to sample from has a complex shape (multimodality,
strongly skewed, heavy tails) or when one does not want to impose a shape a
priori because of a lack of knowledge. Its implementation fully relies in the in-
formativeness of the data likelihood p(y|S,Θ) and all priors are uniform, even
for short time series. Tips for implementing the GG sampler for accurate es-
timation of posterior distributions are given in Ritter and Tanner (1992). Its
main drawback is its high computational cost because of the many likelihood
evaluations at each iteration but this can be overcome by parallelization of the
code. Empirical results presented in Bauwens and Lubrano (1998) and Asai
(2006) for the classical GARCH model are consistent and conclude that estima-
tion methods based on the MH or the GG sampler lead to posterior estimates
of similar accuracy. One of the most notable differences is that the MH sampler
does not fully explore the distribution tails. This is due to the shape of the tar-
get distribution chosen which in some cases may mislead the exploration of the
posterior distribution. This type of problems is avoided when estimating pos-
terior distributions with a GG sampler because it does not require the posterior
density to be known in closed form. Taking these considerations into account,
it was chosen to follow the methodology presented in Bauwens et al. (2010)
which uses the GG sampler for estimating MS-GARCH models. Adding ex-
tra autoregressive terms for the estimation of MS-AR-GARCH models is then
straightforward.
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Conditional posterior distributions of our model coefficients are derived from
the Bayes’ theorem. Let us consider the case of an unknown AR or GARCH
coefficients that will be noted γ, and p(γ) its prior. Its conditional posterior
distribution is defined as follows:

p(γ|y,S,Θ−γ) ∝ p(γ)p(y|S,Θ) (24)

The conditional density and cumulative distribution function (cdf) of γ are
noted gγ and Gγ. Their numerical approximation are noted fγ = f (γ|y,S,Θ−γ)
and Fγ, respectively. At each iteration, the GG sampler builds a numerical ap-
proximation of the conditional posterior density of each AR and GARCH coef-
ficient. The support of γ is first discretized with n knot points (x1, . . . , xn). Fur-
ther details on how to set up n are discussed in the next subsection. Then, the
complete data likelihood P(y|γ = xi,S,Θ−γ) is evaluated for each knot point
xi and by a numerical rule of integration, we obtain an approximation fγ(xi) of
the conditional density gγ. Linear interpolation in between 2 successive knot
points was found to be satisfactory in term of accuracy. Therefore, we use the
trapezoidal integration method to compute fγ. From there, approximating the
cdf Gγ is direct. Finally, a random number is uniformly generated on [0,1] and
by inverse transformation of Fγ, we obtain a random sample of γ. The prin-
ciple of the GG sampler is graphically summarized in Figure 3. The posterior
estimates of the AR and GARCH coefficients are obtained by computing the
means of the posterior densities.
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Figure 3: The conditional density gγ of a given coefficient γ is approximated
by numerical integration over a grid of points (left). An approxi-
mation Fγ of the cdf Gγ can then be computed. Finally, a random
number is uniformly generated on [0,1] and by inverse transforma-
tion of Fγ, a random draw of γ is obtained (right).
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5.4 Implementation Details

The most simple version of the GG sampler can be coded within a few lines.
However, for complex models with many parameters to be estimated, there is
a number of issues that have to be handled carefully and makes it implemen-
tation less straightforward: choice of prior distributions, label switching, grid
shape, mixing efficiency.

Prior Distributions

First, prior distributions have to be defined for sampling the transition prob-
abilities. For a given regime k ∈ {1, . . . ,m}, setting the parameters dkk > dki
with i 6= k is one way to reflect the prior knowledge that the probability of per-
sistence (staying in the same regime) is larger than the probability of switch-
ing from regime k to i. For instance, a B(8,2) distribution is used as prior
in Chen et al. (2009) whereas a uniform B(1,1) is preferred in Bauwens et al.
(2010). Several simulations with various values for the dij parameters were
run on synthetic time series with more than 1000 data points. The influence
of the prior distributions was noticeable for dij of very high orders of mag-
nitude, due to the length of the time series. For instance, a B(80,20) clearly
influences the posterior distribution estimates of the transition probabilities
while a B(8,2) almost not, even though these two distributions have equal
means. Arguably, we found it relatively risky to favor some regimes over oth-
ers. Therefore, we favored the approach with uniform priors, meaning that
dk1 = dk2 = · · · = dkm = 1.

Secondly, and most importantly, uniform distributions are required for the GG
sampler. Defining these priors consists in setting their bounds which is all
the more difficult when one has very little prior knowledge of the process be-
ing considered. For each AR and GARCH coefficient, one has to make sure
that the bounds of the uniform prior encompass the entire support of the true
conditional density. Poor settings of the prior bounds may either prevent the
convergence of the Markov chain or lead to wrong posterior density and mean
estimates. One solution is to use a coarse-to-fine strategy for the MCMC simu-
lation which is divided into three phases:

• a burn-in phase whose draws are discarded until the Markov chain reaches
its stationary distribution,
• a second phase at the end of which posterior density estimates are com-

puted and prior bounds are refined (the draws generated during this sec-
ond phase are also discarded),
• a last phase with adjusted prior bounds at the end of which the final

posterior densities are computed.
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Refinement of the prior bounds consists in computing the posterior mean and
the standard deviation of the densities. The priors are then adjusted and cen-
tered around their respective mean with their radius set to 5 standard devia-
tions. That way the uniform priors are shrunk when they were initially too
large and enlarged when too small. This approach proved to be robust enough
even in case of fat-tailed posterior densities.

Label Switching

Not least, fine settings of the prior bounds can prevent the label switching prob-
lem affecting HMM models estimated with Bayesian methods. Since posterior
densities are invariant to relabeling the states, that problem can cause erro-
neous multimodal posterior densities. This can be circumvent by imposing
structural constraints on the regimes which can be identified with the permu-
tation sampler presented in Fruhwirth-Schnatter (2006). For the specific case
of MS-AR-GARCH models, the most effective constraint against label switch-
ing was set on the intercept parameters of the GARCH equation as follows:
α
(1)
0 < α

(2)
0 < · · · < α

(m)
0 . At each iteration, the inequality is checked and if not

true, regimes are permutated. Another way to make sure that this constraint is
true is to define the bounds of the uniform priors of the α

(k)
0 such that they do

not fully overlap.

Grid Shape

Support discretization for the GG sampler implies choosing a suitable structure
for the grid along with a fine number of knot points n. As for the structure, Rit-
ter and Tanner (1992) advised to use an evolutive grid with more knot points
over areas of high mass and fewer knot points over areas of low mass. Simu-
lations on synthetic data show that this type of grid is difficult to implement
in practice and that it yields relatively low gains in accuracy. The use of such
a grid is not necessary in this study and instead a grid with equidistant knot
points is preferred. A grid made of 42 knot points is generated for each coef-
ficient to be estimated, with the likelihood of the 2 knot points at the extremi-
ties of the grid being set to 0, by default. This number was found sufficiently
large to accurately approximate conditional densities and is comparable to the
33 knot points used in Bauwens et al. (2010).
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Mixing of the MCMC Chain

MCMC simulations on synthetic time series reveal that, within a same regime,
AR coefficients are strongly correlated with each others, resulting in a poorly
mixing chain, slow convergence rate and significant estimation errors. The
same observations were made for the GARCH parameters. In order to im-
prove the mixing of the chain, the GG sampler is implemented with random
sweeps (Liu et al., 1995). At each iteration of the MCMC algorithm, instead of
updating the AR and GARCH coefficients in a deterministic order, we gener-
ate a random permutation of the sequence (1, . . . ,m(2 + r + p + q)) to deter-
mine which coefficients to update first, second and so on. For the empirical
study on the wind power time series, it was found that the mixing of the chain
could be further improved by repeating the sampling of the AR and GARCH
coefficients a given number of times for every update of the state sequence.
These implementation details positively enhance the well mixing behavior of
the chain and lead to much sharper posterior densities (i.e., smaller estimation
errors and standard deviations) of the AR and GARCH coefficients, notably.

Implementation Summary

In order to enhance the implementation understanding and to summarize the
key steps of our method, we report its structure in Algorithm 1. For the sake of
the notation simplicity, let us note γi the ith AR or GARCH coefficients of the
vector of parameters (θ(1), . . . ,θ(m),α(1), . . . ,α(m)). The vector of parameters is
now noted (γ1, . . . ,γm(2+r+p+q)).

5.5 Simulation on Synthetic Time Series

Before moving on to the time series of wind power, the MCMC estimation pro-
cedure is tested on a synthetic MS-AR-GARCH process that is plotted in Fig-
ure 4 and whose coefficients are reported in Table 1. This process is composed
of 2 regimes, each one of them combining an autoregressive structure of order
2 for the conditional mean equation along with a GARCH(1,1) specification for
the conditional variance. The values of its coefficients are chosen so as to gener-
ate a simplistic series with two well differentiated dynamics for the 2 regimes.
The values of the autoregressive coefficients are set so that the autoregressive
process in each regime is stationary. The GARCH coefficients in each regime
are defined so that the constraint ensuring a finite variance holds. Finally, the
errors are normally distributed. The process simulated hereafter neither aims
at recreating nor mimicking the wind power fluctuations presented in Section
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Algorithm 1 MCMC procedure for the estimation of MS-AR-GARCH models

Initialize prior distribution: p(γ1), . . . , p(γ(m(2+r+p+q)))

Initialize regime sequence and parameter: S(0),Θ(0)

n = 0
while Convergence of the Markov chain is not reached do

n = n + 1
for t = 1 to T do

Sample S(n)
t from p(S(n)

t = k|S(n)
1 , . . . ,S(n)

t−1,S(n−1)
t+1 , . . . ,S(n−1)

T ,Θ(n−1),y) by the
single-move procedure

end for
Compute the Dirichlet parameters η

(n)
11 , . . . ,η(n)

mm
for k = 1 to m do

Sample π
(n)
k from D(η

(n)
k1 + 1,η(n)

k2 + 1, . . . ,η(n)
km + 1)

end for
Generate a random permutation ρ of {1, . . . ,m(2 + r + p + q)}
for i = 1 to m(2 + r + p + q) do

Sample γ
(n)
ρ(i) from p(γρ(i)|S(n),P (n),γ(n)

ρ(1), . . . ,γ(n)
ρ(i−1),γ

(n−1)
ρ(i+1),γ

(n−1)
ρ(m(2+r+p+q)),y)

with the Griddy-Gibbs sampler
end for
if End of the second phase is reached then

Adjust/update the prior distributions
end if

end while
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3. It simply stands for a test case to assess the robustness and the efficiency of
our estimation method.

50 series of 1500 data points are generated. Following the coarse-to-fine strat-
egy described in the previous subsection, the bounds of the uniform prior dis-
tributions are set coarsely so as not to be too informative on the true coefficient
values. The goal is to check whether the MCMC method is robust enough not
to get trapped by local minima. The coefficient supports are then discretized
with 42 equidistant points. Starting values for the regime sequence and all 16
parameters are randomly initialized within the range of possible values de-
fined by their respective prior support. 50000 iterations of the MCMC algo-
rithm are run, of which the last 30000 iterations are used for posterior infer-
ence, the first 10000 being discarded as burn-in and the second 10000 being
used to refine the prior supports. For each simulation, convergence of the
chain is assessed with the diagnostic proposed in Gelman and Rubin (1992)
by running 3 chains in parallel, with different starting values. No evidence of
non-convergence was noticed. When considering single sample, large estima-
tion bias can be observed on both AR and GARCH coefficients. More satis-
factorily, when considering 50 samples, absolute estimation errors for all pa-
rameters are smaller than their corresponding posterior standard deviations.
As observed in Chen et al. (2009), the largest estimation errors are found for
the posterior distributions of the GARCH coefficients whereas AR coefficients
are estimated with a much higher accuracy. In each of the two regimes, β1
is biased downwards and α0 is biased upwards, which is a known issue with
MS-GARCH models. For a given parameter, the coverage probability (CP) cor-
responds to the probability of its true value being encompassed within the in-
terval defined by the 2.5% and 97.5% quantiles of its posterior distribution. In
other words, these probabilities are the nominal 95% confidence intervals of
the posterior estimates. Large deviations could indicate recurrent failure of
the estimation method for some parameters. Globally, the estimated CP are all
close to 95% and no large deviation is observed which is satisfactory. The grid
refinement procedure shows that the supports of the AR coefficients are signif-
icantly smaller than the initial supports coarsely set. As for the final supports
of GARCH coefficients, they consist of small adjustments of their initial sup-
ports. The verification for label switching is performed by analyzing the full
posterior densities displayed in Figure 5 where no bimodality is observed. We
can also add that the sampler performs quite well in terms of mixing since the
densities are rather peaky and have small tails.
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Figure 4: Simulation of a MS(2)-AR(2)-GARCH(1,1) whose coefficients and
transition probability values are given in Table 1. Top: simulated
process y = (y1, . . . ,yT); Bottom: regime sequence S = (S1, . . . ,ST).
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Inference on the regime sequence can also be performed. However, methods
for global decoding such as the Viterbi algorithm (Forney Jr, 1973) are not ap-
plicable to MCMC outputs since the sole smoothed probabilities of the regime
sequence can be computed. Instead, we use a simple labelling rule to infer
the regime sequence: state variables with a smoothed probability of being in
regime k larger than 0.5 are classified as being in regime k. Following that rule,
we can compute the successful regime inference rate and the probability of
regime retrieval (the probability of the true regime being k knowing that the
inferred regime is k). Results are reported in Table 2. Ideally, these quantities
should be as close to 1 as possible. The rate of successful inference is higher
for regime 1 (96%) than for regime 2 (90%). The same result holds for the prob-
ability of successful regime retrieval. These results are reasonably good ac-
cording to the complexity of the model dynamics. Three of the model features
may explain these differences: (i) regime 1 is characterized by a higher per-
sistence probability than regime 2 (p11 > p22); (ii) the unconditional variance
(σ(k) = α

(k)
0 /(1− α

(k)
1 − β

(k)
1 ) in regime 1 (σ(1) = 0.5) is lower than in regime 2

(σ(2) = 8) and (iii) persistence of shocks measured by α
(k)
1 + β

(k)
1 is also lower

in regime 1 than in regime 2. Because of the higher persistence probability,
parameters defining the first regime can be estimated over a larger number of
data points and over longer time intervals clear off any structural break, on
average, which leads to more accurate posterior estimates. The lower uncondi-
tional variance combined to the lower persistence to shocks in regime 1 makes
the autoregressive and the conditional variance dynamics easier to identify and
to separate. These latter comments are confirmed by the estimated posterior
standard deviations of the model parameters (see Table 1) which are smaller in
regime 1 than in regime 2, for corresponding parameters.

Table 2: Statistics on the inferred regime sequence.

Rate of successful Probability of
regime inference regime retrieval

P(Ŝt = 1|St = 1) = 0.96 P(St = 1|Ŝt = 1) = 0.95

P(Ŝt = 2|St = 2) = 0.90 P(St = 2|Ŝt = 2) = 0.91

5.6 Study on an Empirical Time Series of Wind Power

One of the main issue that arises when fitting Markov-Switching models to
an empirical time series is the determination of the number of states m of the
Markov chain. Theoretically, its determination is not to be separated of the
autoregressive and conditional variance structure (orders r, p and q in Equa-
tions (1) and (2)). Along that idea, Psaradakis and Spagnolo (2006) review dif-



48 P a p e r A

0.3 0.4 0.5 0.6 0.7

0
2

4
6

8

θ0
(1)

0.35 0.45 0.55 0.65
0

2
4

6
8

10 θ1
(1)

0.05 0.15 0.25 0.35

0
2

4
6

8
10 θ2

(1)

0.05 0.10 0.15

0
5

10
15

20 α0
(1)

0.0 0.1 0.2 0.3

0
2

4
6

8 α1
(1)

0.4 0.5 0.6 0.7 0.8
0

1
2

3
4

5
6

7

β1
(1)

−0.4 −0.2 0.0 0.2 0.4

0
1

2
3

4

θ0
(2)

0.6 0.7 0.8 0.9 1.0

0
2

4
6

8

θ1
(2)

−0.6 −0.5 −0.4 −0.3 −0.2

0
2

4
6

θ2
(2)

0.2 0.4 0.6 0.8

0
1

2
3

4 α0
(2)

0.00 0.10 0.20 0.30

0
2

4
6

8
10

α1
(2)

0.7 0.8 0.9

0
2

4
6

8 β1
(2)

0.95 0.96 0.97 0.98 0.99 1.00

0
20

40
60

80 p11

0.90 0.92 0.94 0.96 0.98 1.00

0
5

10
20

30

p22
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ferent penalized likelihood criteria for the joint determination of the number of
hidden states and autoregressive order for MSAR models. However, in prac-
tise, misspecification in the parametrization of the model may result in over-
estimation of the optimal number of regimes. For instance, ignored volatility
clustering effects can falsely be reported as regime-switching effects Cheung
and Miu (2009).

The model identification approach taken in this study is to define the autore-
gressive and conditional variance orders a priori and determine the optimal
number of regimes accordingly. Most studies involving Markov-Switching test
a limited number of regimes, from 1 to 4. The underlying theoretical reason is
that regime switchings occur infrequently. The more practical reason is that
the number of parameters to be estimated grows quadratically with respect to
the number of regimes, and constraints for regime identification become more
difficult to define.

One reason to proceed that way and not by computing the Bayesian Informa-
tion Criterion is that there is no method for computing the marginal likelihood
of MS-GARCH models to our knowledge. An empirical cross-validation pro-
cedure is used instead. The time series of interest is the one presented in Sec-
tion 3 for which measurements from the Horns Rev 1 wind farm are averaged
over 10 min intervals. All available observations from August 2005 (i.e., 4125
observations) are used for estimating the posterior distributions of the MS-AR-
GARCH model. Several parametrizations with respect to m, r, p and q are
tested. Then, all available observations from September 2005 (i.e., 4320 ob-
servations) are used for cross-validation and the parametrization resulting in
the best one-step ahead Continuous Ranked Probability Score (Gneiting, 2008)
was chosen. The best performances were obtained for models with 3 autore-
gressive lags and a GARCH(1,1) structure for the conditional variance in each
regime. The autoregressive order is in agreement with previous studies on the
same data set (Pinson and Madsen, 2010, Gallego et al., 2011). To keep the
computational complexity and burden reasonable, only models defined with
1 and 2 regimes were tested. Furthermore, no constraint for regime identifica-
tion could be found for a number of regimes larger than 2. Posterior estimates
for MS(m)-AR(3)-GARCH(1,1) with m = 1 and m = 2 are reported in Table 3.
Posterior densities for the MS(2)-AR(3)-GARCH(1,1) are shown in Figure 6.
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One of the reason why we prefer the GG over the MH sampler is that it can
estimate posterior densities of various shape without prior knowledge of their
closed form. From Figure 6, it can be noticed that the posterior densities of the
GARCH equation are asymmetric, more notably in regime 2. This is due to
the constraints imposed in Equations (4) and (5) and the asymmetry becomes
stronger as the posterior mean of a given parameter is close to the bounds of
the constraints. α

(1)
0 is numerically close to 0 and its posterior density has the

shape of a mass point. Omitting this parameter for fitting the model makes the
regimes less stable and it is decided to keep it in the formulation of the MS(2)-
AR(3)-GARCH(1,1) model. The posterior densities of the AR equation have
symmetric shapes. However, they are characterized by large posterior stan-
dard deviations and rather flat shapes which is the consequence of the strong
autocorrelation between coefficients within a same regime, as mentioned ear-
lier in this Section. That problem was neither encountered in our simulations
on synthetic data nor in other studies such as Chen et al. (2009), Bauwens et al.
(2010), Henneke et al. (2011), since the parametrization of the conditional mean
equation is restricted to one lag at most. Since it may affect the final posterior
mean estimates used for prediction, further research will be dedicated to inves-
tigate potential techniques to overcome it.

In addition, analyzing the posterior estimates of our model may reveal interest-
ing features on the very short-term wind power fluctuations of the Horns Rev 1
wind farm. The low (respectively high) frequency wind power fluctuations are
captured by the AR (respectively GARCH) coefficients of the model and differ-
ent profiles of fluctuations are expected across regimes. In addition, transition
probability estimates may indicate whether one regime is more persistent over
time than the other.

Regarding the model with one regime, AR(3)-GARCH(1,1), we report its poste-
rior estimates in order to illustrate the transition from a single regime model to
a two regime model and appraise how the posterior estimates of the 2 regime
model may relate to those of the single regime model. Initial prior bounds were
defined based on the estimates obtained by numerical maximization of the like-
lihood function (NML). The posterior estimates of the AR coefficients are in
close agreement with those obtained by NML while the posterior estimates of
the GARCH coefficients deviate more. After verification, this can be due to a
bimodality on the posterior density of the α0 coefficient, which makes its esti-
mated posterior mean larger than the one estimated by NML. These results are
not presented here in order to save space but are available upon request.

As for the MS(2)-AR(3)-GARCH(1,1), the autoregressive dynamics are rather
similar in the two regimes but for the intercept terms θ

(1)
0 and θ

(2)
0 which con-

firms the earliest results in Pinson and Madsen (2010). More interestingly, the
dynamics of the conditional variance in the two regimes differ in several ways.
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First, the intercept terms in regime 1 is significantly lower than in regime 2
(α(1)0 � α

(2)
0 ), which means that regime 2 can be interpreted as the regime for

which the amplitude of the wind power fluctuations are the largest. Then the
posterior mean estimates of the GARCH coefficients in regime 1, α

(1)
1 and β

(1)
1

are approximately equal, which indicates that small prediction errors are fol-
lowed by fast decreases of the conditional variance value while large errors
give rise to sudden explosions. In regime 2, because β

(2)
1 � α

(2)
1 , the condi-

tional variance level is more stable between successive observations and has
a longer memory of large errors. Finally, one can also notice that p11 > p22,
which translates into regime 1 being more persistent than regime 2 (i.e., peri-
ods of low volatility last longer than periods of high volatility).

An illustration of the estimated sequence of smoothed probabilities for the MS-
AR-GARCH model is given in Figure 7. In particular, it depicts the smoothed
probabilities of being in regime 1. It can be noticed that the two regimes do not
seem to be well separated but for periods where the wind power generation
is null or close to its nominal capacity Pn, with smoothed probabilities close to
1. Even though a clear separation of the regimes is a very desirable feature, it
does not automatically translate into a loss of predictive power of the Markov-
Switching model. This aspect will be further addressed in the next section of
this study.

First, simulations on synthetic data have allowed us to design and tune our
estimation method for MS-AR-GARCH models. Then, its applicability to an
empirical time series of wind power is tested and demonstrated a good abil-
ity to estimate posterior densities of various shapes despite some limitations
regarding the posterior densities of the autoregressive coefficients. Neverthe-
less, our will is not to identify the best class of models for the modeling of
very short-term wind power fluctuations but rather to investigate new alterna-
tives such as the proposed MS-AR-GARCH model for (i) providing additional
insights on these wind power fluctuations and (ii) investigating on their poten-
tial predictive power.

6 Wind Power Forecast Evaluation

Forecasting wind power fluctuations of large offshore wind farms at a time
scale of a few minutes is a relatively new and difficult challenge. The difficulty
stems from the lack of meteorological observations in the neighborhood of the
wind farm. The consequences are that state-of-the-art models often fail in pre-
dicting wind power fluctuations of large amplitude caused by sudden changes
in the weather conditions nearby the wind farm. In practise, naive forecasts
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are difficult to significantly outperform (Pinson et al., 2008).

The literature on short-term wind power forecasting is abundant and a recent
overview is available in Giebel et al. (2011). Originally, the quality and accu-
racy of statistical forecasts of wind power were evaluated with respect to point
prediction scores. From a decision making perspective, the drawback of such
an approach is that it clearly neglects the uncertainty associated with the fore-
cast, often leading to sub-optimal control strategies. Therefore, quantifying the
probability of all potential outcomes greatly enhances the usefulness of wind
power forecasts (Pinson et al., 2007). These probabilistic forecasts can either
take the form of density functions or prediction intervals when numerically
approximated and should preferably be evaluated with respect to their calibra-
tion and sharpness (Gneiting, 2008). Accurate quantification of the uncertainty
associated with a point forecast is an information as valuable as the value of
the forecast itself. It could first assist wind farm operators in anticipating the
risks of unexpected wind power fluctuations when point forecast fails in doing
so. And, ultimately, it could help them in determining backup strategies based
on available energy reserves.

One of the drawbacks of MS-GARCH models is that the conditional variance
becomes intractable with the addition of autoregressive terms in the model for-
mulation. This stands as a clear limitation for the use of such class of models for
prediction applications. To bypass that problem, the approach chosen in Chen
et al. (2009) is to repeat the estimation of the model over a sliding window and
generate one-step ahead forecasts based on the new set of estimates. We think
that this approach is too computationally intensive and instead, we prefer to
use the recursive update formula of the conditional variance as presented by
Gray in Gray (1996).

6.1 Approximating the Conditional Variance for Prediction Ap-
plications

The formula developed in Gray (1996) recursively approximates the condi-
tional variance as the weighted average of past conditional variances. One of
its advantages is that it is flexible and it can be extended to include autoregres-
sive terms. One may then argue and wonder why we did not use that formula
to estimate our MS-AR-GARCH model. We did investigate the possibility of
using it with an estimation method based on numerical maximization of the
Likelihood function. Nevertheless, due to the complexity of the Likelihood
function, parameter either ended up on the bounds of the constraints Equa-
tions (4) and (5) or convergence could not be reached, which prevented its use
for the estimation step of the study.
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For a MS(m)-AR(r)-GARCH(1,1) model, the approximated conditional vari-
ance at time t, ht, is defined as follows:

ht = E[y2
t |y[1,t−1],Θ]− E[yt|y[1,t−1],Θ]2 (25)

First, the term E[yt|y[1,t−1],Θ] is the optimal one-step predictor and, under nor-
mality conditions, can be calculated as the weighted sum of the predictions in
each regime:

E[yt|y[1,t−1],Θ] = ŷt|t−1 =
m

∑
k=1

ξ̂
(k)
t|t−1(θ

(k)
0 +

r

∑
i=1

θ
(k)
i yt−i) (26)

Second, the term E[y2
t |y[1,t−1],Θ] can be computed as follows:

E[y2
t |y[1,t−1],Θ] =

m

∑
k=1

ξ̂
(k)
t|t−1(h

(k)
t + (θ

(k)
0 +

r

∑
i=1

θ
(k)
i yt−i)

2) (27)

with h(k)t the one-step ahead predicted conditional variance in regime k com-
puted as follows:

h(k)t = α
(k)
0 + α

(k)
1 ε2

t−1 + β
(k)
1 ht−1 (28)

and ξ̂
(k)
t|t−1 the predictive probability of being in regime k at time t, given all in-

formation available at time t− 1. The vector of predictive probabilities ξ̂t|t−1 =

[ξ̂
(1)
t|t−1, . . . , ξ̂(m)

t|t−1]
T can be computed in a recursive manner as follows:

ξ̂t|t−1 = P
T ξ̂t−1|t−1 (29)

with ξ̂t−1|t−1 = [ξ̂
(1)
t−1|t−1, . . . , ξ̂(m)

t−1|t−1]
T the vector of filtered probabilities at time

t− 1 whose elements can be computed as follows:

ξ̂
(k)
t−1|t−1 =

ξ̂
(k)
t−1|t−2 × f (yt−1|St−1 = k,y[1,t−2],Θ)

∑m
k=1 ξ̂

(k)
t−1|t−2 × f (yt−1|St−1 = k,y[1,t−2],Θ)

(30)

where f (yt−1|St−1 = k,y[1,t−2],Θ) is the conditional density of yt−1 given the
set of information available at time t− 2.

We are aware that the approximation presented here above is not optimal for
prediction applications, since it may introduce a permanent bias in the com-
putation of the conditional variance. It is a choice governed by the necessity
to bypass a problem not yet solved and to minimize its computational cost.
It could then be expected that the prediction skills of our model would ben-
efit from advances towards a better tracking of the conditional variance for
MS-AR-GARCH models. As for now, we can proceed to the evaluation of the
prediction skills of our model.
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6.2 Evaluation of Point Forecasts

The out-of-sample predictive power of our MS-AR-GARCH model is evalu-
ated based on its performance on one-step ahead forecasts. Point forecast skills
are first considered and compared to common benchmark models for very
short-term wind power fluctuations as well as state-of-the-art models. Com-
mon benchmark models include persistence (i.e., ŷt = yt−1) and the simple but
robust AR model. State-of-the-art models include the class of MSAR models as
initially applied to wind power time series in Pinson et al. (2008). MSAR mod-
els were not estimated with the method presented in the previous section since
more robust estimation methods exist for that type of models. Instead, they
were estimated by numerical maximization of the Likelihood function. Fol-
lowing the standardized framework for the performance evaluation of wind
power forecasts discussed in Madsen et al. (2005), the proposed score functions
to be minimized are the Normalized Mean Absolute Error (NMAE) and Root
Mean Square Error (NRMSE). A higher importance is given to the NRMSE over
the NMAE in the final evaluation of point forecast skills because the RMSE is
a quadratic score function and is more likely to highlight the power of a given
model to reduce large errors. Reducing these large prediction errors is indeed
a very desirable ability of prediction models that we aim at developing. The
out-of-sample evaluation is performed over approximately 17,000 data points
of which more than 3000 are missing (from October 2005 to January 2006). The
optimal parametrization for each of the models cited here above was defined
by cross validation in the same way as for the MS-AR-GARCH model. NMAE
and NRMSE scores are computed for all models and reported in Tables 4 and 5.
For Markov-Switching models, the optimal one-step ahead predictor is given
by Equation (26).

As it could have been expected, MSAR models, with 2 or 3 regimes, outper-
form all other models for both the NMAE and NRMSE. The best improvement
in NMAE over persistence is about 5.1% while it is 4.4% for the NRMSE. These
levels of improvement agree with earlier results in Pinson et al. (2008) and Gal-
lego et al. (2011). If moving from AR to MSAR models leads to appreciable
improvements, moving from AR to AR-GARCH models results in the opposite
effect. However, moving from single regime AR-GARCH to regime switching
AR-GARCH has a significant positive effect, more notably for the NRMSE. The
relatively good performances of the MS-AR-GARCH model are comparable to
those of the MSAR model with 2 regimes. All these results tend to indicate that
the MSAR class of models, explicitly designed to capture regime switching and
autocorrelation effects, has better point prediction skills.

If accounting for heteroscedastic effects in regime switching models makes that
part of the dynamics originally captured by the AR component of MSAR mod-
els is instead captured by the GARCH component and results in lower perfor-
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Table 4: NMAE score given in percentage of the nominal capacity of the
Horns Rev 1 wind farm. Results are given for persistence, an AR
model with 3 lags AR(3), a MSAR model with 2 regimes and 3 lags
in the conditional mean equation MSAR(2,3), a MSAR model with 3
regimes and 3 lags in the conditional mean equation MSAR(3,3), an
AR-GARCH model with 3 lags in the conditional mean equation and
a GARCH(1,1) specification for the conditional variance, and finally
for the MS-AR-GARCH model estimated in Section 5.

Model Oct. Nov. Dec. Jan. Total

Persistence 2.41 2.58 3.01 2.47 2.55
AR(3) 2.36 2.64 2.98 2.46 2.53
AR(3)-GARCH(1,1) 2.29 2.60 2.95 2.41 2.49
MS(2)-AR(3)-GARCH(1,1) 2.27 2.50 2.89 2.38 2.44
MSAR(2,3) 2.28 2.49 2.89 2.37 2.44
MSAR(3,3) 2.26 2.49 2.89 2.36 2.42

Table 5: NRMSE score given in percentage of the nominal capacity of the
Horns Rev 1 wind farm. Results are given for the same models as
for the NMAE.

Model Oct. Nov. Dec. Jan. Total

Persistence 4.17 6.22 5.76 4.28 5.02
AR(3)-GARCH(1,1) 4.00 6.18 5.72 4.24 4.93
AR(3) 3.98 5.99 5.56 4.17 4.83
MS(2)-AR(3)-GARCH(1,1) 3.96 6.00 5.55 4.15 4.82
MSAR(2,3) 3.98 5.95 5.55 4.17 4.81
MSAR(3,3) 3.96 5.95 5.55 4.17 4.80
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mances in point forecasting. It can then be expected that this will translate into
better performances for probabilistic forecasts of models explicitly designed
to capture the heteroscedastic effects, such as the AR-GARCH and MS-AR-
GARCH models.

6.3 Evaluation of Interval and Density Forecasts

Probabilistic forecasts are very useful in the sense that they provide us with a
measure of the uncertainty associated with a point forecast. They can either
take the form of density or interval forecasts. For their evaluation we follow
the framework presented in Gneiting et al. (2007).

First, we consider the overall skill of the probabilistic forecasts generated by the
proposed MS-AR-GARCH model. The traditional approach consists in evalu-
ating the calibration and sharpness of the density forecasts. The calibration of
a forecast relates to its statistical consistency (i.e., the conditional bias of the
observations given the forecasts). As for the sharpness of a forecast, it refers
to its concentration or, in other words, to its variance. The smaller the vari-
ance, the better, given calibration. One score function known to assess both
the calibration and sharpness of density forecasts simultaneously is the Con-
tinuous Ranked Probability Score (CRPS), as defined in Gneiting et al. (2007).
The exercise consists in generating one-step ahead density forecasts. For the
single regime model, these density forecasts take the form of Normal density
functions, while for Markov-Switching models they take the form of mixtures
of conditional Normal distributions weighted by the predictive probabilities
of being in each of the given regime. The CRPS criterion is computed for the
same models as for the point prediction exercise and the results are reported in
Table 6.

From Table 6, it can noticed that the proposed MS-AR-GARCH model has the
best overall skill. Its improvement over AR models is about 12.6%. More gen-
erally, GARCH models outperform non-GARCH models even though the im-
provements are very small in some cases. The relatively good performance of
the MSAR model with 3 regimes tend to indicate that the volatility clustering
effect captured by GARCH models may partly be captured as a regime switch-
ing effect by MSAR models. This may appear as a paradox but it is not, in our
opinion. As noticed in Pinson and Madsen (2010), the respective dynamics in
the three regimes of the MSAR model can be more easily characterized with
respect to the values of their respective variance rather than their respective
conditional mean dynamics. While GARCH models are explicitly designed for
capturing the heteroscedastic effect, the formulation of MSAR models makes
that the same effect can be captured in an implicit manner by the combination
of several dynamics with different variances. The consequence of these find-
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Table 6: CRPS criterion given in percentage of the nominal capacity of the
Horns Rev 1 wind farm. Results are given for the same models as for
the point prediction exercise.

Model Oct. Nov. Dec. Jan. Total

AR(3) 1.99 2.33 2.48 2.02 2.15
MSAR(2,3) 1.81 2.01 2.26 1.88 1.94
MSAR(3,3) 1.78 1.98 2.24 1.85 1.91
AR(3)-GARCH(1,1) 1.76 1.99 2.24 1.85 1.91
MS(2)-AR(3)-GARCH(1,1) 1.76 1.95 2.20 1.83 1.88

ings is that MS-AR-GARCH models which combine both a Markov-Switching
and GARCH formulation are not very powerful for separating the regimes (see
Figure 7), since there may be a conflict in their formulation. However, it does
not automatically affect their predictive power since a clear separation of the
regimes may not automatically translate into better prediction skills. Instead,
it is reflected in a more parsimonious parametrization of the MS-AR-GARCH
models regarding the optimal number of regimes.

In order to better evaluate the contribution of the calibration to the overall skill
of probabilistic forecasts, one can compare the empirical coverage rates of in-
tervals forecasts to the nominal ones. Intervals forecasts can be computed by
means of two quantiles which define a lower and an upper bound. They are
centered around the median (i.e., the quantile with nominal proportion 0.5).
For instance, the interval forecast with a coverage rate of 0.8 is defined by the
two quantiles with nominal proportion 0.1 and 0.9. Empirical coverage rates of
interval forecasts generated from an AR, MSAR and MS-AR-GARCH are com-
puted and reported in Table 7. A graphical example of the dynamical shape of
these interval forecasts is given in Figure 8, for the MS-AR-GARCH model and
a coverage rate of 90%. From Table 7, recurrent and large positive deviations
are observed for the interval forecasts generated from the AR model, indicating
that the intervals are too wide. In contrast, the empirical coverage rate of the
interval forecasts generated from the MSAR model exhibits a relatively good
match with the nominal coverage rates. The maximum deviation is around
6%. While these intervals seem too wide for small nominal coverage rates (i.e.,
from 10 up to 50%), they become too narrow for large nominal coverages. As
for the intervals generated from the MS-AR-GARCH models, the agreement is
excellent for the smallest nominal coverage rates (i.e., from 10 up to 40%) and
the largest one (i.e., 90%), whereas it significantly deviates from the nominal
coverage of intermediate widths. This latter result may be the consequence of a
bias introduced by the approximation of the conditional variance as presented
earlier. This also tends to indicate that the relatively good overall skill of prob-
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Table 7: Nominal coverage rates and empirical coverage rates of interval fore-
casts generated by the following three models: AR(3), MSAR(3,3)
and MS(2)-AR(3)-GARCH(1,1). The coverage rates are expressed
in %.

Nom. cov. Emp. cov.

AR(3) MSAR(3,3) MS(2)-AR(3)-GARCH(1,1)

10 13.2 7.1 9.4
20 42.6 25.8 20.7
30 55.5 35.2 31.3
40 64.3 43.9 42.3
50 71.4 52.4 63.2
60 77.2 60.3 71.2
70 81.6 68.8 78.1
80 89.9 77.7 84.4
90 90.0 86.9 90.0

abilistic forecasts generated from MS-AR-GARCH models are more likely to be
the result of sharp rather than consistent forecasts.

7 Discussion and Concluding Remarks

We presented a general framework for the modeling and forecasting of very-
short term wind power fluctuations at large offshore wind farms. The dynam-
ics of these fluctuations are very complex and developing models for predic-
tion applications is an ongoing challenge within the wind power community.
The interest of the proposed MS-AR-GARCH model is that it extends the state-
of-the-art methodology based on MSAR models and specifies the conditional
variance in each regime as a GARCH model in order to better account for
heteroscedastic effects. This calls for an advanced estimation method to over-
come the problem linked to the historical path dependency of the conditional
variance. In that regard, Bayesian methods offer an alternative framework to
methods based on Maximum Likelihood Estimation. In particular, they allow
to break down the complexity of the global estimation problem into a set of
smaller problems for which practical approach exists.

In a first stage, we gave a thorough introduction on the estimation method
based on a MCMC algorithm. Then, we identified issues linked to its imple-
mentation and presented some solutions to overcome them. In a second stage,
the estimation method for the proposed MS-AR-GARCH model was tested on
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both synthetic and empirical time series. It was successfully applied to syn-
thetic time series. The results on the empirical time series of wind power are
more mixed. In particular, the method encountered clear problems in dealing
with the high correlation of the AR coefficients of the model, which resulted in
rather flat posterior densities. On the opposite, it seemed to work well for the
other model parameters (i.e., GARCH coefficients and transition probabilities).
In that respect, directions for future research could include the investigation of
more appropriate sampling methods for the AR coefficients.

The predictive ability of the MS-AR-GARCH model was evaluated on a one-
step ahead forecasting exercise of wind power time series sampled over 10 min
intervals. Empirical comparisons of its performances against common bench-
mark and state-of-the-art models showed that (i) it is slightly outperformed
by MSAR models for point forecasts according to NMAE and NRMSE criteria;
(ii) it outperforms all other models in terms of overall skill of probabilistic fore-
casts evaluated with the CRPS criterion. However, these results need to be put
into a broader perspective. First, both point forecast improvements of MSAR
and MS-AR-GARCH models over the simple but robust AR model are very
small for the NRMSE score function, while they are larger for the NMAE score
function. This tends to indicate that Markov-Switching models contribute to
reducing point forecast errors over periods where the wind power fluctuations
are characterized by small rather than large amplitude. Second, and more in-
terestingly, all three MSAR, AR-GARCH and MS-AR-GARCH models are able
to capture periods characterized by different volatility levels of wind power
fluctuations at the Horns Rev 1 wind farm. Having said that, the overall merit
of the proposed MS-AR-GARCH model is to generate improved probabilistic
forecasts with respect to their calibration and sharpness. This is important since
only a complete description of all potential outcomes, and hence their proba-
bility distribution, may lead to optimal decisions in wind energy, as shown
in Pinson et al. (2007).

The concerns raised in Section 4.1 about the sub-optimality of the Normal as-
sumption were recently addressed in Pinson (2012) which proposed the use of
a Generalized Logit-Normal distribution instead. One aspect of this distribu-
tion is that it is more appropriate for modeling the skewness of the errors and
the heteroskedastic effects near the bounds of the process. It led to substantial
improvements in terms of calibration, sharpness and overall reliability of den-
sity forecasts. For instance, the additional improvement in the CRPS criterion
for a simple AR model is about 7%–8%. These results are in line with those
reported in Gneiting et al. (2006), Thorarinsdottir and Gneiting (2010), Lau and
McSharry (2010) which showed the potential of using a truncated Normal dis-
tribution for wind speed and wind power prediction applications. Similarly,
the use of the Generalized Logit-Normal distribution for Markov-Switching
will be investigated with a particular focus on multi-step ahead forecasts.
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For the time being and in the absence of meteorological observations to ex-
plain the origin of the volatility observed at Horns Rev, statistical models do
not have the ability to anticipate the most abrupt changes in the dynamics of
the wind power fluctuations. Future approaches based on the integration of
observations of local weather conditions are likely to fill in that gap. A first
step was achieved in Gallego et al. (2011) with the integration of on-site wind
speed and direction measurements into prediction models, resulting in appre-
ciable improvements of wind power fluctuation predictability. Another lead
was given in Vincent et al. (2011) with the observations of convective rain cells
during episodes of extreme wind speed variability. Following these observa-
tions, a weather radar capable of measuring rain reflectivity at high spatio-
temporal resolution is currently operated at the offshore site of Horns Rev in
order to provide additional insights on these wind power fluctuations and help
improving their predictability.
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Figure 6: Estimated posterior densities of the MS(2)-AR(3)-GARCH(1,1)
model fitted to the time series of wind power.
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Figure 7: Time series of wind power and estimated sequence of smoothed
probabilities of being in regime 1 (i.e., low volatility regime).
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High-resolution forecasting of wind power
generation with regime-switching models and

off-site observations

Pierre-Julien Trombe1, Pierre Pinson1

1 Introduction

With the growing penetration of wind power into power systems, electric util-
ities are called to revise their operational practices. In particular, experts in
energy management recommend to increase the scheduling frequency of elec-
tricity generation and delivery from hours to minutes, in order to mitigate the
impact of wind power variability on power systems (GE Energy, 2010). Trans-
mission System Operators (TSO) expressed concurring views on the integra-
tion of large amounts of wind power into power systems (Jones and Clark,
2011). In a few European countries, very short-term wind power forecasts with
temporal resolutions from 5 to 15 minutes, and lead times up to 36-48 hours,
are already used in a wide range of applications (Holttinen et al., 2011). These
include among others optimizing reserve allocation, balancing electricity con-
sumption and production, and controlling wind power fluctuations at large
offshore wind farms (Akhmatov et al., 2007, Kristoffersen and Christiansen,
2003). In particular, one application for which forecasts with specific lead times
up to 15-20 minutes are needed is the management of the immediate regulating
power reserve. This type of reserve is activated over time intervals up to 15-20
minutes, after the system experiences a sudden and large deviation between
scheduled and actual wind power generation (Akhmatov, 2007). This issue is
paramount in countries or regions with limited interconnections, or with no
complementary source of energy (e.g., hydro or pumped hydro) that can be
both stored and used for fast-acting generation.

Issuing improved wind power forecasts for supporting decision-making in reg-
ulating reserve management has the merit of being more cost-effective when
compared to other solutions such as increasing backup capacities. For lead
times from a few minutes to a few hours, wind power forecasts are best gener-
ated with statistical models using historical data. However, developments in
wind power forecasting have long been oriented towards energy market ap-
plications, placing focus on forecasts at hourly resolutions, as required by the

1DTU Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark
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market structure. These approaches heavily rely on the availability of mete-
orological forecasts of wind speed and direction owing to the strong relation
between wind and wind power, the so-called power curve (Giebel et al., 2011).
Employing such a strategy is not realistic when working with lead times of a
few minutes. Instead, a number of new modeling and forecasting approaches
were recently proposed in view of improving the predictability of wind power
fluctuations for very short lead times. These include regime-switching models,
off-site predictors and a new type of predictive distribution.

Regime-Switching models – The motivation for applying these models comes
from the existence of structural changes in the dynamics of wind power fluc-
tuations at temporal resolutions of a few minutes, hence the term wind power
regime. Periods of low and high wind power variability alternate, not only
modulated by the wind own variability, but also by the power curve that am-
plifies or dampens wind fluctuations owing to its nonlinear nature. For low or
high wind speeds, wind power fluctuations are very small whereas, for mod-
erate wind speeds (i.e., roughly between 7 and 13 m.s−1), wind power fluc-
tuations can become extreme. Originally developed for applications in Econo-
metrics (Tong, 1990), regime-switching models have, since then, also been ap-
plied for modeling and forecasting offshore wind power fluctuations in Pinson
et al. (2008), Gallego et al. (2011), Trombe et al. (2012), improving the accuracy
of wind power forecasts when compared to single regime models. Regime-
switching models divide into two categories, those for which regimes are ob-
servable and determined by expertise, and those for which they are unobserv-
able and estimated jointly with the model. This translates into two classes
of time series models, namely Threshold Autoregressive (TAR) and Markov-
Switching Autoregressive (MSAR) models (Tong, 1990, Fruhwirth-Schnatter,
2006).

Off-site predictors – Traditional inputs to statistical prediction models con-
sist of on-site observations (i.e., wind power production, wind speed and di-
rection) and/or meteorological forecasts (wind speed and direction, tempera-
ture, atmospheric pressure). However, meteorological forecasts are generated
at coarse temporal resolutions, from 1 to 3 hours, and therefore not informative
on intra-hour wind fluctuations. Furthermore, wind measurements are rarely
available in real-time for applications with lead-times of a few minutes. When
wind power data and wind data are not simultaneously available, the diffi-
culty of generating accurate wind power forecasts increases. This is the reason
why a number of recent studies explored the potential of off-site observations
as new predictors (Alexiadis et al., 1999, Damousis et al., 2004, Gneiting et al.,
2006, Larson and Westrick, 2006, Hering and Genton, 2010, Tastu et al., 2010,
Lau, 2011). In particular, wind farms and meteorological masts scattered over
a region form a net capable of capturing valuable information on the weather
conditions. Owing to the synoptic mechanisms in the atmosphere which drive
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wind variability in space and time, upwind observations can be informative of
upcoming changes in weather conditions and be used as extra predictors (Tastu
et al., 2011, Girard and Allard, 2012). Two distinct approaches exist for integrat-
ing these off-site predictors into forecasting models, depending on whether (i)
the dominant weather conditions are known a priori and the model designed
accordingly (Alexiadis et al., 1999, Damousis et al., 2004, Gneiting et al., 2006,
Larson and Westrick, 2006), or (ii) there is no a priori information available on
weather conditions and it is assumed that the model can capture the associated
effects directly from the data (Tastu et al., 2010, Lau, 2011, Hering and Genton,
2010). Despite their high accuracy, models based on the first type of approach
have a clear downside, they tend to be very region or site-dependent, lacking
of adaptivity when applied to areas with different weather conditions. In con-
trast, models based on the second type of approach are more data-driven and
require less expert knowledge to capture the spatio-temporal dependencies be-
tween sites.

The Generalized Logit-Normal distribution – Wind power generation is a
double-bounded process since it can neither be negative nor exceed the wind
farm rated capacity. In addition, the distribution of wind power forecast er-
rors changes with respect to the conditional expectation of the forecasts (Lange,
2005). In particular, heavy skewness near the bounds and a clear heteroscedas-
tic behavior are generally observed. In a parametric framework, a common ap-
proach for dealing with these features consists in combining a statistical model
that handles the heteroscedasticity (e.g., Generalized Autoregressive Condi-
tional Heteroscedastic (GARCH) models) with a predictive distribution that
deals with the effects of the bounds and, potentially, with skewness (e.g., cen-
sored and truncated Normal distributions) as in Lau and McSharry (2010). A
generalization of this type of approach was proposed in Pinson (2012) with
the Generalized Logit-Normal (GLN) distribution and applied for forecasting
wind power fluctuations at large offshore wind farms.

All three aforementioned approaches yielded substantial gains in wind power
predictability, in a wide variety of contexts. However, their predictive per-
formances, yet demonstrated against traditional benchmark models, were not
compared against one another. As a result, there seems to be a great deal
of confusion on the direction to follow for forecasting wind power fluctua-
tions. In particular, the constraints imposed by short lead time applications
(i.e., no wind measurements) offer a difficult test to the robustness of these
approaches. For instance, one may wonder whether the relative complexity of
regime-switching models is worth the gain in predictability, when compared
to more parsimonious models with a single regime and tuned with off-site pre-
dictors and the GLN distribution. As a first attempt to clear this point out, we
perform a comparative study of the predictive performances of the different
approaches and, eventually, explore different combinations of them in order to
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evaluate whether additional improvements can be obtained. Focus is placed
on wind power fluctuations from a single wind farm.

Wind power forecasts and, more generally, forecasts of any continuous quan-
tity are given in the form of either a single-value (i.e., deterministic fore-
cast) or a full probability distribution or density (i.e., probabilistic forecast).
As pointed out in Gneiting (2008), forecasts ought to be probabilistic in or-
der to achieve optimal decision-making under uncertainty. This idea found
its echoes with a few TSOs which started using probabilistic information in
control rooms (Jones and Clark, 2011). In this work, the accuracy of wind
power forecasts is verified with respect to both point and density forecasts even
though more importance will be given to the latter ones.

This paper is organized as follows. Section 2 introduces the case study, the
data and their characteristics. Section 3 presents the four classes of model con-
sidered in this study, namely Autoregressive (AR), AR-GARCH, TAR, MSAR.
In section 4, the predictive performances of these models are evaluated both
in terms of point and density forecasts. Finally, section 5 delivers concluding
remarks.

2 Data and their characteristics

In this section, we present the data and their characteristics. We also perform a
number of analysis to introduce some essential principles that motivate mod-
eling assumptions in section 3. In particular, we give a detailed account on
the the GLN predictive distribution as proposed in Pinson (2012), and evalu-
ate spatio-temporal correlations of wind power in view of integrating off-site
predictors into time series models.

2.1 Case study

The case study consists of a group of three wind farms located in the South-
East of Ireland, the Carnsore wind farm which has a rated capacity (Pn) of 11.9
MW and its two nearest wind farms, Richfield (27 MW) and Ballywater (42
MW), as shown in Figure 1. Ballywater and Richfield are located about 40 km
North-East and 17 km West of Carnsore, respectively. The Carnsore wind farm
is located at the extreme point of a peninsula, by the sea shore. Richfield and
Ballywater are located further away inland but within 5-10 km from the sea,
remaining in the zone of influence of the marine weather. In this study, focus
is placed on forecasting the wind power generation at the Carnsore wind farm.
As aforementioned, no wind measurement is available. Furthermore, available
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meteorological forecasts have a too coarse temporal resolution to be informa-
tive for lead times of a few minutes and thus cannot be used. Our knowledge
of weather conditions in Ireland is restricted to the prevalence of southwest-
erly winds. In addition, passages of low-pressure systems characterized by
large wind variability and developments of storms are more frequent over the
period from August to January (Met Eireann, 2012).

Figure 1: The Carnsore, Richfield and Ballywater wind farms are located in
the South-East of Ireland. Carnsore and Richfield are separated by
an approximate distance of 17 km, and the distance between Rich-
field and Ballywater is 40 km.

Ireland and its power system are singular when compared to other countries/regions
with high wind power penetrations. Ireland has large wind resource but very
limited interconnection capacity with power systems from other countries. More
specifically, there exists a single interconnection to Northern Ireland which, in
turn, is only connected to the United Kingdom. The target of Ireland is to meet
40% of its energy demand with renewable energy sources by 2020, of which
37% are expected to be covered by the integration of wind power. The small
interconnection capacity clearly acts a limiting factor for enabling further wind
power into the system since the latter will be unable to spill excess power when
needed. Consequently, improved wind power predictability would allow to
decrease the frequency of curtailment actions and reduce losses of wind power
generation (Holttinen et al., 2011).

2.2 Data quality control

The wind power data used in this study are provided by Eirgrid, the TSO in
Ireland. They span the period from December 31, 2006 to June 1, 2009. One
time series of wind power production is available for each wind farm, at a
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temporal resolution of 15 minutes. Following Madsen et al. (2005), time series
are normalized and expressed as a percentage of the wind farm rated capac-
ity. The resulting time series take values on the unit interval [0,1]. The raw
data records are complete for Carnsore and Richfield but not for Ballywater for
which 3071 values (out of 84864) are reported missing. Since the data consist
of output power time series, and not available power, a data quality control is
performed. We identify several periods where the output power is curtailed,
likely indicating that some wind turbines were temporarily out of order or that
an absolute power limitation was imposed. An example is given in Figure 2
which shows the time series of wind power for the Carnsore wind farm. The
output power never exceeds 92% of the rated power of Carnsore in the second
semester of 2007 and the first semester of 2008. Consequently, we only use
the period from July 10, 2008 to 27 March, 2009 in this study, corresponding to
more than 25000 data points. This period is shaded in grey in Figure 2.
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Figure 2: Time series of wind power at Carnsore. The data overlaying the
shaded area are considered to be of good quality and used for the
experimental part of this study.

2.3 The Generalized Logit-Normal predictive distribution

The conversion from wind to power makes that wind power generation is a
double-bounded process, with a potentially high concentration of observations
near or at the bounds. This feature is illustrated in Figure 3. In addition, the
shape of the distribution of the wind power forecast errors evolves with the
conditional expectation of the forecasts. Near the bounds, the conditional dis-
tribution of wind power forecast errors tends to have a very small standard
deviation and to be heavily skewed. Moving away from these bounds, the stan-
dard deviation increases and the skewness decreases (Lange, 2005). When fore-
casting wind power generation from single wind farms, designing an appro-
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priate strategy for taking these features into account is paramount. In Pinson
(2012), the author proposed the use of the Generalized Logit-Normal (GLN)
distribution. The underlying motivation for using this distribution comes from
the work of Box and Cox (1964) where it is shown that appropriate data trans-
formations may enhance characteristics such as linearity, homoscedasticity and
additivity.

0
20

40
60

80
10

0

time

w
in

d 
po

w
er

 [%
 P

n]

26/09/2008 28/09/2008 30/09/2008 02/10/2008 04/10/2008 06/10/2008

Figure 3: Normalized wind power generation at Carnsore. The temporal res-
olution of 15 minutes.

The homoscedasticity of wind power forecast errors can be enhanced by trans-
forming the original time series {yt} as follows:

ỹt = γ(yt,ν) = log
(

yν
t

1− yν
t

)
, ν > 0, yt ∈ [0,1] (1)

where ν is a shape parameter and the resulting time series {ỹt} takes values
in ]−∞,+∞[. This transformation, as shown in Figure 4 for a set of different
values of ν, aims at outstretching the distribution near the bounds of the inter-
val [0,1]. In the original domain [0,1], the assumption of homoscedastic wind
power forecast errors does not hold and, even though one may argue that this
may still not be the case after transforming the time series, making that such
assumption is clearly more appropriate in the transformed domain than in the
original one.

However, the concentration of observations at the bounds, in 0 and 1, gener-
ates two probability masses that remain in the transformed domain. They are
located in −∞ and +∞, respectively. To fix this, the coarsening principle is
applied as in Lesaffre et al. (2007). All observations taking values in the open
interval ]−∞,γ(ε,ν)[ are shifted to γ(ε,ν). Likewise, all observations taking
values in ]γ(1− ε,ν),+∞[ are shifted to γ(1− ε,ν), with ε < 0.01. Two Dirac
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Figure 4: The GLN predictive distribution consists of transforming the origi-
nal wind power observations in order to deal with the heteroscedas-
ticty near the bounds of the interval [0,1]

distributions δγ(ε,ν) and δγ(1−ε,ν) are introduced so that the one-step ahead pre-
dictive distribution in the transformed domain, Yt+1|t, is defined as follows:

Yt+1|t ∼ ω0
t+1|tδγ(ε,ν) +N (µ̂t+1|t, σ̂

2
t+1|t)1]γ(ε,ν),γ(1−ε,ν)[ + ω1

t+1|tδγ(1−ε,ν)

(2)

ω0
t+1|t = Φ(

γ(ε,ν)− µ̂t+1|t
σ̂t+1|t

) (3)

ω1
t+1|t = 1−Φ(

γ(1− ε,ν)− µ̂t+1|t
σ̂t+1|t

) (4)

where Φ is the cumulative distribution function of the Normal variable with
0 mean and unit variance.

2.4 Spatio-temporal correlations in wind data

Recent studies showed that it was possible to take advantage of spatio-temporal
correlations in wind data at an hourly resolution in order to improve the pre-
dictability of wind speed or wind power at regional scales (Gneiting et al., 2006,
Larson and Westrick, 2006, Hering and Genton, 2010, Tastu et al., 2010). Never-
theless, for higher temporal resolutions, in the order of a few minutes, the wind
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variability caused by local effects is magnified and may reduce these correla-
tions. Besides that, other factors which contribute to decrease spatio-temporal
correlations of wind data include topographical effects and inter-site distances.
When considering wind power data, the potential effects of the power curve
cannot be ignored. The power curve is a function of atmospheric variables such
as wind speed, wind direction, wind shear and air density. For identical atmo-
spheric conditions at two wind farms, differences in the type, age and size of
wind turbines, as well as their geographical spread, may result in large differ-
ences in generated power, and thereby decrease spatio-temporal correlations.

For a reasonable number of wind farms, a visual assessment of their respec-
tive wind power generation can give clear indications on the potential level of
spatio-temporal correlations. Figure 5 shows three time series of normalized
wind power from Carnsore, Richfield and Ballywater over a 4-day episode.
Wind power fluctuations from Carnsore and Richfield closely follow each other.
Still, it appears difficult to identify a clear and recurrent pattern on whether
wind fluctuations at Carnsore leads those at Richfield, or whether it is the
opposite. This potentially reflects changes in wind direction. Note also that
the wind power level at Ballywater is significantly lower than at Carnsore and
Richfield.
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Figure 5: Normalized wind power generation at Carnsore, Richfield and Bal-
lywater with a temporal resolution of 15 minutes.

Before using off-site observations for prediction applications, it is essential to
analyze correlations between wind data from distant sites. Following Girard
and Allard (2012), we assume that these correlations can appropriately be de-
scribed and quantified by the traditional linear correlation coefficient. In order
to evaluate these correlations, we use the pre-whitening technique presented
in Madsen (2008). Let A and B be two wind farms, with their respective time
series of wind power generation {y(A)

t } and {x(B)
t }. {x

(B)
t } is called the input
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series and {y(A)
t } the output series. The idea is to use the power generation

from wind farm B as input for improving the wind power predictability of
wind farm A. The procedure is divided into three steps as follows:

1. An appropriate Autoregressive Moving Average (ARMA) model is fitted
to the input series {x(B)

t } and a series of residuals {e(B)
t } extracted,

2. The output series {y(A)
t } is filtered with the same model as in step 1 and

a series of residuals {e(A)
t } extracted,

3. The cross-correlation function is calculated based on the two series of
residuals as follows:

ρe(A)e(B)(τ) =
cov(e(A)(t), e(B)(t + τ))

σe(A)σe(B)
(5)

We repeat the pre-whitening procedure presented hereabove with and with-
out the GLN transformation as given by equation (1) in order to evaluate how
this transformation changes the correlation structure between the power gen-
eration from two wind farms. The results are reported in Figure 6. Nega-
tive lags indicate that wind power fluctuations at Richfield or Ballywater lead
those at Carnsore. First, these results reveal larger cross-correlations between
Richfield and Carnsore than between Ballywater and Carnsore, thereby con-
firming the visual observations made from Figure 5. This result is most likely
the consequence of the shorter distance separating Carnsore from Richfield
than from Ballywater which would be consistent with the empirical analysis
in Girard and Allard (2012) where spatio-temporal correlations are shown to
quickly decrease within a radius of 50 km. Figure 6 also shows that wind
power fluctuations at Richfield tend to lead those at Carnsore up to 30 min-
utes ahead, on average. In contrast, cross-correlations between Ballywater and
Richfield are much lower and it appears more difficult to determine a clear ten-
dency on whether wind power fluctuations propagate preferentially from Rich-
field to Ballywater, or the opposite. A direct extrapolation from these cross-
correlations suggests that off-site observations from Richfield have a higher po-
tential for improving wind power predictability at Carnsore than correspond-
ing observations from Ballywater. Finally, one can see that cross-correlations
between Carnsore and Richfield are larger without applying the GLN trans-
formation a priori. Cross-correlations tend to decrease with large values of
the shape parameter ν. We can think of two potential causes that explain this
feature. First, using the GLN distribution may degrade the linear relationship
between the two time series, particularly near the bounds where the respective
variances may increase. Secondly, using the GLN distribution may enhance
the homoscedasticity of the input time series {x(B)

t } so that the residuals series
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Figure 6: Cross-correlations (after pre-whitening) of wind power generation
at Carnsore and (left column) Richfield, (right column) Ballywater.
Negative lags indicate that wind power fluctuations at Richfield or
Ballywater lead those at Carnsore.

{e(B)
t } is closer to being a white noise process, and thereby is less informative.

3 Time series modeling

The stochastic nature of wind power generation is described hereafter with
time series models. We start by considering linear models (i.e., ARX and ARX-
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GARCH) before moving on to nonlinear regime-switching models (i.e., TARX
and MSARX). For each model, we give the most general formulation, meaning
that off-site predictors are included by default, hence the X in model acronyms.
Our objective is to estimate models in view of generating, not only accurate
point forecasts, but also probabilistic forecasts. All models are thus estimated
by Maximum Likelihood Estimation (MLE) rather than Least Squares (LS). Let
{y(A)

t } (respectively {ỹ(A)
t }) be the observed (respectively transformed) time

series of wind power generation to be predicted at a given wind farm A. Let
{x(WF)

t } be a time series of off-site wind power generation observed at a dis-

tant wind farm WF, with WF = B,C, . . .. For the sake of simplicity, y(A)
t (re-

spectively x(WF)
t ) denotes both the random variable and its observed value at

time t. Let Ωt = (y(A)
1 , . . . ,y(A)

t , x(B)
1 , . . . , x(B)

t , x(C)1 , . . . , x(C)t , . . .) be the set of ob-
servations available at time t.

3.1 ARX models

While it is generally acknowledged that wind power generation is a nonlinear
process, operational wind power forecasting systems usually rely on linearity
assumptions (Nielsen et al., 2007). ARX models are some of the most widely
used in practice. There are several reasons for this. First, their formulation is
very intuitive and simply consists of a linear combination of lagged variables
which leads to fast estimation procedures. Secondly, they stand as very com-
petitive models for generating point forecasts owing to their parsimony (i.e.,
low number of parameters to be estimated). Thirdly, there exists closed-form
formula for generating multi-step ahead forecasts (Madsen, 2008).

The linear AR(p)-X(q) model with p autoregressive and q exogenous predictors
is given by:

y(A)
t = [θ ψ]Yt + σεt (6)

where

θ =[θ0,θ1, . . . ,θp] (7)

ψ =[ψ
(B)
rB , . . . ,ψ(B)

sB ,ψ(C)
rC , . . . ,ψ(C)

sC , . . .] (8)

Yt =[1,y(A)
t−1, . . . ,y(A)

t−p, x(B)
rB , . . . , x(B)

sB , x(C)rC , . . . , x(C)sC , . . .]T (9)

and {εt} is an independent and identically distributed (i.i.d) sequence of ran-
dom variables with 0 mean and unit variance, and q=∑WF=(B,C,...) (sWF − rWF + 1).
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Let Θ = (θ,ψ,σ) be the set of parameters to be estimated. For Normally dis-
tributed errors, the Maximum Likelihood Estimator (MLE), Θ̂MLE, is obtained
by minimizing the negative log-likelihood function as follows:

Θ̂MLE = argmin
Θ

− logL(Θ|ΩT ) (10)

where − logL(Θ|ΩT ) =
n
2

log(2πσ2) +
1

2σ2

n

∑
i=1

ε2
t (11)

and εt = y(A)
t − [θ ψ]Yt (12)

and L is the likelihood function.

Two types of predictive density are considered, the censored Normal and the
GLN. At time t, given the vector of estimated parameters Θ̂MLE and the set
of observations Ωt, the one-step ahead censored Normal density f̂t+1|t is de-
scribed by the estimated conditional expectation µ̂t+1|t and standard devia-
tion σ̂ of the Normal density so that f̂t+1|t(y(A)|Θ̂MLE,Ωt) =N [0,1](µ̂t+1|t, σ̂)
where µ̂t+1|t = [θ̂ ψ̂]Yt.

In order to obtain the one-step ahead GLN density, additional steps are needed.
First, the transformation given in (1) must be applied for estimating the vector
of parameters Θ̂MLE in the transformed domain. Second, the one-step ahead
predictive density in the transformed domain is obtained by following the for-
mula (2-4). Last, the inverse GLN transformation presented in Pinson (2012) is
applied on a quantile per quantile basis for generating the GLN density in the
original domain.

3.2 ARX-GARCH models

ARX-GARCH models are a popular extension of ARX models as they can re-
lax the assumption of constant variance without data transformation. GARCH
models were first introduced in Econometrics by Bollerslev (1986). A short re-
view of meteorological applications of GARCH models is available in Trombe
et al. (2012). This class of model proposes to capture the dynamical structure of
the conditional variance, jointly to that of the process conditional expectation.
The conditional variance h2

t is modeled as an ARMA process for the squared
errors ε2

t . It was shown in a number of studies that a GARCH(1,1) structure is
in most cases appropriate to capture the temporal dynamics of h2

t . The linear
AR(p)-X(q)-GARCH(1,1) model with p autoregressive and q exogenous predic-



84 P a p e r B

tors is given by:

y(A)
t = [θ ψ]Yt + htεt (13)

h2
t = ω + αε2

t−1 + βh2
t−1 (14)

where {εt} is an i.i.d sequence of random variables with 0 mean and unit vari-
ance. To ensure that the conditional variance is positive, we impose ω > 0 and
α, β ≥ 0.

Let Θ = (θ,ψ,ω,α, β) be the set of parameters to be estimated. For Normally
distributed errors, Θ̂MLE is obtained by minimizing the negative log-likelihood
function as follows:

Θ̂MLE = argmin
Θ

− logL(Θ|ΩT ) (15)

where − logL(Θ|ΩT ) =
n
2

log(2πσ2) +
1

2h2
t

n

∑
i=1

ε2
t (16)

where εt is given by (12) and h2
t is given by (14). For the implementation of

the model, analytical formula for the first and second order derivatives of the
negative log-likelihood function are given in (Fiorentini et al., 1998).

One-step ahead predictive densities are generated in a similar way as with ARX
models, but for a single change. The conditional standard deviation σ̂ becomes
time-varying as follows:

σ̂ = ht (17)

with h2
t = ω̂ + α̂ε2

t−1 + β̂h2
t−1 (18)

3.3 TARX models

TARX models are the first regime-switching models considered in this study.
They are piecewise linear, and the transitions between regimes are governed in
a deterministic way by a lagged variable, and are hence observable. See (Tong,
1990) for a more detailed introduction to these models. The TAR(p1, . . . , pR)-
X(q1, . . . ,qR) model with R regimes, pj autoregressive and qj exogenous predic-
tors in regime j, with j = 1, . . . , R, is given by:

y(A)
t = [θ(j) ψ(j)]Yt + σ(j)εt if rj < zt−d ≤ rj+1 (19)

where

θ =[θ
(j)
0 ,θ(j)

1 , . . . ,θ(j)
p ] (20)

ψ =[ψ
(j,B)
rB , . . . ,ψ(j,B)

sB ,ψ(j,C)
rC , . . . ,ψ(j,C)

sC , . . .] (21)
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and {εt} is an i.i.d sequence of random variables with 0 mean and unit vari-
ance, σ(j) the standard deviation in the regime j, zt−d the lagged variable;
d∈ N+ the delay parameter with usually d≤max(p1, . . . , pR), and rj the thresh-
old values separating the regimes. The regime-switching effect translates into
the autoregressive and exogenous coefficients as well as the standard deviation
of the error term being state-dependent. Applications of TAR models for fore-
casting wind power fluctuations can be found in Pinson et al. (2008), Gallego
et al. (2011) which alternatively use lagged observations of wind speed, wind
direction or wind power for controlling transitions between regimes. A special
class of TAR model is the Self-Exciting TAR (SETAR) model which corresponds
to the case where the dependent variable is chosen as the lagged variable.

The major issue with TAR models is the joint determination of the delay d and
thresholds rj, j = 1, . . . , R. In particular, the most spread technique for the deter-
mination of the rj is based on the visual assessment of scatter plots of t-ratios
(see Tong (1990)). In order to fill in the lack of consistency of such approach,
an automated procedure for determining the number of regimes and threshold
values of TAR models was recently proposed in Bermejo et al. (2011). It consists
of detecting jumps in the values of the estimates of an arranged autoregression
by using a recursive least squares (RLS) estimation method. This method can
be extended to deal with exogenous predictors without complicating its proce-
dure. Once the threshold values known, the parameters for a given regime can
be estimated independently of the parameters of the other regimes by applying
the formula given in formula (10-12) for each regime, and predictive densities
can be generated as with ARX models.

3.4 MSARX models

MSARX models are the second type of regime-switching models in this study.
Structurally, the major difference between MSARX and TARX models lays in
the way the sequence of regimes is determined. With TAR models, this se-
quence is determined explicitly by a lagged variable, and the transitions be-
tween regimes are therefore discontinuous. With MSARX models, the sequence
is assumed hidden and estimated directly from the data. More specifically,
MSARX models assume that an unobservable Markov process governs the dis-
tribution of the observations (Fruhwirth-Schnatter, 2006). This enables smooth
transition between regimes.

The MSAR(p1, . . . , pR)-X(q1, . . . ,qR) model with R regimes, pj autoregressive
and qj exogenous predictors in regime j, with j = 1, . . . , R, is given by:

y(A)
t = [θ(zt) ψ(zt)]Yt + σ(zt)εt (22)
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where

θ(z) =[θ
(z)
0 ,θ(z)1 , . . . ,θ(z)p ], z = 1, . . . , R (23)

ψ(z) =[ψ
(z,B)
rB , . . . ,ψ(z,B)

sB ,ψ(z,C)
rC , . . . ,ψ(z,C)

sC , . . .], z = 1, . . . , R (24)

and {εt} is an i.i.d sequence of random variables with 0 mean and unit vari-
ance, {zt} follows a first order Markov chain with a finite and discrete number
of states R and transition probability matrix P of elements (pij)i,j=1,...,R:

pij = Pr(zt = j|zt−1 = i), i, j = 1, . . . , R (25)
R

∑
j=1

pij = 1, i = 1, . . . , R (26)

Similarly to TARX models, the autoregressive coefficients and standard devia-
tion of the error term are state-dependent. Let Θ = (θ(1), . . . ,θ(R),ψ(1), . . . ,ψ(R),
σ1, . . . ,σR,P ) be the set of parameters to estimate. For Normally distributed er-
rors in each regime, Θ̂MLE is obtained by

Θ̂MLE = argmin
Θ
− logL(Θ|ΩT ) (27)

where L(Θ|ΩT ) = δ(
n

∏
t=1
PDt)1

T (28)

δ = 1(IR −P +UR)
−1 (29)

Dt = diag(η(t,1), . . . ,η(t, R)) (30)

η(t, i) =
1

σ(i)
φ

(
y(A)

t − [θ(i) ψ(i)]Yt

σ(i)

)
, i = 1, . . . , R (31)

where δ is the stationary distribution of the Markov chain, 1 is a unit vector
of size R, IR and UR Identity and Unity matrices of size R× R, Dt a diagonal
matrix and φ the probability density function of the Normal distribution. Prac-
tical solutions for the implementation of MSARX models are given in Zucchini
and MacDonald (2009).

With MSARX models, predictive densities take the form of mixture of densi-
ties (Fruhwirth-Schnatter, 2006, Zucchini and MacDonald, 2009). For the case
where the errors are Normally distributed in each regime, the resulting predic-
tive density is a mixture of R Normal densities that is censored in 0 and 1 later
on. At time t, given the vector of estimated parameters Θ̂MLE and the set of
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observations Ωt, the one-step ahead density can be obtained as follows:

f̂ [0,1]
t+1|t(y

(A)|Θ̂MLE,Ωt) =
R

∑
k=1

ξ
(k)
t φ([θ̂(k) ψ̂(k)]Yt, σ̂(k)) (32)

where ξt =

δ(
t

∏
i=1
P̂Di)P̂

δ(
t

∏
i=1
P̂Di)1T

(33)

and ξ
(k)
t is the kth element of the vector of filtered probabilities ξt at time t.

In order to obtain predictive densities in a GLN fashion, we can apply the same
3-step procedure as for ARX models that is: (1) data transformation in order to
work in the transformed domain, (2) generation of mixture of Normal densities
in the transformed domain, and (3) inverse transformation of a set of quantiles
of this mixture of Normal densities.

3.5 Estimation procedure

As mentioned in section 2, the data we selected cover the period from July 10,
2008 to 27 March, 2009. This corresponds to about 25000 observations, for each
of the three time series (i.e., Carnsore, Ballywater, Richfield). Focus is placed
on predicting the wind power generation at the Carnsore wind farm. The first
15000 observations are used for fitting the models. The following 5000 obser-
vations are used for performing a one-fold cross-validation and determining
the optimal parametrisation of each model. The last 5000 observations, corre-
sponding to about 63 days, are kept for forecast evaluation.

Cross-validation is jointly performed on the structure of the model (i.e., se-
lection of the optimal AR lags from 1 up to 8, and X lags from 1 to 5, number
of regimes R) and a set of values for the shape parameter ν of the GLN dis-
tribution (from 0.1 to 3.1 with steps of 0.1). Because of that, and because the
likelihood function is unbounded, neither the respective goodness-of-fit nor
the predictive power of the models can be compared with respect to likelihood
based scores. Instead, the cross-validation procedure is performed by mini-
mizing the Continuous Ranked Probability Score (CRPS) for one-step ahead
density forecasts. The CRPS quantifies the accuracy of conditional density fore-
casts based on two principles: calibration (i.e., the relative position of a forecast
with respect to the observed value) and sharpness (i.e., the concentration of the
predictive distribution around the observed value) (Gneiting et al., 2007).

For each class of models presented in this section, we estimated four different
models with: (N) a censored Normal distribution, (X-N) a censored Normal
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distribution and exogenous regressors, (GLN) a GLN distribution, (GLN-X) a
GLN distribution and exogenous regressors. Four different lagged variables
zt−d were tried for controlling the regime sequence of TAR models, namely
y(Carn)

t−d , x(Rich)
t−d , and their respective first order differentiated series. For all

four TAR models, y(Carn)
t−1 was selected as the best lagged variable. The final

parametrisation of each model is summarized in Table 1 along with the total
number of parameters in order to appreciate their respective cost-complexity.
Several observations can be drawn from these results. First, none of the final
models includes off-site information from Ballywater. This means that wind
power fluctuations from Ballywater are not informative for improving the pre-
dictability of wind power fluctuations at Carnsore for the proposed models.
On the opposite, all models include two lagged measurements from Richfield,
concurring with the early observations in section 2 which indicated that wind
power fluctuations at Richfield led those at Carnsore up to 30 minutes ahead.
Second, the use of the GLN distribution leads to a reduction of the autoregres-
sive order for AR and MSAR models, while it decreases the optimal regimes
number, from four to three, for TAR models. More generally, the use of the
GLN distribution yields a reduction in the cost complexity (i.e., the number of
parameters to be estimated) of all models but AR-GARCH.

4 Experimental results and forecast evaluation

In this section, we evaluate the predictive performances of the four classes of
models presented in the previous section, namely ARX, ARX-GARCH, TARX
and MSARX models. The evaluation consists of measuring the accuracy of
one-step ahead point and density forecasts, as well as the overall reliability of
these forecasts.

4.1 Point forecasts

Electric utilities have a long tradition of using point or deterministic forecasts
of wind power (Jones and Clark, 2011, Giebel et al., 2011). In this study, point
forecast accuracy is evaluated with respect to the Normalized Mean Absolute
Error (NMAE). There is an inverse relationship between point forecast accu-
racy and the NMAE score: the lower the NMAE, the better. Following Gneiting
(2011), we use the median of the predictive densities as the optimal point fore-
cast, due to the nature of the NMAE which is based on a symmetric piecewise
linear scoring rule. All models are benchmarked against Persistence since it is
one of the most competitive benchmarks for such short lead times. Persistence
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Table 1: Summary of model parametrisation after cross-validation. This in-

cludes the lagged variables y(Carn)
t−i , the lagged exogenous variables

x(Rich)
t−i , the number of regimes and total number of parameters.

Model y(Carn)
t−i x(Rich)

t−i Number of Total number
regimes of parameters

AR-N 1:7 - 1 9
AR-X-N 1:7 1:2 1 11
AR-GLN 1:5 - 1 8
AR-X-GLN 1:5 1:2 1 10

AR-GARCH-N 1:5 - 1 9
AR-X-GARCH-N 1:5 1:2 1 11
AR-GARCH-GLN 1:5 - 1 10
AR-X-GARCH-GLN 1:5 1:2 1 12

TAR-N (1:6, 1:6, 1:5, 1:6) - 4 31
TAR-X-N (1:5, 1:5, 1:5, 1:5) (1:2, 1:2, 1:2, 1:2) 4 36
TAR-GLN (1:6, 1:3, 1:6) - 3 22
TAR-X-GLN (1:6, 1:3, 1:6) (1:2, 1:2, 1:2) 3 28

MSAR-N (1:5, 1:5) - 2 16
MSAR-X-N (1:5, 1:5) (1:2, 1:2) 2 20
MSAR-GLN (1:3, 1:3) - 2 13
MSAR-X-GLN (1:3, 1:3) (1:2, 1:2) 2 17

usually outperforms other common benchmarks such as Climatology, Moving
average or Constant forecast (see for instance Pinson (2012), Lau (2011)) which
are not included here. It is an Autoregressive model of order 1 with no inter-
cept term and its coefficient value equal to 1. Point forecast results are given in
Table 2. It is interesting to note that not all models outperform Persistence and
that even the largest improvement does not exceed 3%. Overall, MSARX and
ARX-GARCH with a GLN distribution give the best results. When considering
each class of models independently of the others, we observe two trends. The
first one concerns AR and TAR models for which the use of either off-site in-
formation or the GLN distribution yields substantial gains in wind power pre-
dictability. These gains are further improved by using both. The second trend
regards AR-GARCH and MSAR models for which the use of the GLN distribu-
tion alone, without off-site information, leads to negligible gains whereas the
opposite (i.e., no GLN distribution and off-site information) leads to apprecia-
ble gains.
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Table 2: One-step ahead forecast performances. Results are given in terms of
Normalized Mean Absolute Error (NMAE) and Normalized Contin-
uous Ranked Probability Score (NCRPS). Point (respectively proba-
bilistic) forecast improvements are given with respect to Persistence
(respectively a AR-N model).

Model NMAE NCRPS

Persistence 3.77 -

AR-N 3.87 (-2.7%) 3.38
AR-X-N 3.80 (-0.7%) 3.28 (2.9%)
AR-GLN 3.77 (0.2%) 2.99 (11.7%)
AR-X-GLN 3.70 (1.9%) 2.90 (14.1%)

AR-GARCH-N 3.76 (0.4%) 3.04 (10.2%)
AR-X-GARCH-N 3.73 (1.1%) 2.97 (12.1%)
AR-GARCH-GLN 3.76 (0.3%) 2.82 (16.8%)
AR-X-GARCH-GLN 3.67 (2.8%) 2.75 (18.7%)

TAR-N 3.84 (-1.9%) 3.05 (9.8%)
TAR-X-N 3.73 (1.0%) 2.96 (12.4%)
TAR-GLN 3.77 (0.1%) 2.88 (16.6%)
TAR-X-GLN 3.70 (1.9%) 2.81(16.9%)

MSAR-N 3.77 (0.1%) 3.01 (11.1%)
MSAR-X-N 3.67 (2.7%) 2.93 (13.4%)
MSAR-GLN 3.76 (0.3%) 2.79 (17.7%)
MSAR-X-GLN 3.67 (2.8%) 2.71 (19.8%)

4.2 Density Forecasts

Forecasts of any quantity contain an inherent part of uncertainty. Supplying
information on this uncertainty is paramount for developing efficient decision-
making strategies, as shown in the context of wind power trading by Pinson
et al. (2007). Here, information on this uncertainty is provided in the form
of full predictive densities of wind power, for all four classes of models. The
accuracy of these densities is assessed with respect to the Normalized CRPS
(NCRPS). This score is a generalization of the NMAE score for probabilistic
forecasts and measures the difference between the observed cumulative dis-
tribution functions and those predicted (Gneiting et al., 2007). It can be inter-
preted in a similar way as the NMAE, meaning the lower the NCRPS the better.
All models are benchmarked against an AR model with a censored Normal dis-
tribution (AR-N). Results for one-step ahead densities are reported in Table 2.
The best result is given by the MSAR model with off-site information and the
use of the GLN distribution (MSAR-X-GLN), with a relative improvement of
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almost 20% when compared to an AR-N model. In addition, we observe a com-
mon trend across all four classes of models when considered independently
of the others. Their ranking is dominated by models including both off-site
observations and the GLN distribution (X-GLN), then come models specified
with the GLN distribution and no off-site predictors (GLN), then models with
off-site predictors but without GLN distribution (X), and finally models with
neither the GLN distribution nor off-site predictor (N).

Figures 7 and 8 give an illustration of these predictive densities over two arbi-
trary examples of 100 observations each. Densities are depicted as prediction
intervals with nominal coverage rates ranging from 10 to 90%. Point forecasts
corresponding to the median of these densities are also presented. Prediction
intervals generated with the best two models (i.e., ARX-GARCH-GLN and
MSAR-X-GLN) are compared. In particular, in Figure 7, large forecast errors
result in wider prediction intervals for the ARX-GARCH-GLN model than for
the MSAR-X-GLN model.

4.3 Forecast reliability

The CRPS is a global score that averages the predictive accuracy of conditional
densities based on their calibration and associated sharpness. However, it is
not informative on the behavior of these densities in terms of probabilistic re-
liability. Reliability measures how well the predicted probabilities of an event
correspond to their observed frequencies. For instance, one may want to mea-
sure the proportion of observations actually lower than the 5th percent quantile
or larger then the 95th percent quantile for evaluating the ability of the predic-
tive density tails in predicting extreme or rare events. In this study, the reliabil-
ity of the predictive densities of wind power is evaluated with four reliability
diagrams as shown in Figure 9. These diagrams are generated for each of the
four classes of models by comparing the nominal (i.e., theoretical) proportions
of a set of quantiles with the observed proportions of the same set. Here, we
used 19 quantiles, from the 5th percent quantile to the 95th percent quantile
with a step of 5th percent. The best reliability is given by the model whose
diagram is closer to the ideal case in Figure 9, that is the MSAR-X-GLN model.

4.4 Discussion

The results presented in this section highlight a number of interesting points
but also raise a few questions. Let us summarize some of our comments here-
below:



92 P a p e r B

●●
●

●

●

●

●

●

●

●
●

●●●●●●●
●●●

●●●●●●●●●
●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●●●●●●●

●

●

●
●

●

●

●

●

●

●●●

●

●

●
●

●

●
●●

●●●●●●●●●
●

●

0 20 40 60 80 100

0
20

40
60

80
10

0

time step [15min]

w
in

d 
po

w
er

 [%
 o

f P
n]

● ●

●

●

●

●

●

●

●

●

●

●
● ● ● ●

● ●

●
●

●
● ● ● ●

● ● ● ●
●

● ● ●
●

●
● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●
●

●

●

●

●
● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●
●

●

● ● ● ● ● ● ● ● ●
●

●

● observations
point forecasts
90% pred. interval
80% pred. interval
70% pred. interval
60% pred. interval
50% pred. interval
40% pred. interval
30% pred. interval
20% pred. interval
10% pred. interval

●●
●

●

●

●

●

●

●

●
●

●●●●●●●
●●●

●●●●●●●●●
●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●
●●●●●●●

●

●

●
●

●

●

●

●

●

●●●

●

●

●
●

●

●
●●

●●●●●●●●●
●

●

0 20 40 60 80 100

0
20

40
60

80
10

0

time step [15min]

w
in

d 
po

w
er

 [%
 o

f P
n]

● ●

●

●

●

●

●

●

●

●

●

●
● ● ● ●

● ●

●
●

●
● ● ● ●

● ● ● ●
●

● ● ●
●

●
● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●
●

●

●

●

●
● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●
●

●

● ● ● ● ● ● ● ● ●
●

●

● observations
point forecasts
90% pred. interval
80% pred. interval
70% pred. interval
60% pred. interval
50% pred. interval
40% pred. interval
30% pred. interval
20% pred. interval
10% pred. interval

Figure 7: Example 1. Time series of normalized wind power generation at
Carnsore and one-step ahead point forecasts and prediction inter-
vals with nominal coverage from 10 to 90%. ARX-GARCH-GLN
model (Top panel), MSAR-X-GLN model (Bottom panel).

1. In the Irish case study chosen for this work, the variability of wind power
fluctuations can be considered as extreme. For instance, the NMAE value
of the Persistence is about 50% larger than that at the Horns Rev 1 wind
farm where wind power fluctuations are known to be characterized by
a high variability (Pinson et al., 2008, Trombe et al., 2012). In that sense,
this case study offered a difficult test to all models, enhancing the impact
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Figure 8: Example 2. Time series of normalized wind power generation at
Carnsore and one-step ahead point forecasts and prediction inter-
vals with nominal coverage from 10 to 90%. ARX-GARCH-GLN
(Top panel) model, MSARX-GLN model (Bottom panel).

of the results obtained.

2. Irrespectively of the availability of off-site measurements, the use of the
GLN distribution is recommended for very short-term forecasts. In par-
ticular, it enables an improved modeling of the heteroscedastic behavior
of wind power time series, which translates to substantial gains in pre-
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Figure 9: Reliability diagram of predictive densities of wind power.

dictability even for models already explicitly accounting for heteroscedas-
ticity in their formulation (i.e., MSARX and ARX-GARCH) . However, it
calls for further research on its potential for multi-step ahead forecasts.
This issue was not addressed here but will be investigated in the fu-
ture. In addition, focus should be placed on developing a more consistent
framework than cross-validation for estimating the optimal value of the
shape parameter ν of the GLN distribution. For instance, the estimation
of ν could be performed jointly with the estimation of the model via the
Expectation-Maximization (EM) algorithm (see Dempster et al. (1977)).

3. The results obtained with TARX models are relatively disappointing, par-
ticularly, when analyzed from a perspective including the cost complex-
ity of these models and the level of expertise required to tune them.
It is also worth noting that TAR models are outperformed by linear in
mean ARX-GARCH models. It could be expected that TARX models per-
form much better for point forecasting especially in combination with
the GLN distribution since the introduction of regimes via the thresholds
could reduce the strong influence of the probability masses in γ(ε,ν) and
γ(1− ε,ν) on the autoregressive coefficient estimates.

4. Density forecasts of wind power generated with Markov-Switching mod-
els have superior calibration and sharpness when compared to those gen-
erated with other models in this study. Beyond this result, it is important
to stress the underlying assumption in MSAR models which leads to such
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result, that is the existence of an unobservable regime sequence which
governs the wind power generation. As of today, our knowledge is lim-
ited and we can only assume that the estimated regime sequence is linked
to some weather regime. Therefore, it would be useful to investigate the
use of data (e.g., quick scan satellite images, weather radar images) that
can describe weather conditions over large spatial areas and high tem-
poral resolutions for improving the characterization of this regime se-
quence.

5 Conclusion

This work considered the probabilistic forecasting of wind power generation
from a single wind farm, over very short lead times (i.e., 15 minutes). Re-
alistic assumptions were made regarding the online availability of wind data
in the current wind power context, meaning that neither wind measurements
nor wind forecasts are available for the temporal resolution of interest. The
sole data that are used consist of on-site observations of wind power genera-
tion, along with corresponding observations from the two nearest wind farms
located in a radius of 50 km. Focus is placed on the most recent approaches
from the wind power forecasting literature, including regime-switching mod-
els, the use of off-site predictors and a new predictive distribution. The predic-
tive performances of these approaches and their associated models are com-
pared against one another to assess their respective merits. Eventually, com-
binations of these approaches are proposed and proved to generate improved
wind power forecasts.

Through an application with three wind farms in Ireland, we show that regime-
switching models for which the sequence of regime is unobservable (i.e., Markov-
Switching) generate more accurate point forecasts, better calibrated and sharper
conditional densities, than single regime or other regime-switching models for
which the regimes are observable. Furthermore, gains in wind power pre-
dictability can be increased by taking advantage of off-site information when
available or using a more appropriate predictive distribution such as the GLN
distribution, as introduced in Pinson (2012). The highest gains were obtained
by using simultaneously off-site observation and the GLN distribution.

The superior predictive power of Markov-Switching models is interesting in
two aspects. First, because this type of models is rather generic and thus
non site-dependent, requiring very little expert knowledge to be tuned. It
confirms the potential shown for offshore applications (Pinson et al., 2008,
Trombe et al., 2012). Second, because Markov-Switching models assume the
existence of an unobservable regime sequence that can be interpreted as a hid-
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den weather regime. This indicates that substantial gains in wind power pre-
dictability could be obtained by integrating more meteorological data at high
spatio-temporal resolution such as satellite images, weather radar images, or
meteorological forecasts. In particular, this a prerequisite for extending regime-
switching approaches to multi-step ahead wind power forecasts.
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Abstract

Offshore wind fluctuations are such that dedicated prediction
and control systems are needed for optimizing the management
of wind farms in real-time. In this paper, we present a pioneer
experiment – Radar@Sea – in which weather radars are used for
monitoring the weather at the Horns Rev offshore wind farm, in
the North Sea. First, they enable the collection of meteorologi-
cal observations at high spatio-temporal resolutions for enhanc-
ing the understanding of meteorological phenomena that drive
wind fluctuations. And second, with the extended visibility they
offer, they can provide relevant inputs to prediction systems for
anticipating changes in the wind fluctuation dynamics, generat-
ing improved wind power forecasts and developing specific con-
trol strategies. However, integrating weather radar observations
into automated decision support systems is not a plug-and-play
task and it is important to develop a multi-disciplinary approach
linking meteorology and statistics. Here, (i) we describe the set-
tings of the Radar@Sea experiment, (ii) we report the experience
gained with these new remote sensing tools, (iii) we illustrate
their capabilities with some concrete meteorological events ob-
served at Horns Rev, (iv) we discuss the future perspectives for
weather radars in wind energy.
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1 Introduction

A substantial number of large-scale offshore wind farms have been deployed in
Northern Europe over the last few years, and the plan is to keep on expanding
offshore wind power in the near future (Danish Energy Agency, 2007). Along
that expansion, the development of specific methodologies for wind resource
assessment in offshore environments has received much attention. In partic-
ular, the use of remote sensing techniques has led to significant advances in
that domain (Sempreviva et al., 2008). In comparison, much less attention has
been given to operational issues linked to the predictability and controllability
of these large offshore wind farms Sørensen et al. (2007). And yet, the poten-
tial magnitude of wind fluctuations is such that advanced control strategies
are indispensable and have to be performed in real-time (Kristoffersen, 2005),
even more when weather conditions become extreme (Cutululis et al., 2011).
Offshore wind power fluctuations also induce additional challenges for Trans-
mission Systems Operators (TSO) in maintaining the balance between electric-
ity production and demand (Akhmatov et al., 2007). For these applications,
the availability of accurate wind power forecasts is a prerequisite. In particu-
lar, there is a large consensus on the growing importance of such forecasts at
specific temporal resolutions of 5-10 minutes, and look-ahead times of a few
hours (Jones and Clark, 2011).

Short-term wind power forecasts, from a few minutes up to a few hours, are
preferably generated with statistical models using historical data. However,
today, operational prediction systems for offshore wind farms are not funda-
mentally different than for onshore wind farms (Giebel et al., 2011). They tra-
ditionally rely on meteorological forecasts (e.g., wind speed and direction)
whose temporal resolution is usually between 1 and 3 hours, and up to a fore-
cast length of 48-72 hours. This acts as a limitation when it comes to capturing
the intra-hour volatility of offshore wind power fluctuations induced by mete-
orological phenomena in the boundary layer, even more when meteorological
forecasts are misleading (e.g., phase errors). Furthermore, it is a well-known
issue that the layout of offshore wind farms, concentrating a high density of
wind turbines within a small geographical area, makes the impact of local me-
teorological phenomena on their power production stronger than at onshore
sites where smoothing effects occur. These issues were addressed in several
recent studies which alternatively proposed the use of regime-switching mod-
els (Pinson et al., 2008, Trombe et al., 2012), a new type of predictive density (?),
or local wind speed and direction measurements as new inputs (Gallego et al.,
2011). However, even though these models give evidence of their interesting
predictive power, their ability to accurately predict the most severe fluctuations
remain very limited and offshore wind power forecasts are characterized by
large uncertainties. This also highlights the limitations of local wind measure-
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ments (e.g., from nacelle anemometry and SCADA systems) when it comes to
upcoming changes in weather conditions on spatial scales of kilometers. Mete-
orological observations that cover a broader spatial area are thus required, not
only to improve our understanding of the phenomena driving mesoscale wind
fluctuations, but also to provide more informative inputs to prediction models.

In wind power forecasting, there is a need for new and multi-disciplinary ap-
proaches combining the expertise of meteorologists, forecasters, control engi-
neers and wind farm operators. This is the idea developed in an ongoing exper-
iment – Radar@Sea – which proposes the use of weather radars, novel remote
sensing tools in wind energy, for the online observation of the atmosphere at
offshore sites. This experiment is motivated by recent advances in the mod-
eling of wind fluctuations at Horns Rev, Denmark, and the identification of
several climatological patterns correlated with periods of increased wind speed
variability, for time scales from 10 minutes up to 1 hour (Vincent et al., 2011). In
particular, precipitation and large wind speed fluctuations are often observed
simultaneously. Weather radars are the ideal tools to detect, locate and quantify
precipitation. They have become essential tools in real-time decision support
systems for tracking and predicting natural hazards. More generally, owing
to their techniques, they offer an extended visibility of the weather conditions
over substantially large areas. Therefore, they have the potential for anticipat-
ing the arrival of weather fronts and other meteorological phenomena which
intensify offshore wind fluctuations. It is even more important for some off-
shore wind farms that cannot benefit from upwind information, being the first
hit by the onset of particular weather regimes.

The experiment we present in this paper is the first of this type for wind energy
applications worldwide, to our knowledge. Yet, lessons learnt from the use
of weather radars in hydrological and meteorological sciences show that inte-
grating weather radar observations into automated decision support systems
is not a plug-and-play task. The volume and complexity of weather radar ob-
servations are such that specific diagnosis tools have to be developed for data
quality control, data visualization and feature extraction (see, for instance, Lak-
shmanan et al. (2007) for a detailed description of the WDSS-II system for se-
vere weather nowcasting). Therefore, a thorough understanding of the weather
radar techniques, capabilities and limitations, as well as the field of applica-
tion are expected to influence the design of the final decision support system.
For those reasons, we think that the experience gained through the Radar@Sea
experiment could be a valuable source of information to other researchers fol-
lowing a similar approach.

The structure of this paper is as follows. In section 2, we give an introduction
to the meteorological conditions (precipitation and wind fluctuations patterns)
over Denmark and the North Sea. In section 3, weather radars principles, capa-
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bilities and limitations are presented. In section 4, we describe the Radar@Sea
experiment along with the two weather radar systems used for the experiment.
In section 5, we show four precipitation events and analyze how they relate to
wind speed and wind power fluctuations observed at Horns Rev. In section 6,
we discussed the future perspectives for weather radars in wind energy appli-
cations. Finally, section 7 delivers concluding remarks.

2 Meteorological context

Automating the integration of complex and large meteorological observation
sets into prediction systems requires a preliminary understanding of the mete-
orological phenomena over the region of interest, both at the synoptic scale and
the mesoscale. More specifically, we are interested in using precipitation ob-
servations as indicators for weather conditions featuring high wind variability.
Therefore, a clear view on the relationship between meteorological variables
and the development of precipitation is likely to help interpreting weather
radar observations. In this section, the focus is placed on the coastal area of
Denmark and, in particular, the North Sea.

2.1 Synoptic scale

Denmark is located at the border between the North Sea and the European con-
tinent. The atmospheric circulation patterns are dominated by westerly flows
coming from the Atlantic Ocean and the North Sea. The average wind direction
can often be associated with particular weather conditions, and each weather
phenomenon has a unique signature in terms of the local wind variability, pre-
cipitation and small scale weather.

For example, cold fronts, which are the boundary between cold and warm air
masses, approach the North Sea from the west and are usually associated with
a wind direction change from southwesterly to northwesterly. In the winter
months, anticyclones over the region often bring cold, clear conditions and
light easterly winds, while in the summer months, anticyclones tend to be posi-
tioned further to the south and bring warm, sunny weather and still wind con-
ditions. West and South-West are the prevailing wind directions while North
and North-East directions are the least frequent (Cappelen and Jørgensen, 1999).
A brief summary of the most frequent weather types and their associated pre-
cipitation patterns is provided in Table 1, conditioned upon wind direction and
season. For the purposes of this article, we consider that there are only two
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seasons in Denmark, a winter season from October to March, and a summer
season from April to September.

Table 1: Weather types and their associated precipitation patterns in Den-
mark, as described in Cappelen and Jørgensen (1999).

Winter Summer

N
or

th
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ly
w

in
ds

• Northerly winds are the least frequent in Denmark and are mostly
observed during the winter,

• They bring dry and very cold air which result in very occasional
showers in the East of Denmark,

Ea
st

er
ly

w
in

ds

• Easterly winds are most frequent during the late winter and early
summer and are the consequence of the continental influence,

• Rare and light precipitation (mostly during the winter).

So
ut

he
rl

y
w

in
ds

• They bring cold continental
air,

• Occasional light precipita-
tion.

• They bring warm continental
air,

• Moist air transforms into
heavy rain showers (and
strong wind downdrafts),

• Occasional thunderstorms.

W
es

te
rl

y
w

in
ds

• Westerly winds bring depressions associated with frontal systems
and trailing precipitation (occasional snow in the winter) or heavy
rain showers,

• Successive arrival of depressions may repeat over weeks, being
separated by one or two days.

• Cold air carried out by fronts
passing over warm sea often
results in strong convection
and rain showers.

• Under westerly winds, pre-
cipitation are usually more
abundant in the summer than
in the winter.

Severe phenomena and large wind fluctuations are mainly associated with two
types of synoptic scale systems. First, low pressure systems and their associ-
ated cold fronts, coming from the Atlantic Ocean, are very dynamic and favor
the development of squall lines and thunderstorms accompanied by heavy rain
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showers. These low pressure systems may contain more than one cold front.
Hence, their effects may persist over several days. The level of severity asso-
ciated with these low pressure systems is generally higher in the winter than
in the summer. Second, the continental influence may be more pronounced
during the summer than the winter and result in warm and moist air being
driven from the South over Denmark. This initiates a favorable context for the
development of thunderstorms. In Van Delden (2001), a 4-year climatological
study of these thunderstorm events showed that their frequency was relatively
low in Northern Europe, when compared to Western Europe. In Denmark, that
study also showed that thunderstorms tended to occur at a higher frequency
over the coastal area and the North Sea than over land.

2.2 Mesoscale

Mesoscale phenomena have length scales between a few kilometers and sev-
eral hundred kilometers, and it follows that they are associated with wind fluc-
tuations with periods between a few minutes and a few hours. Therefore, the
wind fluctuations of interest in this paper are driven by mesoscale phenomena,
which are driven by the prevailing synoptic conditions.

In Vincent et al. (2011), mesoscale wind fluctuations observed at the Horns Rev
1 (HR1) wind farm were analyzed and it was shown that the largest amplitude
fluctuations tended to occur when the wind direction was from the westerly
sector, a result that was consistent with Gallego et al. (2011) and Akhmatov
(2007), who reported large power fluctuations and large forecast uncertainty
in the same sector. Furthermore, large wind fluctuations were found in the
presence of precipitation, when the mean sea level pressure was dropping
rapidly (indicating post-frontal conditions) and during the late summer and
early winter months when the North Sea is often warmer than the near-surface
air. In Vincent et al. (2012), the authors examined a case of large wind fluctu-
ations at HR1, and used mesoscale modelling to demonstrate the potential for
open cellular convection over the North Sea, which forms in maritime flow un-
der unstable, post-frontal conditions to cause high wind variability. The lattice
of hexagonal shaped cells that are characteristic of open cellular convection can
often be clearly identified in satellite pictures over the North Sea during post-
frontal conditions (see Figure 1). This phenomenon is of particular interest
here, because it may be identified in radar pictures in cases where there is pre-
cipitation associated with the cloudy cell walls. Further characteristics of open
cellular convection phenomena are described in Atkinson and Zhang. (1996).



3 Weather radars 109

Figure 1: Satellite image of a case of open cellular convection over the North
Sea. The cloud tops are shaped like a honeycomb, with cloud rings
on the edge and cloud-free centers. The image is from the MODIS
TERRA satellite: http:/ladsweb.nascom.nasa.gov

3 Weather radars

Remote sensing tools have enabled the collection of large amounts of meteoro-
logical data and their importance for the development of wind energy projects
is constantly growing (International Energy Agency, 2007). For instance, ground-
based tools such as LiDAR and SoDAR are used for estimating wind profiles at
high heights. Alternatively, LiDAR can be mounted on a wind turbine hub
or rotating spinner to measure the approaching wind flow in view of opti-
mizing wind turbine control (Harris et al., 2006, Mikkelsen et al., 2010). Air-
borne radars can contribute to the observation of wake effects at large offshore
wind farms, and offshore wind maps can be generated from satellite observa-
tions (Hasager et al., 2008). However, applications of remote sensing tools in
wind energy often converge towards a common goal, which is an improved
assessment of the wind resource. In addition, their outputs tend to be either
spatially limited (e.g., LiDAR and SoDAR) or temporally sparse (e.g., satellite
observations). In contrast, one of the clear strengths of weather radar systems
is their superior capacity to generate observations at high resolutions, both in
time and space, which is a very desirable capability for the short-term forecast-
ing of wind power fluctuations. In this section, we provide some insights on
weather radar principles, capabilities and limitations which are further illus-
trated by concrete examples taken from Radar@Sea in the subsequent sections.

http:/ladsweb.nascom.nasa.gov
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3.1 Principles & Capabilities

Weather radars are airborne or ground-based remote sensing tools. In this pa-
per, we only deal with ground-based weather radars. The data acquisition
process consists of a circular and volumetric scanning of the atmosphere. Mi-
crowave radiation is emitted and reflected by precipitation particles. Data col-
lected by weather radars correspond to quantitative estimations of precipita-
tion reflectivity. Precipitation intensity estimation can be obtained through the
so-called Z-R relationship (Marschall, 1948). The volumes scanned are tradi-
tionally summarized to deliver standardized output displays such as images
of precipitation reflectivity at different altitudes. For a technical introduction
on weather radars, we refer to Meischner (2004).

There exist a wide variety of weather radars and their specificities depend on
their wavelength: X-Band, C-Band or S-Band for the most common ones (listed
here from the shortest to the longest wavelength; from 3.2 cm, to 5.4 and 10
cm). Typically, the longer the wavelength, the further away the radar waves
can travel in the atmosphere and detect precipitation. S-Band radars have an
operational range beyond 450 km and are preferably used for severe weather
monitoring (e.g., forecasting of environmental hazards such as flash floods and
tornadoes; tracking of severe meteorological events such as thunderstorms and
lightnings (Serafin and Wilson, 2000)), C-Band radars operate up to 200-300
km and are often used for quantitative precipitation estimation for monitor-
ing river catchment or urban drainage systems, whereas X-Band radars have
a range within 100 km and are useful for local applications. The reason for
the difference in the applicable range is that at lower wavelengths the atten-
uation of the electromagnetic signal is higher. However, shorter wavelengths
are more sensitive to small precipitation particles and more suitable for the
observation of drizzle or even fog. S and C-band radars are usually used for
medium to long range applications for which reason data are typically avail-
able at medium spatial resolutions of 500 m to 2000 m and temporal resolutions
from 5 to 15 minutes. X-Band radars often implement a faster temporal update
cycle down to 1 minute and spatial resolutions at or below 500 m. These charac-
teristics depend on the specifications of the radar system such as the scanning
strategy (e.g., antenna rotation speed, pulse repetition frequency, sampling
frequency, number of elevations) and the antenna design (e.g., beam width).
Other important differences between the three types of weather radars relate to
their cost effectiveness and the size of their installation. X-Band radars are the
most cost-effective and their small size makes them well suited for mobile in-
stallations. In contrast, the size of the antenna of C and S-Band radars reduces
the range of possibilities for siting them.

Weather radar capabilities are also modulated by their techniques: Doppler
and/or Polarimetric, or neither. In particular, the range of capabilities of weather
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radar with Doppler technique is not limited to the detection and quantitative
estimation of precipitation. They can also estimate the radial velocity of precip-
itation particles, revealing very useful insights on the spatio-temporal structure
of complex meteorological phenomena. Polarimetric weather radars are, on the
other hand, favored for their improved ability to characterize precipitation type
(rain, snow, hail, etc.) as well as better capabilities for distinguishing between
meteorological and non-meteorological targets. Contemporary weather radar
networks operated in Europe (Holleman et al., 2008) or the United States (Crum
and Alberty, 1993) mostly consist of Doppler radars. These networks are tra-
ditionally operated by national meteorological institutes and observations are
available in real-time over large areas. Furthermore, overlapping observations
of several weather radars can be merged to create composite images which
can cover the whole Western Europe or the United States and their respective
coastal areas.

3.2 Limitations

Weather radars have some shortcomings as there is an inherent uncertainty as-
sociated with their measurements. It is acknowledged that the measurement
uncertainty increases with the intensity of precipitation. In Radar@Sea, we
prefer working directly on the reflectivity values to avoid approximating pre-
cipitation intensity through the Z-R relationship (Marschall, 1948). In addition,
various problems may arise during the data acquisition process and applying
mitigation techniques is a prerequisite before integrating weather radar ob-
servations into automated systems. These problems are addressed in detail
in Bøvith (2008) and we report here some examples:

• Radar waves can be intercepted, reflected or even completely blocked by
non-meteorological targets such as ground, sea, buildings, mountains,
etc. This problem is referred to as clutter. In this regard, the choice of an
appropriate site for installing a weather radar is crucial as it reduces the
risk of clutter;

• Short wavelength radars (e.g., X-Band) can be affected by beam atten-
uation problems in case of intense precipitation, resulting in the quality
of the measurements altered at far ranges and, more specifically, large
underestimation of precipitation reflectivity;

• Specific atmospheric conditions (e.g., inversion of the vertical tempera-
ture or moisture gradient in the atmosphere) may cause anomalous prop-
agation of the radar waves which are super-refracted and bent towards
the ground or the sea instead of propagating in the atmosphere;
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• During convective events, the scale of precipitation cells may be rela-
tively small compared to the volume scanned by weather radars, result-
ing in underestimating precipitation reflectivity, this problem is known
as beam filling and become more serious at far ranges;

• Due to the curvature of the Earth, the height at which radar waves prop-
agate increases with the range, leading to potential underestimation of
near surface precipitation at far ranges, this problem is known as over-
shooting.

Furthermore, a growing source of concerns regarding measurement accuracy
is linked to the deployment of wind farms nearby weather radar installations,
generating large clutter (Isom et al., 2009). In particular, wind farms echoes
are comparable to those of small storm cells. The larger the wind farm, the
larger the area and the strength of the clutter are. The closer the weather radar
and wind farm are, the further away the problems propagate. Impacts of wind
turbines on weather radar observations can even be identified at far ranges, up
to 100 km (Chèze and Haase, 2010).

4 The Radar@Sea experiment

Radar@Sea, the first experiment involving weather radars for offshore wind
energy applications, started in 2009 and is expected to run until the end of the
year 2012. It consisted of the installation, operation, and maintenance of a Local
Area Weather Radar (LAWR) based on X-Band technology, at the offshore site
of Horns Rev, Denmark. Observations from a nearby Doppler C-Band weather
radar were used to complement the initial data set. Finally, wind speed, wind
direction and wind power measurements from the HR1 wind farm came to
complete what is by now a unique data set in the wind energy community.
The respective geographical locations and spatial coverage of the two radars
and the HR1 wind farm are shown in Figure 2.

4.1 Local Area Weather Radar

The LAWR is installed on the roof of the accommodation platform of the Horns
Rev 2 (HR2) wind farm (see Figure 3), in the North Sea, about 20 km off the
West coast of Jutland, Denmark. The LAWR is a light configuration weather
radar system, ideal for remote locations (see Pedersen et al. (2010) for a com-
plete presentation of the system). The data collection campaign with the LAWR
started in 2010. The LAWR is located 19 km away from HR1 and is run with a
coverage range of 60 km. In order to produce one image, 24 continuous scans
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Figure 2: Geographical location of the X-Band radar (LAWR), the C-Band
radar and the Horns Rev 1 wind farm, 20 km off the west coast
of Jutland, Denmark. The area shaded in dark blue is the area cov-
ered by the X-band radar (range of 60 km) whereas the area shaded
in light blue is the area covered by the C-Band radar (range of 240
km).

are performed every minute with a large vertical opening angle of ±10◦ and a
horizontal opening of 1◦. One specificity of the LAWR is that is does not gener-
ate direct observations of precipitation reflectivity but, instead, dimensionless
count observations (Integer values of range 0-255) that can be converted to pre-
cipitation intensity through rain gauge calibration. A sample image generated
by the LAWR can be seen in Figure C.4(b). For a summary on the operational
settings of the LAWR, see Table 2.

In the course of the Radar@Sea experiment, the observational capabilities of
the LAWR have been challenged by several problems. First, it is important to
mention that the accommodation platform of the HR2 wind farm, where the
LAWR is currently installed, performs many functions other than the LAWR.
The result is that, even though the best possible spot on the platform was cho-
sen, there is a large blocking of the beam and observations are not available for
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(a) Accommodation platform of the Horns Rev 2 wind farm. A LAWR
can be seen on the top left corner of the platform.

(b) Another LAWR is installed at the Horns Rev 1 wind farm for the
needs of a separate experiment.

Figure 3: The first experiment of weather radars for offshore wind energy
takes place at Horns Rev, Denmark.

southwesterly azimuths (see Figure C.4(b)). Second, the very close proximity
of the wind turbines of HR2 contributed to large uncertainties in the measure-
ments at close ranges. Third, due to the shared utilization of the LAWR with
another experiment for wave monitoring, its mechanical clutter fence was re-
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Table 2: Geographic information, technical specifications and operational set-
tings of the two weather radars used in the Radar@Sea experiment.

LAWR (X-Band) Rømø (Doppler C-Band)

G
eo

gr
ap

hi
c

in
fo

rm
at

io
n Location Offshore (HR2) Onshore (Rømø)

Coordinates 55.600◦N, 7.623◦E 55.173◦N, 8.552◦E
Distance to HR1 19 km 57 km

Height (above sea level) 30 m 15 m

Te
ch

ni
ca

l
sp

ec
ifi

ca
ti

on
s

Frequency 9.41 GHz 5.62 GHz
Wavelength 3.2 cm 5.4 cm

Vertical opening angle ±10◦ ±1◦

Horizontal opening angle ±1◦ ±1◦

Scanning strategy Continuous 9 elevations
Scanning elevation - 0.5◦, 0.7◦, 1◦, 1.5◦, 2.4◦,

4.5◦, 8.5◦, 13◦, 15◦

O
pe

ra
ti

on
al

se
tt

in
gs

Image frequency 1 min. 10 min.
Range 60 km 240 km

Grid size 500×500 m 2×2 km
Data Dimensionless count Decibel of reflectivity

values (Integer 0-255) (dBZ)

moved. This important component usually ensures that only the reflected en-
ergy corresponding to the upper 10◦ of its vertical opening angle is kept for
precipitation sampling. The modification resulted in the measurements being
contaminated by sea clutter. On the images, this translates into “dry” pixels
having values between 70 and 100, instead of values closer to 0. These prob-
lems could easily be avoided if, as part of the design of the platform in the
future, a specific spot was allocated for installing measuring instruments. Last
but not least, the extreme weather conditions experienced at Horns Rev pre-
sented a difficult test for the robustness of the LAWR. Passages of many storms
over Denmark were recorded in the winter 2011, with mean wind speeds ap-
proaching 30 m s−1, coupled with strong gusts. Running the LAWR during
these storms increased the number of rotations of its antenna from 24 to 33-
39 rotations per minute, thereby increasing the risk of damaging its structural
components. To circumvent that problem, an electronic breaking system was
added and has, since then, proved its efficiency, enabling data collection during
the subsequent storms.
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(a) Sample image generated by the Doppler
C-Band weather radar.

(b) Sample image generated by the LAWR.

Figure 4: Sample images generated by the two weather radars on August 29,
2010 at 3.30am. The white circle on Figure (a) indicates the area
covered by the LAWR. The position of the Horns Rev 1 wind farm is
depicted by a white dot on both images. As a result of their different
scanning strategies, the 2 weather radars reveal different features of
precipitation fields.

4.2 Rømø weather radar

The Doppler C-Band weather radar used in the Radar@Sea experiment is lo-
cated in Rømø, Denmark, and operated by DMI, the Danish Meteorological
Institute (see Gill et al. (2006) for an introduction on the Danish weather radar
network). It is located 57 km away from the HR1 wind farm and has a cov-
erage range of 240 km. Observations were collected using a 9 elevation scan
strategy (0.5◦, 0.7◦, 1◦, 1.5◦, 2.4◦, 4.5◦, 8.5◦, 13◦,15◦) every 10 minutes (see Ta-
ble 2). Raw reflectivity measurements were converted into decibel of reflec-
tivity (dBZ) since it is a more appropriate unit for processing reflectivity im-
ages, as demonstrated in Lakshmanan (2012). A sample image generated by
the Doppler C-Band weather radar can be seen in Figure C.4(a). The observa-
tions DMI provided us with consist of a 1-km height pseudo-CAPPI (Constant
Altitude Plan Position Indicator) image product. The images which in our case
have a grid spacing of 2 km display the radar reflectivity at an altitude of 1 km
by selecting reflectivity from the most appropriate elevation. At ranges further
than approximately 80 km where the beam of the lowest elevation exceeds 1 km
altitude, data from the lowest elevation are used (hence the "pseudo"-CAPPI).
A general pixel-wise interpretation of reflectivity values considers background
noise echoes (birds, insects, etc.) to be between 0 and 10 dBZ, light precipita-
tion systems (e.g., stratiform rainfall) between 10 and 30 dBZ and the threshold
for convective precipitation systems is often set to between 30 and 40 dBZ. This
pixel-wise interpretation is only to be used as a simple heuristic and the charac-
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terization of radar reflectivity echoes in terms of precipitation types is a much
more complex task that requires the use of advanced algorithms (Biggerstaff
and Listemaa, 2000).

In its weather monitoring and forecasting activities, weather radar data are
used by DMI and its partners for an increasing number of applications. This
implies an increased work on data quality control procedures to improve the
observation of precipitation and to mitigate the influence of radar clutter.

4.3 Towards validating the experiment

The experimental part of the project is not limited to the data collection. There
are also a substantial number of necessary steps for validating these data, trans-
forming them into ready-to-use products and, more generally, automating their
integration into a decision support system. A preliminary step consists of per-
forming a quality control of the data. This operation is necessary for eval-
uating the level of uncertainty associated with the data and defining appro-
priate strategies to process them. As explained in section 3, the uncertainty
comes from two different sources. One is inherent to weather radar techniques
(e.g., limitation for observing near surface precipitation) and the other may be
caused by non-meteorological factors (e.g., clutter). In practise, the effects of
the latter problems are easier to detect since measurement artifacts are not ran-
dom and exhibit well-determined statistical signatures. Ideally, artifact detec-
tion methods should be robust, in the statistical sense, as they have to accom-
modate for levels of uncertainty that are changing over time. In Radar@Sea,
clutter removal filters were applied routinely on both weather radars. In addi-
tion, volume correction and beam attenuation procedures were applied as part
of the data acquisition process of the LAWR (Pedersen et al., 2010). However, a
posteriori data quality controls revealed recurrent clutter and some consistency
issues on measurements from both radars. These results as well as mitigation
techniques are presented in Appendix A.

5 Illustrative meteorological events from Horns Rev

In this section, we analyze four meteorological events which show the devel-
opment and passage of precipitation systems in relation to wind fluctuations
at the HR1 wind farm. These events were selected to illustrate the variety of
situations that weather radar can help observing. We do not attempt to make
any projection related to forecasting issues. Normalized wind power fluctua-
tions at HR1 are also included in order to show their corresponding amplitude
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during these events. Wind speed, direction and power measurements were col-
lected from the nacelle anemometry and SCADA systems (Kristoffersen, 2005).
To be consistent with section 2, we consider that there are only two seasons in
Denmark, a summer or warm season from April to September, and a winter
season from October to March. The prevailing synoptic conditions for each of
these two seasons are given Table 1.

Note that non-meteorological information has not been perfectly cleaned from
the displayed images. Let us acknowledge that removing measurement arti-
facts with automated algorithms is a highly complex task. In particular, there
is always a risk of also removing valuable meteorological information by being
too aggressive on the detection criteria. Our approach is to reduce the amount
of non-meteorological information down to an acceptable level and adapt the
robustness of image analysis methods accordingly.

5.1 Summer storms

The first meteorological event as seen by the Rømø weather radar and wind
observations is shown in Figure 5. It is from July 2010 and depicts how the
development of typical summer storms driving warm and moist continental
air coming from the South relates to wind speed and wind power fluctuations
at the HR1 wind farm. The arrows show the wind direction recorded at HR1.
(1) It begins with a case of anomalous propagation falsely suggesting the pres-
ence of precipitation. This problem is likely to be caused by a temperature
or moisture gradient inversion in the vertical stratification of the atmosphere
(see Appendix A). (2) The problem is persistent for several hours and also vis-
ible on the right part of the second image which shows the development of
strong convection. One can notice a storm in the proximity of the HR1 wind
farm. It is delimited by a cluster of pixels with high reflectivity values exceed-
ing 40 dBZ. That storm is embedded into a larger precipitation system. The
birth and growth of that storm precede the occurrence of a strong wind gust
at HR1 quickly followed by a large drop of wind speed. After that, precipi-
tation dissipates until the development of a larger storm, one day later. (3-5)
The passage of that second storm across HR1 is coupled with very large wind
fluctuations. These fluctuations are likely to be caused by the strong updrafts
and downdrafts associated with this type of storms (Houze, 2004). Over the
5 days of this events, the wind exhibits a very chaotic behavior, with sudden
and frequent changes of direction. Another interesting aspect of this event is
that it illustrates a case of high wind variability coupled with medium mean
wind speeds. In terms of wind power fluctuations, the passage of the first
storm translates into a sudden drop of power from the rated power of HR1
to 0 within 2-3 hours. The passage of the second cluster of storms generates
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Figure 5: July 2010 - Typical summer storms bringing moist and warm air
from the South, resulting in heavy rain showers. The images were
generated by the C-Band radar in Rømø. The arrows indicate the
wind direction recorded at HR1. (1) No precipitation but a case
of anomalous propagation. (2) Development of a large convective
rainfall system with an embedded storm just before a strong wind
gust is sensed at the HR1 wind farm. (3-5) Development of another
large storm associated with increased wind speed and wind power
volatility at HR1.
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fluctuations of an amplitude equivalent to 50% the rated power of HR1, over a
period of 8 hours.

5.2 A cold front in the winter

The second event is shown in Figure 6 and is from December 2010. It illustrates
the passage of a cold front over the North Sea and across the HR1 wind farm
during the winter. Let us recall that the North Sea surface is warmer than the
lower part of the atmosphere at that time of the year, enhancing the develop-
ment of strong convection (Vincent et al., 2011). (1) It starts with a shift in wind
direction at HR1, from the North-East to the South-West, and smoothly increas-
ing wind speed as the front approaches. Meanwhile, light and widespread
precipitation is moving from the North-West. (2) Wind fluctuations intensify
as the cold front passes across HR1 until a large negative gradient of wind
speed is sensed in the transition zone of the front, behind its leading edge. The
front leading edge is marked by an area of high reflectivity, between 30 and 40
dBZ, indicating the development of convection. This area of convection is em-
bedded into a larger area of precipitation, characterized by intermediate mean
reflectivity. (3-5) In the wake of the front, the wind direction shifts from the
South-West to the North-West. In addition, large wind fluctuations are sensed
at HR1 simultaneously with the passage of many scattered precipitation cells.
These cells are small and are characterized by very short lifetime, growing and
decaying within a few hours. Inspecting satellite pictures corresponding to
this events reveals well developed open cellular convection covering part of
the North Sea. Wind fluctuations have an average period of around 1-2 hours,
which is consistent with the spatial scale of the open cellular convection, as
discussed in Vincent et al. (2012). Resulting wind power fluctuations reach an
amplitude of almost 80% the rated power of HR1, within one hour.

5.3 Precipitation without severe wind fluctuations

The third event is shown in Figure 7 and is from May 2010. It illustrates the
development of a relatively large precipitation system which is not associated
with severe wind fluctuations at HR1. Precipitation is moving from the North-
East whereas the mean wind recorded at Horns Rev is northwesterly. (1-3)
The mean wind speed increases steadily as the precipitation system is moving
towards HR1. When compared to the previous event showing a cold front
passage in the winter, the spatial structure of the leading edge of the present
precipitation system is quite similar. It consists of a convective area embedded
into a larger area of less intense precipitation. (4-5) Precipitation dissipates and
the mean wind speed decreases without noticeable change in its variability.
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Figure 6: December 2010 - An example of cold front passage over the North
Sea and the HR1 wind farm during the winter. The images were
generated by the C-Band radar in Rømø. The arrows show the
wind direction recorded at HR1. (1) The wind speed is peaking up
with the arrival of the cold front. It leading edge is characterized by
widespread stratiform precipitation with embedded convection. (2)
A first large negative gradient of wind speed is sensed at HR1 while
the leading edge of the cold front is passing across the wind farm.
(3-5) Very large wind speed fluctuations coupled with a steady de-
crease of the mean wind speed. Small precipitating cells can be ob-
served in the wake of that cold front. These cells correspond to well
developed open cellular convection.
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Figure 7: May 2010 - An example of precipitation system which is not asso-
ciated with severe wind fluctuations at the HR1 wind farm. The
images were generated by the C-Band radar in Rømø. The arrows
show the wind direction recorded at HR1. (1-3) The wind speed in-
creases steadily with the arrival of the precipitation system from the
North-East. (4-5) The wind speed decreases steadily as the precipi-
tation dissipates.

Unlike the previous episode, the leading part of the precipitation system is not
followed by any trailing cell. It can also be noted that the resulting wind power
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fluctuations are relatively small.

This event shows that the presence of precipitation in the vicinity of the HR1
wind farm is not always associated with severe wind fluctuations. There may
be several reasons for this. Firstly, the strength and severity of phenomena
producing precipitation usually decreases after they reach their mature stage.
In particular, in this event, it can be seen that precipitation dissipates as the
convective area reaches the HR1 wind farm. Secondly, the synoptic condi-
tions associated with the development of precipitation may not favor severe
weather. Here, precipitation is being driven from the North-East. This setting
rarely produces severe phenomena (see Table 1). Finally, what may be the most
likely reason is that the precipitation observed by the Rømø radar may be pro-
duced high up in the atmosphere where the weather conditions are different
than those observed at the nacelle height where the wind speed and direction
are recorded.

5.4 Small precipitation cells passing across HR1

The fourth event is shown in Figure 8 and is from August 2010. It illustrates
how small precipitation cells can generate relatively large wind power fluctu-
ations. The mean wind is westerly. The visualization of that episode is made
more difficult by the removal of clutter pixels during the data quality control
stage (see Appendix A). In particular, there is no information available in the
center of the images and for southwesterly azimuths. However, it can be seen
that the passage of relatively small precipitation cells of high reflectivity across
HR1 has a strong impact on the short-term dynamics of the wind power fluc-
tuations. Short wavelength weather radars such as the LAWR are particularly
well suited for tracking these cells as they can provide one image per minute
and, thus, enable a timely tracking of these cells with an accurate synchroniza-
tion of when they are going to hit the wind farm.

6 Discussion on future perspectives for weather radars
in wind energy

The most common fields of application of weather radar data include hydrol-
ogy and weather surveillance. Consequently, most of the methodologies for
analyzing weather radar data are centered on issues such as the conversion
from precipitation reflectivity to intensity, or natural hazard nowcasting. In
Radar@Sea, the approach we aim at developing is inspired by existing ap-
proaches for storm tracking. However, Radar@Sea is just one among other
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Figure 8: August 2010 - The passage of small precipitation cells through the
Horns Rev 1 wind farm causes a large fluctuation of wind power.
The mean wind is westerly. The images were generated by the
LAWR installed at HR2.

potential wind energy applications of weather radar data. In this section, we
describe the future lines of work in Radar@Sea and also discuss the future per-
spectives for weather radars in wind energy.
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6.1 Automating the integration of weather radar observations
into a real-time wind power prediction system

Raw weather radar data are useful to meteorologists for diagnosing precipi-
tation systems and their respective severity by visual assessment. However,
as the amount of data increases, making consistent decisions becomes more
lengthy and difficult. Hence, the real value of weather radar observations can
only be obtained through their integration into automated decision support
systems (see Lakshmanan et al. (2007) and references therein). Automating a
decision support system requires that one or several experts determine a series
of rules or criteria to be fulfilled in order to make consistent decisions. Fur-
thermore, the system should also have the capability to learn by itself, in a
closed-loop, through the acquisition of new data and experience with potential
new events never observed before. For these purposes, it is important to un-
derstand the weaknesses and strengths of the weather radar system providing
the data.

In Radar@Sea, a clear weakness of the two weather radars is their limited range
visibility which is inherent to single weather radar systems, as opposed to net-
works of radars which cover much larger areas. Note that small range visibility
does not mean small temporal visibility. A small range visibility translates into
potential difficulties for observing the full extent of precipitation systems in
real-time, since weather radars may only observe them partially. For instance,
an illustrative example is to compare the second and third events in section 5.
At the beginning of both events, convection develops within a relatively large
precipitation field. Before and until the time the convective part of the precip-
itation system reaches the HR1 wind farm, it is not possible to observe what
type of weather (i.e., precipitation or not) is developing in its wake, out of the
range of the weather radar. In the second event, small precipitation cells cor-
responding to well developed open cellular convection follow whereas, in the
third event, precipitation dissipates. With information on upcoming precipi-
tation available at longer range, severe phenomena could likely be anticipated
with a higher accuracy. Comparing events 2 and 3 also shows the difficulty for
estimating the stage of development of precipitation (e.g., growing, mature,
decaying) which is crucial for predicting the occurrence of severe meteorologi-
cal phenomena in real-time (Jirak et al., 2003).

As for the strengths, let us mention the high flexibility offered by the two
weather radars which have different scanning strategies, spatio-temporal reso-
lutions (see section 4) and thus different capabilities. In our view, the potential
of these 2 weather radars could be optimized through a hierarchical approach.
Owing to its longer range, the Rømø radar could first be used for characteriz-
ing and classifying precipitation regimes with respect to the magnitude of wind
fluctuations at Horns Rev, by extracting features linked to the spatial variabil-
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ity, the reflectivity distribution or even the motion of precipitation fields. An
example of such expert-based classification is given in Baldwin et al. (2005).
Tracking specific phenomena such as storm cells or squall lines is also a possi-
bility but is made cumbersome by the high sampling variability between two
consecutive images and, in some cases, the very short lifetime of these cells. In
a second stage, the high spatio-temporal resolution of the LAWR is expected to
enable a timely tracking of the boundary of weather fronts and small precipi-
tation cells before they hit the wind farm.

6.2 Getting the most out of weather radar capabilities

As illustrated in the previous section, 2 dimensional reflectivity images can al-
ready be very informative on changes in the local wind conditions. Yet, we
are far from tapping the full potential of weather radars. For instance, raw
weather radar data comprise a third dimension which can bring valuable in-
formation on the vertical variability of precipitation fields and contribute to
a better classification of precipitation regimes (e.g., convective precipitation
are expected to have a higher vertical extent than stratiform precipitation) and
their respective severity, also potentially leading to improved identification of
near sea-surface convective phenomena. In addition, the Doppler technique
also enables the retrieval of horizontal wind fields as demonstrated in Tuttle
and Foote (1990), Laroche and Zawadzki (1995). These data could either be
used to complement precipitation reflectivity data or, depending on their ac-
curacy, substitute them since it is more direct to interpret and process wind
rather than precipitation data for wind energy applications. In the Radar@Sea
experiment, it was decided to first investigate the potential of 2 dimensional
reflectivity data before, possibly, extending our investigation to 3 dimensional
reflectivity data and horizontal wind fields.

6.3 Future perspectives for wind power meteorology

One of the main objectives of the Radar@Sea experiment is to collect observa-
tions of atmospheric variables in view of extending our understanding of the
climatology over the North Sea. In particular, these observations are expected
to enable the validation of the work on mesoscale wind fluctuations presented
in Vincent et al. (2011, 2012).

Furthermore, in meteorology, there is a long tradition in assimilating data into
NWP models for generating improved meteorological forecasts (Ghil and Malanotte-
Rizzoli, 1991). A reason for assimilating weather radar data into NWP models
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is that a fully statistical approach (i.e., weather radar data exclusively and di-
rectly used as inputs to statistical models) would likely bound its forecast skill
to lead times within 3 hours whereas the requirements for integrating wind
power and, more generally, renewables into power systems are such that ac-
curate forecasts are needed, not only for the next 3 hours, but for much longer
horizons. In that respect, the forecast improvement resulting from data as-
similation into mesoscale NWP models could be substantial up to 12-24 hours
ahead. Even though there are many issues to overcome for assimilating weather
radar data into high resolution NWP models (Dance, 2004), encouraging re-
sults were already obtained in some particular case studies where Doppler ob-
servations were used for initializing these models (Zhao et al., 2006).

6.4 Future perspectives on improving offshore wind farm pre-
dictability and controllability

A wealth of statistical models have been proposed for the very short-term fore-
casting of wind power fluctuations but, in practise, simple and parsimonious
models remain difficult to outperform (Giebel et al., 2011). For the specific case
of offshore wind fluctuations, most research studies have focused on the devel-
opment of regime-switching models and their application for generating one
step-ahead forecasts, with lead times between 1 and 10 minutes (Pinson et al.,
2008, Trombe et al., 2012, Pinson, 2012, Gallego et al., 2011). So far, these models
rely on local and historical measurements which loose their informative value
as the forecast lead time increases. In view of that limitation, a promising line
of work is to explicitly determine and predict the sequence of regimes based
on the information extracted from the weather radar observations, instead of
assuming it hidden and estimating it from the wind time series itself. That way,
combining weather radar observations and and statistical models is expected
to fill in the gap between 2 consecutive meteorological forecasts and improve
wind power predictability up to 2-3 hours, with the interesting potential of
correcting for phase errors of NWP models when they occur. This approach
meets many recent works in the sense that it focuses on a better exploitation of
available observations rather than the development of more complex and over-
parametrized models. From the controller perspective, the issue is to adapt the
wind farm control strategy with respect to the predicted wind power fluctu-
ations (Kristoffersen, 2005). There has been a recent increase of the attention
for developing flexible controllers during extreme events, in order to find so-
lutions for better planning of sudden wind farms shut downs (Cutululis et al.,
2011).
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6.5 Limitations of weather radar data for wind power predictabil-
ity

In section 3, we reported a number of technical limitations that could reduce
the informative power of weather radar data. These limitations are illustrated
with examples from Radar@Sea in Appendix A. In particular, we mentioned
the importance of mitigating the effects of measurement artifacts for avoid-
ing the generation of false alarms due to clutter or anomalous propagation of
the radar beam. Much attention is being given to these problems in view of
improving operational weather radar products, and it is expected that data
accuracy and overall quality will be taken a step further in the future. Such ad-
vances would likely facilitate the integration of weather radar data into wind
power prediction systems. However, in our view, the main limitation of using
weather radar data for improving wind power predictability is that these data
are only informative on meteorological phenomena associated with precipita-
tion. Yet, phenomena generating intense wind fluctuations can also develop
without producing precipitation and be invisible to weather radars. A typical
example is open cellular convection which do not always produce precipita-
tion.

7 Conclusion

This paper presented the first dedicated experiment of weather radars for off-
shore wind energy applications. It was shown that weather radar were promis-
ing candidates for providing the high-resolution spatio-temporal information
required in view of improving offshore wind power predictability. In partic-
ular, weather radar images have the capability of observing upcoming pre-
cipitation fields associated severe wind speed and wind power fluctuations at
offshore sites. However, a number of issues have to be addressed before radar-
based wind power prediction systems can become a reality.

Firstly, wind turbine clutter which, until recently, had received very little at-
tention, cannot be efficiently removed by traditional clutter filtering techniques
due to its characteristics (Isom et al., 2009). This problem is paramount when
operating a weather radar in close proximity to a large offshore wind farm since
the small distance between the wind turbines and the radar strongly magnifies
the clutter impact. In that respect, the data collected by the LAWR at Horns Rev
provide a unique base for investigating new wind turbine clutter detection and
mitigation techniques.

Secondly, pattern recognition techniques are needed for identifying precipita-
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tion features associated with periods of intense wind fluctuations and, con-
versely, with small wind fluctuations at offshore sites. Reflectivity patterns can
refer to the scale, shape, motion, texture or cell arrangement of precipitation
fields. In that respect, patterns should be considered at different spatial scales
to distinguish between the information associated with synoptic conditions
and that associated with mesoscale phenomena. In particular, a widespread
approach in storm nowcasting consists of identifying specific cells or objects
(i.e., contiguous pixels having reflectivity values above a given threshold)
and tracking their trajectory over a sequence of weather radar images in or-
der to predict their development and motion in the very short-term (Dixon
and Wiener, 1993, Lakshmanan et al., 2007).

Thirdly, experiments such as Radar@Sea could contribute to make the wind
energy and radar communities work closer. Today, wind turbine acceptance
remains a major source of concern for radar operators and users since wind tur-
bines severely degrade the accuracy of weather radar observations and, there-
fore, their usefulness in other applications (Isom et al., 2009). This has led to
a unilateral recommendation from the radar community for excluding wind
farm sites in close proximity to radar installations (Chèze and Haase, 2010). In
our view, this rather reflects the lack of coordination between the two commu-
nities. Eventually, benefits could be mutual and, not only could weather radars
bring benefits to the wind energy community, their application in wind energy
would also create new business opportunities and attract more attention for
research and development on their techniques. For instance, light configura-
tion weather radars, such as the LAWR used in Radar@Sea, are being tested
as observational tools of the sea state, for measuring wave heights, in view of
improving the planning of maintenance operations at offshore wind farms. Al-
ternatively, weather radars are being used for monitoring bird migration and
could provide important information in view of assessing the potential impact
of wind farms on bird populations.

Finally, Radar@Sea places focus on the application of weather radars in off-
shore environments because it is where the largest potential is foreseen, espe-
cially, for wind farms for which no upwind information is available. However,
weather radar could also be very useful for onshore applications and, particu-
larly, for the detection and correction of phase errors. For instance, mid-latitude
squall lines often develop ahead of cold fronts and propagate both over water
and land. Tracking squall lines could therefore be useful for assessing the good
phasing of meteorological forecasts generated with NWP models.
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Appendix A – Data Quality Control

A.1 Sea clutter

We start by analyzing the effects of the removal of the mechanical clutter fence
on the LAWR images. It resulted in a recurrent and widespread sea clutter dur-
ing the first six months of the data collection campaign, from April to Septem-
ber 2010. For this analysis, we use the original images in polar coordinates be-
cause sea clutter is usually azimuth dependent. The polar images are 360×500
and each pixel takes an Integer value between 0 and 1023. Images display-
ing no precipitation echoes were collected and averaged over time in order to
produce a clutter map. For each of the 360 sampled azimuths, there is a sys-
tematic bias in the form of a positive and linear relationship between the count
values generated by the LAWR and their range. This problem is illustrated in
Figure C.9(a) where that relationship is shown for observations sampled in 3
different azimuths. One can notice that many data points lay apart from the
lower trend, for all azimuths. They correspond to pixels that are recurrently
affected by ground clutter and are identified in a subsequent step, after correct-
ing for the trend. Correcting for systematic and non random artifacts is very
important as many weather radar imagery techniques make use of heuristics
which are not robust to such artifacts (e.g., thresholding operations to define
“wet” and “dry” pixels). In addition, the level of uncertainty introduced by
ground clutter contamination varies from one azimuth to another. To estimate
the relationship between the count values and its range, we propose a linear
regression model for each of the 360 azimuths as follows:

Y(i) = θ
(i)
0 + θ

(i)
1 X + ε(i), i = 1, . . . ,360 (1)
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where Y(i) = (Y(i)
1 , . . . ,Y(i)

n )T is a vector of n counts values extracted from the
ith azimuth of the clutter map, X is the range, ε(i) is a random variable which
is assumed normally distributed with zero mean and standard deviation σ(i),
and Θ(i) = (θ

(i)
0 ,θ(i)1 )T the vector of unknown parameters to be estimated for

each azimuth i. For this model, a widely used estimator is the Least Squares
(LS) estimator which is obtained by minimizing the sum of squared residuals,
as follows:

Θ̂ = argmin
Θ

S(Θ) (2)

with S(Θ) =
n

∑
j=1

(Y(i)
j − θ

(i)
0 − θ

(i)
1 Xj)

2 =
n

∑
j=1

(ε
(i)
j )2 (3)
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(a) Clutter map for azimuth 50, 100 and 250.
For each azimuth, and for range values be-
tween 12 and 60 km, count values increase
with respect to their range. Observations
laying apart from the trend correspond to
ground clutter.
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(b) Correcting for non random effects should
preferably be performed with robust statis-
tics. Here, we used the Least Trimmed
Squares (LTS) regression because the estima-
tor used in the Least Squares (LS) regression
is not robust to outliers.

Figure 9: A clutter map is computed based on the original measurements in
polar coordinates in order to remove the recurrent sea clutter con-
tamination. A robust linear regression method is used for estimat-
ing the effects of the sea clutter on the images generated by the
LAWR.

However, it is a well-known issue that the LS estimator is not robust to extreme
values or outliers, often resulting in a poor fit of the data. Here, to overcome
that problem, we use a robust technique based on the Least Trimmed Squares
(LTS) (Rousseeuw, 1984). The advantage of using such technique is that it can
resist up to 50% of data points laying apart of the main trend. So, instead of
minimizing the sum of squared residuals as in the LS technique, we minimize
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the sum of the k smallest squared residuals, as follows:

S(Θ) =
k

∑
j=1

(ε(i)
2
)j:n (4)

with k = αn + 1 and 0.5 < α < 1 (5)

where (ε(i)
2
)1:n < . . . < (ε(i)

2
)n:n are the ordered squared residuals, sorted in

ascending order. (1 − α) corresponds to the percentage of outliers that the
method is assumed to resist and it cannot exceed 50%. (1− α) is directly related
to the notion of breakdown point which is the smallest percentage of outliers
than can cause large deviations of the estimates. An example of the respective
performances of the LS and LTS regressions is given in Figure C.9(b). It can
be observed that the LS regression is clearly not suitable for such problem. In
contrast, the LTS regression performs equally well for all azimuths. In this
application of the LTS regeression, we set α = 0.4. We assumed the sea clutter
to be additive and, for each image and azimuth, we subtracted the fitted trend
from the original measurements.

A.2 Ground clutter

Mitigating ground clutter on weather radar images remains a complex process
and is best to be performed on the original measurements at different eleva-
tions since clutter echoes are usually limited to the lower elevations (Steiner
and Smith, 2002). In addition, Doppler radars can take advantage of the re-
flected Doppler speed to discriminate between clutter which is usually caused
by non-moving targets (buildings, mountains, etc) and precipitation which is
driven by the wind. In practise, ground clutter translates into non-precipitation
or non-meteorological targets having high reflectivity values which may be
mistaken for small storm cells. The difficulty in identifying and correcting clut-
ter echoes arises when ground clutter is embbeded or contiguous to precipita-
tion fields. Ground clutter has a specific statistical signature, it is stationary in
space. However, it may not be stationary over time and the values of pixels
affected by clutter may vary with the weather conditions.

Here, we focus on recurrent ground clutter problems which were not detected
by clutter removal filters applied on the original measurements before produc-
ing the final images (Pedersen et al., 2010, Gill et al., 2006). We follow the
method proposed in Lakshmanan (2012) which is well suited for that problem
since it is based on the assumption that clutter is spatially stationary. It formu-
lates the identifaction of clutter as an image thresholding problem in order to
separate clutter pixels from clutter-free pixels (Otsu, 1975). This method has
several advantages and is:
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• automatic and unsupervised, leading to a data-driven determination of
the threshold, depending on the level of clutter contamination;

• computationally cheap;

• robust since based on count statistics.

The outline of the method is as follows:

• for each of the N pixels (x,y) of the image, compute the frequency f(x,y)(τ)
of its value exceeding a given threshold τ over a period of time T. In par-
ticular, a frequency value close to 1 likely indicates a clutter.

• compute a histogram by binning the N frequency f(x,y)(τ) values into L
levels. Let pi be the proportion of pixels at level i, for i = 1, . . . , L.

• use the segmentation method proposed in Otsu (1975) for determining a
consistent threshold value k∗ which separates the pixel population into
2 groups, with the first group G1 likely being clutter free and the second
group G2 likely bieng affected by clutter. The method consists in an iter-
ative search for the optimal threshold k∗ by maximizing the inter-group
variance σ2

B(k):

k∗ = argmax
1<k<L

σ2
B(k) (6)

with σ2
B(k) = w1w2(µ2 − µ1)

2 (7)

w1 =
k

∑
i=1

pi and w2 =
L

∑
i=k+1

pi = 1− w1 (8)

µ1 =
1

w1

k

∑
i=1

ipi and µ2 =
1

w2

L

∑
i=k+1

ipi (9)

where w1 and w2 are the respective probability of occurence of G1 and
G2, while µ1 and µ2 are their respective mean level.

Note that one of the inherent hypothesis of the method described hereabove, is
that the histogram to be thresholded is bimodal, implying thus that there is a
significant fraction of pixels affected by clutter, at any time. This idea matches
with the recurrent clutter we aim at identifying. However, clutter is non sta-
tionary over time and some pixels may be clutter over some periods of time
and clutter free over some others. In order to account for that feature, the pro-
cedure is applied on a rolling window of 24 hours (i.e., 1440 images for the
LAWR) and moved forward along the acquisition of new images. All images
are used, both those with and without precipitation echoes. An example is
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given in Figure C.10(a) which shows an image generated by the LAWR be-
fore and after the removal of recurrent clutter. The original threshold τ was
determined by experience to reflect the limit between precipitation and non-
precipitation targets, Here, we used τ = 5. However, this method does not ac-
count for contiguity features, disregarding the potential cluster effect of clutter.
A potential line of work for further improving that method could be to refine
the segmentation process with a Markov Random Field (Li, 2009) step for tak-
ing into account potential spatial correlation between neighboring pixels. As
for now, the method was implemented as presented in Lakshmanan (2012) and
satisfactory results were obtained. The values of single clutter pixels (i.e., a
pixel is clutter whereas its 8 neighbours are clutter free) were interpolated with
the median of its 8 neighbours. For large clusters of clutter pixels, no attempt
was made to interpolate them and their values set to 0.

HR2 

HR1 

West coast 
of Jutland 

Precipitation cells 

(a) Original image with precipitation and clut-
ter.

(b) Image after removing ground clutter.

Figure 10: Ground clutter is caused by the wind turbines of HR1 and HR2
and the West coast of Jutland, Denmark. Clutter translates into
non-meteorological targets having high reflectivity values which
may be mistaken for small storm cells and needs to be removed.

A.3 Potential underestimation of near surface precipitation at
far ranges

Among the inherent limitations of long range weather radars listed in section
3, we mentioned the potential underestimation of near surface precipitation.
An illustrative example of this problem is given in Figure 11. Figure C.11(a)
depicts the theoretical relationship between the ground height of the 9 eleva-
tion scans of the Rømø radar with respect to the radar range, under normal
wave refractivity conditions in the atmosphere. While the 9 elevation scan
strategy enables an efficient sampling of the atmosphere, one can notice that
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near surface precipitation, within a 2km height above ground level, cannot be
detected at ranges farther than 150-180km, due to the curvature of the Earth
(elevation 0◦). This limitation is further demonstrated in Figure C.11(b) which
shows how it translates on a precipitation reflectivity image from September
17, 2010. One can see that the weather radar detects precipitation in the close
ranges (<150km) but looses its observational power at farther ranges because
of precipitation fields developing in low altitudes. That limitation can be seen
as the consequence of the physical settings of some meteorological phenom-
ena described in section 2. For instance, open cellular convection phenomena
develop within 1-2 km of the planetary boundary layer and are capable of pro-
ducing precipitation. In such case, the visibility the Rømø radar offers is likely
to be reduced as illustrated in Figure 11.
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(a) Due to the curvature of the Earth, the height
at which radar waves propagate increase with the
range (here the 9 scan elevations of the C-band
weather radar in Rømø).

(b) Image on September 17, 2010 generated
by the Rømø radar.

Figure 11: A typical example of the inherent limitation of long range weather
radars for observing near surface precipitation. In particular, pre-
cipitation located within a 2km height above ground level cannot
be detected at ranges farther than 150-180km.

A.4 Other limitations

Other limitations or problems enountered by weather radars include anoma-
lous propagation and partial beam-filling. They can well be detected but are
more difficult to correct. Partial beam filling is a limitation that occur when
the vertical distribution of precipitation fields is not uniform over the volume
scanned by the radar. This problem is illustrated in Figure C.12(a). It can be
seen that precipitation close to the radar (i.e., in the center of the image) have
higher count values than precipitation sampled far from it. In that example,
precipitation is low-lying, widespread and relatively uniform along the radar
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range. However, as the radar beam propagates downstream, through the at-
mosphere, the volume scanned increases. The amount of precipitation detected
at close ranges, relatively to the volume scanned, is therefore larger than at
far ranges. Ongoing research is carried out in order to retrieve the altitude of
precipitation and improve beam-filling correction procedures (Pedersen et al.,
2010).

(a) Partial beam-filling on the LAWR on May
12, 2010 at 13:00. The volume scanned increases
with the range. It results in close range precip-
itation being better sampled than precipitation
at far ranges.
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(b) Example of anamalous propagation on the
Rømø radar, on July 7, 2010 at 05:40. The beam
of the radar is bent towards the sea and the
ground, and falsely indicates the presence of
precipitation.

Figure 12: Examples of other limitations and problems encountered by
weather radars.

Another problem that affects radar observational accuracy is known as anoma-
lous propagation. An example of how it appears on weather radar images is
given in Figure C.12(b). It shows echoes likely caused by super-refraction of
the radar beam. These echoes falsely indicate the detection of precipitation. It
often occurs when there is a temperature inversion in the atmosphere, warm
and moist air overlaying cool air. In Denmark, these situations are typical dur-
ing the summer with southerly winds which bring moist continental air. In
contrast to ground clutter, anomalous propagation is not characterized by a
strong spatial stationarity. Furthermore, it may even grow and decay in the
same way as light precipitation systems which makes it difficult to detect in an
automated fashion.
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Automatic classification of offshore wind regimes
with weather radar observations

Pierre-Julien Trombe1, Pierre Pinson1, Henrik Madsen1,

Abstract
Weather radar observations are called to play an important role
in offshore wind energy. In particular, they can enable the mon-
itoring of weather conditions in the vicinity of large-scale off-
shore wind farms and thereby notify the arrival of precipitation
systems associated with severe wind fluctuations. The informa-
tion they provide could then be integrated into an advanced pre-
diction system for improving offshore wind power predictability
and controllability.
In this paper, we address the automatic classification of off-
shore wind regimes (i.e., wind fluctuations with specific fre-
quency and amplitude) using reflectivity observations from a sin-
gle weather radar system. A categorical sequence of most likely
wind regimes is estimated from a wind speed time series by com-
bining a Markov-Switching model and a global decoding tech-
nique, the Viterbi algorithm. In parallel, attributes of precipita-
tion systems are extracted from weather radar images. These at-
tributes describe the global intensity, spatial continuity and mo-
tion of precipitation echoes on the images. Finally, a CART classi-
fication tree is used to find the broad relationships between pre-
cipitation attributes and wind regimes.

1 Introduction

Unlike fossil fuels or nuclear energy, the availability of renewable sources of en-
ergy (e.g., solar, hydro, wind power) is directly governed by the dynamics of
the atmosphere. It is therefore important to monitor weather conditions for as-
sessing, forecasting and integrating these resources into power systems. In that
respect, remote sensing observations of the atmosphere have become essential
for the management of energy systems and, in offshore wind energy, they have
already led to significant advances in a wide range of applications. These ap-
plications include the use of satellite SAR images for improving the accuracy of

1DTU Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark
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wind maps over coastal areas, airborne SAR measurements for studying wake
effects at large offshore wind farms, and LiDAR and SoDAR measurements
for sampling vertical wind profiles (see Hasager et al. (2008) and references
therein).

A new application of remote sensing tools in wind energy is now under exper-
imentation at Horns Rev, in the North Sea. It consists of using weather radar
observations for monitoring weather conditions in the vicinity of large-scale
offshore wind farms (Trombe et al., 2012). This application is motivated by
the need to improve offshore wind power predictability at high temporal res-
olutions (Jones and Clark, 2011). In particular, the high variability of offshore
wind fluctuations is a serious problem for wind farm and transmission system
operators because it increases the uncertainty associated with the short-term
prediction of wind power (Akhmatov et al., 2007). Statistical analysis of wind
data from Horns Rev showed that this variability was actually the result of fre-
quent and sudden changes of wind regimes (i.e., wind fluctuations with spe-
cific frequency and amplitude) over waters (Pinson et al., 2008, Vincent et al.,
2010). Subsequent analysis showed that large wind fluctuations tended to be
coupled with specific climatological patterns and, particularly, the occurrence
of precipitation (Vincent et al., 2011). This suggests that precipitation could be
used as an early indicator for high wind variability. Our idea is thus to take
advantage of the extended visibility provided by weather radars for notifying
the arrival of precipitation systems in the vicinity of offshore wind farms, and
adapting the forecasting strategy accordingly.

In view of integrating weather radar observations into wind power prediction
systems, it is necessary to understand the precipitation settings associated with
high wind variability at offshore sites. In some other meteorological contexts,
the settings favoring the development of severe weather with the formation of
precipitation are well documented (Bluestein and Jain, 1985, Bluestein et al.,
1987). However, no detailed precipitation climatology over the North Sea ex-
ists to our knowledge. As a first step towards this understanding, we start by
analyzing precipitation over the largest spatial scale enabled by the weather
radar system used for monitoring the weather at Horns Rev, that is within a
window of radius 240 km. Weather radar observations show that the passage
of some meteorological phenomena producing precipitation was coupled with
severe wind fluctuations while that of some other phenomena, also producing
precipitation, was not (Trombe et al., 2012). Capturing the differences between
precipitation systems by "eye" becomes increasingly difficult with the volume
of data. This difficulty may further be increased by other factors such as (i) the
relatively small range of single weather radar systems which only enables a
partial observation of precipitation systems; (ii) seasonal variations of precip-
itation which implies that two similar events on weather radar images at two
different times of the year may have different levels of severity. This calls for
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the use of statistical classifiers for generating a consistent catalogue of situa-
tions where the variability of wind fluctuations is explained by attributes (i.e.,
characteristics) of precipitation systems.

Traditionally, classification applications using precipitation attributes aim at
improving the understanding of precipitation itself. For instance, an auto-
mated classification procedure for rainfall systems is proposed in Baldwin et al.
(2005). Alternatively, Lakshmanan and Smith (2009), Gagne et al. (2009) ad-
dress the classification of precipitation objects (i.e., storms) that require to be
defined and identified a priori. Yet, a major drawback of these approaches is
that they rely on an expert training performed manually with its inherent short-
comings: (i) the potential lack of consistency since two experts may disagree
on how to classify an event, or a same expert may classify two similar events
differently; (ii) it is limited in the volume of data that can be treated. Our study
differs in two aspects. First, the target variable is not precipitation but wind.
And second, it does not require any expert training for the classification and
therefore avoid the aforementioned shortcomings. Instead, a categorical se-
quence of wind regimes is automatically estimated from a wind speed time
series by combining a global decoding algorithm, the Viterbi algorithm (For-
ney, 1973), with the Markov-Switching model proposed in Pinson et al. (2008).
In parallel, a number of precipitation attributes are computed from weather
radar images. These attributes describe the global intensity, spatial continuity
and motion of precipitation echoes on the images. Finally, a CART classifica-
tion tree, is used for finding relationships between precipitation attributes and
wind regimes observed at Horns Rev. The motivation for using such a classifi-
cation technique is that it can explore large amounts of data and, yet, produce
a simple partition with interpretable rules (Hastie et al., 2001).

The rest of the paper is organized as follows. In Section 2, we describe the data.
In Section 3, we give an overview of the procedure for extracting the most likely
sequence of regimes from wind speed time series. In Section 4, we compute a
number of precipitation attributes from weather radar images. In Section 5,
we present the classification tree technique and apply it to the problem of the
automatic classification of offshore wind regimes. Finally, Section 6 delivers
concluding remarks.
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2 Data

2.1 Wind data

Wind data were collected from the nacelle anemometry and SCADA systems
of the Horns Rev (HR1) wind farm (Kristoffersen, 2005). The original measure-
ments consisted of individual time series of wind speed and wind direction,
for each of the 80 wind turbines of HR1. Two aggregated time series of wind
speed and wind direction were obtained by jointly averaging these individual
time series over 10 minute intervals. The time series span the year 2010. Due
to some technical problems, measurements are missing over 2 periods of about
5 and 12 days, respectively. There are 2664 missing values out of 52560 (i.e.,
94.9% of data availability). No attempt was made to fill in those gaps. The
wind distribution is shown in Figure 1. The wind rose shows 3 preferred wind
directions. While the prevalence of northwesterly directions is consistent with
other wind data analysis at Horns Rev (see Vincent et al. (2010)), the frequent
occurrences of northeasterly winds are more exceptional since it is usually the
direction where the wind is suppressed in Denmark. This phenomenon can be
explained by a strong annual wind variability in 2010. Note also that strong
winds, above 15 m s−1, are more frequent for westerly than easterly directions.

2.2 Weather radar data

Weather radar data consist of 2D images of precipitation reflectivity. More
specifically, they correspond to 1 km height pseudo-CAPPI (Constant Altitude
Plan Position Indicator) image products, with a 2×2 km grid resolution. They
were produced by a C-Band Doppler radar located in Rømø, approximately
57 km to the East of the HR1 wind farm. The radar is operated by the Danish
Meteorological Institute (DMI), using a 9 elevation scan strategy and an op-
erational range of 240 km (Gill et al., 2006). One image is generated every 10
minutes. Clutter removal filters are applied during the data acquisition pro-
cess. Data quality control is also performed a posteriori and persistent clutter
is removed following the automatic method introduced in Lakshmanan (2012).
For a complete description of the radar settings and images, we refer to Trombe
et al. (2012). About 2000 images are missing over the year 2010 (i.e., 96.1% of
data availability).
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Figure 1: Wind distribution at the Horns Rev 1 wind farm, in 2010. Data
were collected from the nacelle anemometry and SCADA sys-
tems (Kristoffersen, 2005).

3 Estimation of wind regimes

In this section, we estimate a categorical sequence of wind regimes from the
time series of wind speed presented in Section 2. Such a procedure can also be
viewed as a segmentation of the time series where the latter is partitioned into
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homogeneous sections. Our plan is to use this sequence of wind regimes as the
dependent variable (i.e., the variable to predict) for growing a classification
tree in Section 5.

Numerous studies have pointed out the nonstationary behavior of offshore or
near-offshore wind fluctuations at the minute scale (Cripps and Dunsmir, 2003,
Vincent et al., 2010, Davy et al., 2010). Numerically, this nonstationarity trans-
lates into sudden shifts in the amplitude and/or frequency of wind fluctua-
tions. Such patterns of fluctuations can be analyzed either in the frequency do-
main, with an empirical spectral decomposition technique as in Vincent et al.
(2010), or in the time domain with Generalized AutoRegressive Conditional
Heteroskedasticity (GARCH) models (Cripps and Dunsmir, 2003), or Markov-
Switching AutoRegressive (MSAR) models (Pinson et al., 2008). The advantage
of MSAR models over other techniques is that they are clearly tailored to ad-
dress the extraction of a hidden sequence of regimes, as discussed in Zucchini
and MacDonald (2009).

3.1 Regime-switching modeling with MSAR models

MSAR models are an extension of Hidden Markov Models (HMM). They are
widely used for the modeling of time series characterized by structural breaks
in their dynamics. The underlying assumption of these models, both HMM
and MSAR, is that there is an unobservable Markov process which governs the
distribution of the observations (Zucchini and MacDonald, 2009). Compared
to HMM, MSAR models have an additional capability, they can accommodate
autocorrelated data and include autoregressors in the model formulation. Ap-
plications of MSAR models to wind data include Ailliot and Montbet (2012),
Pinson et al. (2008).

The wind speed time series we use for this study does not show any well pro-
nounced diurnal cycle. In addition, we disregard the potential long-term drift
and seasonal variations of wind speed since the available time series only spans
a one year period. For the sake of simplicity, we do not specifically deal with
the wind speed truncation in 0. We only assume that wind speed has an au-
toregressive behavior in each regime. Let {yt}, t = 1, . . . ,n, be the time series
of measured wind speed at the HR1 wind farm. The MSAR model with m
regimes and autoregressive orders (p1, . . . , pm) is defined as follows:

Yt = θ
(Zt)TXt + σ(Zt)εt (1)
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with

θ(Zt) = [θ
(Zt)
1 . . . θ

(Zt)
pZt

]T (2)

Xt = [Yt−1 . . . Yt−pZt
]T (3)

where {εt} is a sequence of independently distributed random variables fol-
lowing a Normal distribution N (0,1); and Z = (Z1, . . . , Zn) is a first order
Markov chain with a discrete and finite number of states (i.e., regimes) m and
transition probability matrix P of elements (pij)i,j=1,...,m with:

pij = Pr(Zt = j|Zt−1 = i), i, j = 1, . . . ,m (4)
m

∑
j=1

pij = 1, i = 1, . . . ,m (5)

There exist two distinct methods for estimating the parameters of a MSAR
model with given number of regimes m and autoregressive orders (p1, . . . , pm),
the Expectation-Maximization (EM) algorithm and direct numerical maximiza-
tion of the Likelihood. The respective merits of these 2 methods are discussed
in Zucchini and MacDonald (2009), along with practical solutions for their im-
plementation. As for this study, we estimate MSAR models by direct numerical
maximization of the Likelihood owing to its lower sensitivity to starting val-
ues. Let Θ = (θ(1), . . . ,θ(m),P ,σ) be the set of parameters to estimate. The
Maximum Likelihood Estimator (MLE), Θ̂MLE, is obtained by maximizing the
Likelihood function L(Θ):

Θ̂MLE = argmax
Θ
L(Θ|Y ) (6)

= argmax
Θ
δ(

n

∏
t=1
PDt)1

T (7)

where

δ = 1(Im −P +Um)
−1 (8)

Dt = diag(η(t,1), . . . ,η(t,m)) (9)

η(t, i) =
1

σ(i)
φ

(
Yt − θ(i)TXt

σ(i)

)
, i = 1, . . . ,m (10)

δ is the stationary distribution of the Markov chain; 1 is a unit vector of size m;
Im andUm the Identity and Unity matrices of size m×m;Dt a diagonal matrix;
and φ the probability density function of the Normal distribution.

We estimate four MSAR models, from one up to four regimes. For each of
these MSAR models, the optimal autoregressive orders in each regime are de-
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termined by following a forward selection procedure based on Likelihood Ra-
tio (LR) tests, as described in Bacher and Madsen (2011). Then, all four mod-
els are compared with one another by performing LR tests, leading to the re-
jection of the MSAR model with four regimes. For MSAR models from one
to three regimes, Table 1 summarizes some of the important parameter esti-
mates that help interpreting the regimes. In particular, the elements of the
diagonal of the transition probability matrix, diag(P ), give an estimation of
the mean persistence of the regimes over time. As for the vector of standard
deviations σ, it expresses the relative variability of wind speed fluctuations in
each regime. The estimates of the autoregressive coefficients are of lesser im-
portance and, instead, we just report the optimal autoregressive order in each
regime. Regimes are ranked by ascending values of standard deviation. Both
with 2 and 3 regimes, there is an inverse relationship between wind fluctuation
variability and persistence (i.e., the more variable, the less persistent).

Table 1: Summary statistics on msar models fitted to the time series of wind
speed.

m (p1, . . . , pm) diag(P ) σ

1 5 - 0.51
2 (5,5) (0.98, 0.92) (0.31, 0.96)
3 (4,3,6) (0.98, 0.95, 0.89) (0.25, 0.47, 1.28)

3.2 Global decoding

Global decoding consists of estimating the most likely sequence of regimes ẑ =
(ẑ1, . . . , ẑn) under a fitted model, as opposed to local decoding which consists of
estimating the most likely regime at time t, ẑt, independently of the regime
values at other times. The most likely sequence of regimes ẑ is found by maxi-
mizing the joint probability of the observations and states of the Markov chain:

ẑ = argmax
z

Pr(Z = z,Y = y) (11)

where Y = (Y1, . . . ,Yn). For estimating ẑ, we use the Viterbi algorithm Forney
(1973). For that purpose, let us introduce the following notations:

Y (i) = (Y1, . . . ,Yi) and Z(i) = (Z1, . . . , Zi) (12)
ξ1i = Pr(Z1 = z1,Y1 = y1) = δiη(1, i) (13)

ξti = max
z(t−1)

Pr(Z(t−1) = z(t−1), Zt = i,Y (t−1) = y(t−1)) (14)
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Figure 2: (Upper panel) Time series of wind speed recorded at the Horns Rev
1 wind farm. The temporal resolution is 10 minutes. (Lower panel)
Estimated sequence of regimes, for 2 and 3 regimes. Regimes can
be interpreted in terms of wind variability, from low in Regime 1 to
high variability in Regime 3.

for t = 2, . . . ,n. The quantities ξti can be seen as the most probable sequence
leading to regime i at time t, among all possible sequences Z(t−1). Finally, ẑ is
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found by the solving the following backward recursion, starting from n:

ẑn = arg max
i=1,...,m

ξni (15)

ẑt = arg max
i=1,...,m

ξti pi,ẑt+1 for t = n− 1, . . . ,1 (16)

The most likely sequence of wind regimes was computed under the fitted
MSAR models, with both 2 and 3 regimes. The result is illustrated in Figure 2
over a 6 day episode where a clear change of wind speed variability, from low
to high, can be observed on October 18, 2010. Note that the regimes are more
stable (i.e., there are fewer switchings) for the sequence with 2 regimes than
with 3.

4 Precipitation identification and attributes

4.1 Precipitation identification

Weather radar images can contain 2 sources of information which fall either
into the meteorological sources (e.g., rain, hail, snow) or into non-meteorological
sources (e.g., clutter due to buildings, wind farms, ground, sea). Echoes caused
by non-meteorological targets can usually be identified and filtered out during
the data acquisition process or a posteriori data quality control when they have
non-random patterns (see Bøvith (2008) for illustrative examples on the Dan-
ish weather radar networks). However, not all non-meteorological echoes can
be removed and, in some cases, significant portions of weather radar images
remain contaminated by non-meteorological artifacts (Trombe et al., 2012). Re-
garding the images used in this study, the most serious problems are due to
anomalous propagation (anaprop) of the radar beam. We observe these prob-
lems more frequently during the summer season, from April to September in
Denmark. In some extreme cases, the contamination can extend up to 20% of
the image pixels over several hours. Image pre-processing operations such as
median filtering are inefficient for removing anaprop echoes.

In this subsection, our goal is to develop a method for assigning a binary la-
bel to each image indicating the detection of precipitation (potentially mixed
with noisy echoes) or not. In Wheater et al. (2000), rainfall is identified by
computing the proportion of wet pixels (i.e., pixels recording positive rainfall)
over the entire image. A rainfall event is then defined as a continuous period
of time where the coverage proportion of wet pixels over the whole image is
above a threshold of 25%. This approach is clearly an over-simplified view
of the problem and could not apply to our images, even by optimizing the
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threshold level. In other applications and, particularly, severe weather now-
casting, storm identification is addressed by defining thresholding and con-
tiguity heuristics (Johnson et al., 1998). These later methods are tailored for
very specific types of precipitation being depicted by high reflectivity echoes
on weather radar images.

We propose an alternative method for identifying precipitation, irrespectively
of the mean reflectivity. It is based on the assumption that contiguous pixels
recording precipitation have a higher correlation than contiguous pixels con-
taminated by noise. This assumption is supported by Zawadzki (1973) which
shows that the shape of precipitation echoes tends to be elliptical. We use a
geostatistical tool, the correlogram, as a measure of spatial correlation of pre-
cipitation echoes for each image (Isaaks and Srivastava, 1889). In order to cap-
ture the potential anisotropy of precipitation echoes, these correlograms are
produced in 2 dimensions, based on the estimation of directional correlograms
ρ(h) of vector h as follows:

ρ(h) =
γ(h)

γ(0)
(17)

γ(h) =
1

N(h) ∑
(pi ,pj)|hpi pj=h

(Ipi − Ipj)
2 (18)

where γ(h) is a directional variogram computed by summing over all paired
pixels (pi, pj) with intensities (Ipi , Ipj) and separated by a vector h. N(h) is
the number of paired pixels (pi, pj) matching this latter criterion. These 2-
dimensional correlograms are computed with the gstat package of the R pro-
gramming environment (Pebesma, 2004).

Figure 3 shows 4 sample images and their associated correlograms. A zoom in
the central part of the correlogram is also provided for illustrating the local con-
tinuity of reflectivity values. The images were chosen to reflect various types
of precipitation systems (e.g., small and scattered precipitation cells, banded
or widespread precipitation system) and a case of anaprop. In particular, the
small spatial correlation of anaprop echoes can well be observed, it drops be-
low 0.4 for all 1-lagged (i.e., adjacent) pixels, whatever the direction. Note
also the quick decorrelation in space for small scattered cells but, unlike for
anaprop, the spatial correlation is larger than 0.4 up to 3-4 lagged pixels. The
anisotropy of banded systems can also be well be captured by these correlo-
grams.

For a given image, we consider that precipitation is detected if the correlation is
larger than 0.6 for all 1 and 2-lagged pixels (i.e., the central 5x5 neighborhood
of the correlogram). Then, we define a precipitation event as a period with a
minimum duration of 1 hour (i.e., 6 consecutive images) over which precipi-
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tation is detected. If the time between the end of a precipitation event and the
beginning of a new one is less than one hour, we consider it to be the same
event. Table 2 summarizes the number of events identified and their mean
lifetime in 2010.

Table 2: Monthly statistics: Number of precipitation events in 2010 and their
mean lifetime

Jan. Feb. March Apr. May June July

Number of events 23 19 40 20 32 18 24

Mean lifetime [hours] 22.7 24.2 08.6 14.9 11.1 12.3 20.4

Aug. Sept. Oct. Nov. Dec. Total

Number of events 25 20 24 36 21 302

Mean lifetime [hours] 21.9 20.5 21.2 16.2 20.4 17.1

4.2 Precipitation types

Precipitation is commonly described as either stratiform, convective or a mix
of these two. In the mid-latitudes, stratiform precipitation develops in a va-
riety of situations where the atmosphere is stably stratified. Typical examples
of these situations are warm fronts where masses of warm air gradually lift
over cold masses of air. These fronts have the particularity of propagating rel-
atively slowly and spreading over large horizontal scales up to and beyond
100 km. On weather radar images in 2D, stratiform precipitation is thus gener-
ally identified as a widespread region of moderate, homogeneous and contin-
uous intensity with a slow dynamics. Winds associated with pure stratiform
precipitation usually have a small vertical velocity and low turbulency. In com-
parison, convective precipitation develops in unstable atmosphere and have a
much higher spatial variability, with many scattered and heavy precipitation
showers occurring locally, over horizontal scales from a few kilometers up a
few tens of kilometers, potentially forming complex convective systems over
several hundreds kilometers. In addition, the updraft associated with this type
of precipitation is stronger, resulting in highly turbulent winds. In the mid-
latitudes, convective precipitation prevails during the summer and over warm
oceans. On weather radar images in 2D, convective precipitation is depicted by
small clusters of high reflectivity propagating relatively quickly. However, in
many cases, convective precipitation can be embedded into stratiform regions
and forms more complex precipitation structures.
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Figure 3: Image samples (left column) and their associated correlograms in 2
dimensions (right column). (a-b) A case of anomalous propagation
without precipitation. (c-d) Small scattered convective precipitation
cells. (e-f) Banded precipitation system. (g-h) Widespread precipi-
tation system.
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4.3 Precipitation attributes

For each image where precipitation is identified, we compute a number of at-
tributes linked the global intensity, spatial continuity and motion of precipi-
tation. These attributes are meant to describe the main characteristics of the
different types of precipitation discussed hereabove. They are summarized in
Table 3.

On weather radar images, the intensity of precipitation is measured in decibel
of reflectivity (dBZ). Within a same precipitation system, the distribution of in-
tensity may not be homogeneous and, with the occurrence of severe weather
traditionally associated with high values of reflectivity, it tends to be positively
skewed. So, in order to describe the distribution of precipitation intensity, we
propose a set of non parametric statistics composed of (i) location measures
with the median (i.e., the 50th quantile), the 75th, 90th, 95th and 99th quantiles;
(ii) dispersion measures with the interquartile range (i.e., the range between
the 25th and 75th quantiles); (iii) shape measures with the skewness to inform
on the asymmetry of the distribution, and the kurtosis to inform on its sharp-
ness. Only pixels with strictly positive reflectivity values are considered. Note
that we choose to use robust statistics with, for instance, the median in place of
the mean and the 99th quantile in place of the maximum in order to filter out
the potential effects of residual noise.

For measuring the spatial continuity of precipitation, we again use the correl-
ogram introduced in this Section and follow the procedure presented in Bald-
win et al. (2005). It assumes that each correlogram contains an elliptical object
that can be described by its eccentricity and area. The procedure is as follows:
(1) the correlogram is transformed into a binary image by means of a thresh-
olding operation, with the threshold value arbitrarily chosen between 0 and
1; (2) a connected-component labelling algorithm is used to identify all con-
nected regions on the binary image (Suzuki et al., 2003) and only the region
intersecting with the center of the image is kept; (3) the edge of that region is
identified with the Canny edge detector (Canny, 1986); (4) an ellipse is fitted on
the detected edge by minimizing the least square criterion (Fitzgibbon et al. ,
1999). In this study, this procedure is performed twice, for threshold values of
0.4 and 0.7, and the eccentricity (i.e., the ratio of the major axis over the minor
axis) and the area of the elliptical object are computed for both values. For the
threshold value of 0.4, these attributes are likely to reflect the large-scale conti-
nuity of precipitation whereas, for the value of 0.7, they will capture the more
local continuity.

The horizontal motion of precipitation is computed with an optical flow method.
This type of method is very useful for estimating the visible flow field (u,v) be-
tween 2 consecutive images. The two underlying assumptions that define the
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optical flow formulation are brightness constancy and spatial smoothness. Bright-
ness constancy means that the intensity of an object is conserved over time,
despite its likely change of position between 2 consecutive images. Spatial
smoothness refers to the coherence between neighboring pixels which should
ideally have a similar motion (Sun et al., 2010). The formulation we use is the
one proposed in Black and Anandan (1996) owing to its robustness to outliers.
It is expressed as an Energy minimization problem with the objective function
E(u,v) defined as follows:

E(u,v) = EBC(u,v) + λESS(u,v) (19)

where λ a regularization parameter (i.e., the larger λ, the denser the flow field);
EBC and ESS are the functions resulting from the brightness constancy and spa-
tial smoothness constraints:

EBC(u,v) =∑
i,j

f (I1(i, j)− I2(i + ui,j, j + vi,j)) (20)

ESS(u,v) =∑
i,j
[g(ui,j − ui+1,j) + g(ui,j − ui,j+1)

+ g(vi,j − vi+1,j) + g(vi,j − vi,j+1)] (21)

where I1 and I2 are 2 consecutive images, f and g are 2 penalty functions. Fol-
lowing the implementation of Black and Anandan, we set f = g = log(1 +
1
2 (

x
σ )

2), the Laurentzian function with scale parameter σ. The expression of
ESS is formulated with a pairwise Markov Random Field (MRF) discretization,
based on a 4-neighborhood (Li, 2009). Since our goal is to estimate a unique
speed and direction for each pair of consecutive images, we extract the median
Cartesian flow from the flow field and convert it into its Polar components
(i.e., speed and direction). Flow direction is then transformed into a categor-
ical variable by binning its values into 8 sectors (North (N), North-East (NE),
East (E),. . . ).

Finally, we also add a seasonal attribute in the form of a categorical variable to
allow for potential seasonal patterns of precipitation. We consider that there
are only two seasons in Denmark so that the variable takes value Summer from
March to August, and Winter from September to February. In summer, the
North Sea is on average colder than the air whereas, in winter, the opposite
holds true and favors thermal instabilities in the atmosphere (Vincent et al.,
2011).
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5 Automatic Classification

For the automatic classification of precipitation systems, we use a tree-based
classification technique called CART, in a supervised learning framework (i.e.,
the classification is governed by the categorical sequence of wind regimes com-
puted in Section 3). These trees, also known as decision trees, are attractive in
many aspects. First, for the relative simplicity of their principles based on a
recursive partitioning of the data set. Second, they provide a powerful alter-
native to more traditional classification techniques (e.g., discriminant analysis
and logistic regression) which generate a global model for the entire data set
while variables may interact in a highly complex and nonlinear way and re-
quire to be fitted locally. Finally, because their interpretation is mainly visual
and can lead to a straightforward understanding of the relationships between
variables (Hastie et al., 2001). Applications of classification trees to precipita-
tion data extracted from weather radar images can be found in Gagne et al.
(2009) and Lakshmanan and Smith (2009).

5.1 CART classification trees

Let Y be the dependent categorical variable taking values 1,2, . . . ,K, and (X1, . . . , Xp)
the set of p predictors (i.e., the independent variables) that can either be con-
tinuous or categorical. Growing a classification tree consists of a recursive par-
titioning of the feature space (i.e., the space composed of the p predictors each
with n observations) into rectangular areas. Each split consists of a dichotomy
applied on a single predictor (e.g., X2 < 3 if X2 is continuous or X2 = ”a” if it is
categorical). The feature space is first split into 2 groups so that the response of
Y is maximized in each of the 2 groups. This procedure is recursively repeated
and each of the 2 groups is partitioned into 2 new sub-groups, and so on. Splits
are more commonly called nodes. A terminal node (i.e., node that cannot be
further split) is called a leaf.

For each node, the splitting predictor and rule are determined so as to min-
imize the impurity level in the resulting two nodes. For a given node, let
p = (p1, . . . , pK) be the vector of proportions of elements in class 1, . . . ,K. There
exist several impurity measures and the one we use in this study is known as
the Gini index. It measures how often a randomly chosen element from the
node would be incorrectly labeled if it were labeled according to the frequency
distribution of labels in the node. The Gini index iG(p) is computed as follows:

iG(p) = 1−
K

∑
j=1

p2
j (22)
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When growing a tree, the tradition is to build a complex tree and simplify it
by pruning (i.e., removing the nodes that over-fit the feature space). This
is done by minimizing the misclassification rate within leaves over a 10-fold
cross-validation procedure.

5.2 Experimental results

The classification is performed using the sequence of wind regimes computed
in Section 3 as the dependent variable, and the precipitation attributes ex-
tracted from the weather radar images and listed in Table 3 as predictors. Ob-
servations where no precipitation is detected are filtered out. After that, more
than 29000 observations remain for the classification. We choose to grow the
tree for the sequence of wind regimes with 2 regimes. There are 76% of obser-
vations in regime 1 and 24% in regime 2. The final tree is shown in Figure 4.
Branches going downwards to the left indicate that the splitting rule is satis-
fied.

The classification tree we grew is interesting in two aspects. First, it reveals
the broad patterns of precipitation systems associated with the different wind
regimes. For instance, the leftmost leaf which contains 35% of the total num-
ber of observations, shows that 93% of the observations for which the speed
of precipitation echoes is smaller than 12 m s−1 (i.e., speedOF<12) and the
maximum reflectivity is smaller than 29 dBZ (i.e., reflQ99<29) are in Regime
1. On the opposite side of the tree, the rightmost leaf which contains 14% of
the total number of observations, indicates that 59% observations for which the
speed is larger than 12 m s−1, the maximum reflectivity larger than 30 dBZ and
the precipitation comes from North-West, West or South are in Regime 2. One
recurrent pattern in this tree is that when precipitation systems comes from
North-East, East or South-East, wind fluctuations tend be classified in Regime
1, the regime with the lowest variability. This is consistent with the results
in Vincent et al. (2011) that show that wind fluctuations are more variable for
westerly flows than for easterly flows.

Secondly, the tree highlights the predictive power of each of the variables used
in the classification. Some variables may repeatedly be used for generating new
nodes whereas some other variables may not be used at all. This contrasts with
the hierarchical clustering technique proposed in Baldwin et al. (2005) where
all variables equally contribute to classify observations, with the risk of includ-
ing non informative variables and degrading the accuracy of the classification.
In the present experiment, one can notice that only 4 predictors are used in the
final tree, the motion speed and direction of precipitation echoes (i.e., speedOF
and dirOF), the season and the maximum reflectivity (i.e., reflQ99). Note that
the maximum reflectivity value (i.e., reflQ99) is the only intensity related at-
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tribute used in the final tree. This attribute characterizes the most extreme, yet
marginal, intensity recorded on the images, highlighting the necessity to con-
sider precipitation information at smaller scales in the future. Moreover, none
of the 4 variables derived from the correlogram (i.e., spaArea04, spaArea07,
spaEcc04 and spaEcc07) is used. The most likely reason for the small pre-
dictive power of correlograms is the too complex organizational structure of
precipitation systems. In particular, when there are spatial discontinuities be-
tween precipitation echoes (i.e., precipitation echoes are separated by regions
recording no precipitation), correlograms are only informative locally and can-
not capture the full extent of the precipitation system. Inversely, when small
clusters of high intensity are embedded into a large and continuous region of
moderate intensity, correlograms tend to only capture the large-scale feature.
This suggests the development of hierarchical techniques where precipitation
would be analyzed at multi-scale, as a potential line of work in the future.

speedOF<12

reflQ99<29

season=Sm.

dirOF=NE,E,SE,S,SW

reflQ99<34

reflQ99<30
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Figure 4: Classification tree explaining wind regimes at the Horns Rev 1 wind
farm with precipitation system attribute extracted from weather
radar images. Wind regimes and precipitation system attributes are
computed in Section IV and V, respectively.

6 Conclusion

In this work, we proposed an automatic procedure for classifying offshore
wind regimes based on precipitation attributes extracted from weather radar
images. We found that winds with a high variability are more likely to be ob-
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served with the passage of precipitations systems being advected at relatively
high speeds, preferably from West and North-West, and having large maxi-
mum reflectivity values. This result is consistent with earlier data analysis Vin-
cent et al. (2011) and confirms the potential of weather radar observations for
providing appropriate information to future wind power prediction systems.
However, the insights we gained on the relationship between precipitation and
wind are not readily integrable into prediction systems.

We studied wind fluctuations in a univariate framework, only considering
wind speed. It has the merit of keeping the complexity of the procedure rea-
sonable. Yet, wind should ideally be considered and treated as a bivariate pro-
cess of speed and direction because patterns of wind speed fluctuations may
either be direction-dependent or coupled with specific patterns of wind direc-
tion fluctuations. For instance, larger wind speed fluctuations are observed for
westerly flows at Horns Rev (Vincent et al., 2011). However, the statistical mod-
eling of circular time series (e.g., wind direction) that feature autocorrelation is
quite cumbersome and it is preferable to transform wind speed and direction
into their associated (u,v) components, as in Cripps and Dunsmir (2003), for
instance. That way, both variables of the bivariate process are non-circular and
unbounded, and traditional methodologies can be applied. In that view, an in-
teresting generalization of our work could consist of applying MSAR models
in a vectorial form as introduced in Krolzig (1997), on the transformed (u,v)
components of the wind.

As for precipitation, we considered it over a unique and large spatial scale
which is suitable for a preliminary investigation aiming at defining a rough cli-
matology of precipitation and wind. However, our approach clearly overlooks
the important organizational structure of precipitation systems. This acts as a
limiting factor for improving the accuracy of the classification of offshore wind
regimes. A potential line of work to overcome that limitation consists of iden-
tifying precipitation entities at more appropriate spatial scales, potentially at
multi-scales. These entities could then substitute precipitation system as the ex-
perimental units for extracting attributes. In our view, there exist two potential
techniques to address this problem. First, the extended watershed technique
presented in Lakshmanan et al. (2009) which provides a consistent and flexible
framework for detecting convective storms over small spatial scales. Second,
the multi-scale segmentation technique introduced in Lakshmanan et al. (2003)
which enables to split precipitation systems into sub-regions with specific tex-
tural properties.

Finally, there are a number of issues that we did not address in this study
and that are left for future work. Firstly, the sensitivity of the results to the
data length will be analyzed with the acquisition of new data or, if new data
were not to become available, the application of resampling techniques such as
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bootstrap will be investigated. Secondly, this work aimed at classifying wind
regimes at time t based on the weather conditions as seen by a weather radar
at the same time t. It is planned to repeat the same study with lagged weather
radar images, at time t− k, in order to examine the detection of early precipita-
tion patterns. Thirdly, the temporal dimension of the sequence of images was
not considered while each time series of precipitation attributes is character-
ized by a relatively strong autocorrelation. Further research will therefore be
encouraged in this direction and data mining techniques dealing with autocor-
related data will receive specific attention.
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