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Abstract

The canard explosion is the change of amplitude and period of a limit cycle born in a
Hopf bifurcation in a very narrow parameter interval. The phenomenon is well understood
in singular perturbation problems where a small parameter controls the slow/fast dynam-
ics. However, canard explosions are also observed in systems where no such parameter is
present. Here we show how the iterative method of Roussel and Fraser, devised to construct
regular slow manifolds, can be used to determine a canard point in a general planar system of
nonlinear ODEs. We demonstrate the method on the van der Pol equation, showing that the
asymptotics of the method is correct, and on a templator model for a self-replicating system.
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1 Introduction
Since the original discovery of canards in the van der Pol equation more than 30 years ago [1],
they have been identified in numerous systems of nonlinear ODEs. A canard is a trajectory
which stays close to a repelling slow manifold for an extended amount of time. Canards play
a key role as parts of transitional limit cycles linking small cycles born in a Hopf bifurcation
with large relaxation oscillations when a parameter is varied. Since this transition typically takes
place over a very short parameter interval, and easily may be mistaken for a discontinuous event,
the phenomenon has been denoted a canard explosion.

The mathematical theory for canards is well-established for singular perturbation systems of
the form

ẋ = f (x,y,c,ε), ẏ = εg(x,y,c,ε), (1)

where ε is a small parameter and c is a bifurcation parameter see e.g. [1, 8, 10]. In particular,
asymptotic expansions in terms of ε of the canard point cc, the parameter values where the longest
canards exist, can be obtained [13, 3]. However, canard explosions have also been observed in
many systems that do not have an explicit slow/fast structure with a well-defined small parameter
ε ,

ẋ = F(x,y,c), ẏ = G(x,y,c). (2)

In some cases a small parameter can be identified after coordinate transformations [4], while in
other cases an artificial parameter must be introduced to allow an asymptotic expansion [5, 6].
After the expansion, the artificial parameter is set to one to recover the original system.

While these approaches have been successful, they are somewhat ad-hoc, and it would be
of interest to establish a systematic approach to identify and locate canard explosions in general
systems of the form Eqns. (2). The purpose of the present paper is to provide such a procedure.
It is a simple modification of the iterative method by Fraser and Roussel [9, 11] for finding slow
manifolds. We show that for the van der Pol equation with a distinguished small parameter the
method gives the correct asymptotic result. For the templator model [4] with no small parameter
we get an excellent agreement between the canard point found from simulations and the lowest-
order canard point from the method.

2 The canard explosion
Here we briefly review the basics of the theory for the canard explosion for Eqns. (1). The curve
defined by f (x,y,c,0) = 0 is denoted the critical manifold S. For ε = 0, S consists of fixed
points and assuming that it has a fold, the local phase portrait is as shown in Fig. 1. For ε > 0 it
follows from standard Fenichel theory (see e.g. [12]) that on the stable side of S an attracting slow
manifold MS exists and on the unstable side a repelling slow manifold MU exists. The existence
and the normal hyperbolicity of these manifolds is guaranteed by the theory away from the fold
point only. However, as trajectories they may be extended across the fold point. In general, MS
and MU will be distinct, but for a special value of c = cc they may coincide and form a single
trajectory, a canard. Clearly, the shape of a limit cycle will change dramatically if the parameter
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Figure 1: Canard explosion in a singular perturbation system, Eqns. (1). As trajectories cross
the fold of the critical manifold S, they are either repelled down or up, depending on the relative
position of the slow manifolds MS and MU .

is varied across cc. If MU is above MS as in Fig. 1(a) only small limit cycles will be possible. If
MU is below MS as in Fig. 1(b) the limit cycles will be large.

The single trajectory MS = MU and the corresponding parameter value cc can be found
asymptotically. For the equation for the trajectories

f (x,y,c,ε)
dy
dx

= εg(x,y,c,ε) (3)

a Poincaré-Lindstedt series is inserted,

y = y0 + y1ε + y2ε
2 + · · · , cc = c0 + c1ε + c2ε

2 + · · · . (4)

Collecting terms of the same order in ε algebraic equations for the yk are obtained. These will
in general have a singularity at the fold point, but there will be a choice of ck−1 such that this
singularity cancels and yk is well-defined at the fold point. This choice defines the canard point
and yk is the corresponding canard solution.

3 A general iterative procedure
For Eqns. (2) we can also write down the equation for the trajectories,

F(x,y,c)
dy
dx

= G(x,y,c). (5)

Following Fraser and Roussel [9, 11], we solve this equation for y algebraically,

y = Φ

(
x,

dy
dx

,c
)
. (6)

Clearly, it must be assumed that such a solution exists, at least locally. From this equation an
iterative procedure can be established,

yk = Φ

(
x,

dyk−1

dx
,c
)
. (7)
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To start the iteration we choose y0 such that F(x,y0(x,c),c) = 0, that is, the ∞-isocline. Again,
we must assume that this equation can be solved for y0. Other choices will be possible, but we do
not have space here to discuss this issue. Typically yk will have a singularity. Since yk depends
on c, we will choose the value in each step such that this singularity cancels. This defines the
procedure for finding canards and canard points for Eqns. (2).

4 The van der Pol equation
We now demonstrate the iterative method on the van der Pol equation

ẋ = y− (x3/3− x), ẏ = ε(c− x). (8)

This system has a canard explosion for c close to 1 when ε is small and positive. The procedure
from § 2 yields for the canard point [13]

cc = 1− 1
8

ε− 3
32

ε
2− 173

1024
ε

3 +O(ε4). (9)

The iterative procedure Eqn. (7) is defined by

yk+1 = x3/3− x+ ε
c− x

y′k
(10)

with starting point
y0 = x3/3− x. (11)

4.1 A numerical example
We consider first the van der Pol system Eqns. (8) with ε = 0.1. The asymptotic formula for the
canard point Eqn. (9) yields cc = 0.986394.

The iterative process runs as follows: From Eqn. (10) we find

y1 = x3/3− x+
1
10

c− x
x2−1

. (12)

This has a singularity at x = 1 (and also at x = −1, but this is not of interest here) which is
removed by choosing c = 1, which, then, is the first approximation to the canard point. The
relative deviation from the asymptotic value is 1.38%. With this choice of c we have

y1 = x3/3− x− 1
10

1
x+1

(13)

and a further iteration yields

y2 = x3/3− x+
(x+1)2(c− x)

p2
(14)
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where
p2 = 10x4 +20x3−20x−9. (15)

The polynomial p2 has two real roots, x1 =−0.603433 and x2 = 0.987258. We remove the singu-
larity of y2 at the latter point by choosing c = x2 = 0.987258, which is the second approximation
to the canard point. This deviates from the asymptotic value by 0.09%.

By factorization we get
p2 = (x− x2)q2 (16)

where
q2 = 10x3 +29.8726x2 +29.4919x+9.11616 (17)

such that

y2 = x3/3− x− (x+1)2

q2
. (18)

By iteration we find y3, which is a rational function where the denominator is a polynomial of
degree 8 in x but independent of c. The real roots are −1.24503, −0.999999, −0.389117 and
x3 = 0.986481. The numerator of y3 is a polynomial of degree 11 in x but linear in c. The
singularity at x3 can be canceled by choosing c = x3 = 0.986481. This gives yet an improvement
of the canard point, as the deviation from the asymptotic value is now down to 0.009%. Clearly,
the procedure can be continued any number of times.

4.2 Asymptotic analysis
The structure of the van der Pol equation is sufficiently simple to allow an asymptotic analysis in
the limit ε → 0 of the iterative procedure. For a general ε , we get in the first iteration

y1 = x3/3− x+
c− x
x2−1

ε. (19)

As before, we eliminate the singularity at x = 1 by choosing c = 1 such that

y1 = x3/3− x− 1
x+1

ε. (20)

The next iteration gives

y2 = x3/3− x+
(x+1)2(c− x)

p2
ε (21)

where
p2 = x4 +2x3−2x−1+ ε. (22)

The function y2 has a singularity at x = x2 where x2 is a root of p2 and the singularity cancels if
c = c2 = x2. The polynomial p2 has two roots for ε < 27/16, so the construction of the canard
trajectory only works under this condition. When ε = 27/16, p2 has a double root at x = 1/2.
We choose as x2 the root which is greater than 1/2. By a Taylor expansion, one easily finds

x2 = c2 = 1− 1
8

ε− 3
128

ε
2− 15

2048
ε

3 +O(ε4). (23)

5



This agrees with (9) to O(ε), but not to O(ε2). Inserting c = c2 from Eq. (23) in y2 and iterating
in Eq. (10) yields y3 as a rational function. In this, we let c = c0 + c1ε + c2ε2 + · · · and in a
Taylor expansion the first terms are

y3 =
c0− x

(x−1)(x+1)
ε +

c1x4 +2c1x3− (2c1 +1)x− c0− c1

(x−1)2(x+1)4 ε
2 + · · · (24)

By choosing c0 = 1 and c1 = −1/8 the singularities at x = 1 in the first two terms cancel. Pro-
ceeding to the term of order ε3 (we omit the rather long expression) one cancels a singularity by
choosing c2 =−3/32. Continuing this way, we find an approximation to the canard point as

c = 1− 1
8

ε− 3
32

ε
2− 75

1024
ε

3 +O(ε4) (25)

This agrees with (9) to O(ε2), but not to O(ε3). Again, we may continue this procedure to any
order, in each step correcting a term in the asymptotic expansion of the canard point.

5 The templator
The templator is a mathematical model for the kinetics of a self-replicating chemical system.
The reactions are

X0→ X
X +X → T

X +X +T → T +T
T → P

The key process the third one where a dimer T acts as a templates and catalyzes its own produc-
tion from a monomer X . In dimensionless variables the model can be written

dX
dt

= r− kuX2− kT X2T, (26a)

dT
dt

= kuX2 + kT X2T − qT
K +T

. (26b)

The last step in the reaction is modeled as an enzymatic reaction with Michaelis-Menten kinetics.
For further details on the model and its biological significance see [2, 4] and references therein.

In the following we fix the parameters ku = 0.01, kT = 1, q = 1, K = 0.02 and consider r as
a bifurcation parameter. In [2, 4] it is shown numerically that two canard explosions occur in the
model. One is at r = 0.419942 where a small limit cycle explodes as r increases. The large limit
cycle persists until r = 0.967555, where it turns into a small cycle in another canard explosion.
See Fig. 2. There is no obvious small parameter in the equations, so the standard asymptotic
approach for Eqns. (1) does not work. However, in [4] it is shown that it is possible to account
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(a) (b)

(c)

Figure 2: Simulations of the templator model Eqns. (26). (a) The black curve is the limit cycle
for r = 0.419940, the gray curve is is a part of the limit cycle for r = 0.419945. (b) The full large
limit cycle from panel (a). Note the differences in the scales. (c) The gray curve is the limit cycle
for r = 0.96755, the black curve the limit cycle for r = 0.96756.
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for the two canard explosions by two different scalings of the equations. Here we show that the
iterative method described in this paper can be applied directly on the unscaled equations.

The equation for the trajectories is(
kuX2 + kT X2T − qT

K +T

)
dX
dT

= r− kuX2− kT X2T. (27)

This is a quadratic equation in X . Choosing the positive solution, we get for the iteration process

Xk+1 =

√
r(K +T )+qT X ′k

(X ′k +1)(ku + kT T )(K +T )
. (28)

To start the iteration, we choose the dT/dt = 0 isocline as the initial approximation,

X0 =

√
qT

(ku + kT T )(K +T )
. (29)

The expression for X1 which is quite complicated has a denominator which is independent of
r. It has two zeroes, T = 0.0143454 and T = 0.599393. Inserting these in the numerator of
X1 and requiring that it is zero to cancel the singularity yields a linear equation to determine r
with solutions r = 0.417681 and r = 0.967710 respectively. The first canard point deviates from
the numerically determined one by 0.6%, while the latter deviates with 0.02%. Hence, a very
accurate determination of the canard point is achieved in the very first iteration.

6 Conclusions
We have demonstrated that a very simple iteration procedure can be used to determine canard
points in general planar dynamical systems with no distinguished small parameter. We have
shown for the van der Pol equation that we obtain an asymptotically correct result in the limit
of ε → 0, and we conjecture this is a general result for problems on the classical singular per-
turbation form. For the more complex templator system, the method successfully found the two
canard points in one iteration. In the analytical approach [4] different scalings were needed to
find the two canard points.

It is interesting to note that for the van der Pol equation an upper bound for the small param-
eter ε for canard explosion to occur was found. Recently a bound of ε < 1/4 was found from
consideration of the curvature of the trajectories [7]. The present bound is more conservative,
and it would be interesting to obtain a clearer understanding of the relation of the two approaches
to canard explosion. Furthermore, the present iterative procedure provides a new view on canard
explosion which may lead to a more general understanding on the specific conditions needed for
a planar dynamical system without a small parameter to experience a canard explosion. Since
systems with canard explosions of this kind are abundant in the applications this seems to be of
fundamental interest. Work along these lines is in progress, and will be reported elsewhere.
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