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Preface

This thesis was prepared at the department of Informatics and Mathematical
Modeling of the Technical University of Denmark in partial fulfillment of the
requirements for acquiring the Ph.D. degree in Engineering.

The thesis deals with different aspects of the modeling and forecasting of off-
shore wind power generation. The main focus is on the application of regime-
switching time series models, but also the exploration of weather radar obser-
vations as a new source of information for these models.

The thesis consists of a summary report and a collection of four research papers
written during the period 2009-2012.

Lyngby, November 2012

Pierre-Julien Trombe
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Summary

The present thesis addresses a number of challenges emerging from the in-
creasing penetration of renewable energy sources into power systems. Focus
is placed on wind energy and large-scale offshore wind farms. Indeed, off-
shore wind power variability is becoming a serious obstacle to the integration
of more renewable energy into power systems since these systems are subjected
to maintain a strict balance between electricity consumption and production,
at any time. For this purpose, wind power forecasts offer an essential support
to power system operators. In particular, there is a growing demand for im-
proved forecasts over very short lead times, from a few minutes up to a few
hours, because these forecasts, when generated with traditional approaches,
are characterized by large uncertainty. In this thesis, this issue is considered
from a statistical perspective, with time series models. The primary case study
is the Horns Rev wind farm located in the North Sea.

Regime-switching aspects of offshore wind power fluctuations are investigated.
Several formulations of Markov-Switching models are proposed in order to
better characterize the stochastic behavior of the underlying process and im-
prove its predictability. These models assume the existence of a hidden or un-
observable regime sequence. Estimation methods are presented in both Bayesian
and Frequentist frameworks. Markov-Switching models enable to highlight
structural breaks in the dynamics of offshore wind power generation, with al-
ternating periods of high and low variability. They also yield substantial gains
in probabilistic forecast accuracy for lead times of a few minutes. However,
these models only integrate historical and local measurements of wind power
and thus have a limited ability for notifying regime changes for larger lead
times. For that purpose, there is a long tradition in using meteorological fore-
casts of wind speed and direction that are converted into wind power forecasts.
Nevertheless, meteorological forecasts are not informative on the intra-hour



vi Summary

wind variability and thus cannot be used in the present context focusing on
temporal resolutions of a few minutes. Instead, this thesis investigates the use
of weather radar observations for monitoring weather conditions in the vicin-
ity of offshore wind farms, with the ambition of establishing a link between
the passage of precipitation systems and high wind variability. The underlying
motivation of this approach is twofold. First, it aims at providing a meteoro-
logical interpretation of the hidden regimes as estimated by regime-switching
models. Second, it aims at determining an observed sequence of regimes based
on the information extracted from the observations supplied weather radar ob-
servations. This approach, combining both meteorological and statistical ex-
pertise, opens up new possibilities for designing prediction systems in wind
energy.



Resumeé

Denne afhandling beskriver en raekke metoder til losning af reekke udfordringer,
der opstar nar en betydelig meengde vedvarende energiproduktion skal integr-
eres i elsystemet. Fokus er pd vindenergi, specielt pa store havvindmelleparker.
Etalvorligt problem for en fortsat veekst af elproduktion med havvindmelleparker
er udsving i deres elproduktion, da der stilles store krav til at balancen mellem
elproduktionen og elforbruget skal holdes, uden undtagelser. For at opna
denne balance er prognoser af elproduktionen fra vindmeller et essentielt red-
skab for systemoperaterer. Der er i serlig grad et stigende behov for bedre
prognoser med kort horisont, fra fd minutter og op til et par timer frem, da
de nuveerende prognoser er beheaeftet med relativ stor usikkerhed for korte ho-
risonter. I athandlingen beskrives metoder, til forudsigelse af vindproduktio-
nen pé korte horisonter, baseret pa statistisk modellering. Det primeere cases-
tudie er Horns Rev vindmellepark i Nordseen.

Aspekter vedrerende tilstandsskift i variabiliteten af elproduktionen fra havvin-
dmelleparker undersoges. En reekke formuleringer af Markov-switching mod-

eller foreslas til karakterisering af de underliggende stokastiske processer og

danner basis for forbedrede prognosemodeller. Markov-switching modellerne

er baseret pa en antagelse af, at der i processerne er sekvenser af skjulte til-

stande, som kan estimeres, hvilket gores med bade med en frekventistisk og

Baysiansk tilgang. Modellerne gor det muligt af estimere strukturelle skift

i havvindmelle elproduktionens dynamik og identificere perioder skiftende

mellem hoj og lav variabilitet. Desuden forbedres kvaliteten af probabilistiske

prognoser med horisonter pa op til fa minutter betydeligt.

Markov-switching modellerne anvendes med historisk data og lokale obser-
vationer. For at opna yderligere forbedringer af prognoserne benyttes tradi-
tionelt meteorologiske prognoser af vindhastighed og vindretning. Dette er
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dog ikke optimalt i den nuveerende kontekst til beskrivelse af variabiliteten i
vinden med henblik pa prognoser med oplesning i minutter og med horison-
ter op til f& timer. Derfor er der i afhandlingen beskrevet nye metoder til at
integrere vejrradar observationer med det formal, at etablere en forbindelse
mellem passerende nedberssystemer og vindvariabilitet ved kraftig vind. Den
underliggende motivation har to vigtige aspekter. For det forste, at tilveje-
bringe en meteorologisk fortolkning af de skjulte tilstande, som er estimeret i
Markov-switching modellerne. For det andet, at bestemme en sekvens af til-
stande frem i tiden pad baggrund af informationen i vejrradar observationer.
Ved pa denne made at kombinere en meteorologisk og statistisk tilgang abnes
nye muligheder for at designe prognosesystemer.
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Introduction

Wind energy in the present energy context

With the emergence of new energy demands linked to population growth or
continuous industrial development, the world energy consumption is expected
to keep on growing in the coming decades (see Figure[I). As of today, our so-
ciety is heavily reliant on fossil fuels which account for more than 80% of this
consumption (International Energy Agency,|2011). However, coal, oil and gas
are available in limited quantities and the processes for converting them into
electricity are responsible for large CO, emissions in the atmosphere, contribut-
ing to global warming. Therefore, the transition towards a more sustainable

World Energy Consumption (1980 - 2030)
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Figure 1: World energy consumption. (1980-2010) Historical data, (2010-2030)
Projection. (Source: U.S. Energy Information Administration)



society is conditioned upon changes in energy consumption and production
patterns.

In that global energy context, renewable energy sources such as sun or wind are
considered credible candidates for meeting new energy demands and partly
substituting fossil fuels. First, because these resources are available in large
quantities. For instance, there is more potential energy in one hour of solar
radiations hitting the atmosphere and the surface of the Earth than the world
consumes in one year. Secondly, because their conversion into electricity is al-
most CO; free. Thirdly, because their price as a fuel is null. Finally, because
they could enable countries, and particularly, developing countries in becom-
ing more self-sufficient in energy.

Of all alternative and renewable energy sources, wind energy is the one ex-
periencing the fastest growth. Despite the many barriers — social, political,
economic, technical (see Beck and Martinot| (2004)) —, a number of countries
such as Spain and Denmark already experience a large penetration, above 10
and 20% respectively, and ambitious targets have been set for the future. Den-
mark plans to meet 35% of its final energy consumption with wind power by
2020, for instance (Danish Ministry of Climate, Energy and Building), [2012).
However, integrating such large amounts of wind power and, more generally,
renewable energy into power systems does not go without problems. In partic-
ular, wind energy characteristics represent a challenge to power system design
and operation (Ackermann et al., 2005).

Integrating wind power into power systems: what is
the issue?

Power systems are managed as dynamical systems containing uncertainty and
subjected to constraints. These systems consist of complex networks of in-
terconnected power generators (e.g., wind farms, coal power plants, hydro
power plants, etc), transmission and delivery lines for dispatching electrical
power to consumers. A first set of constraints is imposed by the layout of these
power systems (i.e., the spatial arrangement of lines and generators) and by
the respective capacities of these generators and lines. An additional constraint
imposes Transmission System Operators (TSOs) to maintain a strict balance be-
tween electricity production and consumption, at any time, in order to ensure
grid stability. In particular, one of the main issues in operating power systems
is to meet peaks in the electricity demand often associated with cold weather in
the winter. The uncertainty in managing power systems stems from the spatio-
temporal variability of the electricity demand (i.e., the load) and generation,



as well as the availability of power generators. For instance, the behavior of an
electricity consumer is not known in advance, neither is the time when a fault
causes a power plant to stop generating electricity.

The integration of large amounts of wind power into power systems is cur-
rently a challenge because wind differs from conventional fuels (e.g., coal,
gas) in many aspects. Firstly, wind is not dispatchable. This means that wind
power can only be generated in places where wind is available in sufficient
quantities, potentially far from where the power is needed and/or in remote
locations (e.g., out at sea or mountainous regions). Secondly, wind cannot
be stored, and the generated power is either instantaneously integrated into
power systems, potentially forcing conventional power units to decrease or
stop their production, or lost. Thirdly, wind is governed by the dynamics of
the atmosphere which makes it variable. Consequently, its output power is
also variable.

Historically, power systems were designed to handle the variability of the load
while that of the generation was considered of lesser importance, in compari-
son. However, with the growing penetration of wind power, the inherent and
potentially extreme variability of wind power substantially increases the un-
certainty in managing power systems. In that respect, there is not a unique
solution for handling this uncertainty as power systems have different speci-
ficities. Rather, a number of changes can be applied to power system design
and operation to optimize their safe and economic management: (i) the deploy-
ment of energy storage technologies such as pumped storage plants or heat
pumps (Hewitt,|2012), (ii) an increase in backup capacity with more fast-acting
generators such as coal and heat power (CHP) plants, and (iii) new transmis-
sion and interconnection lines, or an increased use of existing ones. Yet, all
these changes go towards a same direction, an extension of the power system
infrastructure which comes at a high cost. Furthermore, an increased use of
CHP plants would not be in line with policies aiming at reducing CO, emis-
sions. Another possible change is to apply Demand Side Management (DSM)
principles. They consist of introducing more flexibility in the load by induc-
ing changes in electricity consumption patterns, through financial incentives
for instance. However, the deployment of DSM technologies will not be imme-
diate, mainly because of social acceptance issues (e.g., , installation of meter-
ing devices in individual homes, changes in consumer mentality), as discussed
in (Strbac, [2008). Ultimately, the most cost-effective change for reducing that
uncertainty is through an increased use of wind power forecasts. The use of
forecast information offers the advantage of already being a well spread prac-
tise in managing power systems. In particular, TSOs have long relied on the
availability of accurate load forecasts for reducing the uncertainty associated
with the load variability (Gross and Galianal, [1987). Today, wind power fore-
casts are already used by many electrical utilities for their operations and their



value is clearly acknowledged as they reduce operating costs (Giebel et al.,
2011).

Wind power forecasts

A wealth of approaches and models have been proposed for generating ac-
curate wind power forecasts (Giebel et al} 2011). However, with the growing
share of wind power into power systems, improving the accuracy of these fore-
casts is paramount (Jones and Clark, 2011). Wind power forecasts are required
at different spatio-temporal scales and horizons, depending on their intended
application. Traditionally, five time scales are considered:

1. Ultra short-term (second range): applications include the control of indi-
vidual wind turbine control (e.g., the pitch angle of blades).

2. Very short-term (minute range, up to 1 hour ahead): applications include
the management of the immediate regulating and spinning reserves. The
former reserve is activated over time intervals of 15-20 minutes, after
the system experiences a sudden and large deviation between scheduled
and actual power generation. The latter reserve corresponds to the extra
capacity available by increasing the power output of generators already
connected to the power system.

3. Short-term (hour range, from 0 up to 2-3 days ahead): applications in-
clude the operation of supplemental reserve (e.g., the extra capacity non
connected to the power system that requires a delay to be activated),
scheduling unit commitment and economic dispatch, trading of electric-
ity on energy markets,

4. Medium term (day range, from 0 up to 7 days ahead): economic dispatch
and unit commitment of large power plants.

5. Long-term (week range): applications include planning maintenance oper-
ations of wind farms.

In addition, these forecasts can be issued at different spatial scales, from single
wind farms, to regions or a whole power system. In that respect, wind power
predictability over regions tends to improve with the spatial dispersion of wind
farms, owing to the smoothing effect of wind power variability (Focken et al.,
2002).

A unique type of model or approach cannot be used for meeting the require-
ments over all spatio-temporal scales. Rather, the choice of an approach is



modulated by the horizon of interest. The first type of approach is physical. It
relies on Numerical Weather Prediction (NWP) models and dynamical equa-
tions of atmospheric flows for generating meteorological forecasts. These fore-
casts can potentially be refined by integrating information on the terrain such
as the roughness or orography. Meteorological forecasts are then converted to
wind power forecasts through an idealized power curve, as shown in Figure 2}
NWP models are usually run from 2 to 4 times a day. The temporal resolution
of NWP forecasts is between 1 and 3 hours. Physical approaches are well suited
for short and medium term forecasts. A good introduction on NWP models is
given in Monteiro et al|(2009). The second type of approach is mathemati-
cal and consists of using statistical models (e.g., time series models, artificial
neural networks) to find out spatio-temporal dependencies between the wind
power production and explanatory variables (e.g., historical observations of
wind or wind power). This type of approach usually outperforms physical ap-
proaches for very short-term forecasts and up to 6 hours ahead. A third type
of approach consists of combining both NWP and statistical models. The NWP
models are first used for generating forecasts of meteorological variables (e.g.,
wind speed and direction, temperature, air density) that can be converted to
wind power forecasts with kernel smoothing techniques a posteriori. This hy-
brid approach is usually used for short and medium term forecasts (Giebel
et al.,2011).

Whatever the spatio-temporal scales and horizons of interest, and irrespec-
tively of the approach employed, several types of forecasts can be issued: deter-
ministic forecasts, probabilistic forecasts and scenarios. Scenarios are out of the
scope of this thesis and thus are not discussed here. Instead, we refer toPinson
et al.| (2009) for a comprehensive introduction on these forecasts. Deterministic
or point forecasts are provided as a single value for each look-ahead time. They
are informative on the conditional expectation of the wind power generation.
This type of forecast remains largely used by TSOs for optimizing the manage-
ment of power system thanks to their high interpretability (Jones and Clark,
2011). However, wind power generation is not perfectly predictable since our
knowledge of the mechanisms governing its variability is incomplete. Con-
sequently, each point forecast contain some uncertainty. This uncertainty can
be expressed in the form of probabilistic forecasts (e.g., predictive densities,
prediction intervals) around point forecasts. An example of such probabilistic
forecasts is given in Figure[3| The additional value of using probabilistic fore-
casts, compared to the sole point forecasts, has been demonstrated in the case
of a wind power producer aiming at trading its production, yielding higher in-
comes (Pinson et al.,[2007). More generally, probabilistic forecasts are a prereq-
uisite for optimal decision-making under uncertainty, as discussed in Gneiting
(2008).
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Figure 2: A simple example of an idealized power curve for a single wind
turbine where wind power is a functon of wind speed. The cut-
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turbines produce rated or maximum power. Cut-out speed is speed
at which wind turbines stop producing power for safety reasons.

(Source: [Monteiro et al|(2009))
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Figure 3: Example of point forecasts and prediction intervals up to 48 hours
ahead. (Source: www.pierrepinson.com)

Thesis motivation — The Horns Rev experience

Historically, the deployment of wind farms took place onshore, because of
lower costs for installing wind turbines and connecting them to power systems,
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in comparison to offshore environments. However, large and unexploited wind
resources over waters, combined to the limited availability of sites for new
wind farm projects onshore and social acceptance issues are pushing the in-
stallation of new wind farms offshore. Figure[dillustrates the planned increase
of offshore wind power capacity in Europe. Offshore wind farms will more
likely be erected in the form of large and dense clusters of wind turbines such
as the Horns Rev 1 (HR1) wind farm.

OFFSHORE WIND FARMS IN EUROPE

Capacity of offshore wind farms in megawatts
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@ Active 2 @ 350
_--} @ Ynder construction or
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Figure 4: Comparison of available and future offshore wind power capacity
in Europe (Sources: Areva, EWEA, media reports).

The HR1 wind farm is the main case study in this thesis. Located in the North
Sea, about 15 km off the West coast of Jutland, Denmark (see FigureE[), itis com-
posed of 80 turbines for a rated capacity of 160 MW. Its yearly production cor-
responds to the consumption of 150000 households using 4000 kWh per year.
When it came into operation in 2002, it was the largest offshore wind farms in
the world. For that reason, it has attracted a considerable attention in the sci-
entific literature. Research works include modeling of wind turbine wakes for
optimizing wind farm layouts (Barthelmie et al.,[2009), the observation of wind
farm wakes with satellite SAR images for estimating shadowing effects
tiansen and Hasager, [2005), nacelle wind and yaw angle assimilation for short-
term forecasting applications (Draxl et al.,2012), the correction and validation
of NWP models with in-situ measurements (Pefia and Hahmann| 2012).

The structural particularity of large-scale offshore wind farms like HR1 stems
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Figure 5: The Horns Rev 1 wind farm is located in the North Sea.
(Source: www.vattenfall .dk)

from the high density of large wind turbines, and thereby large wind power
capacity, within a small geographical area. Corresponding capacity is spread
over a much wider area over land, partly because onshore wind turbines are
smaller and partly because of siting constraints. This particularity translates
into a reduction of the smoothing effect of wind power variability which oc-
curs with the spatial dispersion of wind turbines (Focken et al) 2002). For
instance, wind power generation at HR1 can change by up to 100 MW in 15 to
20 minutes, corresponding to more than 60% of HR1 rated capacity. These large
fluctuations have a strong impact on power system and are rarely observed for
offshore wind farms (Akhmatov),2007).

Furthermore, wind flow characteristics change as they move from onshore to
offshore environments. In particular, moderate to high wind speeds (i.e., larger
than 8 and 15 m s~!, respectively) are more frequent over waters than over
land. Diurnal cycles are also much less pronounced. Decoupling of flow is
more frequent, translating into stronger vertical shear and different turbulent
regimes (Pryor and Barthelmie} [2002). The meeting of wind flow and wind
farm over waters results into significant differences in wind power fluctuation
patterns in the very short-term when compared to those in onshore environ-
ments, as illustrated in Figure[6] Offshore wind power production is higher on
average and, more importantly, its variability is magnified.

In order to enhance the integration of its output power, a number of controllers
are already implemented at HR1 (Kristoffersen, 2005). Their respective princi-
ples are shown in Figure[7] Absolute power limitation can be activated for avoid-
ing exceeding the scheduled production, and ramp rate limitation can be turned
on for dampening fluctuations of large amplitude, for instance. Moreover, de-
spite their specificities, offshore wind farms have to contribute like any other
power plant to balancing and backing-up operations. That is the purpose of the
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Figure 6: Wind power generation at the Horns Rev 1 wind farm and on-
shore wind turbines of corresponding capacity. Temporal resolu-
tion: 5 minutes. (Source: Kristoffersen| (2005))

last two controllers, namely balance control and delta control, that are activated
when requested by the TSO. These controllers and, more specifically, the ramp
rate controller requires accurate set points in the form of wind power forecasts
in order to be tuned efficiently and to dampen large wind power fluctuations
in the very short-term.

Thesis objective & outline

The main objectives of this thesis are to propose new models and explore new
methodologies for improving the characterization and predictability of wind
power fluctuations from single wind farms in the very short-term, with spe-
cific lead times up to 1-2 hours, and temporal resolutions of a few minutes.
Wind power forecasts generated with the proposed models could eventually
be integrated into the controllers presented in Figure

This thesis addresses a number of important aspects in agreement with the
latest recommendations or directions for research in wind power forecasting.
First, focus is placed almost exclusively on offshore applications since most of
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Figure 7: Controllers implemented at the Horns Rev 1 wind farm for damp-
ening wind power fluctuations. (Source: Poul Serensen, Jesper
Kristoffersen (2006) Wind farm control. ECPE Seminar — Renewable
Energies, Kassel, Germany)

the new wind power capacity in Europe is expected to be installed over waters
(see Figure[). In that respect, a number of nonlinear models are investigated in
order to better account for the specificities of offshore wind power fluctuations.
Second, the scale of interest in this work is the very short-term since the avail-
ability of accurate wind power forecasts at this scale is likely to become essen-
tial for managing wind power systems with large penetrations of wind power,
as discussed in Jones and Clark| (2011) and |GE Energy| (2010). However, the
recent literature reviews on wind power forecasting by Monteiro et al.[ (2009)
and |Giebel et al.|(2011) indicate that most of the research efforts have so far con-
centrated on short term applications. In this context, the work presented in this
thesis is a valuable contribution to the field of wind power forecasting in the
very short-term. Third, new meteorological observations (i.e., weather radar
images) are considered as an alternative to traditional inputs (e.g., meteoro-
logical forecasts generated with NWP models). Besides offering the advantage
of being available at higher spatio-temporal resolutions than meteorological
forecasts, the use of these observations may also enable to avoid one of the
main shortcomings of statistical prediction systems based on meteorological
forecasts, that is the propagation of the NWP forecast errors. Fourth and last,
a strong emphasis is put on methodologies for generating probabilistic fore-
casts as it is believed to be the way forward for optimizing the management of
power systems.

This thesis consists of four papers. Papers [A|and [B| present two applications
of Markov-Switching Autoregressive (MSAR) model, a class of nonlinear time
series models (Zivot and Wang),2003). The motivation for applying this class of
models stems from behavioral changes in the dynamics of wind power fluctu-
ations. Different time series models can hence be used to explain wind power
fluctuations at different times. The underlying assumption for using MSAR
models is that wind power fluctuations are governed by a regime sequence
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that is considered hidden or unobservable. The objectives of these two papers
are to improve the characterization of wind power fluctuations and to show
that these models can enable a reduction of the uncertainty associated with
wind power forecasts.

Paper|Cland [D|build on the first two papers and investigate the use of weather
radar images as a new source of inputs for statistical models. In particular,
the motivation is to characterize the unobserved regime sequence with mete-
orological observations at high spatio-temporal resolutions. The limitations,
potential and perspectives for the integration of weather radar observations
into prediction systems are discussed in Paper|C| A first classification of wind
power regimes with respect to weather radar observations is proposed in[D}
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A general probabilistic forecasting framework for
offshore wind power fluctuations

Pierre-Julien Trombe!, Pierre Pinson!, Henrik Madsen?

Abstract

Accurate wind power forecasts highly contribute to the integra-
tion of wind power into power systems. The focus of the present
study is on large-scale offshore wind farms and the complexity of
generating accurate probabilistic forecasts of wind power fluctu-
ations at time-scales of a few minutes. Such complexity is ad-
dressed from three perspectives: (i) the modeling of a nonlin-
ear and non-stationary stochastic process; (ii) the practical im-
plementation of the model we proposed; (iii) the gap between
working on synthetic data and real world observations. At time-
scales of a few minutes, offshore fluctuations are characterized
by highly volatile dynamics which are difficult to capture and
predict. Due to the lack of adequate on-site meteorological ob-
servations to relate these dynamics to meteorological phenom-
ena, we propose a general model formulation based on a statisti-
cal approach and historical wind power measurements only. We
introduce an advanced Markov Chain Monte Carlo (MCMC) es-
timation method to account for the different features observed
in an empirical time series of wind power: autocorrelation, het-
eroscedasticity and regime-switching. The model we propose is
an extension of Markov-Switching Autoregressive (MSAR) mod-
els with Generalized AutoRegressive Conditional Heteroscedas-
tic (GARCH) errors in each regime to cope with the heteroscedas-
ticity. Then, we analyze the predictive power of our model on a
one-step ahead exercise of time series sampled over 10 minute in-
tervals. Its performances are compared to state-of-the-art models
and highlight the interest of including a GARCH specification for
density forecasts.

IDTU Informatics, Technical University of Denmark, Kgs. Lyngby, Denmark
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1 Introduction

Climate change calls for the reduction of greenhouse gas emissions and thus a
growing development of renewable energy sources. Benefiting from favorable
governmental policies and large wind resources, countries in the north-west
of Europe are rapidly increasing their wind power capacities. Historically,
onshore installations have prevailed, but offshore wind energy is now grow-
ing significantly. In Denmark, the latest figures stated that wind power ac-
counted for about 22% of the domestic electricity supply and, out of 3802 MW
wind power capacity, 868 MW were installed offshore (Danish Energy Agency,
2011). The current trend is towards the development of large-scale offshore
projects capable of generating several hundreds of MW each. Indeed, sitting
wind farms out at sea has substantial advantages of (i) more space available;
(ii) a decrease of the frequency and duration of low wind speeds and (iii) an
increased persistence for high wind speeds. Offshore wind farms are then ex-
pected to have higher capacity factors (i.e., the ratio of the actual power output
over a given period of time to the maximum output if the wind farm had been
operated at full capacity) (Pryor and Barthelmie} [2002).

However, in practice, integrating significant amounts of wind power into power
systems remains a challenge and requires dedicated prediction tools for real-
time monitoring, operation scheduling and energy trading. While most of
these applications requires wind power forecasts in an hourly resolution, the
recent deployment of large-scale offshore wind farms has increased the con-
cern for forecasts with particular lead times of 5-10 minutes (Jones and Clark|
2011). Indeed, power generation at large offshore wind farms turns out to be
highly volatile, increasing the risk of imbalance in the power system, in the
very short-term. This originates from the specific design of these wind farms
which concentrate a large amount of wind power capacity within a relatively
small area, increasing the impact of local meteorological phenomena (wind and
rain fronts among others) on their short-term power production. For instance,
measurements from the offshore site of Horns Rev reveal changes in the output
power that may reach an amplitude of 60% the wind farm maximum capacity,
within 15-20 minutes (Akhmatov},|2007). Such levels of fluctuations can rarely
be observed onshore where similar capacities would be spread over a much
wider area, smoothing out the effects of the weather instabilities (Focken et al.,
2002). Consequently, maintaining the short-term balance of the transmission
system (i.e., matching the power supplied by the wind farm and the electricity
demand) and the stability of the power system has become a critical issue and
needs to be handled carefully to prevent potential damages (blackouts, efc.).

At time-scales of a few minutes, wind power forecasts are preferably generated
with statistical models, based on historical data only (Giebel et al., [2011). In
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the present paper, our aim is to introduce a case study of statistical modeling
and forecasting of offshore wind power fluctuations and its related complexity
from three perspectives:

o the modeling of a nonlinear and non-stationary stochastic process for
which we propose a model that allows to capture up to three different
time series effects: autocorrelation, heteroscedasticity and regime switch-
ing (the generic name of our model is MS-AR-GARCH),

o the numerous issues linked to the practical implementation of such model
as it requires an advanced estimation method based on a Markov Chain
Monte Carlo (MCMC) algorithm,

o the gap between applying such model to synthetic data and real world
observations.

This paper is organized as follows. Section 2 summarizes the latest achieve-
ments in wind power meteorology for very short-term applications and states
the motivations for this study. Section 3 introduces the data and shows some
of their major features. Then, in Section 4, specifications for the model we pro-
pose are discussed throughout a brief overview of the literature on Markov-
Switching models which constitute a special class of regime switching models,
and on GARCH models which are generalized forms of heteroscedastic mod-
els. Section 5 gives a detailed description of the estimation method based on a
Markov Chain Monte Carlo algorithm and the reasons for such a choice. Ap-
plications to both synthetic and real data are presented and the accuracy and
robustness of the estimation method are assessed. A forecast evaluation on
real data is performed in Section 6 where the performances of our model are
compared with current benchmark models for very short-term wind power
fluctuations. Finally, Section 7 delivers concluding remarks.

2 Motivations Based on the State-of-the-Art

First, with the planned deployment of large-scale offshore wind farms, there
is an urging need to build up on the existing knowledge on these wind power
fluctuations by characterizing the dynamics and identifying the factors which
drive the wind power fluctuations in the very short-term. As a first step to-
wards this understanding, |Akhmatov et al.| (2007) reported that at a temporal
resolution of 10 minutes, certain weather conditions at Horns Rev and in par-
ticular northwesterly winds very much favored large wind power fluctuations.
Then, Serensen et al.| (2008) proposed an aggregated model of individual wind
turbines and showed its relative ability to simulate consistent wind power fluc-
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tuations at different time scales, from a few minutes up to 2 hours ahead. Very
recently, a spectral analysis of wind speed measurements at Horns Rev led to
the identification of specific seasonal cycles as key features of wind variabil-
ity (Vincent et al., 2010).

Second, most of the state-of-the-art statistical methods gives focus to large pre-
diction horizons, from 1 hour to a couple of days, and show limited forecast-
ing skills for very short-term horizons, within tens of a minute, at which large
wind power fluctuations must be monitored (Kristotfersen and Christiansen,
2003). This low level of predictability is due to the complex nonlinearities in
the output power dynamics which cannot be captured by conventional models.
Hence, there is a need for dedicated statistical methods capable of generating
accurate forecasts for very short-term horizons. In that regard, our approach
on forecasting is probabilistic and the respective performance of the models
presented in this paper will be evaluated accordingly (Gneiting), 2008).

As a first attempt to deal with the low predictability of the output power of
large-scale offshore wind farm, regime-switching approaches and more specif-
ically Markov-Switching models have received a growing interest within the
wind power community. Since their very first introduction in econometrics by
(Hamilton) 1989), they have been commonly used in many disciplines such as
speech recognition (Rabiner and Juang,2005) or computational biology (Durbin
et al.,[1998), for instance. This class of models is prized for its ability to account
for structural breaks or sudden changes in the process dynamics. In meteorol-
ogy, Markov-Switching models are often used to estimate an unobservable cli-
mate state which ideally governs other climate variables such as wind speed or
wind direction. For the specific case of large-scale offshore wind farms, the in-
ferred states or regimes can be interpreted as changes of the wind farm behav-
ior, in terms of power generation. Besides that, Markov Switching AutoRegres-
sive (MSAR) models are shown to have better point forecast performances than
AutoRegressive Moving Average (ARMA), Smooth Transition AutoRegressive
(STAR) and Self-Exciting Threshold AutoRegressive (SETAR) in [Pinson et al.
(2008). Alternatively, a MSAR model is proposed in|Pinson and Madsen|(2010)
with adaptive estimation of the parameters which allows parameter estimates
to change over time to better account for the long-term variations of the wind
characteristics. Density forecasts generated with that method are shown to be
much sharper and have a better calibration than those generated with AR mod-
els.

Nevertheless, one can argue that keeping the variance constant over time within
each regime stands as a strong limitation for the forecasts sharpness when pe-
riods of different volatility levels alternate. This may mistakenly lead to over-
determination of the optimal number of states when fitting the model to the
data. One class of models capable of relaxing the constant variance assumption



3 Data from Large Offshore Wind Farms 27

is the Generalized AutoRegressive Conditional Heteroscedasticity (GARCH)
model, allowing the conditional variance in each regime to follow an ARMA
process (Bollerslev), [1986). The GARCH class of models is appealing because
it can cope with volatility clustering which is a clear issue when studying off-
shore wind power generation at high frequencies. Therefore, the present study
proposes to extend MSAR models with a GARCH specification for the con-
ditional variance dynamic in each regime (hence the resulting model name
MS-AR-GARCH). This extension of the original MSAR model is expected to
allow for a better identification of the volatility clustering effect and to a more
parsimonious parametrization regarding the number of regimes.

3 Data from Large Offshore Wind Farms

The data considered in the present study cover the time period from 16 Febru-
ary 2005 to 25 January 2006 and were recorded at Horns Rev I, the second
largest offshore wind farm in operation in the world at that time. Horns Rev I
is located 15 km away from the west coast of Jutland (Denmark) and consists
of 80 turbines of 2 MW, for a nominal capacity of 160 MW. Original data were
provided as individual time series of wind power measurements for each of
the 80 turbines at one second time intervals.

The original data are averaged in order to generate an aggregated time series
of wind power fluctuations for the entire wind farm. A 10 minute resolution is
arbitrarily chosen within the range of values over which significant power fluc-
tuations are observed (Akhmatov} 2007). Another reason to justify this choice
is that grid operators monitor offshore wind farms at similar temporal reso-
lutions (Kristoffersen and Christiansen) [2003). The sampling procedure first
consists in producing spatio-temporal averages over 10 minute intervals for
which a minimum of 75% of the data are of good quality. These averages are
then normalized by the nominal capacity of the wind farm, following Madsen
et al.[(2005). No attempt is made to fill in missing data points and many gaps
remain present in the data. A 10 day episode of this time series is depicted
on Figure|l] It can be noticed that the power generation is a double-bounded
process, below and above. As a matter of fact, the power generation of a wind
farm can neither be negative nor exceed its maximum capacity.

Moreover, technical specificities and constraints of wind turbines make that
wind power generation is not a linear function of the wind speed. The relation-
ship between wind speed and power generation is described by the so-called
power curve. This relationship is often estimated to convert wind speed fore-
casts into wind power forecasts. For a more detailed description of its use in
practice, we refer to Sanchez| (2006). More generally, the power curve is con-
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Figure 1: Time series of normalized wind power generation at Horns Rev I
over a 10 day episode in August 2005. The time series is sampled
with a temporal resolution of 10 minutes.

sidered a function of both the wind speed and the wind direction and must
be estimated for every single wind farm. Nevertheless, wind speed and wind
direction are not the only two factors that are believed to govern wind farm be-
havior. In the specific case of large offshore wind farms, it is also commonly as-
sumed that complex local meteorological phenomena have a strong impact on
the power generation. Ongoing research works on these phenomena are still in
an early stage, and identifying them would require to combine both meteoro-
logical and statistical approaches which is not the purpose of this study. As for
now, early assumptions based on empirical observations have described these
phenomena as combinations of intense precipitations and wind gusts (Vincent
et al.,2011).

From Figure |1} one can see periods characterized by very different dynamics
alternate with various frequencies and durations. This latter observation re-
veals the non-stationary behavior of this wind power time series, whatever
the time scale one considers. This issue is further discussed in [Vincent et al.
(2010). Non-stationarity is one of the reasons why most linear time series mod-
els show limited prediction skills. This feature is further illustrated in Figure 2]
which plots the squared residuals of the best autoregressive model (of order 3),
the associated autocorrelation function (ACF) and the partial ACF (PACF) for
the wind power time series. The model was fitted to the whole time series, but
to enhance visualization of the results, the squared residuals are only plotted
for the period of time spanning from 1 August 2005 to 26 January 2006. First, a
look at the squared residuals highlights the volatility clustering effect, meaning
that large errors tend to be followed by large errors and similarly, small errors
tend to be followed by small errors. It is a feature often observed for data sam-
pled at a high frequency. Then, the ACF of the squared residuals indicates that
the autocorrelation is significant up to very large lags which reveals the het-
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eroscedastic behavior of the errors. Finally, the PACF allows one to evaluate
the number of significant lags for the time series of squared residuals. It in-
dicates that the conditional variance should be modeled as the weighted sum
of approximately the last 20 squared errors. However, for the sake of parsi-
mony, an ARCH process of large order can well be substituted by a GARCH
specification (Bollerslev, [1986). This well spread empirical approach offers the
double advantage of drastically reducing the number of coefficients to be es-
timated while conserving the model adequacy. It also introduces a decreasing
weight structure, from the most recent to the oldest past squared errors, for the
computation of the conditional variance.

4 Model Specifications

4.1 Wind Power Predictive Density

As mentioned in the previous section, the time series of wind power is non-
linear and non-stationary. The smoothing effect outlined when considering a
collection of wind turbines scattered over a wide area does not apply in the
case of a single large-scale offshore wind farm. Furthermore, wind turbines
do not generate electricity for wind speeds below the so called cut-in speed
(~4 m s~1) or above the the cut-off speed (~25 m s~1). In addition, for wind
speeds ranging from 15 m s~! to 25 m s~!, wind turbines operate at full ca-
pacity and produce a constant level of power. Consequently, the power gener-
ation drops to 0 or reaches its maximum in a significant number of occasions.
From a statistical modeling perspective, it means that the process does meet its
lower and upper bounds which generates mass points at the extremities of the
wind power distribution. This prevents the use of a logistic transformation as
adopted in|Lau and McSharry|(2010) since the mass points would remain, even
after transformation. In view of these limitations, truncated and censored nor-
mal distributions stand as appealing alternatives to the more classical Normal
distribution. Recent developments that use the two former distributions ap-
plied to wind data include (Gneiting et al., 2006, Thorarinsdottir and Gneiting),
2010). However, Markov-Switching models imply the computation of distri-
bution mixtures. For the sake of the estimation method simplicity, we choose
to consider neither the truncation nor the censoring of the Normal distribution
since mixtures of these distributions would be too cumbersome to compute.
For similar reasons, the Generalized Logit-Normal distribution as proposed
in |Pinson| (2012) was not considered. Finally, we focused on two symmetric
distributions, namely the Student-t and Normal distributions. The Student-
t distribution has the advantage of being more heavy-tailed than the Normal
distribution, making the regimes more stable (Klaasen, 2002). Its drawback
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Figure 2: Volatility clustering and heteroscedasticity of the wind power time
series.

is that it has one extra parameter (its degree of freedom) which is difficult to
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estimate (Gray, [1996). The use of the Normal distribution, though known as
not optimal for wind power time series, is therefore considered as a natural
starting point for testing the model in this study. We leave questions on more
appropriate distributions for further research.

4.2 GARCH Models in Meteorology

An overview of the time series analysis literature shows that GARCH models
have been extensively used in econometrics and finance but remains rather un-
popular in other fields. In meteorology, GARCH models are often employed in
a single regime framework and applied to wind speed or air temperature time
series for characterizing their volatility. Tol| (1997) first fitted an AR-GARCH
model to daily wind speed measurements from Canada and illustrated the
better in-sample performance of his heteroscedastic model over homoscedas-
tic ones in presence of high volatility in the data. A bivariate GARCH model
was then used in Cripps and Dunsmir|(2003) to characterize the wind compo-
nents (u,v) and their variability at a time scale of 1 min and relate them to local
meteorological events in the Sydney harbor. Another meteorological applica-
tion of GARCH models presented the usefulness of a ARMA-GARCH-in-mean
model to estimate the persistence in the volatility of wind speed measurements
at different heights (Ewing et al., 2006).

In contrast to these latter studies whose primary focus is in-sample estima-
tion, Taylor and Buizza| (2004} |2006) use AR-GARCH models to generate point
and density forecasts for temperature and weather derivative pricing, respec-
tively. In addition, the recent work by [Taylor et al.| (2009) also presents out-
of-sample results. It extends the methodology developed in|Taylor and Buizza
(2004) and used several types of GARCH models to generate daily wind speed
density forecasts and converts them into wind power forecasts. This work
demonstrates the good ability of GARCH models for generating density fore-
casts when compared to atmospheric models for early look ahead horizons,
from 1 up to 4 days. Another methodology is proposed by |Lau and McSharry
(2010) in which an ARIMA-GARCH model is used to generate multi-step den-
sity forecasts of wind power, outperforming current benchmark models in the
short-term, from 15 minutes up to 6-12 hours. Interestingly, all these studies
give empirical evidence of the strong potential of using the GARCH class of
models for predicting weather related variables in the very short-term when
these variables are highly volatile.
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4.3 Existing Markov Switching Models with GARCH Errors

Seminal references of combining Markov-Switching and AutoRegressive Con-
ditional Heteroscedasticity (MS-ARCH) include |Cai (1994) and |Hamilton and
Susmel| (1994). In practice, capturing time-varying variance with a reasonable
number of ARCH terms remains an issue. It often calls for a GARCH specifica-
tion instead in order to reduce the number of coefficients to be estimated. The
difficulty that arises when generalizing MS-ARCH to MS-GARCH relates to
the historical path dependency of the conditional variance which is intractable,
making that generalization almost computationally infeasible.

Nevertheless, there exist a few approaches to avoid that problem. Regarding
maximum likelihood methods, the idea consists in approximating the condi-
tional variance as a sum of past conditional variance expectations as in |Gray
(1996). This model was later extended by [Klaasen| (2002) yielding improved
volatility forecasts. Alternatively, [Haas et al| (2004) suggested a new formu-
lation for MS-GARCH models by disaggregating the overall variance process
into separate processes in each regime. Another way of tackling the path de-
pendency problem consists in using Monte Carlo Markov Chain (MCMC) sim-
ulations to infer that path by sampling from the conditional distribution of the
states of the Markov chain. This can be implemented by data augmentation as
described in|Fruhwirth-Schnatter|(2006). The strength of this approach is that it
can be applied for the estimation of many variants of Markov-Switching mod-
els. Closer to our problem, Henneke et al.| (2011), |Chen et al. (2009), Bauwens
et al.| (2010) proposed three different MCMC algorithms for the Bayesian es-
timation of MS-ARMA-GARCH, MS-ARX-GARCH and MS-GARCH models,
respectively.

Some other difficulties arise when estimating MS-GARCH models. They may
be caused by the structural specification of the model or else by the numer-
ical tools used for parameter estimation. For instance, maximum likelihood
estimation methods implemented with a numerical optimizer often encounter
specific optimization problems due to starting values, inequality constraints
or else local minima. Besides, the two formulations of the MS-GARCH model
developed in |Gray| (1996) and Klaasen| (2002) are based on an approximation
for the recursive update of the conditional variance which leads to further es-
timation complexity. As for the MS-GARCH model in |Haas et al. (2004), it
loses its initial appeal of being analytically tractable along with the inclusion of
autoregressive terms in the conditional mean equation which does not match
with our model specification to combine AR and GARCH effects with Markov-
Switching. Along that last comment, it is important to emphasize that most of
the studies involving likelihood estimation of MS-GARCH models have as a
prime concern the capture of the heteroscedasticity present in the time series
and were not designed to cope with data also featuring strong autocorrelation.
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In comparison, Bayesian inference offers an alternative framework which al-
lows to overcome most of likelihood estimation problems:

e the robustness of MCMC samplers to starting values can be evaluated
by running several Markov chains with different starting values and
tested for differences in their outputs,

¢ inequality constraints can be handled through the definition of prior
distributions (Gibbs sampler) or through a rejection step when the
constraint is violated (Metropolis-Hastings sampler),

e theoretically, local minima pitfalls are avoided by simulating the Markov
chain over a sufficiently large number of iterations (law of large num-
bers),

¢ misspecification of the number of states of the Markov chain can be as-
sessed by a visual inspection of the parameter posterior distributions
(check for multiple modes).

Moreover, model parametrization limitations linked to the integration of au-
toregressive terms in the mean equation do not apply in Bayesian estimation
and there is no fundamental implementation differences in estimating a MS-
GARCH and a MS-ARMA-GARCH model. Of course, the present study would
be very partial if the main bottlenecks in using MCMC simulations such as
computational greediness or the tuning of the prior distributions were not
mentioned. Therefore, we refer to Subsection 4.4 for a detailed description
of the main implementation issues of MCMC samplers. In addition, stud-
ies on the respective advantages and drawbacks of maximum likelihood and
Bayesian estimation methods are available in [Rydén| (2008). To conclude this
discussion, let us say that our goal is not to contribute to the pros and cons
debate of maximum likelihood against Bayesian estimation but rather to find
the method that is the most suitable for our problem. In this light, our choice
to estimate the MS-AR-GARCH model in a Bayesian fashion was motivated
by the enhanced flexibility in combining AR and GARCH effects under the
assumption of structural breaks in the process.

4.4 The Model Definition

To model the stochastic behavior of a given time series of wind power {y;}, a
MS(m)-AR(r)-GARCH(p,q) model is proposed as follows:

ye =605+ Y0y, + Vhges (1)
i=1

Ma

hy = tx(()st) +
i=1

p
"‘z(st)sii +) ﬁ](-st)htfj )
=1
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where {};} is the conditional variance at time t, {¢;} is a sequence of indepen-
dently distributed random variables following a Normal distribution A (0,1)
and S = (Sy,...,S7) is a first order Markov chain with a discrete and finite
number of states m and transition probability matrix P of elements:

PT(St:ﬂSt,l:l’):Pi]' for 1,]:{1,,m} (3)

For full flexibility, all AR and GARCH coefficients are chosen to be state depen-
dent. In addition, to ensure positivity of the conditional variance, constraints
on the model coefficients are imposed as follows:

a(()k)zo,ocgk)>0,ﬁ](.k)20 for i={1,...,p},j={1,....q}, k={1,....m} (4)

Finally, the following inequality constraints are applied to ensure covariance
stationarity:

L0, v a0
0<) o +Zﬁj <1 for k={1,...,m} (5)
i=1 j=1

From here on, we adopt the following notations:

y = (Y1,y2,--,y71) (6)
Y = W1yt )
Sin = (S1,-.-,51) 8)
S =(51,--.,51,5+1,---,57) 9)
T = (pkl,...,pkm)/ for k={1,...,m} (10)
00 =ol,...,601" for k={1,...,m} (11)
ak) = [oc(()k),...,oc,(]k), gk),...,ﬁ;k)}, for k={1,...,m} (12)

=[6W,...,00m &M o™ 1] (13)

5 MCMC Implementation

Bayesian inference applied to complex models and large amounts of data has
been strongly enhanced by the development of computational methods such as
Markov chain simulations. Besides providing a robust and easy-to-implement
solution to circumvent the path dependency problem when estimating the MS-
GARCH class of models, MCMC techniques offer broader possibilities such as
incorporating existing information on the parameter distributions and estimat-
ing their full conditional posterior distributions, for instance. Their major in-
terest is the possibility to divide the set of unknown parameters © into smaller
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blocks to sample from the block conditional posterior distributions instead of
sampling from the complex and joint posterior of the full set of parameters. For
a practical presentation of MCMC techniques, we refer to Gilks et al|(1996).

Estimating MS-AR-GARCH models in a Bayesian framework is a procedure
that implies sampling from the augmented parameter distribution p(S,®|y):

p(S,0ly) xp(y|S,0)p(S|O)p(O©) (14)

This can be achieved through a 3 step procedure by implementing a MCMC
algorithm that iterates as follows:

e sample the regime sequence by data augmentation,
e sample the transition probabilities from a Dirichlet distribution,
e sample the AR and GARCH coefficients with the Griddy-Gibbs sampler.

5.1 Sampling the Regime Sequence

Generating sample paths of the regime sequence S for Markov-Switching mod-
els is facilitated by a class of techniques known as data augmentation. The
early idea by [Tanner and Wong| (1987) is to recursively consider each of the
latent state variables S; of the hidden Markov chain as missing and compute
its conditional distribution p(S¢[S,®). It becomes then possible to generate
a random draw from that conditional distribution with the Gibbs sampler as
in |Robert et al.| (1993). This procedure is called single-move sampling and re-
quires the number of regimes m to be known and finite. Later variants for Hid-
den Markov Models (HMM) and Markov-Switching models are respectively
reviewed in Scott| (2002) and [Fruhwirth-Schnatter| (2006).

At a given time t, the conditional distribution of the latent state variable S; is
obtained as follows:

P( ,S :k/s /®)
V ke{l,...,m}, P(S;=kly,5.,0)= ]/P(fy 5, S;

_ P(ylSi =k54,0)P(St =k,S4,0)
P(y|S4t,©)P(S4t,©)

(15)
_ P(yISt =k,S2,0)P(St = kS 41, 0)
P(y[S 41,0)

And after discarding the scaling factor P(y|S_, ©), we obtain:

P(St = k‘S#t,y,@)) X P(y|St = k,S#,G))P(St = k‘S#t,@)) (16)
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In the equation above, two different quantities have to be computed. First,
P(y|St = k,S44,@) is the complete data likelihood, conditioned on the chain
being in state k at time ¢ and given the full set of parameters ® and can be
calculated as follows:

T
P(ylSt=kS.,0)= [ Pyl St =kSpi-1p¥ps-1,0)

t=max(r,p,q)
I LI O 05" — X110/ yii)?
t=max(r,p,q) Vv 27thy P 2hy

=

T

(17)
with h; being defined as in Equation (2).

Second, the Markov property applies on P(S; = k|S_.;,®). Given a sample S_;
of the entire regime sequence but at time ¢, the state variable S; only depends
on S;_1, and S;1 only depends on S;:

P(St =k|S41,0) = P(S; = k|Si_1 = 1,541 = )
_ PikPkj (18)
Yk1 PikPkj

Finally, the Gibbs sampler (Geman and Geman, 1984) is used to generate a
random sample of the latent state variable S; from its updated conditional dis-
tribution. The state of the Markov chain at time ¢ can then be updated and this
sampling procedure is recursively repeated for the remaining state variables of
the hidden Markov chain.

Because of the path dependency structure of MS-GARCH models, computing
marginal likelihood of the state variables is not feasible as it is for MSAR or
MS-ARCH models (Fruhwirth-Schnatter, 2006). Hence, the posterior distribu-
tions of the state variables can only be obtained in the form of smoothed prob-
abilities. Let us recall that one can derive different quantities for the optimal
inference of the regime sequence:

o the filtered probabilities P(Sy = k|y| y,©) which infer the state variable S
conditioning upon the vector of parameters and all past and present in-
formation y ),

o the smoothed probabilities P(S; = k|y,®) which are the outputs of the infer-
ence of Sy using the past, present and future information y = y(; ),

o the predicted probabilities P(S;11 = k|y; 1, ©) which correspond to the one-
step ahead inference Sy at time f and only use past information y = yy 4.

For a given state variable S, its posterior distribution P(S; = k|y) is computed
by averaging the number of occurrences of the Markov chain being in state k
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at time ¢ over the N iterations of the algorithm:
P(S: =KJy) = - %n{s“‘) =k} for k={1,...,m} (19)
N n:l t 7 4

with § En) being the draw of S; at the n'" iteration of the MCMC algorithm.

5.2 Transition Probability Matrix Sampling

Sampling the transition probability matrix P is done by using a Dirichlet dis-
tribution (Fruhwirth-Schnatter] 2006). The key assumption is that the rows of
P are mutually independent since P only depends on the regime sequence S.
Therefore, they can be sampled in a random order. Given an independent prior
distribution p(7;) and using Bayes’ theorem, we obtain the conditional distri-
bution of the k' row of P as follows:

p(7tkly, S,O—x,) o p (7t ) p (x| S)

s 20
o p(r) T T (i) .. (i) o (20)

r

where the 7;’s correspond to the numbers of one-step transitions from regime
k to regime 7 in the hidden Markov chain and the dy,’s are the parameters of the
multivariate distribution modelling the transition probabilities.

For a 2 state Markov chain, the Beta distribution is traditionally used as prior
for binomial proportions, with parameters dy; and dj,, resulting in the condi-
tional distribution of the k' row of P being Beta distributed:

p(mily, 8,0 ) ~ B(nia + dia, k2 + d2) (21)

For a m state Markov chain, and m > 2, the posterior Beta distribution can be
generalized to a Dirichlet distribution (Chib, (1996):

p(mily, 8,0 r,) ~ D(nia + dit, ko + iz -+ o e + Aiem) (22)

with dyq,djo, ..., diy, being the parameters of the Dirichlet distribution used as
prior.

The posterior estimates of the transition probabilities are obtained as the em-
pirical means of the posterior densities:

1 X .
pi=r Lopy for ij={l..m) 23)
n=

(n)

with p; j being the random draw of p;; at the n'" iteration of the MCMC algo-

rithm.
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5.3 AR and GARCH Coefficient Sampling

Existing MCMC algorithms for the estimation of MS-AR-GARCH models are
proposed in [Henneke et al| (2011) and (Chen et al.| (2009). Alternatively, it
is possible to apply a MCMC algorithm for MS-GARCH models presented
in |Bauwens et al.| (2010) and include extra autoregressive terms in the mean
equation, instead of a single intercept. The difference in those three algo-
rithms lays in the sampler used for the estimation of the autoregressive and het-
eroscedastic coefficients. The two formers sample the posterior distributions
of the model coefficients with the Metropolis-Hastings sampler (MH) whereas
the latter uses the Griddy Gibbs sampler (GG). The MH sampler (Hastings,
1970) is based on an acceptance/rejection rule and was designed to generate
samples from a target distribution. However, the rate of acceptance can turn
out to be very small for complex models and slow down the convergence of the
chain. As for the GG sampler (Ritter and Tanner) |1992), it is based on a princi-
ple similar to the Gibbs sampler. The key idea is to discretize the support of the
parameter to be estimated. At each knot point, the likelihood of the parameter
is evaluated and by a numerical integration rule, the conditional distribution
of the parameter can then be approximated.

Unlike the MH sampler, the GG sampler does not require to define the ana-
lytical form of the posterior distribution a priori. It is notably useful when
the conditional posterior to sample from has a complex shape (multimodality,
strongly skewed, heavy tails) or when one does not want to impose a shape a
priori because of a lack of knowledge. Its implementation fully relies in the in-
formativeness of the data likelihood p(y|S,©®) and all priors are uniform, even
for short time series. Tips for implementing the GG sampler for accurate es-
timation of posterior distributions are given in Ritter and Tanner| (1992). Its
main drawback is its high computational cost because of the many likelihood
evaluations at each iteration but this can be overcome by parallelization of the
code. Empirical results presented in Bauwens and Lubrano| (1998) and |Asai
(2006) for the classical GARCH model are consistent and conclude that estima-
tion methods based on the MH or the GG sampler lead to posterior estimates
of similar accuracy. One of the most notable differences is that the MH sampler
does not fully explore the distribution tails. This is due to the shape of the tar-
get distribution chosen which in some cases may mislead the exploration of the
posterior distribution. This type of problems is avoided when estimating pos-
terior distributions with a GG sampler because it does not require the posterior
density to be known in closed form. Taking these considerations into account,
it was chosen to follow the methodology presented in [Bauwens et al.| (2010)
which uses the GG sampler for estimating MS-GARCH models. Adding ex-
tra autoregressive terms for the estimation of MS-AR-GARCH models is then
straightforward.
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Conditional posterior distributions of our model coefficients are derived from
the Bayes’ theorem. Let us consider the case of an unknown AR or GARCH
coefficients that will be noted v, and p() its prior. Its conditional posterior
distribution is defined as follows:

p(rly,S,0—,) < p(7)p(y]S,©) (24)

The conditional density and cumulative distribution function (cdf) of -y are
noted g, and G,. Their numerical approximation are noted f, = f(y|y, S,©®_,)
and F,, respectively. At each iteration, the GG sampler builds a numerical ap-
proximation of the conditional posterior density of each AR and GARCH coef-
ficient. The support of + is first discretized with n knot points (x1,...,x,). Fur-
ther details on how to set up # are discussed in the next subsection. Then, the
complete data likelihood P(y|y = x;,8,0_,) is evaluated for each knot point
x; and by a numerical rule of integration, we obtain an approximation f- (x;) of
the conditional density g,. Linear interpolation in between 2 successive knot
points was found to be satisfactory in term of accuracy. Therefore, we use the
trapezoidal integration method to compute f,,. From there, approximating the
cdf G, is direct. Finally, a random number is uniformly generated on [0,1] and
by inverse transformation of F,, we obtain a random sample of . The prin-
ciple of the GG sampler is graphically summarized in Figure 3 The posterior
estimates of the AR and GARCH coefficients are obtained by computing the
means of the posterior densities.
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Figure 3: The conditional density g, of a given coefficient < is approximated
by numerical integration over a grid of points (left). An approxi-
mation F, of the cdf G, can then be computed. Finally, a random
number is uniformly generated on [0,1] and by inverse transforma-
tion of F,, a random draw of <y is obtained (right).
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5.4 Implementation Details

The most simple version of the GG sampler can be coded within a few lines.
However, for complex models with many parameters to be estimated, there is
a number of issues that have to be handled carefully and makes it implemen-
tation less straightforward: choice of prior distributions, label switching, grid
shape, mixing efficiency.

Prior Distributions

First, prior distributions have to be defined for sampling the transition prob-
abilities. For a given regime k € {1,...,m}, setting the parameters dy; > dy;
with i # k is one way to reflect the prior knowledge that the probability of per-
sistence (staying in the same regime) is larger than the probability of switch-
ing from regime k to i. For instance, a B(8,2) distribution is used as prior
in |Chen et al. (2009) whereas a uniform B(1,1) is preferred in Bauwens et al.
(2010). Several simulations with various values for the dij parameters were
run on synthetic time series with more than 1000 data points. The influence
of the prior distributions was noticeable for d;; of very high orders of mag-
nitude, due to the length of the time series. For instance, a B(80,20) clearly
influences the posterior distribution estimates of the transition probabilities
while a B(8,2) almost not, even though these two distributions have equal
means. Arguably, we found it relatively risky to favor some regimes over oth-
ers. Therefore, we favored the approach with uniform priors, meaning that
dpp =dip =" =dp =1

Secondly, and most importantly, uniform distributions are required for the GG
sampler. Defining these priors consists in setting their bounds which is all
the more difficult when one has very little prior knowledge of the process be-
ing considered. For each AR and GARCH coefficient, one has to make sure
that the bounds of the uniform prior encompass the entire support of the true
conditional density. Poor settings of the prior bounds may either prevent the
convergence of the Markov chain or lead to wrong posterior density and mean
estimates. One solution is to use a coarse-to-fine strategy for the MCMC simu-
lation which is divided into three phases:

e aburn-in phase whose draws are discarded until the Markov chain reaches
its stationary distribution,

e a second phase at the end of which posterior density estimates are com-
puted and prior bounds are refined (the draws generated during this sec-
ond phase are also discarded),

e a last phase with adjusted prior bounds at the end of which the final
posterior densities are computed.
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Refinement of the prior bounds consists in computing the posterior mean and
the standard deviation of the densities. The priors are then adjusted and cen-
tered around their respective mean with their radius set to 5 standard devia-
tions. That way the uniform priors are shrunk when they were initially too
large and enlarged when too small. This approach proved to be robust enough
even in case of fat-tailed posterior densities.

Label Switching

Not least, fine settings of the prior bounds can prevent the label switching prob-
lem affecting HMM models estimated with Bayesian methods. Since posterior
densities are invariant to relabeling the states, that problem can cause erro-
neous multimodal posterior densities. This can be circumvent by imposing
structural constraints on the regimes which can be identified with the permu-
tation sampler presented in |Fruhwirth-Schnatter| (2006). For the specific case
of MS-AR-GARCH models, the most effective constraint against label switch-
ing was set on the intercept parameters of the GARCH equation as follows:

oc(()l) < oc(()z) << u((()m). At each iteration, the inequality is checked and if not
true, regimes are permutated. Another way to make sure that this constraint is
true is to define the bounds of the uniform priors of the oc(()k) such that they do
not fully overlap.

Grid Shape

Support discretization for the GG sampler implies choosing a suitable structure
for the grid along with a fine number of knot points n. As for the structure, Rit-
ter and Tanner| (1992)) advised to use an evolutive grid with more knot points
over areas of high mass and fewer knot points over areas of low mass. Simu-
lations on synthetic data show that this type of grid is difficult to implement
in practice and that it yields relatively low gains in accuracy. The use of such
a grid is not necessary in this study and instead a grid with equidistant knot
points is preferred. A grid made of 42 knot points is generated for each coef-
ficient to be estimated, with the likelihood of the 2 knot points at the extremi-
ties of the grid being set to 0, by default. This number was found sufficiently
large to accurately approximate conditional densities and is comparable to the
33 knot points used inBauwens et al.|(2010).
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Mixing of the MCMC Chain

MCMC simulations on synthetic time series reveal that, within a same regime,
AR coefficients are strongly correlated with each others, resulting in a poorly
mixing chain, slow convergence rate and significant estimation errors. The
same observations were made for the GARCH parameters. In order to im-
prove the mixing of the chain, the GG sampler is implemented with random
sweeps (Liu et al}[1995). At each iteration of the MCMC algorithm, instead of
updating the AR and GARCH coefficients in a deterministic order, we gener-
ate a random permutation of the sequence (1,...,m(2+r+ p+¢q)) to deter-
mine which coefficients to update first, second and so on. For the empirical
study on the wind power time series, it was found that the mixing of the chain
could be further improved by repeating the sampling of the AR and GARCH
coefficients a given number of times for every update of the state sequence.
These implementation details positively enhance the well mixing behavior of
the chain and lead to much sharper posterior densities (i.e., smaller estimation
errors and standard deviations) of the AR and GARCH coefficients, notably.

Implementation Summary

In order to enhance the implementation understanding and to summarize the
key steps of our method, we report its structure in Algorithm (I} For the sake of
the notation simplicity, let us note 7; the i AR or GARCH coefficients of the
vector of parameters (9(1),...,9(m),0c(1),...,zx('”)). The vector of parameters is
now noted (71, -+, Yim(2+r+p+q))-

5.5 Simulation on Synthetic Time Series

Before moving on to the time series of wind power, the MCMC estimation pro-
cedure is tested on a synthetic MS-AR-GARCH process that is plotted in Fig-
ure [ and whose coefficients are reported in Table[T] This process is composed
of 2 regimes, each one of them combining an autoregressive structure of order
2 for the conditional mean equation along with a GARCH(1,1) specification for
the conditional variance. The values of its coefficients are chosen so as to gener-
ate a simplistic series with two well differentiated dynamics for the 2 regimes.
The values of the autoregressive coefficients are set so that the autoregressive
process in each regime is stationary. The GARCH coefficients in each regime
are defined so that the constraint ensuring a finite variance holds. Finally, the
errors are normally distributed. The process simulated hereafter neither aims
at recreating nor mimicking the wind power fluctuations presented in Section
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Algorithm 1 MCMC procedure for the estimation of MS-AR-GARCH models

Initialize prior distribution: p(71), .-, P(Y(m(2+r+p+q)))
Initialize regime sequence and parameter: S 0),0©
n=20
while Convergence of the Markov chain is not reached do
n=n+1
fort=1to T do
Sample St(n) from p(ng = k|5§n), . .,St(f)l,St(iIl), .. .,Sgwn_l),®(”71),y) by the
single-move procedure
end for
Compute the Dirichlet parameters 1752'),. ) .,r],%),
fork=1tomdo
Sample n,i") from D(qlgl) + 1,;1,&? +1,.. .,17152) +1)
end for
Generate a random permutation p of {1,..., m(2+r+p+4)}
fori=1tom(2+r+p+gq)do
(n—1) _(n-1)

n n n
Sample 1) from p (7|8 P20 20 1) 1 W )
with the Griddy-Gibbs sampler

end for

if End of the second phase is reached then
Adjust/update the prior distributions

end if

end while
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3. It simply stands for a test case to assess the robustness and the efficiency of
our estimation method.

50 series of 1500 data points are generated. Following the coarse-to-fine strat-
egy described in the previous subsection, the bounds of the uniform prior dis-
tributions are set coarsely so as not to be too informative on the true coefficient
values. The goal is to check whether the MCMC method is robust enough not
to get trapped by local minima. The coefficient supports are then discretized
with 42 equidistant points. Starting values for the regime sequence and all 16
parameters are randomly initialized within the range of possible values de-
fined by their respective prior support. 50000 iterations of the MCMC algo-
rithm are run, of which the last 30000 iterations are used for posterior infer-
ence, the first 10000 being discarded as burn-in and the second 10000 being
used to refine the prior supports. For each simulation, convergence of the
chain is assessed with the diagnostic proposed in |Gelman and Rubin| (1992)
by running 3 chains in parallel, with different starting values. No evidence of
non-convergence was noticed. When considering single sample, large estima-
tion bias can be observed on both AR and GARCH coefficients. More satis-
factorily, when considering 50 samples, absolute estimation errors for all pa-
rameters are smaller than their corresponding posterior standard deviations.
As observed in [Chen et al.| (2009), the largest estimation errors are found for
the posterior distributions of the GARCH coefficients whereas AR coefficients
are estimated with a much higher accuracy. In each of the two regimes, B,
is biased downwards and «y is biased upwards, which is a known issue with
MS-GARCH models. For a given parameter, the coverage probability (CP) cor-
responds to the probability of its true value being encompassed within the in-
terval defined by the 2.5% and 97.5% quantiles of its posterior distribution. In
other words, these probabilities are the nominal 95% confidence intervals of
the posterior estimates. Large deviations could indicate recurrent failure of
the estimation method for some parameters. Globally, the estimated CP are all
close to 95% and no large deviation is observed which is satisfactory. The grid
refinement procedure shows that the supports of the AR coefficients are signif-
icantly smaller than the initial supports coarsely set. As for the final supports
of GARCH coefficients, they consist of small adjustments of their initial sup-
ports. The verification for label switching is performed by analyzing the full
posterior densities displayed in Figure 5| where no bimodality is observed. We
can also add that the sampler performs quite well in terms of mixing since the
densities are rather peaky and have small tails.
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Figure 4: Simulation of a MS(2)-AR(2)-GARCH(1,1) whose coefficients and
transition probability values are given in Table El Top: simulated
process y = (y1,...,yr); Bottom: regime sequence S = (Sy,...,S7).
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Inference on the regime sequence can also be performed. However, methods
for global decoding such as the Viterbi algorithm (Forney Jr,[1973) are not ap-
plicable to MCMC outputs since the sole smoothed probabilities of the regime
sequence can be computed. Instead, we use a simple labelling rule to infer
the regime sequence: state variables with a smoothed probability of being in
regime k larger than 0.5 are classified as being in regime k. Following that rule,
we can compute the successful regime inference rate and the probability of
regime retrieval (the probability of the true regime being k knowing that the
inferred regime is k). Results are reported in Table 2| Ideally, these quantities
should be as close to 1 as possible. The rate of successful inference is higher
for regime 1 (96%) than for regime 2 (90%). The same result holds for the prob-
ability of successful regime retrieval. These results are reasonably good ac-
cording to the complexity of the model dynamics. Three of the model features
may explain these differences: (i) regime 1 is characterized by a higher per-
sistence probability than regime 2 (p11 > p22); (ii) the unconditional variance

(k) = ucék) /(11— ozgk) — ﬁgk)) in regime 1 (¢(!) = 0.5) is lower than in regime 2
(

(¢ = 8) and (iii) persistence of shocks measured by rxlk) + ﬁgk) is also lower
in regime 1 than in regime 2. Because of the higher persistence probability,
parameters defining the first regime can be estimated over a larger number of
data points and over longer time intervals clear off any structural break, on
average, which leads to more accurate posterior estimates. The lower uncondi-
tional variance combined to the lower persistence to shocks in regime 1 makes
the autoregressive and the conditional variance dynamics easier to identify and
to separate. These latter comments are confirmed by the estimated posterior
standard deviations of the model parameters (see Table|I) which are smaller in
regime 1 than in regime 2, for corresponding parameters.

Table 2: Statistics on the inferred regime sequence.

Rate of successful Probability of
regime inference regime retrieval

P(5;=1|S;=1) =096 P(S;=1|5;=1)=0.95
P(5;=2|S$;=2)=090  P(S;=2|5;=2)=091

5.6 Study on an Empirical Time Series of Wind Power

One of the main issue that arises when fitting Markov-Switching models to
an empirical time series is the determination of the number of states m of the
Markov chain. Theoretically, its determination is not to be separated of the
autoregressive and conditional variance structure (orders r, p and g in Equa-
tions (I) and ()). Along that idea, [Psaradakis and Spagnolo| (2006) review dif-
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ferent penalized likelihood criteria for the joint determination of the number of
hidden states and autoregressive order for MSAR models. However, in prac-
tise, misspecification in the parametrization of the model may result in over-
estimation of the optimal number of regimes. For instance, ignored volatility
clustering effects can falsely be reported as regime-switching effects Cheung
and Miu| (2009).

The model identification approach taken in this study is to define the autore-
gressive and conditional variance orders a priori and determine the optimal
number of regimes accordingly. Most studies involving Markov-Switching test
a limited number of regimes, from 1 to 4. The underlying theoretical reason is
that regime switchings occur infrequently. The more practical reason is that
the number of parameters to be estimated grows quadratically with respect to
the number of regimes, and constraints for regime identification become more
difficult to define.

One reason to proceed that way and not by computing the Bayesian Informa-
tion Criterion is that there is no method for computing the marginal likelihood
of MS-GARCH models to our knowledge. An empirical cross-validation pro-
cedure is used instead. The time series of interest is the one presented in Sec-
tion 3 for which measurements from the Horns Rev 1 wind farm are averaged
over 10 min intervals. All available observations from August 2005 (i.e., 4125
observations) are used for estimating the posterior distributions of the MS-AR-
GARCH model. Several parametrizations with respect to m, r, p and g are
tested. Then, all available observations from September 2005 (i.e., 4320 ob-
servations) are used for cross-validation and the parametrization resulting in
the best one-step ahead Continuous Ranked Probability Score (Gneiting), 2008)
was chosen. The best performances were obtained for models with 3 autore-
gressive lags and a GARCH(1,1) structure for the conditional variance in each
regime. The autoregressive order is in agreement with previous studies on the
same data set (Pinson and Madsen, [2010} |Gallego et al., 2011). To keep the
computational complexity and burden reasonable, only models defined with
1 and 2 regimes were tested. Furthermore, no constraint for regime identifica-
tion could be found for a number of regimes larger than 2. Posterior estimates
for MS(m)-AR(3)-GARCH(1,1) with m = 1 and m = 2 are reported in Table
Posterior densities for the MS(2)-AR(3)-GARCH(1,1) are shown in Figure @
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One of the reason why we prefer the GG over the MH sampler is that it can
estimate posterior densities of various shape without prior knowledge of their
closed form. From Figure|6} it can be noticed that the posterior densities of the
GARCH equation are asymmetric, more notably in regime 2. This is due to
the constraints imposed in Equations (4) and (5) and the asymmetry becomes

stronger as the posterior mean of a given parameter is close to the bounds of
(1)

the constraints. &’ is numerically close to 0 and its posterior density has the
shape of a mass point. Omitting this parameter for fitting the model makes the
regimes less stable and it is decided to keep it in the formulation of the MS(2)-
AR(3)-GARCH(1,1) model. The posterior densities of the AR equation have
symmetric shapes. However, they are characterized by large posterior stan-
dard deviations and rather flat shapes which is the consequence of the strong
autocorrelation between coefficients within a same regime, as mentioned ear-
lier in this Section. That problem was neither encountered in our simulations
on synthetic data nor in other studies such as|Chen et al.|(2009), Bauwens et al.
(2010), Henneke et al.[(2011), since the parametrization of the conditional mean
equation is restricted to one lag at most. Since it may affect the final posterior
mean estimates used for prediction, further research will be dedicated to inves-
tigate potential techniques to overcome it.

In addition, analyzing the posterior estimates of our model may reveal interest-
ing features on the very short-term wind power fluctuations of the Horns Rev 1
wind farm. The low (respectively high) frequency wind power fluctuations are
captured by the AR (respectively GARCH) coefficients of the model and differ-
ent profiles of fluctuations are expected across regimes. In addition, transition
probability estimates may indicate whether one regime is more persistent over
time than the other.

Regarding the model with one regime, AR(3)-GARCH(1,1), we report its poste-
rior estimates in order to illustrate the transition from a single regime model to
a two regime model and appraise how the posterior estimates of the 2 regime
model may relate to those of the single regime model. Initial prior bounds were
defined based on the estimates obtained by numerical maximization of the like-
lihood function (NML). The posterior estimates of the AR coefficients are in
close agreement with those obtained by NML while the posterior estimates of
the GARCH coefficients deviate more. After verification, this can be due to a
bimodality on the posterior density of the ag coefficient, which makes its esti-
mated posterior mean larger than the one estimated by NML. These results are
not presented here in order to save space but are available upon request.

As for the MS(2)-AR(3)-GARCH(1,1), the autoregressive dynamics are rather

similar in the two regimes but for the intercept terms 0(()1) and 6(()2) which con-
firms the earliest results in |Pinson and Madsen| (2010). More interestingly, the
dynamics of the conditional variance in the two regimes differ in several ways.
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First, the intercept terms in regime 1 is significantly lower than in regime 2

(uc(()l) < oc(()z)), which means that regime 2 can be interpreted as the regime for

which the amplitude of the wind power fluctuations are the largest. Then the
posterior mean estimates of the GARCH coefficients in regime 1, agl) and ﬁgl)
are approximately equal, which indicates that small prediction errors are fol-
lowed by fast decreases of the conditional variance value while large errors
give rise to sudden explosions. In regime 2, because ,352) > ngz), the condi-
tional variance level is more stable between successive observations and has
a longer memory of large errors. Finally, one can also notice that pi1 > p2o,
which translates into regime 1 being more persistent than regime 2 (i.e., peri-

ods of low volatility last longer than periods of high volatility).

Anillustration of the estimated sequence of smoothed probabilities for the MS-
AR-GARCH model is given in Figure [/} In particular, it depicts the smoothed
probabilities of being in regime 1. It can be noticed that the two regimes do not
seem to be well separated but for periods where the wind power generation
is null or close to its nominal capacity P,, with smoothed probabilities close to
1. Even though a clear separation of the regimes is a very desirable feature, it
does not automatically translate into a loss of predictive power of the Markov-
Switching model. This aspect will be further addressed in the next section of
this study.

First, simulations on synthetic data have allowed us to design and tune our
estimation method for MS-AR-GARCH models. Then, its applicability to an
empirical time series of wind power is tested and demonstrated a good abil-
ity to estimate posterior densities of various shapes despite some limitations
regarding the posterior densities of the autoregressive coefficients. Neverthe-
less, our will is not to identify the best class of models for the modeling of
very short-term wind power fluctuations but rather to investigate new alterna-
tives such as the proposed MS-AR-GARCH model for (i) providing additional
insights on these wind power fluctuations and (ii) investigating on their poten-
tial predictive power.

6 Wind Power Forecast Evaluation

Forecasting wind power fluctuations of large offshore wind farms at a time
scale of a few minutes is a relatively new and difficult challenge. The difficulty
stems from the lack of meteorological observations in the neighborhood of the
wind farm. The consequences are that state-of-the-art models often fail in pre-
dicting wind power fluctuations of large amplitude caused by sudden changes
in the weather conditions nearby the wind farm. In practise, naive forecasts



6 Wind Power Forecast Evaluation 53

are difficult to significantly outperform (Pinson et al.,2008).

The literature on short-term wind power forecasting is abundant and a recent
overview is available in |Giebel et al|(2011). Originally, the quality and accu-
racy of statistical forecasts of wind power were evaluated with respect to point
prediction scores. From a decision making perspective, the drawback of such
an approach is that it clearly neglects the uncertainty associated with the fore-
cast, often leading to sub-optimal control strategies. Therefore, quantifying the
probability of all potential outcomes greatly enhances the usefulness of wind
power forecasts (Pinson et al., [2007). These probabilistic forecasts can either
take the form of density functions or prediction intervals when numerically
approximated and should preferably be evaluated with respect to their calibra-
tion and sharpness (Gneiting, [2008). Accurate quantification of the uncertainty
associated with a point forecast is an information as valuable as the value of
the forecast itself. It could first assist wind farm operators in anticipating the
risks of unexpected wind power fluctuations when point forecast fails in doing
so. And, ultimately, it could help them in determining backup strategies based
on available energy reserves.

One of the drawbacks of MS-GARCH models is that the conditional variance
becomes intractable with the addition of autoregressive terms in the model for-
mulation. This stands as a clear limitation for the use of such class of models for
prediction applications. To bypass that problem, the approach chosen in|Chen
et al[(2009) is to repeat the estimation of the model over a sliding window and
generate one-step ahead forecasts based on the new set of estimates. We think
that this approach is too computationally intensive and instead, we prefer to
use the recursive update formula of the conditional variance as presented by
Gray in|Gray|(1996).

6.1 Approximating the Conditional Variance for Prediction Ap-
plications

The formula developed in |Gray| (1996) recursively approximates the condi-
tional variance as the weighted average of past conditional variances. One of
its advantages is that it is flexible and it can be extended to include autoregres-
sive terms. One may then argue and wonder why we did not use that formula
to estimate our MS-AR-GARCH model. We did investigate the possibility of
using it with an estimation method based on numerical maximization of the
Likelihood function. Nevertheless, due to the complexity of the Likelihood
function, parameter either ended up on the bounds of the constraints Equa-
tions (4) and (5) or convergence could not be reached, which prevented its use
for the estimation step of the study.
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For a MS(m)-AR(r)-GARCH(1,1) model, the approximated conditional vari-
ance at time ¢, h;, is defined as follows:
= E[y71y,i-1),0] — Elyelyp 1), ©) (25)

First, the term E[y:y[; ;_1], ©] is the optimal one-step predictor and, under nor-
mality conditions, can be calculated as the weighted sum of the predictions in
each regime:

E[yelyp,i—1),©] = Gy Z |t 1 k)+z9 (26)

Second, the term E[y?| Y[1,t-1),©] can be computed as follows:

m 14
Elyly,—1,0) = Y &5 () + (067 + Y0 0)?) (27)
k=1 i=1

with hgk) the one-step ahead predicted conditional variance in regime k com-
puted as follows:

n =l +alVe2 4 g0, (28)
and fg‘kt)_l the predictive probability of being in regime k at time £, given all in-
formation available at time f — 1. The vector of predictive probabilities 6t|t,1 =

2 1 2 . .
[Ct(‘ t)_l,. . .,ﬁt(r:ll]T can be computed in a recursive manner as follows:

Seo1 =P ¢ 1 (29)
with & _, -1 = [551_)1“_1,. e (ft(iq‘t_l] T the vector of filtered probabilities at time
t — 1 whose elements can be computed as follows:

“1|Stm1 =k yn4-0,9)
2(K) Q 1“ s X f(yi-11Si—1 JY,e-2)
1ji-1 = (30)

Y1 ‘371“72 X f(yr-1/St-1 = k/]/[l,t—Z]/@)

where f(y;-1|St-1 = k,y1,4-2),©) is the conditional density of y;; given the
set of information available at time ¢ — 2.

We are aware that the approximation presented here above is not optimal for
prediction applications, since it may introduce a permanent bias in the com-
putation of the conditional variance. It is a choice governed by the necessity
to bypass a problem not yet solved and to minimize its computational cost.
It could then be expected that the prediction skills of our model would ben-
efit from advances towards a better tracking of the conditional variance for
MS-AR-GARCH models. As for now, we can proceed to the evaluation of the
prediction skills of our model.
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6.2 Evaluation of Point Forecasts

The out-of-sample predictive power of our MS-AR-GARCH model is evalu-
ated based on its performance on one-step ahead forecasts. Point forecast skills
are first considered and compared to common benchmark models for very
short-term wind power fluctuations as well as state-of-the-art models. Com-
mon benchmark models include persistence (i.e., s = y;—1) and the simple but
robust AR model. State-of-the-art models include the class of MSAR models as
initially applied to wind power time series in Pinson et al.[(2008). MSAR mod-
els were not estimated with the method presented in the previous section since
more robust estimation methods exist for that type of models. Instead, they
were estimated by numerical maximization of the Likelihood function. Fol-
lowing the standardized framework for the performance evaluation of wind
power forecasts discussed in Madsen et al.|(2005), the proposed score functions
to be minimized are the Normalized Mean Absolute Error (NMAE) and Root
Mean Square Error (NRMSE). A higher importance is given to the NRMSE over
the NMAE in the final evaluation of point forecast skills because the RMSE is
a quadratic score function and is more likely to highlight the power of a given
model to reduce large errors. Reducing these large prediction errors is indeed
a very desirable ability of prediction models that we aim at developing. The
out-of-sample evaluation is performed over approximately 17,000 data points
of which more than 3000 are missing (from October 2005 to January 2006). The
optimal parametrization for each of the models cited here above was defined
by cross validation in the same way as for the MS-AR-GARCH model. NMAE
and NRMSE scores are computed for all models and reported in Tables[#and 5}
For Markov-Switching models, the optimal one-step ahead predictor is given
by Equation (26).

As it could have been expected, MSAR models, with 2 or 3 regimes, outper-
form all other models for both the NMAE and NRMSE. The best improvement
in NMAE over persistence is about 5.1% while it is 4.4% for the NRMSE. These
levels of improvement agree with earlier results in Pinson et al.| (2008)) and |Gal-
lego et al.| (2011). If moving from AR to MSAR models leads to appreciable
improvements, moving from AR to AR-GARCH models results in the opposite
effect. However, moving from single regime AR-GARCH to regime switching
AR-GARCH has a significant positive effect, more notably for the NRMSE. The
relatively good performances of the MS-AR-GARCH model are comparable to
those of the MSAR model with 2 regimes. All these results tend to indicate that
the MSAR class of models, explicitly designed to capture regime switching and
autocorrelation effects, has better point prediction skills.

If accounting for heteroscedastic effects in regime switching models makes that
part of the dynamics originally captured by the AR component of MSAR mod-
els is instead captured by the GARCH component and results in lower perfor-
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Table 4: NMAE score given in percentage of the nominal capacity of the
Horns Rev 1 wind farm. Results are given for persistence, an AR
model with 3 lags AR(3), a MSAR model with 2 regimes and 3 lags
in the conditional mean equation MSAR(2,3), a MSAR model with 3
regimes and 3 lags in the conditional mean equation MSAR(3,3), an
AR-GARCH model with 3 lags in the conditional mean equation and
a GARCH(1,1) specification for the conditional variance, and finally
for the MS-AR-GARCH model estimated in Section 5.

Model Oct. Nov. Dec. Jan. Total
Persistence 241 258 3.01 247 255
AR(3) 236 264 298 246 253
AR(3)-GARCH(1,1) 229 260 295 241 249
MS(2)-AR(3)-GARCH(1,1) 227 250 289 238 244
MSAR(2,3) 228 249 289 237 244
MSAR(3,3) 226 249 289 236 242

Table 5: NRMSE score given in percentage of the nominal capacity of the
Horns Rev 1 wind farm. Results are given for the same models as

for the NMAE.
Model Oct. Nov. Dec. Jan. Total
Persistence 417 622 576 428 5.02
AR(3)-GARCH(1,1) 4.00 6.18 572 424 493
AR(3) 398 599 556 417 483
MS(2)-AR(3)-GARCH(1,1) 396 6.00 555 4.15 4.82
MSAR(2,3) 398 595 555 417 481
MSAR(3,3) 396 595 555 4.17 4.80
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mances in point forecasting. It can then be expected that this will translate into
better performances for probabilistic forecasts of models explicitly designed
to capture the heteroscedastic effects, such as the AR-GARCH and MS-AR-
GARCH models.

6.3 Evaluation of Interval and Density Forecasts

Probabilistic forecasts are very useful in the sense that they provide us with a
measure of the uncertainty associated with a point forecast. They can either
take the form of density or interval forecasts. For their evaluation we follow
the framework presented in Gneiting et al.| (2007).

First, we consider the overall skill of the probabilistic forecasts generated by the
proposed MS-AR-GARCH model. The traditional approach consists in evalu-
ating the calibration and sharpness of the density forecasts. The calibration of
a forecast relates to its statistical consistency (i.e., the conditional bias of the
observations given the forecasts). As for the sharpness of a forecast, it refers
to its concentration or, in other words, to its variance. The smaller the vari-
ance, the better, given calibration. One score function known to assess both
the calibration and sharpness of density forecasts simultaneously is the Con-
tinuous Ranked Probability Score (CRPS), as defined in |Gneiting et al.| (2007).
The exercise consists in generating one-step ahead density forecasts. For the
single regime model, these density forecasts take the form of Normal density
functions, while for Markov-Switching models they take the form of mixtures
of conditional Normal distributions weighted by the predictive probabilities
of being in each of the given regime. The CRPS criterion is computed for the
same models as for the point prediction exercise and the results are reported in
Table 6l

From Table[6] it can noticed that the proposed MS-AR-GARCH model has the
best overall skill. Its improvement over AR models is about 12.6%. More gen-
erally, GARCH models outperform non-GARCH models even though the im-
provements are very small in some cases. The relatively good performance of
the MSAR model with 3 regimes tend to indicate that the volatility clustering
effect captured by GARCH models may partly be captured as a regime switch-
ing effect by MSAR models. This may appear as a paradox but it is not, in our
opinion. As noticed in [Pinson and Madsen! (2010), the respective dynamics in
the three regimes of the MSAR model can be more easily characterized with
respect to the values of their respective variance rather than their respective
conditional mean dynamics. While GARCH models are explicitly designed for
capturing the heteroscedastic effect, the formulation of MSAR models makes
that the same effect can be captured in an implicit manner by the combination
of several dynamics with different variances. The consequence of these find-
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Table 6: CRPS criterion given in percentage of the nominal capacity of the
Horns Rev 1 wind farm. Results are given for the same models as for
the point prediction exercise.

Model Oct. Nov. Dec. Jan. Total
AR(3) 199 233 248 202 215
MSAR(2,3) 1.81 201 226 188 194
MSAR(3,3) 1.78 198 224 185 191
AR(3)-GARCH(1,1) 1.76 199 224 185 191

MS(2)-AR(3)-GARCH(1,1) 176 195 220 183 1.88

ings is that MS-AR-GARCH models which combine both a Markov-Switching
and GARCH formulation are not very powerful for separating the regimes (see
Figure @, since there may be a conflict in their formulation. However, it does
not automatically affect their predictive power since a clear separation of the
regimes may not automatically translate into better prediction skills. Instead,
it is reflected in a more parsimonious parametrization of the MS-AR-GARCH
models regarding the optimal number of regimes.

In order to better evaluate the contribution of the calibration to the overall skill
of probabilistic forecasts, one can compare the empirical coverage rates of in-
tervals forecasts to the nominal ones. Intervals forecasts can be computed by
means of two quantiles which define a lower and an upper bound. They are
centered around the median (i.e., the quantile with nominal proportion 0.5).
For instance, the interval forecast with a coverage rate of 0.8 is defined by the
two quantiles with nominal proportion 0.1 and 0.9. Empirical coverage rates of
interval forecasts generated from an AR, MSAR and MS-AR-GARCH are com-
puted and reported in Table[7} A graphical example of the dynamical shape of
these interval forecasts is given in Figure 8} for the MS-AR-GARCH model and
a coverage rate of 90%. From Table [/} recurrent and large positive deviations
are observed for the interval forecasts generated from the AR model, indicating
that the intervals are too wide. In contrast, the empirical coverage rate of the
interval forecasts generated from the MSAR model exhibits a relatively good
match with the nominal coverage rates. The maximum deviation is around
6%. While these intervals seem too wide for small nominal coverage rates (i.e.,
from 10 up to 50%), they become too narrow for large nominal coverages. As
for the intervals generated from the MS-AR-GARCH models, the agreement is
excellent for the smallest nominal coverage rates (i.e., from 10 up to 40%) and
the largest one (i.e., 90%), whereas it significantly deviates from the nominal
coverage of intermediate widths. This latter result may be the consequence of a
bias introduced by the approximation of the conditional variance as presented
earlier. This also tends to indicate that the relatively good overall skill of prob-
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Table 7: Nominal coverage rates and empirical coverage rates of interval fore-
casts generated by the following three models: AR(3), MSAR(3,3)
and MS(2)-AR(3)-GARCH(1,1). The coverage rates are expressed

in 0/0.
Nom. cov. Emp. cov.
AR@B) MSARG,3) MS(2)-AR(3)-GARCH(1,1)

10 13.2 7.1 94
20 42.6 25.8 20.7
30 55.5 35.2 31.3
40 64.3 43.9 42.3
50 714 524 63.2
60 77.2 60.3 71.2
70 81.6 68.8 78.1
80 89.9 77.7 84.4
90 90.0 86.9 90.0

abilistic forecasts generated from MS-AR-GARCH models are more likely to be
the result of sharp rather than consistent forecasts.

7 Discussion and Concluding Remarks

We presented a general framework for the modeling and forecasting of very-
short term wind power fluctuations at large offshore wind farms. The dynam-
ics of these fluctuations are very complex and developing models for predic-
tion applications is an ongoing challenge within the wind power community.
The interest of the proposed MS-AR-GARCH model is that it extends the state-
of-the-art methodology based on MSAR models and specifies the conditional
variance in each regime as a GARCH model in order to better account for
heteroscedastic effects. This calls for an advanced estimation method to over-
come the problem linked to the historical path dependency of the conditional
variance. In that regard, Bayesian methods offer an alternative framework to
methods based on Maximum Likelihood Estimation. In particular, they allow
to break down the complexity of the global estimation problem into a set of
smaller problems for which practical approach exists.

In a first stage, we gave a thorough introduction on the estimation method
based on a MCMC algorithm. Then, we identified issues linked to its imple-
mentation and presented some solutions to overcome them. In a second stage,
the estimation method for the proposed MS-AR-GARCH model was tested on
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both synthetic and empirical time series. It was successfully applied to syn-
thetic time series. The results on the empirical time series of wind power are
more mixed. In particular, the method encountered clear problems in dealing
with the high correlation of the AR coefficients of the model, which resulted in
rather flat posterior densities. On the opposite, it seemed to work well for the
other model parameters (i.e., GARCH coefficients and transition probabilities).
In that respect, directions for future research could include the investigation of
more appropriate sampling methods for the AR coefficients.

The predictive ability of the MS-AR-GARCH model was evaluated on a one-
step ahead forecasting exercise of wind power time series sampled over 10 min
intervals. Empirical comparisons of its performances against common bench-
mark and state-of-the-art models showed that (i) it is slightly outperformed
by MSAR models for point forecasts according to NMAE and NRMSE criteria;
(ii) it outperforms all other models in terms of overall skill of probabilistic fore-
casts evaluated with the CRPS criterion. However, these results need to be put
into a broader perspective. First, both point forecast improvements of MSAR
and MS-AR-GARCH models over the simple but robust AR model are very
small for the NRMSE score function, while they are larger for the NMAE score
function. This tends to indicate that Markov-Switching models contribute to
reducing point forecast errors over periods where the wind power fluctuations
are characterized by small rather than large amplitude. Second, and more in-
terestingly, all three MSAR, AR-GARCH and MS-AR-GARCH models are able
to capture periods characterized by different volatility levels of wind power
fluctuations at the Horns Rev 1 wind farm. Having said that, the overall merit
of the proposed MS-AR-GARCH model is to generate improved probabilistic
forecasts with respect to their calibration and sharpness. This is important since
only a complete description of all potential outcomes, and hence their proba-
bility distribution, may lead to optimal decisions in wind energy, as shown
in|Pinson et al.|(2007).

The concerns raised in Section 4.1 about the sub-optimality of the Normal as-
sumption were recently addressed in [Pinson| (2012) which proposed the use of
a Generalized Logit-Normal distribution instead. One aspect of this distribu-
tion is that it is more appropriate for modeling the skewness of the errors and
the heteroskedastic effects near the bounds of the process. It led to substantial
improvements in terms of calibration, sharpness and overall reliability of den-
sity forecasts. For instance, the additional improvement in the CRPS criterion
for a simple AR model is about 7%-8%. These results are in line with those
reported in|Gneiting et al.| (2006), [Thorarinsdottir and Gneiting{(2010), Lau and
McSharry| (2010) which showed the potential of using a truncated Normal dis-
tribution for wind speed and wind power prediction applications. Similarly,
the use of the Generalized Logit-Normal distribution for Markov-Switching
will be investigated with a particular focus on multi-step ahead forecasts.
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For the time being and in the absence of meteorological observations to ex-
plain the origin of the volatility observed at Horns Rev, statistical models do
not have the ability to anticipate the most abrupt changes in the dynamics of
the wind power fluctuations. Future approaches based on the integration of
observations of local weather conditions are likely to fill in that gap. A first
step was achieved in |Gallego et al[(2011) with the integration of on-site wind
speed and direction measurements into prediction models, resulting in appre-
ciable improvements of wind power fluctuation predictability. Another lead
was given in|Vincent et al.[(2011) with the observations of convective rain cells
during episodes of extreme wind speed variability. Following these observa-
tions, a weather radar capable of measuring rain reflectivity at high spatio-
temporal resolution is currently operated at the offshore site of Horns Rev in
order to provide additional insights on these wind power fluctuations and help
improving their predictability.
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High-resolution forecasting of wind power
generation with regime-switching models and
off-site observations

Pierre-Julien Trombe!, Pierre Pinson'

1 Introduction

With the growing penetration of wind power into power systems, electric util-
ities are called to revise their operational practices. In particular, experts in
energy management recommend to increase the scheduling frequency of elec-
tricity generation and delivery from hours to minutes, in order to mitigate the
impact of wind power variability on power systems (GE Energy, 2010). Trans-
mission System Operators (TSO) expressed concurring views on the integra-
tion of large amounts of wind power into power systems (Jones and Clark}
2011). In a few European countries, very short-term wind power forecasts with
temporal resolutions from 5 to 15 minutes, and lead times up to 36-48 hours,
are already used in a wide range of applications (Holttinen et al., 2011). These
include among others optimizing reserve allocation, balancing electricity con-
sumption and production, and controlling wind power fluctuations at large
offshore wind farms (Akhmatov et al., 2007, Kristoffersen and Christiansen|,
2003). In particular, one application for which forecasts with specific lead times
up to 15-20 minutes are needed is the management of the immediate regulating
power reserve. This type of reserve is activated over time intervals up to 15-20
minutes, after the system experiences a sudden and large deviation between
scheduled and actual wind power generation (Akhmatov} 2007). This issue is
paramount in countries or regions with limited interconnections, or with no
complementary source of energy (e.g., hydro or pumped hydro) that can be
both stored and used for fast-acting generation.

Issuing improved wind power forecasts for supporting decision-making in reg-
ulating reserve management has the merit of being more cost-effective when
compared to other solutions such as increasing backup capacities. For lead
times from a few minutes to a few hours, wind power forecasts are best gener-
ated with statistical models using historical data. However, developments in
wind power forecasting have long been oriented towards energy market ap-
plications, placing focus on forecasts at hourly resolutions, as required by the
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market structure. These approaches heavily rely on the availability of mete-
orological forecasts of wind speed and direction owing to the strong relation
between wind and wind power, the so-called power curve (Giebel et al., 2011).
Employing such a strategy is not realistic when working with lead times of a
few minutes. Instead, a number of new modeling and forecasting approaches
were recently proposed in view of improving the predictability of wind power
fluctuations for very short lead times. These include regime-switching models,
off-site predictors and a new type of predictive distribution.

Regime-Switching models — The motivation for applying these models comes
from the existence of structural changes in the dynamics of wind power fluc-
tuations at temporal resolutions of a few minutes, hence the term wind power
regime. Periods of low and high wind power variability alternate, not only
modulated by the wind own variability, but also by the power curve that am-
plifies or dampens wind fluctuations owing to its nonlinear nature. For low or
high wind speeds, wind power fluctuations are very small whereas, for mod-
erate wind speeds (i.e., roughly between 7 and 13 m.s~!), wind power fluc-
tuations can become extreme. Originally developed for applications in Econo-
metrics (Tong)} [1990), regime-switching models have, since then, also been ap-
plied for modeling and forecasting offshore wind power fluctuations inPinson
et al.[(2008), Gallego et al.[(2011), Trombe et al.|(2012), improving the accuracy
of wind power forecasts when compared to single regime models. Regime-
switching models divide into two categories, those for which regimes are ob-
servable and determined by expertise, and those for which they are unobserv-
able and estimated jointly with the model. This translates into two classes
of time series models, namely Threshold Autoregressive (TAR) and Markov-
Switching Autoregressive (MSAR) models (Iong), (1990, |[Fruhwirth-Schnatter,
20006).

Off-site predictors — Traditional inputs to statistical prediction models con-
sist of on-site observations (i.e., wind power production, wind speed and di-
rection) and/or meteorological forecasts (wind speed and direction, tempera-
ture, atmospheric pressure). However, meteorological forecasts are generated
at coarse temporal resolutions, from 1 to 3 hours, and therefore not informative
on intra-hour wind fluctuations. Furthermore, wind measurements are rarely
available in real-time for applications with lead-times of a few minutes. When
wind power data and wind data are not simultaneously available, the diffi-
culty of generating accurate wind power forecasts increases. This is the reason
why a number of recent studies explored the potential of off-site observations
as new predictors (Alexiadis et al., [1999, Damousis et al., 2004} |Gneiting et al.,
2006, [Larson and Westrick, [2006} Hering and Genton, 2010, [Tastu et al., 2010,
Lau) 2011). In particular, wind farms and meteorological masts scattered over
a region form a net capable of capturing valuable information on the weather
conditions. Owing to the synoptic mechanisms in the atmosphere which drive
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wind variability in space and time, upwind observations can be informative of
upcoming changes in weather conditions and be used as extra predictors (lastu
etal}2011}|Girard and Allard},[2012). Two distinct approaches exist for integrat-
ing these off-site predictors into forecasting models, depending on whether (i)
the dominant weather conditions are known a priori and the model designed
accordingly (Alexiadis et al.,[1999, Damousis et al., 2004} (Gneiting et al.,|2006,
Larson and Westrick, 2006), or (ii) there is no a priori information available on
weather conditions and it is assumed that the model can capture the associated
effects directly from the data (Tastu et al., 2010, Lau, 2011, Hering and Genton)
2010). Despite their high accuracy, models based on the first type of approach
have a clear downside, they tend to be very region or site-dependent, lacking
of adaptivity when applied to areas with different weather conditions. In con-
trast, models based on the second type of approach are more data-driven and
require less expert knowledge to capture the spatio-temporal dependencies be-
tween sites.

The Generalized Logit-Normal distribution — Wind power generation is a
double-bounded process since it can neither be negative nor exceed the wind
farm rated capacity. In addition, the distribution of wind power forecast er-
rors changes with respect to the conditional expectation of the forecasts (Lange,
2005). In particular, heavy skewness near the bounds and a clear heteroscedas-
tic behavior are generally observed. In a parametric framework, a common ap-
proach for dealing with these features consists in combining a statistical model
that handles the heteroscedasticity (e.g., Generalized Autoregressive Condi-
tional Heteroscedastic (GARCH) models) with a predictive distribution that
deals with the effects of the bounds and, potentially, with skewness (e.g., cen-
sored and truncated Normal distributions) as in|Lau and McSharry|(2010). A
generalization of this type of approach was proposed in [Pinson| (2012) with
the Generalized Logit-Normal (GLN) distribution and applied for forecasting
wind power fluctuations at large offshore wind farms.

All three aforementioned approaches yielded substantial gains in wind power
predictability, in a wide variety of contexts. However, their predictive per-
formances, yet demonstrated against traditional benchmark models, were not
compared against one another. As a result, there seems to be a great deal
of confusion on the direction to follow for forecasting wind power fluctua-
tions. In particular, the constraints imposed by short lead time applications
(i.e., no wind measurements) offer a difficult test to the robustness of these
approaches. For instance, one may wonder whether the relative complexity of
regime-switching models is worth the gain in predictability, when compared
to more parsimonious models with a single regime and tuned with off-site pre-
dictors and the GLN distribution. As a first attempt to clear this point out, we
perform a comparative study of the predictive performances of the different
approaches and, eventually, explore different combinations of them in order to
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evaluate whether additional improvements can be obtained. Focus is placed
on wind power fluctuations from a single wind farm.

Wind power forecasts and, more generally, forecasts of any continuous quan-
tity are given in the form of either a single-value (i.e., deterministic fore-
cast) or a full probability distribution or density (i.e., probabilistic forecast).
As pointed out in |Gneiting| (2008), forecasts ought to be probabilistic in or-
der to achieve optimal decision-making under uncertainty. This idea found
its echoes with a few TSOs which started using probabilistic information in
control rooms (Jones and Clark} 2011). In this work, the accuracy of wind
power forecasts is verified with respect to both point and density forecasts even
though more importance will be given to the latter ones.

This paper is organized as follows. Section 2 introduces the case study, the
data and their characteristics. Section 3 presents the four classes of model con-
sidered in this study, namely Autoregressive (AR), AR-GARCH, TAR, MSAR.
In section 4, the predictive performances of these models are evaluated both
in terms of point and density forecasts. Finally, section 5 delivers concluding
remarks.

2 Data and their characteristics

In this section, we present the data and their characteristics. We also perform a
number of analysis to introduce some essential principles that motivate mod-
eling assumptions in section 3. In particular, we give a detailed account on
the the GLN predictive distribution as proposed in [Pinson| (2012)), and evalu-
ate spatio-temporal correlations of wind power in view of integrating off-site
predictors into time series models.

2.1 Case study

The case study consists of a group of three wind farms located in the South-
East of Ireland, the Carnsore wind farm which has a rated capacity (Pn) of 11.9
MW and its two nearest wind farms, Richfield (27 MW) and Ballywater (42
MW), as shown in Figure[l| Ballywater and Richfield are located about 40 km
North-East and 17 km West of Carnsore, respectively. The Carnsore wind farm
is located at the extreme point of a peninsula, by the sea shore. Richfield and
Ballywater are located further away inland but within 5-10 km from the sea,
remaining in the zone of influence of the marine weather. In this study, focus
is placed on forecasting the wind power generation at the Carnsore wind farm.
As aforementioned, no wind measurement is available. Furthermore, available
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meteorological forecasts have a too coarse temporal resolution to be informa-
tive for lead times of a few minutes and thus cannot be used. Our knowledge
of weather conditions in Ireland is restricted to the prevalence of southwest-
erly winds. In addition, passages of low-pressure systems characterized by
large wind variability and developments of storms are more frequent over the
period from August to January (Met Eireann, 2012).

® Carnsore
550 ® Richfield
Ballywater

520'

Figure 1: The Carnsore, Richfield and Ballywater wind farms are located in
the South-East of Ireland. Carnsore and Richfield are separated by
an approximate distance of 17 km, and the distance between Rich-
field and Ballywater is 40 km.

Ireland and its power system are singular when compared to other countries/regions
with high wind power penetrations. Ireland has large wind resource but very
limited interconnection capacity with power systems from other countries. More
specifically, there exists a single interconnection to Northern Ireland which, in
turn, is only connected to the United Kingdom. The target of Ireland is to meet
40% of its energy demand with renewable energy sources by 2020, of which
37% are expected to be covered by the integration of wind power. The small
interconnection capacity clearly acts a limiting factor for enabling further wind
power into the system since the latter will be unable to spill excess power when
needed. Consequently, improved wind power predictability would allow to
decrease the frequency of curtailment actions and reduce losses of wind power
generation (Holttinen et al., 2011).

2.2 Data quality control

The wind power data used in this study are provided by Eirgrid, the TSO in
Ireland. They span the period from December 31, 2006 to June 1, 2009. One
time series of wind power production is available for each wind farm, at a
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temporal resolution of 15 minutes. Following Madsen et al.|(2005), time series
are normalized and expressed as a percentage of the wind farm rated capac-
ity. The resulting time series take values on the unit interval [0,1]. The raw
data records are complete for Carnsore and Richfield but not for Ballywater for
which 3071 values (out of 84864) are reported missing. Since the data consist
of output power time series, and not available power, a data quality control is
performed. We identify several periods where the output power is curtailed,
likely indicating that some wind turbines were temporarily out of order or that
an absolute power limitation was imposed. An example is given in Figure
which shows the time series of wind power for the Carnsore wind farm. The
output power never exceeds 92% of the rated power of Carnsore in the second
semester of 2007 and the first semester of 2008. Consequently, we only use
the period from July 10, 2008 to 27 March, 2009 in this study, corresponding to
more than 25000 data points. This period is shaded in grey in Figure
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Figure 2: Time series of wind power at Carnsore. The data overlaying the
shaded area are considered to be of good quality and used for the
experimental part of this study.

2.3 The Generalized Logit-Normal predictive distribution

The conversion from wind to power makes that wind power generation is a
double-bounded process, with a potentially high concentration of observations
near or at the bounds. This feature is illustrated in Figure 3| In addition, the
shape of the distribution of the wind power forecast errors evolves with the
conditional expectation of the forecasts. Near the bounds, the conditional dis-
tribution of wind power forecast errors tends to have a very small standard
deviation and to be heavily skewed. Moving away from these bounds, the stan-
dard deviation increases and the skewness decreases (Lange,[2005). When fore-
casting wind power generation from single wind farms, designing an appro-
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priate strategy for taking these features into account is paramount. In Pinson
(2012), the author proposed the use of the Generalized Logit-Normal (GLN)
distribution. The underlying motivation for using this distribution comes from
the work of | Box and Cox|(1964) where it is shown that appropriate data trans-
formations may enhance characteristics such as linearity, homoscedasticity and
additivity.

100
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wind power [% Pn]
40

20
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T T T T T
26/09/2008 28/09/2008 30/09/2008 02/10/2008 04/10/2008 06/10/2008

time

Figure 3: Normalized wind power generation at Carnsore. The temporal res-
olution of 15 minutes.

The homoscedasticity of wind power forecast errors can be enhanced by trans-
forming the original time series {y;} as follows:

i =7(yr,v) = log <1 K*yu) , v>0, yel01] 1)
t

where v is a shape parameter and the resulting time series {y;} takes values
in ] — 00, +00[. This transformation, as shown in Figure [4 for a set of different
values of v, aims at outstretching the distribution near the bounds of the inter-
val [0,1]. In the original domain [0,1], the assumption of homoscedastic wind
power forecast errors does not hold and, even though one may argue that this
may still not be the case after transforming the time series, making that such
assumption is clearly more appropriate in the transformed domain than in the
original one.

However, the concentration of observations at the bounds, in 0 and 1, gener-
ates two probability masses that remain in the transformed domain. They are
located in —oco and oo, respectively. To fix this, the coarsening principle is
applied as in [Lesaffre et al.|(2007). All observations taking values in the open
interval | — co,7(e,v)| are shifted to y(e,v). Likewise, all observations taking
values in ]y(1 — €,v), +oo[ are shifted to y(1 — €,v), with € < 0.01. Two Dirac
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Figure 4: The GLN predictive distribution consists of transforming the origi-
nal wind power observations in order to deal with the heteroscedas-
ticty near the bounds of the interval [0,1]

distributions J,(,,) and 6.1 ¢ ) are introduced so that the one-step ahead pre-
dictive distribution in the transformed domain, Y; ;, is defined as follows:
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where ® is the cumulative distribution function of the Normal variable with
0 mean and unit variance.

2.4 Spatio-temporal correlations in wind data

Recent studies showed that it was possible to take advantage of spatio-temporal
correlations in wind data at an hourly resolution in order to improve the pre-
dictability of wind speed or wind power at regional scales (Gneiting et al., 2006,
Larson and Westrick, 2006, Hering and Genton, 2010, Tastu et al.,2010). Never-
theless, for higher temporal resolutions, in the order of a few minutes, the wind
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variability caused by local effects is magnified and may reduce these correla-
tions. Besides that, other factors which contribute to decrease spatio-temporal
correlations of wind data include topographical effects and inter-site distances.
When considering wind power data, the potential effects of the power curve
cannot be ignored. The power curve is a function of atmospheric variables such
as wind speed, wind direction, wind shear and air density. For identical atmo-
spheric conditions at two wind farms, differences in the type, age and size of
wind turbines, as well as their geographical spread, may result in large differ-
ences in generated power, and thereby decrease spatio-temporal correlations.

For a reasonable number of wind farms, a visual assessment of their respec-
tive wind power generation can give clear indications on the potential level of
spatio-temporal correlations. Figure 5/ shows three time series of normalized
wind power from Carnsore, Richfield and Ballywater over a 4-day episode.
Wind power fluctuations from Carnsore and Richfield closely follow each other.
Still, it appears difficult to identify a clear and recurrent pattern on whether
wind fluctuations at Carnsore leads those at Richfield, or whether it is the
opposite. This potentially reflects changes in wind direction. Note also that
the wind power level at Ballywater is significantly lower than at Carnsore and
Richfield.
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Figure 5: Normalized wind power generation at Carnsore, Richfield and Bal-
lywater with a temporal resolution of 15 minutes.

Before using off-site observations for prediction applications, it is essential to
analyze correlations between wind data from distant sites. Following Girard
and Allard| (2012), we assume that these correlations can appropriately be de-
scribed and quantified by the traditional linear correlation coefficient. In order
to evaluate these correlations, we use the pre-whitening technique presented
in Madsen| (2008). Let A and B be two wind farms, with their respective time

series of wind power generation {ygA)} and {xt(B)}. {ng)} is called the input
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series and {yEA)} the output series. The idea is to use the power generation
from wind farm B as input for improving the wind power predictability of
wind farm A. The procedure is divided into three steps as follows:

1. An appropriate Autoregressive Moving Average (ARMA) model is fitted

to the input series {xEB)} and a series of residuals {egB)} extracted,
2. The output series { yEA)} is filtered with the same model as in step 1 and
a series of residuals {eEA)} extracted,

3. The cross-correlation function is calculated based on the two series of
residuals as follows:

_ cov (el (t),e®)(t + 1)) 5)

Po(a)e(8) (T)

We repeat the pre-whitening procedure presented hereabove with and with-
out the GLN transformation as given by equation (1) in order to evaluate how
this transformation changes the correlation structure between the power gen-
eration from two wind farms. The results are reported in Figure [/} Nega-
tive lags indicate that wind power fluctuations at Richfield or Ballywater lead
those at Carnsore. First, these results reveal larger cross-correlations between
Richfield and Carnsore than between Ballywater and Carnsore, thereby con-
firming the visual observations made from Figure 5l This result is most likely
the consequence of the shorter distance separating Carnsore from Richfield
than from Ballywater which would be consistent with the empirical analysis
in |Girard and Allard| (2012) where spatio-temporal correlations are shown to
quickly decrease within a radius of 50 km. Figure [f| also shows that wind
power fluctuations at Richfield tend to lead those at Carnsore up to 30 min-
utes ahead, on average. In contrast, cross-correlations between Ballywater and
Richfield are much lower and it appears more difficult to determine a clear ten-
dency on whether wind power fluctuations propagate preferentially from Rich-
field to Ballywater, or the opposite. A direct extrapolation from these cross-
correlations suggests that off-site observations from Richfield have a higher po-
tential for improving wind power predictability at Carnsore than correspond-
ing observations from Ballywater. Finally, one can see that cross-correlations
between Carnsore and Richfield are larger without applying the GLN trans-
formation a priori. Cross-correlations tend to decrease with large values of
the shape parameter v. We can think of two potential causes that explain this
feature. First, using the GLN distribution may degrade the linear relationship
between the two time series, particularly near the bounds where the respective
variances may increase. Secondly, using the GLN distribution may enhance

the homoscedasticity of the input time series {xﬁB)} so that the residuals series
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Figure 6: Cross-correlations (after pre-whitening) of wind power generation
at Carnsore and (left column) Richfield, (right column) Ballywater.
Negative lags indicate that wind power fluctuations at Richfield or
Ballywater lead those at Carnsore.

{et(B)} is closer to being a white noise process, and thereby is less informative.

3 Time series modeling

The stochastic nature of wind power generation is described hereafter with
time series models. We start by considering linear models (i.e., ARX and ARX-



82 PaperB

GARCH) before moving on to nonlinear regime-switching models (i.e., TARX
and MSARX). For each model, we give the most general formulation, meaning
that off-site predictors are included by default, hence the X in model acronyms.
Our objective is to estimate models in view of generating, not only accurate
point forecasts, but also probabilistic forecasts. All models are thus estimated
by Maximum Likelihood Estimation (MLE) rather than Least Squares (LS). Let

{ygA)} (respectively {yﬁ“‘)}) be the observed (respectively transformed) time
series of wind power generation to be predicted at a given wind farm A. Let
{xEWF)} be a time series of off-site wind power generation observed at a dis-

tant wind farm WF, with WF = B,C,.... For the sake of simplicity, ygA) (re-

(

spectively xtWF) ) denotes both the random variable and its observed value at

time t. Let O = (ygA),...,yEA),xiB),...,xEB),xgc),...,xgc),...) be the set of ob-

servations available at time .

3.1 ARX models

While it is generally acknowledged that wind power generation is a nonlinear
process, operational wind power forecasting systems usually rely on linearity
assumptions (Nielsen et al} 2007). ARX models are some of the most widely
used in practice. There are several reasons for this. First, their formulation is
very intuitive and simply consists of a linear combination of lagged variables
which leads to fast estimation procedures. Secondly, they stand as very com-
petitive models for generating point forecasts owing to their parsimony (i.e.,
low number of parameters to be estimated). Thirdly, there exists closed-form
formula for generating multi-step ahead forecasts (Madsen| [2008).

The linear AR(p)-X(g) model with p autoregressive and g exogenous predictors
is given by:

yN =10 ¢]Yi+oe ©)
where
0 :[90,91,...,9p] (7)
=[p\ Sl ()
Yo =Ly ey B )OO o)

and {e;} is an independent and identically distributed (i.i.d) sequence of ran-
dom variables with 0 mean and unit variance, and g = Ywr—(gc,..) (Swr — rwr +1).
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Let © = (0,%,0) be the set of parameters to be estimated. For Normally dis-

tributed errors, the Maximum Likelihood Estimator (MLE), Q) MLE, 1S obtained
by minimizing the negative log-likelihood function as follows:

OmLE = argm@in —log L(®|Qr) (10)
_n 2 1 o
where —1ogL(®|Qr) = Elog(Zna )+ Tﬂ;et (11)
d =y -0 vy 12
and &=y, —[0 ¢V (12)

and L is the likelihood function.

Two types of predictive density are considered, the censored Normal and the
GLN. At time ¢, given the vector of estimated parameters @MLE and the set
of observations (), the one-step ahead censored Normal density f, 41t is de-
scribed by the estimated conditional expectation fl;1; and standard devia-

tion ¢ of the Normal density so that ft+1\t () |Opre, Q) = N[O (fieg1)1.0)
where  f;q = [0 P)Y:.

In order to obtain the one-step ahead GLN density, additional steps are needed.
First, the transformation given in (1) must be applied for estimating the vector
of parameters OpiLe in the transformed domain. Second, the one-step ahead
predictive density in the transformed domain is obtained by following the for-
mula (2-4). Last, the inverse GLN transformation presented in [Pinson| (2012) is
applied on a quantile per quantile basis for generating the GLN density in the
original domain.

3.2 ARX-GARCH models

ARX-GARCH models are a popular extension of ARX models as they can re-
lax the assumption of constant variance without data transformation. GARCH
models were first introduced in Econometrics by [Bollerslev| (1986). A short re-
view of meteorological applications of GARCH models is available in Trombe
et al|(2012). This class of model proposes to capture the dynamical structure of
the conditional variance, jointly to that of the process conditional expectation.
The conditional variance h? is modeled as an ARMA process for the squared
errors s%. It was shown in a number of studies that a GARCH(1,1) structure is
in most cases appropriate to capture the temporal dynamics of h?. The linear
AR(p)-X(9)-GARCH(1,1) model with p autoregressive and g exogenous predic-
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tors is given by:

y, =10 P|Yi+ e (13)
h% =w + 0(8%_1 + ﬁh%—l (14)

where {¢;} is an i.i.d sequence of random variables with 0 mean and unit vari-
ance. To ensure that the conditional variance is positive, we impose w > 0 and
«,>0.

Let © = (0,%,w,,B) be the set of parameters to be estimated. For Normally
distributed errors, @1 is obtained by minimizing the negative log-likelihood
function as follows:

OMLE = argrrgn —log L(O|Qr) (15)

n

Y & (16)

_ - 2y 4
where log £L(®|Qr) = 5 log(2mto®) + 2
where ¢; is given by (12) and h? is given by (14). For the implementation of
the model, analytical formula for the first and second order derivatives of the
negative log-likelihood function are given in (Fiorentini et al.}{1998).

One-step ahead predictive densities are generated in a similar way as with ARX
models, but for a single change. The conditional standard deviation ¢ becomes
time-varying as follows:

o=h 17)
with 12 =& + &e? | + ph?_, (18)

3.3 TARX models

TARX models are the first regime-switching models considered in this study.
They are piecewise linear, and the transitions between regimes are governed in
a deterministic way by a lagged variable, and are hence observable. See (Iong)
1990) for a more detailed introduction to these models. The TAR(py,...,pRr)-
X(g1,---,qr) model with R regimes, p; autoregressive and g; exogenous predic-
tors in regime j, with j=1,...,R, is given by:

g =100 UV + oW i 1<z g <rjg (19)
where
o [0y, 6\7,...,00 (20)

o =[pdP, . gIP O e (21)
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and {¢} is an i.i.d sequence of random variables with 0 mean and unit vari-
ance, ¢/} the standard deviation in the regime j, z;_4 the lagged variable;
d € N the delay parameter with usually d < max(py, ..., pr), and r;j the thresh-
old values separating the regimes. The regime-switching effect translates into
the autoregressive and exogenous coefficients as well as the standard deviation
of the error term being state-dependent. Applications of TAR models for fore-
casting wind power fluctuations can be found in [Pinson et al.| (2008), Gallego
et al.[(2011) which alternatively use lagged observations of wind speed, wind
direction or wind power for controlling transitions between regimes. A special
class of TAR model is the Self-Exciting TAR (SETAR) model which corresponds
to the case where the dependent variable is chosen as the lagged variable.

The major issue with TAR models is the joint determination of the delay d and
thresholds r;,j =1,...,R. In particular, the most spread technique for the deter-
mination of the r; is based on the visual assessment of scatter plots of t-ratios
(see Tong| (1990)). In order to fill in the lack of consistency of such approach,
an automated procedure for determining the number of regimes and threshold
values of TAR models was recently proposed in Bermejo et al.|(2011). It consists
of detecting jumps in the values of the estimates of an arranged autoregression
by using a recursive least squares (RLS) estimation method. This method can
be extended to deal with exogenous predictors without complicating its proce-
dure. Once the threshold values known, the parameters for a given regime can
be estimated independently of the parameters of the other regimes by applying
the formula given in formula (10-12) for each regime, and predictive densities
can be generated as with ARX models.

3.4 MSARX models

MSARX models are the second type of regime-switching models in this study.
Structurally, the major difference between MSARX and TARX models lays in
the way the sequence of regimes is determined. With TAR models, this se-
quence is determined explicitly by a lagged variable, and the transitions be-
tween regimes are therefore discontinuous. With MSARX models, the sequence
is assumed hidden and estimated directly from the data. More specifically,
MSARX models assume that an unobservable Markov process governs the dis-
tribution of the observations (Fruhwirth-Schnatter, 2006). This enables smooth
transition between regimes.

The MSAR(p1,...,pr)-X(q1,-..,qr) model with R regimes, p; autoregressive
and g; exogenous predictors in regime j, with j=1,..., R, is given by:

y N =[0G )y, + =g, (22)
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where
o) :[egz>,e<z>, 05, z=1,..,R (23)
@ =[P, P 2O w9 ), 2=1,..,R (24)

and {e;} is an i.i.d sequence of random variables with 0 mean and unit vari-
ance, {zt} follows a first order Markov chain with a finite and discrete number
of states R and transition probability matrix P of elements (Pz’j)z’,j:l,..., R

pij = Pr(Zt = j|Zl‘—1 = l), l,] = 1,”_,R (25)

R
Y pij=1, i=1,...,R (26)

Similarly to TARX models, the autoregressive coefficients and standard devia-
tion of the error term are state-dependent. Let ©@ = (0(1), .. .,0(R>,1JJ(1), .. .,w(R),
01,...,0R, P) be the set of parameters to estimate. For Normally distributed er-
rors in each regime, ¢ MLE is obtained by

Oumie = argmin—log£(®|QT) (27)
where L(®|Qr) = HPDt (28)
5:1(IR—P+UR) (29)
D; = diag(y(t,1),...,m(t,R)) (30)
(4) _ rg(i) (i)
. 1 0 Y; ,
(ki) = —m¢ <yt | ) v t>, i=1,...,R  (31)
(% g

where 4 is the stationary distribution of the Markov chain, 1 is a unit vector
of size R, Ig and Uy Identity and Unity matrices of size R x R, D; a diagonal
matrix and ¢ the probability density function of the Normal distribution. Prac-
tical solutions for the implementation of MSARX models are given in|Zucchini
and MacDonald| (2009).

With MSARX models, predictive densities take the form of mixture of densi-
ties (Fruhwirth-Schnatter), 2006, |[Zucchini and MacDonald), 2009). For the case
where the errors are Normally distributed in each regime, the resulting predic-
tive density is a mixture of R Normal densities that is censored in 0 and 1 later
on. At time t, given the vector of estimated parameters @MLE and the set of
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observations ()¢, the one-step ahead density can be obtained as follows:

o~ R A ~
A O, 0) = Y ePp(6% $9)Y,6®)  (32)
k=1

4
e~
>
)
~

where §; = (33)

2

e
~
S
=
H

and dk) is the k' element of the vector of filtered probabilities ¢; at time t.

In order to obtain predictive densities in a GLN fashion, we can apply the same
3-step procedure as for ARX models that is: (1) data transformation in order to
work in the transformed domain, (2) generation of mixture of Normal densities
in the transformed domain, and (3) inverse transformation of a set of quantiles
of this mixture of Normal densities.

3.5 Estimation procedure

As mentioned in section [2} the data we selected cover the period from July 10,
2008 to 27 March, 2009. This corresponds to about 25000 observations, for each
of the three time series (i.e., Carnsore, Ballywater, Richfield). Focus is placed
on predicting the wind power generation at the Carnsore wind farm. The first
15000 observations are used for fitting the models. The following 5000 obser-
vations are used for performing a one-fold cross-validation and determining
the optimal parametrisation of each model. The last 5000 observations, corre-
sponding to about 63 days, are kept for forecast evaluation.

Cross-validation is jointly performed on the structure of the model (i.e., se-
lection of the optimal AR lags from 1 up to 8, and X lags from 1 to 5, number
of regimes R) and a set of values for the shape parameter v of the GLN dis-
tribution (from 0.1 to 3.1 with steps of 0.1). Because of that, and because the
likelihood function is unbounded, neither the respective goodness-of-fit nor
the predictive power of the models can be compared with respect to likelihood
based scores. Instead, the cross-validation procedure is performed by mini-
mizing the Continuous Ranked Probability Score (CRPS) for one-step ahead
density forecasts. The CRPS quantifies the accuracy of conditional density fore-
casts based on two principles: calibration (i.e., the relative position of a forecast
with respect to the observed value) and sharpness (i.e., the concentration of the
predictive distribution around the observed value) (Gneiting et al.| 2007).

For each class of models presented in this section, we estimated four different
models with: (N) a censored Normal distribution, (X-N) a censored Normal
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distribution and exogenous regressors, (GLN) a GLN distribution, (GLN-X) a
GLN distribution and exogenous regressors. Four different lagged variables

z;_4 were tried for controlling the regime sequence of TAR models, namely

yfj{’“), ngich), and their respective first order differentiated series. For all

four TAR models, yﬁf“{”) was selected as the best lagged variable. The final
parametrisation of each model is summarized in Table [1| along with the total
number of parameters in order to appreciate their respective cost-complexity.
Several observations can be drawn from these results. First, none of the final
models includes off-site information from Ballywater. This means that wind
power fluctuations from Ballywater are not informative for improving the pre-
dictability of wind power fluctuations at Carnsore for the proposed models.
On the opposite, all models include two lagged measurements from Richfield,
concurring with the early observations in section 2 which indicated that wind
power fluctuations at Richfield led those at Carnsore up to 30 minutes ahead.
Second, the use of the GLN distribution leads to a reduction of the autoregres-
sive order for AR and MSAR models, while it decreases the optimal regimes
number, from four to three, for TAR models. More generally, the use of the
GLN distribution yields a reduction in the cost complexity (i.e., the number of
parameters to be estimated) of all models but AR-GARCH.

4 Experimental results and forecast evaluation

In this section, we evaluate the predictive performances of the four classes of
models presented in the previous section, namely ARX, ARX-GARCH, TARX
and MSARX models. The evaluation consists of measuring the accuracy of
one-step ahead point and density forecasts, as well as the overall reliability of
these forecasts.

4.1 Point forecasts

Electric utilities have a long tradition of using point or deterministic forecasts
of wind power (Jones and Clark} 2011} (Giebel et al., 2011). In this study, point
forecast accuracy is evaluated with respect to the Normalized Mean Absolute
Error (NMAE). There is an inverse relationship between point forecast accu-
racy and the NMAE score: the lower the NMAE, the better. Following|Gneiting
(2011), we use the median of the predictive densities as the optimal point fore-
cast, due to the nature of the NMAE which is based on a symmetric piecewise
linear scoring rule. All models are benchmarked against Persistence since it is
one of the most competitive benchmarks for such short lead times. Persistence
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Table 1: Summary of model parametrisation after cross-validation. This in-

cludes the lagged variables yffj””), the lagged exogenous variables
xﬁfécm, the number of regimes and total number of parameters.
Model EE?V") xt(g.c}l) Number of  Total number
regimes of parameters
AR-N 1.7 - 1 9
AR-X-N 1.7 1:2 1 11
AR-GLN 1:5 - 1 8
AR-X-GLN 1:5 1:2 1 10
AR-GARCH-N 1:5 - 1 9
AR-X-GARCH-N 1:5 1:2 1 11
AR-GARCH-GLN 1:5 - 1 10
AR-X-GARCH-GLN 1:5 1:2 1 12
TAR-N (1:6, 1:6, 1:5, 1:6) - 4 31
TAR-X-N (1:5,1:5, 1:5, 1:5)  (1:2,1:2,1:2,1:2) 4 36
TAR-GLN (1:6, 1:3, 1:6) - 3 22
TAR-X-GLN (1:6, 1:3, 1:6) (1:2,1:2,1:2) 3 28
MSAR-N (1:5,1:5) - 2 16
MSAR-X-N (1:5, 1:5) (1:2,1:2) 2 20
MSAR-GLN (1:3, 1:3) - 2 13
MSAR-X-GLN (1:3, 1:3) (1:2,1:2) 2 17

usually outperforms other common benchmarks such as Climatology, Moving
average or Constant forecast (see for instance Pinson|(2012), Lau| (2011)) which
are not included here. It is an Autoregressive model of order 1 with no inter-
cept term and its coefficient value equal to 1. Point forecast results are given in
Table 2} It is interesting to note that not all models outperform Persistence and
that even the largest improvement does not exceed 3%. Overall, MSARX and
ARX-GARCH with a GLN distribution give the best results. When considering
each class of models independently of the others, we observe two trends. The
first one concerns AR and TAR models for which the use of either off-site in-
formation or the GLN distribution yields substantial gains in wind power pre-
dictability. These gains are further improved by using both. The second trend
regards AR-GARCH and MSAR models for which the use of the GLN distribu-
tion alone, without off-site information, leads to negligible gains whereas the
opposite (i.e., no GLN distribution and off-site information) leads to apprecia-
ble gains.
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Table 2: One-step ahead forecast performances. Results are given in terms of
Normalized Mean Absolute Error (NMAE) and Normalized Contin-
uous Ranked Probability Score (NCRPS). Point (respectively proba-
bilistic) forecast improvements are given with respect to Persistence
(respectively a AR-N model).

Model NMAE NCRPS
Persistence 3.77 -
AR-N 3.87 (-2.7%) 3.38
AR-X-N 3.80 (-0.7%)  3.28 (2.9%)
AR-GLN 3.77 (0.2%)  2.99 (11.7%)
AR-X-GLN 3.70 (1.9%)  2.90 (14.1%)
AR-GARCH-N 3.76 (0.4%)  3.04 (10.2%)
AR-X-GARCH-N 373 (1.1%) 297 (12.1%)

AR-GARCH-GLN 3.76 (0.3%)  2.82 (16.8%)
AR-X-GARCH-GLN  3.67 2.8%)  2.75 (18.7%)

TAR-N 3.84 (-1.9%)  3.05(9.8%)
TAR-X-N 373 (1.0%)  2.96 (12.4%)
TAR-GLN 3.77(0.1%)  2.88 (16.6%)
TAR-X-GLN 370 (1.9%)  2.81(16.9%)
MSAR-N 377 (0.1%)  3.01 (11.1%)
MSAR-X-N 3.67 (2.7%)  2.93 (13.4%)
MSAR-GLN 3.76 (0.3%)  2.79 (17.7%)
MSAR-X-GLN 3.67 (2.8%)  2.71(19.8%)

4.2 Density Forecasts

Forecasts of any quantity contain an inherent part of uncertainty. Supplying
information on this uncertainty is paramount for developing efficient decision-
making strategies, as shown in the context of wind power trading by |Pinson
et al| (2007). Here, information on this uncertainty is provided in the form
of full predictive densities of wind power, for all four classes of models. The
accuracy of these densities is assessed with respect to the Normalized CRPS
(NCRPS). This score is a generalization of the NMAE score for probabilistic
forecasts and measures the difference between the observed cumulative dis-
tribution functions and those predicted (Gneiting et al., 2007). It can be inter-
preted in a similar way as the NMAE, meaning the lower the NCRPS the better.
All models are benchmarked against an AR model with a censored Normal dis-
tribution (AR-N). Results for one-step ahead densities are reported in Table
The best result is given by the MSAR model with off-site information and the
use of the GLN distribution (MSAR-X-GLN), with a relative improvement of
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almost 20% when compared to an AR-N model. In addition, we observe a com-
mon trend across all four classes of models when considered independently
of the others. Their ranking is dominated by models including both off-site
observations and the GLN distribution (X-GLN), then come models specified
with the GLN distribution and no off-site predictors (GLN), then models with
off-site predictors but without GLN distribution (X), and finally models with
neither the GLN distribution nor off-site predictor (N).

Figures[7]and [§|give an illustration of these predictive densities over two arbi-
trary examples of 100 observations each. Densities are depicted as prediction
intervals with nominal coverage rates ranging from 10 to 90%. Point forecasts
corresponding to the median of these densities are also presented. Prediction
intervals generated with the best two models (i.e., ARX-GARCH-GLN and
MSAR-X-GLN) are compared. In particular, in Figure [7} large forecast errors
result in wider prediction intervals for the ARX-GARCH-GLN model than for
the MSAR-X-GLN model.

4.3 Forecast reliability

The CRPS is a global score that averages the predictive accuracy of conditional
densities based on their calibration and associated sharpness. However, it is
not informative on the behavior of these densities in terms of probabilistic re-
liability. Reliability measures how well the predicted probabilities of an event
correspond to their observed frequencies. For instance, one may want to mea-
sure the proportion of observations actually lower than the 5" percent quantile
or larger then the 95 percent quantile for evaluating the ability of the predic-
tive density tails in predicting extreme or rare events. In this study, the reliabil-
ity of the predictive densities of wind power is evaluated with four reliability
diagrams as shown in Figure[9] These diagrams are generated for each of the
four classes of models by comparing the nominal (i.e., theoretical) proportions
of a set of quantiles with the observed proportions of the same set. Here, we
used 19 quantiles, from the 5 percent quantile to the 95 percent quantile
with a step of 5" percent. The best reliability is given by the model whose
diagram is closer to the ideal case in Figure[9} that is the MSAR-X-GLN model.

4.4 Discussion

The results presented in this section highlight a number of interesting points
but also raise a few questions. Let us summarize some of our comments here-
below:
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Figure 7: Example 1. Time series of normalized wind power generation at
Carnsore and one-step ahead point forecasts and prediction inter-
vals with nominal coverage from 10 to 90%. ARX-GARCH-GLN
model (Top panel), MSAR-X-GLN model (Bottom panel).

1. In the Irish case study chosen for this work, the variability of wind power
fluctuations can be considered as extreme. For instance, the NMAE value
of the Persistence is about 50% larger than that at the Horns Rev 1 wind
farm where wind power fluctuations are known to be characterized by

a high variability (Pinson et al., 2008, Trombe et al.,[2012). In that sense,

this case study offered a difficult test to all models, enhancing the impact
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Figure 8: Example 2. Time series of normalized wind power generation at
Carnsore and one-step ahead point forecasts and prediction inter-
vals with nominal coverage from 10 to 90%. ARX-GARCH-GLN
(Top panel) model, MSARX-GLN model (Bottom panel).

of the results obtained.

2. Irrespectively of the availability of off-site measurements, the use of the

GLN distribution is recommended for very short-term forecasts. In par-
ticular, it enables an improved modeling of the heteroscedastic behavior
of wind power time series, which translates to substantial gains in pre-
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Figure 9: Reliability diagram of predictive densities of wind power.

dictability even for models already explicitly accounting for heteroscedas-
ticity in their formulation (i.e., MSARX and ARX-GARCH) . However, it
calls for further research on its potential for multi-step ahead forecasts.
This issue was not addressed here but will be investigated in the fu-
ture. In addjition, focus should be placed on developing a more consistent
framework than cross-validation for estimating the optimal value of the
shape parameter v of the GLN distribution. For instance, the estimation
of v could be performed jointly with the estimation of the model via the
Expectation-Maximization (EM) algorithm (see Dempster et al.|(1977)).

. The results obtained with TARX models are relatively disappointing, par-

ticularly, when analyzed from a perspective including the cost complex-
ity of these models and the level of expertise required to tune them.
It is also worth noting that TAR models are outperformed by linear in
mean ARX-GARCH models. It could be expected that TARX models per-
form much better for point forecasting especially in combination with
the GLN distribution since the introduction of regimes via the thresholds
could reduce the strong influence of the probability masses in (€, v) and
(1 — €,v) on the autoregressive coefficient estimates.

. Density forecasts of wind power generated with Markov-Switching mod-

els have superior calibration and sharpness when compared to those gen-
erated with other models in this study. Beyond this result, it is important
to stress the underlying assumption in MSAR models which leads to such
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result, that is the existence of an unobservable regime sequence which
governs the wind power generation. As of today, our knowledge is lim-
ited and we can only assume that the estimated regime sequence is linked
to some weather regime. Therefore, it would be useful to investigate the
use of data (e.g., quick scan satellite images, weather radar images) that
can describe weather conditions over large spatial areas and high tem-
poral resolutions for improving the characterization of this regime se-
quence.

5 Conclusion

This work considered the probabilistic forecasting of wind power generation
from a single wind farm, over very short lead times (i.e., 15 minutes). Re-
alistic assumptions were made regarding the online availability of wind data
in the current wind power context, meaning that neither wind measurements
nor wind forecasts are available for the temporal resolution of interest. The
sole data that are used consist of on-site observations of wind power genera-
tion, along with corresponding observations from the two nearest wind farms
located in a radius of 50 km. Focus is placed on the most recent approaches
from the wind power forecasting literature, including regime-switching mod-
els, the use of off-site predictors and a new predictive distribution. The predic-
tive performances of these approaches and their associated models are com-
pared against one another to assess their respective merits. Eventually, com-
binations of these approaches are proposed and proved to generate improved
wind power forecasts.

Through an application with three wind farms in Ireland, we show that regime-
switching models for which the sequence of regime is unobservable (i.e., Markov-
Switching) generate more accurate point forecasts, better calibrated and sharper
conditional densities, than single regime or other regime-switching models for
which the regimes are observable. Furthermore, gains in wind power pre-
dictability can be increased by taking advantage of off-site information when
available or using a more appropriate predictive distribution such as the GLN
distribution, as introduced in Pinson| (2012). The highest gains were obtained
by using simultaneously off-site observation and the GLN distribution.

The superior predictive power of Markov-Switching models is interesting in
two aspects. First, because this type of models is rather generic and thus
non site-dependent, requiring very little expert knowledge to be tuned. It
confirms the potential shown for offshore applications (Pinson et al., 2008,
Trombe et al., [2012). Second, because Markov-Switching models assume the
existence of an unobservable regime sequence that can be interpreted as a hid-
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den weather regime. This indicates that substantial gains in wind power pre-
dictability could be obtained by integrating more meteorological data at high
spatio-temporal resolution such as satellite images, weather radar images, or
meteorological forecasts. In particular, this a prerequisite for extending regime-
switching approaches to multi-step ahead wind power forecasts.
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Abstract

Offshore wind fluctuations are such that dedicated prediction
and control systems are needed for optimizing the management
of wind farms in real-time. In this paper, we present a pioneer
experiment — Radar@Sea — in which weather radars are used for
monitoring the weather at the Horns Rev offshore wind farm, in
the North Sea. First, they enable the collection of meteorologi-
cal observations at high spatio-temporal resolutions for enhanc-
ing the understanding of meteorological phenomena that drive
wind fluctuations. And second, with the extended visibility they
offer, they can provide relevant inputs to prediction systems for
anticipating changes in the wind fluctuation dynamics, generat-
ing improved wind power forecasts and developing specific con-
trol strategies. However, integrating weather radar observations
into automated decision support systems is not a plug-and-play
task and it is important to develop a multi-disciplinary approach
linking meteorology and statistics. Here, (i) we describe the set-
tings of the Radar@Sea experiment, (ii) we report the experience
gained with these new remote sensing tools, (iii) we illustrate
their capabilities with some concrete meteorological events ob-
served at Horns Rev, (iv) we discuss the future perspectives for
weather radars in wind energy.
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1 Introduction

A substantial number of large-scale offshore wind farms have been deployed in
Northern Europe over the last few years, and the plan is to keep on expanding
offshore wind power in the near future (Danish Energy Agency, 2007). Along
that expansion, the development of specific methodologies for wind resource
assessment in offshore environments has received much attention. In partic-
ular, the use of remote sensing techniques has led to significant advances in
that domain (Sempreviva et al., 2008). In comparison, much less attention has
been given to operational issues linked to the predictability and controllability
of these large offshore wind farms Serensen et al. (2007). And yet, the poten-
tial magnitude of wind fluctuations is such that advanced control strategies
are indispensable and have to be performed in real-time (Kristoffersen), 2005),
even more when weather conditions become extreme (Cutululis et al., 2011).
Offshore wind power fluctuations also induce additional challenges for Trans-
mission Systems Operators (TSO) in maintaining the balance between electric-
ity production and demand (Akhmatov et al., 2007). For these applications,
the availability of accurate wind power forecasts is a prerequisite. In particu-
lar, there is a large consensus on the growing importance of such forecasts at
specific temporal resolutions of 5-10 minutes, and look-ahead times of a few
hours (Jones and Clarkl, 2011).

Short-term wind power forecasts, from a few minutes up to a few hours, are
preferably generated with statistical models using historical data. However,
today, operational prediction systems for offshore wind farms are not funda-
mentally different than for onshore wind farms (Giebel et al|, 2011). They tra-
ditionally rely on meteorological forecasts (e.g., wind speed and direction)
whose temporal resolution is usually between 1 and 3 hours, and up to a fore-
cast length of 48-72 hours. This acts as a limitation when it comes to capturing
the intra-hour volatility of offshore wind power fluctuations induced by mete-
orological phenomena in the boundary layer, even more when meteorological
forecasts are misleading (e.g., phase errors). Furthermore, it is a well-known
issue that the layout of offshore wind farms, concentrating a high density of
wind turbines within a small geographical area, makes the impact of local me-
teorological phenomena on their power production stronger than at onshore
sites where smoothing effects occur. These issues were addressed in several
recent studies which alternatively proposed the use of regime-switching mod-
els (Pinson et al.| 2008, Trombe et al.,2012), a new type of predictive density (?),
or local wind speed and direction measurements as new inputs (Gallego et al.,
2011). However, even though these models give evidence of their interesting
predictive power, their ability to accurately predict the most severe fluctuations
remain very limited and offshore wind power forecasts are characterized by
large uncertainties. This also highlights the limitations of local wind measure-
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ments (e.g., from nacelle anemometry and SCADA systems) when it comes to
upcoming changes in weather conditions on spatial scales of kilometers. Mete-
orological observations that cover a broader spatial area are thus required, not
only to improve our understanding of the phenomena driving mesoscale wind
fluctuations, but also to provide more informative inputs to prediction models.

In wind power forecasting, there is a need for new and multi-disciplinary ap-
proaches combining the expertise of meteorologists, forecasters, control engi-
neers and wind farm operators. This is the idea developed in an ongoing exper-
iment — Radar@Sea — which proposes the use of weather radars, novel remote
sensing tools in wind energy, for the online observation of the atmosphere at
offshore sites. This experiment is motivated by recent advances in the mod-
eling of wind fluctuations at Horns Rev, Denmark, and the identification of
several climatological patterns correlated with periods of increased wind speed
variability, for time scales from 10 minutes up to 1 hour (Vincent et al.,|2011). In
particular, precipitation and large wind speed fluctuations are often observed
simultaneously. Weather radars are the ideal tools to detect, locate and quantify
precipitation. They have become essential tools in real-time decision support
systems for tracking and predicting natural hazards. More generally, owing
to their techniques, they offer an extended visibility of the weather conditions
over substantially large areas. Therefore, they have the potential for anticipat-
ing the arrival of weather fronts and other meteorological phenomena which
intensify offshore wind fluctuations. It is even more important for some off-
shore wind farms that cannot benefit from upwind information, being the first
hit by the onset of particular weather regimes.

The experiment we present in this paper is the first of this type for wind energy
applications worldwide, to our knowledge. Yet, lessons learnt from the use
of weather radars in hydrological and meteorological sciences show that inte-
grating weather radar observations into automated decision support systems
is not a plug-and-play task. The volume and complexity of weather radar ob-
servations are such that specific diagnosis tools have to be developed for data
quality control, data visualization and feature extraction (see, for instance, Lak-
shmanan et al.| (2007) for a detailed description of the WDSS-II system for se-
vere weather nowcasting). Therefore, a thorough understanding of the weather
radar techniques, capabilities and limitations, as well as the field of applica-
tion are expected to influence the design of the final decision support system.
For those reasons, we think that the experience gained through the Radar@Sea
experiment could be a valuable source of information to other researchers fol-
lowing a similar approach.

The structure of this paper is as follows. In section 2, we give an introduction
to the meteorological conditions (precipitation and wind fluctuations patterns)
over Denmark and the North Sea. In section 3, weather radars principles, capa-
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bilities and limitations are presented. In section 4, we describe the Radar@Sea
experiment along with the two weather radar syst