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Investigation of Parameters Affecting Gypsum Dewatering
Properties in a Wet Flue Gas Desulphurization Pilot Plant
Brian B. Hansen* and Søren Kiil

Department of Chemical and Biochemical Engineering, Technical University of Denmark, DTU, Building 229, DK-2800 Kgs. Lyngby,
Denmark

ABSTRACT: Wet flue gas desulphurization (FGD) plants with forced oxidation, installed at coal and oil fired power plants for
removal of SO2(g), must produce gypsum of high quality. However, quality issues such as an excessive moisture content, due to
poor gypsum dewatering properties, may occur from time to time. In this work, the particle size distribution, morphology, and
filtration rate of wet FGD gypsum formed in a pilot-scale experimental setup, operated in forced oxidation mode, have been
studied. The influence of holding tank residence time (10−408 h), solids content (30−169 g/L), and the presence of impurities
(0.002 M Al2F6; 50 g quartz/L; 0.02 M Al3+, and 0.040 M Mg2+) were investigated. In addition, slurry from a full-scale wet FGD
plant, experiencing formation of flat shaped crystals and poor gypsum dewatering properties, was transferred to the pilot plant to
test if the plant would now start to produce low quality gypsum. The crystals formed in the pilot plant, on the basis of the full-
scale slurry did, however, show acceptable filtration rates and crystal morphologies closer to the prismatic crystals from after pilot
plant experiments with demineralized water. The gypsum slurry filtration rates were generally high, but a shorter residence time
(10 h) and gypsum crystals experiencing breakage and/or attrition (408 h) showed slightly lower filtration rates. Both these
experiments contained a higher fraction of fines, which may explain the slightly lower filtration rates. Crystals formed at a higher
solids concentration and longer residence time (169 g/L and 120 h) showed a higher proportion of flat crystals, and the XRD
pattern contained strong peaks at 31.1° (as the full-scale gypsum) and 29.1°, but no change in the filtration rate was obtained. It
has not been possible in the pilot plant to form flat gypsum flakes with poor dewatering properties similar to those observed in
full-scale plants.

1. INTRODUCTION

The combustion of fossil fuels, such as coal, oil, and natural gas,
covers a substantial part of the global energy demand. Fuel
resources can be efficiently utilized in combined heat and
power plants with flue gas cleaning technologies, such as
selective catalytic reduction (SCR), wet flue gas desulphuriza-
tion (FGD), and electrostatic precipitation, installed to
minimize emissions.
The wet flue gas desulphurisation process can remove acidic

gases (SO2, HCl, and HF) in an absorption step by bringing the
flue gas into contact with an alkaline slurry, where the solids
consist of finely ground limestone (with impurities such as
silica, iron, and magnesium) and gypsum particles.1,2 The HCl
and HF absorbed remain in solution, and the concentration of
Cl− and other impurities are controlled by a purge stream. The
SO2 dissociates to hydrogensulfite ions (HSO3

−), which are
again oxidized to sulfate ions (SO4

2−) by oxygen from air
injection. Finally, SO4

2− ions combine with Ca2+ ions and
crystallize as gypsum (CaSO4·2H2O) according to the
following equation
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In 1999 the gypsum producing wet scrubber constituted the
majority (>60%) of FGD capacity installed at power plants
worldwide1 and is still the dominant FGD technology today
producing a significant part of the world’s gypsum. The
crystallization process includes the formation (nucleation) and

growth of solid crystals from a supersaturated solution (SS).
Super saturation is expressed mathematically by
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For growth to take place, SS must be positive. The particle
size distribution (PSD) and morphology obtained depend on
the growth rate (supersaturation-dependent) as well as the
potential adsorption of foreign species onto specific crystal
surfaces.3 The gypsum produced is withdrawn, washed, and
dewatered using hydrocyclones, centrifuges, or vacuum belt
filters until a commercial product is obtained. Commercial
applications include wallboard and cement production and soil
conditioning, for which different specifications apply, with
respect to purity, moisture content (size and morphology
dependent), and the content of different impurities (residual
limestone and calcium sulphite, CaSO3·2H2O). Wet FGD
gypsum crystals are usually 5−50 μm, rhomboidal in shape, and
of a high purity (>98%),4 but quality issues, such as a decreased
dewatering rate, can occur resulting in expenses for additional
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processing or disposal. Decreased dewatering rates may be
caused by both increased levels of small particles and by
morphology changes, which favor a closer packing of the
gypsum crystals (Figure 1). Short residence times, excessive
nucleation (high supersaturation) or breakage may decrease the
particle size, while the crystal morphology can be affected by
temperature, growth rate (supersaturation), and impurities as
discussed in further details below
Commercial gypsum may also be obtained from other

sources, for instance mining of deposits from brine evaporation
or industrial processes such as phosphoric acid and hydrogen
fluoride production. Differences in gypsum properties may
result from different growth conditions such as temperature,
concentration of salts, and humic compounds (organic
constituents of soil).6 An increasing concentration of
deprotonated humic compounds has been reported to favor
gypsum twin/rosette aggregate morphologies, while high
temperature and salinity (60 °C and 30% NaCl, respectively)
yield blocky aggregates of bassanite (2CaSO4·H2O).6,7

Industrial gypsum may also exhibit different morphologies,
probably due to the presence of specific impurities which
occupy the most favorable binding sites, thereby affecting the
rate of ion incorporation (crystal growth) and the resulting
crystal morphology.3 Differences in the supersaturation of the
liquid phase may also affect morphology, with higher degrees of
supersaturation favoring longer and thinner needle-like
crystals.8,9 Hemihydrate and gypsum formed during phosphoric
acid production has in the presence of 0.100 mol/kg aluminum
fluoride complexes (AlF2+ to AlF6

3−) and elements from the
lanthanides series (at a concentration of 0.0003 M) shown
inhibited growth of specific crystal faces, changes in crystal
morphology (toward flat shaped crystals), filterability, and
washability of the filter cake, but it should be remembered that

this process takes place at a lower supersaturation and higher
temperatures (up to 90 °C) than wet FGD.10−12 Iron,
manganese, and magnesium have also been reported to
negatively affect the dewatering performance of wet FGD
gypsum. A contamination with 0.02 M Mg2+ or Fe3+ was
enough to reduce the growth rate and change the crystal
morphology toward needle-shaped crystals.2,10,13 In addition,
breakage along characteristic mineral planes may also change
the crystal morphology obtainedgypsum can exhibit perfect
cleavage in one direction because of the water layers separating
calcium-sulfate layers in the crystal lattice.14 Several studies on
the theoretical predictions of gypsum equilibrium morphology
(prismatic/rhombic) and growth morphology (flat/plate-like,
due to water absorption) have furthermore been pub-
lished.15−17

In this work the dewatering properties of gypsum produced
in a wet FGD pilot plant have been investigated and compared
to wet FGD gypsum from a full-scale plant (Asnæs Power Plant
Unit 2, DK) experiencing dewatering problems. The full-scale
wet FGD plant in question is a CT-121 jet bubbling reactor and
a dewatering system consisting of hydrocyclone batteries
followed by a vacuum belt filter.

2. STRATEGY OF INVESTIGATION

This investigation of wet FGD gypsum dewatering properties is
based on a series of pilot-scale experiments with different slurry
compositions and residence times. The pilot plant enables a
high degree of control of the experimental conditions such as
gas phase composition, slurry pH, and residence time. The
conditions of the experiments performed have been chosen to
investigate the effect of slurry composition (impurities, content
of fines and flat crystals), solid concentration, and slurry
residence time on gypsum PSD, morphology, and filtration rate.

Figure 1. Scanning electron microscopy picture of flat gypsum crystals with poor dewatering properties. Reprinted with permission from the work of
Hansen et al.5 Copyright 2011 Elsevier.
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Aluminum fluoride complexes, Mg2+, Al3+, and full-scale slurry
with high concentrations of fines18 have all been linked to
morphology changes (inhibited growth of specific crystal faces)
and poor dewatering properties. Long residence times and high
solid concentrations can occur at full-scale wet FGD plants
during low sulfur coal/biomass combustion at partial power
plant load and these conditions create a potential for changes in
PSD and morphology through breakage/attrition. Slurry
samples were withdrawn and analyzed in terms of filtration

time, PSD, morphology, and elemental composition (selected
elements only).

3. EXPERIMENTAL SETUP AND PROCEDURE
Description of Setup. The wet FGD pilot plant, outlined

in Figure 2, simulates a single vertical channel in a full-scale
cocurrent flow wet FGD grid absorber. A 110 kW natural gas
burner generates the flue gas and SO2 (AGA Gas AB) is
subsequently added before it is brought into contact with a

Figure 2. Outline of wet FGD pilot plant used in the experiments. The absorber is based on the falling film principle, and the gas and liquid phases
flow cocurrently. Reprinted with permission from the work of Hansen et al.19 Copyright 2011 American Chemical Society.

Table 1. Overview of Experiments Performed and Operating Conditionsa

experiment addition feed tank addition holding tank slurry τ (h) flue gas (N m3/h) SO2 ppm(v) duration

1a: ASV2 slurry ASV liquid phaseb ASV slurry 30 18 990 ∼1τ
1b: base case 30 17 950 ∼21/2τ
2: seed crystals ASV process water AVV gypsumd 28 17 1030 ∼2τ
3: Al2F6 0.002 M Al2F6 0.002 M Al2F6 25 17 1000 ∼2τ
4: quartzc 50 g quartz/l 50 g quartz/l 30 17 1030 ∼5τ
5a. Mg2+ 0.04 M Mg 0.04 M Mg 35 17 1010 ∼3τ
5b: Al3+ 0.02 M Al 0.02 M Al 27 17 1010 ∼2τ
5c: base case 30 17 980 ∼11/2τ
6: τ = 10 h 10 18 980 ∼5τ
7: τ = 80 h 83 16 270 ∼21/2τ
8a: τ = 120 h high density 122 17 510 ∼11/2τ
8b: Breakage 408 h

aτ = residence time. bCoarse gypsum particles separated by sedimentation and liquid phase including fines used for limestone feed slurry. cQuartz
PSD (20% < 5 μm). dGypsum from Avedøre Power Station (high filtration rate).
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slurry based on Faxe Bryozo limestone, with a purity above 97
wt %, in the 7 m absorber. Multiple sampling sites along the
absorber enable measurements of gas phase composition
profiles and slurry pH. The slurry is collected in a 110 L
holding tank, where air injection, reactant addition (for
maintaining a constant holding tank pH), and slurry removal
(for maintaining a constant slurry level) take place. From the
holding tank, the slurry is recycled to the absorber, ensuring a
liquid/gas ratio of 16−18 L slurry/m3

flue gas (STP).
Additional details concerning the pilot plant can be found in
previous publications.20,21

Experimental Procedure. The experimental series were
initiated by at least 2 days of desulphurisation of a 1000 ppm(v)
SO2 (g) flue gas stream using a feed stream containing 7.1 wt %
Faxe Bryozo limestone. This allowed the system to approach
steady state operation in terms of gypsum content, residual
limestone content, and desulphurisation degree. The different
operating conditions in Table 1 were then introduced one at a
time and operation continued for at least one residence time
(usually more). If an experiment is performed with the slurry
from the preceding experiment, this is indicated by the use of
the same “exp number” but with a letter (e.g., “a”, “b”) to
distinguish experiments. Quartz was added in exp 4 to
investigate the influence of fines, which has been linked to
changes in morphology.18 A diluted feed stream was used to
generate a short residence time in exp 6, and a concentrated
feed stream was used to the increase the slurry density (higher
gypsum concentration) in exp 8a. Experiment 8b investigates
the influence of long-term breakage/attrition on crystal size and
morphology while no crystal growth takes place, simulating wet
FGD operation during low sulfur coal/biomass combustion at
partial power plant load. Chemicals used include:
MgSO4·7H2O (Fluka 99%), AlCl3·6H2O (Sigma Aldrich
99%), NaF (Sigma Aldrcih 99%), and quartz powder (Ormslev
kvartsværk “Kvartsmel” d20% < 5 μm).
The limestone consumption (change in weight of feed tank),

the flue gas flow rate (Flemco flowmeter), the holding tank pH
(Yokogawa FU20), and the SO2 concentration (Rosemount
NGA 2000) were monitored throughout the experiments. Each
experiment was concluded by withdrawing two slurry samples
from the holding tank for analysis of particle size distribution,
crystal morphology, and filtration rate. The slurry samples for
PSD analysis were stored for up to a few days at room
temperature before analysis. The limited solubility of gypsum
(about 2 g/L), compared to the slurry concentration (>100 g/
L), and its invariability with temperature22 ensured that no
major changes in PSD took place during storage, as has been
previously verified.23 Two individual PSD analyses were
performed by laser diffraction (Malvern Mastersizer S longbed)
on an ethanol/slurry dispersion of each sample, all analyses
representing the average of 5 measurements. The filtration rate
was obtained by measuring the time it took the 80 mL slurry
sample to pass through a 0.45 μm filter in a Büchner funnel.
The collected crystals were subsequently dried at 40 °C and
used to study the morphology and crystallographic structure by
scanning electron microscopy (FEI Inspect S) and X-ray
powder diffraction (PANalytical X’pert PRO Diffractimeter).
Information on the crystallographic structure/crystal lattice
planar distance (d) is obtained by applying Bragg’s law (nλ = 2d
sin Θ) for a range of incident angles (Θ). A few samples were
furthermore screened in terms of the elemental composition of
the liquid and solid phase, and the concentration of selected
elements (Al, Na, Cl, F) was determined. The samples for

analysis of the ionic liquid composition were passed through a
0.45 μm filter and diluted 1:2 with laboratory grade pure water
to prevent further precipitation. The solid crystals (collected
from the filter) were either dissolved in a warm mixture of acids
(HF and HNO3), neutralized by H3BO3, and analyzed by
inductively coupled plasma optical emission spectrometry
(Perkin-Elmer Optima 3000 ICP-OES) for cation detection
or dissolved in excess laboratory grade pure water and analyzed
by ICP-OES (Spectro Ciros-CCD) for anion detection.

4. RESULTS AND DISCUSSION
The experimental work includes 12 wet FGD experiments
using different slurry compositions (1a−5c), solids content (7−
8b), and residence times (5c−8b) to investigate their impact on
gypsum particle size distribution, morphology, and filtration
rate. Details of the experiments are given in Table 1.

Effect of Experimental Conditions on Filtration Rate.
The filtration times and slurry solids concentrations of the
experiments performed are shown in Table 2. The diluted

limestone feed stream used in the experiment with a short
residence time (τ = 10 h) also causes a lower solids
concentration. The solids concentrations in the base case and
the Al3+ experiments are also below the average, due to a minor
water leak from an external water tank entering the system
through the air injection line. Experiments 5a (Mg2+), 5b
(Al3+), and 5c (base case), with very similar particle size
distributions and morphologies (will be illustrated in the next
sections) yield reasonably consistent filtration times (75, 55,
and 65 s, respectively)
The filtration time of the full-scale slurry (exp 1a, 1200 s)

differs significantly from the other experiments (generally about
60 s), including an experiment with seed crystals from Avedøre
power plant (exp 2). However, gypsum crystals formed in the
pilot plant in the presence of ASV2 liquid phase show a highly
reduced filtration time (about 180 s). The gypsum produced at
short residence times and after 408 h attrition/breakage both
showed slightly increased filtration times (140−170 s). The
filtration rate may be affected by mechanisms changing the
morphology or the PSD, this will be discussed in further detail
in the following sections.

Table 2. Filtration Time, Mass Collected, and Slurry Solid
Concentrationa

experiment
filtration time

(±10 s)
mass

collected (g)
concentration

(g/L)

1a: ASV2 slurry
(before)

1200 5.6 84

1a: ASV2 slurry
(after)

180 8.0 116

1b: base case
2: seed crystals 60 6.8 125
3: Al2F6 50 7.8 105
4: quartz 45 10.0 129
5a. Mg2+ 75 11.6 132
5b: Al3+ 55 6.5 80
5c: base case 65 6.5 77
6: τ = 10 h 140 8.0 27
7: τ = 80 h 65 8.0 99
8a τ = 120 h high
density

55 13.9 169

8b: breakage 170 18.1 280
aτ = residence time.
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Effect of Process Parameters on Gypsum Particle Size
Distribution. Figures 3 and 4 and Table 3 show the particle

size distribution and the volumetric mean particle diameter,
respectively. The base case particle size distribution and mean
particle size corresponds well with previously published data
from the pilot plant (d50 = 42.8 μm)5 while it was slightly lower

in fines than previously investigated gypsum from full-scale
plants (d50 = 34.9−41.3 μm).5 A high mean particle size and
good filtration properties were obtained for the base case
experiment as well as experiments with Al3+ and Mg2+ addition.
A lower mean particle size is obtained in the experiments with
quartz addition and long residence times, but short filtration
times are still obtained. The particle size distributions in these
experiments are shifted toward smaller particles, but without
any significant changes in the level of particles smaller than 10
μm. The experiments with full-scale slurry, short residence
times, and 408 h breakage (1a, 1b, 6, and 8b) yield a lower
mean particle size, higher levels of particles below 10 μm (least
pronounced in exp 8b), and longer filtration times (especially
for the full-scale slurry). A short residence time means less
growth time for the crystals, thereby yielding smaller crystals,
while the experiments with longer residence times (7, 8a, and
8b) may facilitate breakage/attrition and a slower crystal
growth rate (a lower SO2 concentration was used yielding a
lower supersaturation). Fine particles may furthermore be
introduced into a full-scale plant via dust in the flue gas,
impurities in the process water and excessive nucleation

Effect of Experimental Conditions on Crystal Mor-
phology. The crystals formed during the base case experiment
were columnar shaped (Figure 5), corresponding well with the

morphologies reported in literature at lower degrees of
saturation (S ≤ 1.2).7,8 A similar morphology was obtained in
experiments with Al2F6 (exp 3), quartz (exp 4), Mg2+ (exp 5a),
Al3+ (exp 5b), and a prolonged residence time (exp 7), the
crystals in the latter experiment were, however, a bit more
compact. The strongest X-ray diffraction peak of these gypsum
samples (Figure 6) was at 11.6° (020 face), with strong and
moderate peaks at 20.7° (−1−21 face), 23.4° (040 face), 29.1°
(−1−41 face), and an additional moderate peak at 31.1° (121
face) for the gypsum with quartz addition and the gypsum
formed at a prolonged residence time. The peaks at 20.7° and
29.1° were more distinct in the base case gypsum than in the
other samples. The shorter residence time, lower gypsum

Figure 3. Particle size distribution (frequency curves) of selected
experiments.

Figure 4. Particle size distribution (frequency curves) of selected
experiments.

Table 3. Volumetric Mean Particle Size (D50%)
a

experiment D50% (μm)

1a: ASV2 slurry (before) 34.5 ± 0.1
1a: ASV2 slurry (after) 42.5 ± 0.1
1b: base case
2: seed crystals
3: Al2F6
4: quartz 39.4 ± 0.3
5a. Mg2+ 46.0 ± 1.0
5b: Al3+ 45.1 ± 0.1
5c: base case 44.1 ± 0.1
6: τ = 10 h 38.6 ± 0.2
7: τ = 80 h 31.3 ± 0.2
8a τ = 120 h high density 33.9 ± 0.1
8b: breakage 31.1 ± 0.1

aτ = residence time.

Figure 5. Scanning electron microscopy picture of gypsum crystals
from the base case experiment (exp 5c). Experimental conditions can
be found in Table 1.
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concentration, and, thereby, potentially higher supersaturation
(not measured) in experiment 6 formed more elongated
crystals (Figure 7) compared to the other experiments, also in

agreement with other investigations.8,9 The strongest X-ray
diffraction peak was still at 11.6° (020 face), with moderate
peaks at 20.7°, 23.4°, and 29.1°. The thin gypsum flakes from
the full-scale wet FGD plant differed significantly from the
crystals from all other experiments. The crystal aspect ratio did,
however, decrease, and the filtration rate increase, in the pilot
plant during growth in the presence of ASV liquid phase
(experiment 1a, see Figure 8). The strongest X-ray diffraction
peak was at 31.1° with moderate peaks at 11.6, 20.7°, 29.1°,
33.3° (051 face), and 35.9° (200 face). The intensity of the
20.7° and 29.1° peaks increased significantly during experiment
1a. Crystals formed at higher solids concentrations, and longer
residence times (exp 8a) showed a higher proportion of flat
crystals (as in Figure 8) and strong XRD peaks at 20.7°
(strongest), 29.1°, and 31.1°, while crystals exposed to long-

term attrition (exp 8b) showed similar XRD peaks (29.1° and
31.1° were slightly more powerful) and more rounded shapes
(Figure 9), similar to gypsum from full-scale wet FGD plants.5

The flatter crystals formed at higher solids concentrations and
longer residence times (exp 8a) also possessed the strong XRD
peak at 31.1° seen for the ASV2 gypsum, but also a much
stronger 29.1° peak, and the morphology change did not affect
the filtration rate. In summary, none of the pilot plant
experiments performed could form the flat ASV2 gypsum
crystals associated with low filtration rates.

Gypsum Slurry Impurities. The X-ray diffraction analysis
identified gypsum as the major compound in all samples, but

Figure 6. XRD patterns for selected samples (Cu Kα1).

Figure 7. Scanning electron microscopy picture of gypsum crystals
formed at a short solids residence time (exp 6 τ = 10 h). Experimental
conditions can be found in Table 1.

Figure 8. Scanning electron microscopy picture of gypsum crystals
formed in the pilot plant with slurry from full-scale plant (exp 1a).
Experimental conditions can be found in Table 1.

Figure 9. Scanning electron microscopy picture of gypsum crystals
formed at high solids concentration and long residence time (exp 8a τ
= 120 h). Experimental conditions can be found in Table 1.
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changes in crystals morphology are often associated with
adsorption of small amounts impurities onto specific crystal
faces, thereby affecting the rate of ion incorporation (crystal
growth) and the resulting morphology. Table 4 shows the

concentration of selected impurities (Al, Na, Cl, F, and P) for
six full-scale and pilot-scale samples (three with solid gypsum
and three with liquid phase). The impurities initially present in
the ASV2 gypsum gradually disappear in the pilot plant (exp
1a), and the crystal thickness and filtration rate increase, despite
the use of the liquid phase from the full-scale slurry. Traces of
iron, potassium, magnesium, silicon, and titanium were
furthermore detected in addition to high levels of calcium
(from gypsum). Pilot scale experiments with Al3+, Mg2+, and F−

added showed no effect of these species on gypsum
morphology. The elements present in wet FGD systems
depend on fly ash escaping the particulate filter, gaseous
elements absorbed, and impurities from limestone and process
water. The elements measured in this work correspond well
with other investigations, but additional species such as zinc,
copper, manganese, molybdenum, and vanadium may also be
encountered.4

■ CONCLUSION
A systematic pilot-scale investigation of wet FGD gypsum
dewatering properties has demonstrated that high quality
gypsum with favorable dewatering properties can be produced
in a pilot scale setup over a wide range of operating conditions.
A decreased holding tank solids residence time (from 30 to 10
h) did, however, yield elongated crystals, an XRD pattern
dominated by a strong peak at 11.6° (peaks at 20.7° and 29.1°
were less powerful than in the base case), a higher fraction of
fines, and a slightly lower filtration rate, possibly due to higher
degrees of supersaturation. Long-term attrition (408 h) also
shifted the PSD toward smaller particles and decreased the
filtration rate. Gypsum from a full-scale plant experiencing
dewatering problems contained an increased fraction of fines
and had a significantly different morphology (thin gypsum
flakes) and XRD pattern (dominated by a strong peak at
31.1°). The properties of these crystals did, however, improve
(and the impurity content decreased) during subsequent
growth in the pilot plant both in the presence of liquid phase
from the full-scale plant and demineralised water. A shift
toward flatter crystals was obtained at higher solids
concentrations and longer residence times (169 g/L and 120
h), and the XRD pattern contained strong peaks at 31.1° (as
the full-scale gypsum) and 29.1°, but the morphology change
did not affect the filtration rate.

An increased processing time may to some extent overcome
poor dewatering properties, but efforts to change the PSD or
morphology should also be considered. The presence of growth
retarding species may significantly influence the gypsum PSD
and morphology3but no specific compounds were identified
to be of importance in the present study. This effect may be
reduced by an increased wastewater withdrawal, optimization of
the preceding particulate control device, a change in the
limestone source, and process water pretreatment. High
degrees of supersaturation may furthermore increase nucleation
rate and favor needle-like crystals. The supersaturation in a wet
FGD plant is influenced by the sulfur content of the fuel used,
the desulphurisation degree as well as the total crystal area
available for growth. Finally, an increased slurry volume or
solids concentration can provide both potentially positive
(longer residence time) and negative effects (increased
exposure to breakage or attrition and an increased surface
area due to lower growth rate).
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■ NOMENCLATURE
a = activity [M]
c = concentration [M]
d = crystal lattice planar distance
D20% = particle size under which 20% of the total volume is
located [μm]
D50% = volumetric mean diameter [μm]
Fv = cumulative volumetric distribution [−]
Ks = solubility product [M2]
l = particle size [μm]
n = order of reflection
SS = degree of super saturation [−]
γ = activity coefficient [−]
Θ = incident X-ray angle
λ = X-ray wavelength
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