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Preface 
This dissertation is submitted in partial fulfilment of the requirements for obtaining the degree of Doctor of 

Philosophy (Ph.D.) at the Technical University of Denmark (DTU). The thesis represents work conducted 

during a three year scholarship in the period 2009 – 2011 at DTU, National Institute for Aquatic Resources 

(DTU Aqua), Section for Freshwater Fisheries and Ecology. The project was funded by the Danish Rod and 

Net Fishing License Funds and DTU. 

 

As indicated by the broad title, the present thesis does not intent to answer a single specific question. Fish 

behaviour can be surprisingly complex and is influenced by numerous exo- and endogenous factors. 

Consequently, the study of fish behaviour and what affects it can require the integration of several 

biological disciplines, such as methods to quantify behaviour in the field and laboratory as well as 

physiological measures on metabolic properties. I chose to work with a combination of these approaches 

for two main reasons: 1) to gain and increase experience with various biological tools and to obtain a better 

overview of the integrative field of fish behaviour. 2) An inter-disciplinary approach was required to go 

beyond solely descriptive studies in attempts to establish potentially explanatory relationships. 

 

During my work, I have been surrounded by a great number of helpful people to whom I am indebted. 

Firstly, I would like to thank Lene Jacobsen (main supervisor) for all her support, help and continued 

confidence in the project, regardless of the crazy ideas I have suggested. I am equally grateful to the team 

of co-supervisors (Kim Aarestrup, Søren Berg, Anders Koed, Jon C. Svendsen and Christian Skov) for always 

being available for discussions, suggestions, quick advices, incentive talks and early stopping of occasional 

wild goose chases. Additionally, Niels Jepsen has, in spite of being the only senior scientist in the section 

not enrolled as a supervisor, helped as if he was.   

In the course of this work, I had the privilege to visit professor Robert Arlinghaus and his group at the 

Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany. They are all thanked for 

an inspirational stay including accommodation, scientific discussions and collaboration, field work and great 

German beer. 

Everybody at DTU Aqua, Silkeborg is thanked for support and for maintaining an enthusiastic and informal 

atmosphere. In particular, the technical personnel have provided excellent help when needed; among 

countless things, Morten Carøe and Jørgen Skole Mikkelsen helped with field work and tagging of fish; 

Birgit Therkildsen assisted with aging of fish through scale reading; Michael Holm took the chore of regular 

sampling and monitoring of the study site; Jes Dolby made it possible to retrieve data from Lake Gosmer 
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from the comfort of the office; finally, Hans Jørn Christensen utilized his exceptional angling skills and 

provided good company when sampling for pike, often during unsociable hours.  

I am very grateful for the Hidden Markov Model provided by Martin Wæver Pedersen (daily referred to as 

“the Wæver Filter”), which enabled an objective and standardised way to make sense of the raw data from 

the telemetry system.  

The owner of Lake Gosmer, Søren Anton Hansen and family, are deeply thanked for allowing the project 

while maintaining and enforcing a ‘no access policy’ to the lake.  

I thank Lotek Wireless Inc. for teaching me invaluable lessons in the important personal skill of patience by 

providing transmitters for a particular study that rendered several months of lab work futile due to an 

extreme transmitter failure rate (> 80 %). 

Special thanks are owed to fellow Ph.D. and master students at DTU Aqua, Silkeborg for friendship and fun. 

Especially to: Mikkel Boel for discussions and companionship on several statistical courses; Kristian Meier 

for occasional, but way too few, fishing trips and Diego Del Villar for making the Japan trip memorable.  

Lastly, I will take the opportunity to thank my family and friends for moral support and for picking up the 

kids from kindergarten/school when needed. Above all, I am very grateful for love and support from my 

wife, Karen, and our two kids, Anna and Aske; for giving me the time needed when this project required my 

full attention and for reminding me that there is more to life than fish behaviour and telemetry.  

 

Henrik Baktoft 

Silkeborg, May 2012 
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Introduction 

Why study fish behaviour? 
Scientists have been studying animal behaviour for decades for several reasons. Firstly, animal behaviour is 

intrinsically interesting to observe. Secondly, observational studies on animal behaviour very frequently 

spawn a desire to do other studies, attempting to answer the intriguing question “why do these animals 

behave as they do?” Additionally, from a management point of view it can be argued that knowledge about 

animal behaviour is essential in order to e.g. enable a sustainable exploitation of the resource constituted 

by the animals or in order to avoid extinction of species endangered by human activities. This is true for 

species in most, if not all, taxa in the animal kingdom; fish being no exception.  

“Gone, or, at least, redundant, are the days where fishes were looked down upon as pea-brained 

machines whose only behavioural flexibility was severely curtailed by their infamous three-second 

memory”. (Brown et al. 2006) 

What influence fish behaviour? 
The behaviour of a fish in a given situation can be viewed as a complex response to the interplay of a wide 

array of external and internal stimuli and factors (Fig. 1). Some of the external factors can have a direct and 

immediate effect (e.g. predation and angling) whereas others have more subtle and indirect effects (e.g. a 

behavioural response to changes in water temperature). Additionally, intrinsic factors such as morphology 

and physiology can affect behaviour on an individual level. Obviously, a thorough and detailed description 

of these influential factors and their potential interplay is beyond the scope of this work. Instead, I have 

focused on a few central topics attempting to answer the question “how does this particular factor affect 

the behaviour of fish?” To study this question, high resolution telemetry was used to ‘observe’ and record 

the behaviour of individually tagged fish. 

About this dissertation 
This dissertation presents work carried out in 2009 – 2012. The majority of the presented data originate 

from an advanced telemetry system deployed in a small lake inhabited by northern pike (Esox lucius), roach 

(Rutillus rutillus), European perch (Perca fluviatilis) and European eel (Anguilla anguilla). These species are 

henceforth referred to as pike, perch, roach and eel. The system enabled research on the detailed volitional 

behaviour of tagged fish in their natural environment. In short, the system provided time stamped two or 

three dimensional positions (dependent of transmitters used) of tagged fish with high spatial and temporal 

resolution. By tagging the majority of larger pike (> 35 cm) in the study lake, as well as groups of roach and 

perch, we obtained unique time series on their behaviour. For instance, at the time of writing, several of 

the tagged pike have been continuously monitored for a period exceeding three years.  
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The dissertation structure follows Fig. 1 with focus on highlighted topics. First section presents the applied 

telemetry system and main results from a study evaluating the performance of the system. The following 

sections elaborate on three factors affecting fish behaviour (environmental factors, human activities and 

individual variability) through a mixture of general introduction to each subject and new insights gained 

from this work. Most of the results presented can be found in the included manuscripts, referred to by their 

roman number enclosed in slashes (e.g. ms/IV/). Additionally, some results not (yet) materialised in 

manuscripts are included in this thesis for completion.  

 

 

 

Fig. 1. Thesis structure depicted as a conceptual model of factors affecting fish behaviour. Factors discussed 
in the present work are highlighted in bold. 
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Methodology  

Acoustic Positional Telemetry System (APTS) 
The majority of work in the present thesis is based on the utilization of an acoustic positional telemetry 

system (APTS) deployed in a small lake (Lake Gosmer, Denmark, 55°55´42 N, 10°10´50 E, Fig. 2, area 1 ha, 

max depth 8 m, mean annual secchi depth 1.2 m, range 0.4 m – 2.4 m) to study the behaviour of fish in 

natural settings.  

 

 

Fig. 2. Outline of Lake Gosmer.  

 

Telemetry technologies are widely used to acquire information on individual fish behaviour that would 

otherwise be unobtainable due to the challenges inherent in the study of underwater animals (Lucas & 

Baras 2000; Block 2005). Whereas traditional telemetry technologies, such as radio and acoustic telemetry, 

have an inherent trade-off between spatial and temporal resolution, APTSs potentially offer the best of 

both worlds, i.e. both high spatial and high temporal resolution. Furthermore, when using an APTS, tagged 

fish are monitored automatic by data loggers. Thus, the potential disturbance of the focal fish caused by 
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the manual tracking protocol typically used in traditional telemetry methods is avoided. The APTS rationale 

is based on arrays of multiple synchronized hydrophones located at known positions. These hydrophones 

survey the study area, detect acoustic signals emitted from deployed transmitters and store the 

information. The temporal resolution of the data is thus determined by the burst interval of the used 

transmitters, typically sub-minute; transmitters with 2.5, 5, 15, 30 and 45 second burst intervals were used 

during this work. Subsequently, acquired data are post processed to obtain time stamped geographic 

positions using hyperbolic triangulation. Given that an acoustic signal from a transmitter is detected by at 

least three hydrophones, the position of the transmitter at the time of signal emission can be calculated 

from the minute differences in time of arrival at each hydrophone (Box 1). The achievable spatial resolution 

is a product of multiple complex parameters such as the geometric layout of the hydrophone array and the 

position of the transmitter relative to the hydrophones detecting the signal. Under optimal conditions sub-

meter accuracy is achievable (Niezgoda et al. 2002, but see below and ms/I/).  

 

  

 
 

BOX 1 
Positioning based on “time differences of arrival” (TDOA) 
Time of arrival positioning is based on the fundamental relationship 
between velocity, distance and time. As acoustic waves travel at a 
relatively constant velocity in water (c ≈ 1500 m/sec) the distance 
between a hydrophone and transmitter can be calculated from the time 
difference between signal emission and detection. However, this 
rationale is only applicable if the transmitter and hydrophones are 
perfectly synchronized and the exact time of signal emission is known. As 
this is virtually impossible to achieve in field situations, the rationale is 
extended to facilitate calculation of the transmitter position without 
knowing the exact time of signal emission. By comparing the arrival times 
of the same signal at three (or more) hydrophones, the “time difference 
of arrival” (TDOA) for each pair of hydrophones can be calculated, 
yielding a set of hyperbolae describing constant TDOA trajectories. The 
point where all three hyperbolae intersect yields the transmitter location. 
Mathematically, the hyperbolic equation system can be described as: 
 

�(𝒙 − 𝒙𝟏)𝟐 + (𝒚 − 𝒚𝟏)𝟐 −  �(𝒙 − 𝒙𝟐)𝟐 + (𝒚 − 𝒚𝟐)𝟐 = 𝒄∆𝒕(𝟏,𝟐) 
�(𝒙 − 𝒙𝟏)𝟐 + (𝒚 − 𝒚𝟏)𝟐 −  �(𝒙 − 𝒙𝟑)𝟐 + (𝒚 − 𝒚𝟑)𝟐 = 𝒄∆𝒕(𝟏,𝟑) 
�(𝒙 − 𝒙𝟐)𝟐 + (𝒚 − 𝒚𝟐)𝟐 −  �(𝒙 − 𝒙𝟑)𝟐 + (𝒚 − 𝒚𝟑)𝟐 = 𝒄∆𝒕(𝟐,𝟑) 

 
This system of non-linear equations can be solved for x and y (transmitter 
location) using various methods. According to the manufacturer, the 
deployed system (Map_600; Lotek Wireless inc.) used “a proprietary 
algorithm that provides excellent solution stability and computational 
efficiency, and belonging to the general class of methods employed by 
most GPS receivers”.  

Figure (not exact) illustrating the TDOA 
principles. Transmitter position is 
indicated by the black dot, hydrophones 
by circled crosses (H1, H2 and H3). 
Hyperbolic curves (e.g. ∆t(1,3)) indicate 
constant TDOA trajectories for each pair 
of hydrophones. (Redrawn from 
“BioMap Positioning for MAP”; Lotek 
Wireless 2005) 
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Regardless of applied technology, telemetry tagging protocols typically entail that a transmitter is attached 

externally, inserted intragastrically or surgically implanted into the peritoneal cavity of the fish (Lucas & 

Baras 2000; Bridger & Booth 2003). A standard assumption in telemetry studies is that the tagging 

procedure, the presence of the transmitter and the tracking protocol does not significantly alter fish 

behaviour, physiology, growth, survival etc. after a given period of time (see Bridger & Booth 2003 for 

discussion); i.e. that the ‘observer effect’ is negligible. This was also assumed to be the case in the present 

work. Although inconclusive, data from the present work support this, as the vast majority of tagged fish 

remained alive throughout the transmitter battery lifetime. Additionally, occasional recaptures of tagged 

individuals showed successful healing of incision wounds with no signs of infections and the fish were 

seemingly in good condition. Of the three species studied, roach was probably most susceptible to being 

affected by the tagging protocol. However, Jepsen & Berg (2002) report that roach equipped with radio 

transmitters with a trailing antenna seemingly behaved naturally and Skov et al. (2005) found no adverse 

effects on roach body condition from tagging with PIT tags. All fish used in the present work were tagged by 

surgical implantation of the transmitters following the standard protocol given in Jepsen et al. (2002); 

details are given in the manuscripts. Surgical implantation is generally recommended for studies of 

extended duration in which entanglement of externally attached transmitters is a concern (Bridger & Booth 

2003). All surgical implantations were conducted by trained personnel with several years of expertise to 

minimize detrimental effects (Cooke et al. 2011). 

Study site selection 
Lake Gosmer was chosen as study site from a number of candidate lakes based on careful research and 

consideration. As APTSs are based on acoustic signals, study site selection was a trade-off between system 

performance and ecologically interesting features. For instance, habitat complexity (e.g. submerged 

macrophytes and intricate bathymetry) would be interesting study site features from a biological 

perspective but would severely impede system performance from increased signal attenuation, obstruction 

and reflection. Additionally, a larger study site would have been desirable for some research questions but 

based on conducted range tests, this would severely affect system performance due to detection range 

limitations. Finally, presence of self-sustained fish communities, landowner cooperativeness and control of 

public access had to be considered. Lake Gosmer was chosen as the best compromise between these 

factors, although the habitat complexity was relatively low and the area relatively small. However, these 

disadvantages were compensated by a near optimal bathymetry to optimize system performance, i.e. an 

overall concave bottom profile (‘bathtub shaped’) without protruding features that could acoustically 

shadow the hydrophones. Additionally, submerged macrophytes were virtually absent (except a small bed 

of water lilies, Nuphar lutea) and there was no public access to the lake. Narrow and dense stands of 
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emergent macrophytes (bulrush; Typha latifolia) covered much of the shoreline. Finally, the lake contained 

a self-sustained fish community consisting of pike, perch and roach as well as a small number of stocked 

eel.  

Study system assessment 
The APTS used in the present work was a MAP_600 (Lotek Wireless Inc., Newmarket, Ontario, Canada). 

Preliminary test and calibration of the system setup revealed that, although it was capable of high 

resolution tracking of transmitters, the quality of the raw data was compromised by spurious outliers 

originating from numerical instability of the positioning algorithm used in the proprietary software 

(Niezgoda et al. 2002). Filtering based on proprietary metrics (dilution of precision (DOP), condition number 

(CN) and reliability number (RN); Niezgoda et al. 2002) removed the most erroneous of these. However, 

filtering based solely on these metrics was unable to remove less obvious erroneous positions. Therefore, 

to objectively reduce the influence of these remaining outliers, we processed all raw positions using a 

custom-made algorithm based on a Hidden Markov Model yielding the most probable track of each 

transmitter (Pedersen et al. 2011a; Pedersen et al. 2011b). In short, the Hidden Markov Model estimated a 

Gaussian two-dimensional probability density function for each registration using information from the 

focal as well as prior and following observations. From this probability density function the most probable 

position was obtained. All analyses of fish behaviour in the present work are based on these most probable 

positions (Fig. 3). 

 

 

 

Fig. 3. Estimated positions of stationary transmitters before (left) and after (right) processing the 
data with the Hidden Markov Model. Each red circle indicates a stationary trial with two or three 
transmitters deployed in the circle centre (true position surveyed using DGPS); black dots indicate 
positions calculated by the ATPS. See the main text and ms/I/ for further info. 
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Previous studies utilizing comparable APTSs often report “sub-meter accuracy” of the systems used (e.g. 

Cote et al. 2002; Cote et al. 2003; Hanson et al. 2007a; Hasler et al. 2009; O'Connor et al. 2010). However, 

systematic whole-study-site tests of these claims have not been published. As the APTS deployed in Lake 

Gosmer constituted a fundamental part of the methodology applied in the present work, we designed a 

study to assess the performance of the system (ms/I/). The study was done in collaboration with the 

Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB, Berlin, Germany) which allowed the 

inclusion of two APTS setups: the APTS deployed in Lake Gosmer and a comparable APTS deployed in a 

larger lake (Kleiner Döllnsee, Germany, area 24 ha). In both lakes a series of stationary tests were 

conducted following a standardized protocol. In each test, transmitters were moored at known positions 

(surveyed using a differential gps unit to ± 0.2 m) for a time period allowing the transmitters to emit several 

hundred signals. The transmitters were deployed to mimic potential positions of fish, by attaching them at 

different depths to a line held in place by a heavy sink and kept vertical by a float. The habitat structure and 

complexity at sites of deployment were categorized based on depth and type and quantity of the 

vegetation in immediate vicinity of the transmitter. In Lake Gosmer, the following habitat categories were 

present: dense emergent macrophytes, emergent macrophytes, shallow open water and deep open water. 

System accuracy and precision within each habitat category was estimated from these tests (Fig. 3). 

Additionally, to facilitate an evaluation of system performance for moving fish, a number of tow tests were 

conducted (Fig. 4). During these, three transmitters attached to a solid vertical rod were sailed around the 

lake following a linear to curvilinear path to mimic the trajectories of swimming fish. The study revealed 

that, although the quality of the data was dependent on habitat type and complexity, the APTS deployed in 

Lake Gosmer yielded data with good spatial accuracy and precision and thus constituted a potent tool for 

studying fish behaviour in natural settings; in effect, the deployed APTS turned Lake Gosmer into a “large-

scale monitored aquarium” providing detailed information on the volitional behaviour of the tagged fish in 

their natal environment.  
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Fig. 4. Subset of the results from tow tests using three transmitters. The true trajectory 
of the boat is given by thin black line (DGPS); ATPS calculated trajectories of the 
transmitters (236, 241 and 242) are given by coloured lines. Transmitter 242 was not 
used in the circular tow encircling the lake. See the main text and ms/I/ for further info. 

 

Observation frequency 
Animal travel distance is an important ecological variable and can be used as a metric to describe overall 

animal behaviour and energetic expenditure. However, when quantified as point-to-point distances by 

means of positional telemetry techniques, the observed value will inevitably underestimate the true value 

(given that obtained positions are accurate). The degree of underestimation is dependent on observation 

frequency, movement velocity and path tortuosity (Hanson et al. 2007a; Rowcliffe et al. 2012). Although 

the APTS enabled a significant increase in temporal resolution compared to traditional positional telemetry, 

the effect of sampling frequency was still relevant. In acoustically based telemetry, the successful 

registration of an emitted signal is influenced by a probabilistic component encompassing several factors 

such as signal attenuation, signal obstruction and multipath propagation caused by signal reflection.  

Consequently, as found and discussed in ms/I/, the achievable observation frequency depended on both 

transmitter burst interval and the complexity of the habitat surrounding the transmitter. For instance, the 

observation frequency of transmitters was reduced considerably when positioned deep within dense 

emergent macrophytes and within dense submerged macrophytes (present in Kleiner Döllnsee). Given the 

habitat distribution (virtually no submerged macrophytes) and bathymetry of Lake Gosmer, it seems 

plausible that the only areas causing severe reduction in detection probability were within the narrow 

stands of dense emergent machrophytes along the shore. This was confirmed by stationary tests (ms/I/) 
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and by visual inspection of the complete data set from tagged fish (data not presented). As overall habitat 

complexity in Lake Gosmer was relatively low, these macrophytes could obviously have constituted an 

important habitat for the fish. However, based on obtained data it was presumed that the stands of 

emergent macrophytes primarily were used by pike as shelter in which the pike remained stationary; i.e. 

movement within the emergent macrophytes was presumed to be negligible. This presumption was based 

on several findings. In general, we achieved relatively high observation efficiency (i.e. number of obtained 

observations relative to number of potential observations) for both perch and roach and they were found 

to primarily reside in the open water habitats. This strongly indicates that neither perch nor roach utilised 

the emergent macrophytes to any significant extent. For pike, the obtained data was less conclusive. Some 

individuals yielded high observation efficiencies and were found to primarily reside in or frequently visit the 

open water habitats (typically the larger individuals). From this it was assumed that pike with lower 

observation efficiencies spend more time within the emergent macrophytes during which their behaviour 

for obvious reasons remained unknown. However, pike is generally considered a sit-and-wait predator with 

low overall swimming activity (Eklov & Diehl 1994; Craig 1996). Moreover, Kobler et al. (2009) found 

individuals specifically grouped as “reed selectors” (i.e. individuals that primarily resided in reeds) to be 

basically inactive in terms of movement activity. In conclusion, to paraphrase the above stated 

presumption, it was presumed that the APTS in Lake Gosmer was able to detect tagged fish outside the 

emergent macrophytes and that fish residing within the dense emergent macrophytes primarily remained 

stationary.  

Summary | Methodology 
The feasibility of the APTS deployed in Lake Gosmer to study fish behaviour was assessed and validated. 

The assessment study (ms/I/) confirmed that the system was capable of yielding positional data with high 

precision and accuracy from both stationary and moving transmitters given that appropriate processing of 

the raw data was applied. Additionally, the study signified the importance of careful study site selection as 

habitat complexity can influence system performance. Considering the bathymetry of and overall habitat 

distribution in Lake Gosmer, it was argued that the data obtained during the course of the present work 

was representative of the actual positions of tagged fish to warrant the conducted studies and inferences 

made therein.   
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Environmental factors affecting fish behaviour 
A vast array of environmental factors is generally acknowledged to influence fish behaviour: e.g. 

temperature, turbidity, oxygen concentration, barometric pressure, lunar phase and photoperiod (Pitcher 

1993). Some of these factors vary in a predictable manner (e.g. photoperiod and water temperature) and 

many species utilize this to time and/or synchronize distinct behavioural patterns such as spawning and 

migration (Lucas & Baras 2001). This type of behavioural response to external stimuli often includes a 

genetic component (Liedvogel et al. 2011) and constitute a significant milestone in the life history of the 

individual fish (Harden Jones 1968). However, the behavioural response to changes in environmental 

factors can be more subtle including temporarily altered activity levels, habitat utilization and feeding 

behaviour (Pitcher 1993; Lucas & Baras 2001).  

A common attribute for most of these factors is that their isolated effect on fish behaviour, in practice, only 

can be studied in laboratory or small scale meso-cosmos experiments. For example, the isolated effects of 

water temperature, turbidity or light levels on volitional behaviour can be studied by controlling and 

experimentally changing their levels in a laboratory whereas that would be virtually impossible in natural 

systems. Therefore, studies on the effects of environmental factors in natural settings often rely on the 

natural variation and fluctuation that occurs during a given timeframe. However, as most of these factors 

co-vary to some extent (e.g. temperature and photoperiod) any detected behavioural response will be a 

response to changes in the suite of factors and not just a single one of them. Additionally, as natural 

changes in, for instance, photoperiod occur on a seasonal time scale, internal factors such as degree of 

gonad development and associated hormone levels will potentially co-vary with the focal environmental 

factor, further complicating analysis of the isolated effect of the environmental factors. In combination with 

the challenges inherent in extrapolating from laboratory to nature, this may lead to erroneous predictions 

regarding fish behaviour in natural settings. A potential example is the activity of lentic fish communities 

during winter, which is discussed below.  

Fish communities under ice – dynamic or static? 
As discussed in Salonen et al. (2009) it has been commonly believed that biologic activity, including the fish 

component, in temperate lentic ecosystems virtually was put on hold during winter as a result of cold water 

and low light. This notion of a static fish community was most probably based more on indirect evidence 

(e.g. laboratory findings and studies on lower trophic levels) than actual observations on fish behaviour per 

se. A common finding in studies on the isolated effect of water temperature is a clear positive correlation 

between temperature and fish activity up to a given optimum (Casselman 1978; Scherer & Harrison 1988; 

Castonguay & Cyr 1998). These results are expected from an energetic perspective as speed of biochemical 

processes and thus the amount of energy available to e.g. swimming activity is highly temperature 
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dependent (Fry 1971). Additionally, overall activity of visually oriented fish would expectedly be positively 

correlated with light levels (Stoner 2004) as have been found in e.g. whitefish (Coregonus clupeaformis; 

Scherer & Harrison 1988) and brook trout (Salvelinus fontinalis; Marchand et al. 2003). Finally, primary 

production and consequently zooplankton biomass are known to be very low during winter in cold and ice 

covered lakes (Sommer 1996). A natural conclusion from the combination of these findings is that lentic 

fish communities probably remain very inactive and basically on pause during the winter. In turn, this 

assumption, in combination with the logistic and methodological challenges inherent in winter field studies, 

has resulted in relatively few studies on winter fish behaviour  compared to the number of behavioural 

studies during summer (Salonen et al. 2009) (biologists’ sense of comfort may also have been an influential 

factor; personal observation). However, recent studies suggest that lentic fish communities are not static 

during winter (e.g. Jurvelius & Marjomaki 2008; Salonen et al. 2009; Amundsen & Knudsen 2009). 

Pike is an example of a lentic species that seemingly is “understudied” in terms of winter biology. Pike is the 

natural apex predator in many Northern Hemisphere lakes (Craig 1996) and it is well documented that pike 

profoundly can affect the prey fish community through both predation (Byström et al. 2007) and more 

subtle non-consumptive effects such as changes in prey fish morphology (Brönmark & Miner 1992), altered 

behaviour (Jacobsen & Berg 1998) and habitat utilization (Jacobsen & Perrow 1998; Skov et al. 2011). 

Furthermore, through cascading top-down effects, mediated by impacting the prey fish community, pike 

can influence the properties of the local ecosystem such as nutrient cycles and levels and, thus, water 

turbidity (Prejs et al. 1994; Berg et al. 1997, but see Skov & Nilsson 2007). Additionally, pike is an important 

species for recreational fisheries (Arlinghaus & Mehner 2004). In spite of the importance of this species, 

relatively little is known about the winter biology of pike.  

Pike swimming activity has been shown to be highly dependent on water temperature with basically no 

activity below six degrees Celsius (Casselman 1978). Additionally, pike are often considered to be an 

ambush predator (Craig 1996). Combined with the general notion of static lentic ecosystems, this could 

lead to the expectation that pike remain stationary and inactive during winter. Previous field studies 

comparing pike activity between seasons are inconclusive as the findings range from decreased to elevated 

activity when comparing winter and summer (e.g. Diana et al. 1977; Cook & Bergersen 1988; Jepsen et al. 

2001; Kobler et al. 2008). However, as a consequence of the applied methodologies, these findings are 

based on data with a rather coarse temporal and spatial resolution. Whereas long distance displacements 

could be detected using the methods applied in these studies, they were not able to register any small scale 

movements or short duration swimming bouts which can constitute a significant part of overall pike activity 

(Beaumont et al. 2005). 
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Through the development of APTSs some of the challenges in conducting studies on fish winter behaviour 

have been surmounted. Furthermore, the spatial and temporal resolution enables nearly complete 

coverage of the tagged fish. In ms/II/ we utilized these benefits to obtain time-series on individual pike 

behaviour that to our knowledge is unprecedented. We showed that pike swimming activity can be at 

surprisingly high levels and remain relatively constant from late summer through winter. Furthermore, we 

confirmed the diel patterns of activity presented in previous studies (e.g. Diana 1980; Beaumont et al. 

2005). Additionally, we found that these patterns correlated with times of sunrise and sunset and that the 

seasonal changes in these patterns followed the seasonal progression in photoperiod. The study suggests 

that, as the apex predator in the lake remained active during winter, it is reasonable to suspect that the 

structuring effect of pike on the prey fish community might also be present during the cold months. This is 

in accordance with recent studies showing that prey fish communities can react to temporal changes in the 

trade-off between food availability and predation risk by undertaking partial migrations to predation 

refuges (Brönmark et al. 2010; Skov et al. 2011). Skov and colleagues found that the major factor 

influencing the individual migration propensity of prey fish during winter was individual predation risk from 

pike (Skov et al. 2011). This supports the suggestion of a structuring effect of pike on the prey fish 

community during winter.  

Summary | Environmental factors affecting fish behaviour 
The knowledge on biologic activity of the fish component in lentic ecosystems during winter is relatively 

limited. In ms/II/ we present evidence that the apex predator in these systems can remain surprisingly 

active throughout the seasons from summer through winter. Consequently, it is suggested that the 

structuring effect exerted by pike on the prey fish communities can be present during winter. Overall, the 

findings add to the mounting evidence that lentic fish communities are more dynamic during winter than 

previously thought. 

Human activities affecting fish behaviour 
Many outdoor recreational activities, e.g. bathing/swimming, boating, kayaking and fishing, involve some 

degree of interplay with natural water resources. These activities affect the natural ecosystem to a variable 

degree with potential effects on wildlife and vegetation. All the activities may disturb wildlife from various 

types of stimuli ranging from visual cues, over indirectly physical stimuli (e.g. waves and sound) to direct 

physical contact.  Animals have evolved instinctive anti-predator behavioural responses to generalized 

threatening stimuli such as those originating from human activities (Frid & Dill 2002). Potential anti-

predator behavioural changes include increased vigilance (Lima & Bednekoff 1999) and habitat shifts 

(Werner & Hall 1988). In turn, these non-lethal effects may influence the fitness of the individual animal as 

well as the population dynamics (Lewin et al. 2006). 
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Recreational angling is a popular outdoor activity in many countries. Whether performed from the shore or 

from a boat, angling will inevitably cause some level of disturbance. The degree of disturbance will naturally 

be linked to type of angling and behaviour of the angler. Even if the ultimate goal of angling, i.e. hooking, 

catching and possibly releasing a fish, fails, the activity of angling per se can influence fish behaviour in 

various ways through a range of stimuli. Whereas the direct effect of contact between fish and angler 

produces a clear and immediate behavioural response, the effects of indirect stimuli can be more subtle. 

For instance, when a fish is hooked by an angler, it displays a very direct and detectable response whereas 

the effect of water movement or noise produced by an approaching boat can be a minor change in 

swimming activity that can be hard to identify. The following will focus on fish behavioural response to 1) 

stimuli induced by boat based angling and 2) catch and release. 

Boating and angling from boat 
Boating, whether in relation to angling or not, produces a range of stimuli that potentially affect fish 

behaviour. Although hard to isolate from other disturbance factors (e.g. visual stimuli and waves), 

underwater noise produced from an outboard engine is most probable a major constituent of the collective 

disturbance assemblage from this type of activity. From laboratory studies it is known that anthropogenic 

noise can affect the physiological homeostasis of fish through changes in cortisol levels and other 

biochemical parameters (Santulli et al. 1999; Smith et al. 2004; Wysocki & Ladich 2005; Wysocki et al. 

2006). Additionally, different means of small boat propulsion methods (paddle, electric motor and 

combustion engine) all affect cardiovascular performance in largemouth bass (Micropterus salmoides) but 

with different magnitudes (Graham & Cooke 2008). By recoding underwater boat noise in the field and 

playing it back in an experimental tank, Boussard (1981) investigated the response of roach and rudd 

(Scardinius erythrophthalmus) to the sound stimuli. The typical response was reported as a direct 

movement to the opposite end of the tank relative to the location of sound emission. Additionally, the fish 

responded more readily to the initial stimulus than to subsequent bursts indicating a habituation effect.  

From marine field studies it is evident that large fishing and research vessels have the capacity to provoke 

short-term behavioural changes in several pelagic fish species (e.g. Soria et al. 1996; Vabø et al. 2002). For 

instance, active avoidance reactions to fishing vessels have been found in cod (Handegard et al. 2003) and 

herring (Vabø et al. 2002). However, field studies on fish behavioural response to the apparently benign 

human disturbances caused by angling and boating are scarce. Mueller (1980) found that small recreational 

boats moving at slow speeds can alter fish behaviour as suggested by the laboratory findings of Graham & 

Cooke (2008) showing that paddle strokes can affect cardiovascular performance. In a recent study on the 

non-lethal effects of angling, Klefoth et al. (2011) found that in response to the direct effect of catch-and-

release, pike reduced swimming activity and suffered reduced growth rates. Additionally, by analysing the 
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movement of pike that were not caught by anglers during the study, Klefoth et al. (2011) found no 

behavioural response to the indirect disturbance caused by the angling protocol (however, these findings 

are to some degree confounded by protocol issues as discussed below). 

In ms/III/ we present field data on behavioural responses of free swimming fish to angling related 

disturbances as warranted by Graham & Cooke (2008) and Slabbekoorn et al. (2010). The study was carried 

out in Lake Gosmer which was equipped with an APTS (described above or see ms/I/). One of the major 

benefits of APTS for this study was the automatic tracking of the tagged fish that renders manual tracking 

redundant. This allows the lake and tagged fish to be left completely undisturbed by human activities for 

extended periods, thereby providing a control situation in experiments designed to quantify the effects of 

disturbances (c.f. the overlap in treatment and data acquiring protocols in Klefoth et al. (2011) discussed 

below). To model typical boat based angling behaviour we used a small fibreglass boat powered by a 4 hp 

outboard combustion engine driven slowly around the lake following a standardized protocol. In short, the 

study focused on the behavioural response of roach, perch and pike to three different levels of disturbance 

(treatments): no disturbance (control), disturbance by boating and disturbance by boating and angling (see 

ms/III/ for details). Through the APTS we obtained detailed field data on the immediate and short term 

response of the three species to this type of human disturbance. As behavioural response variable we used 

individual swimming speed calculated as Euclidian distance between two consecutive positions divided by 

time (see ms/III/ for further details). All three species seemingly responded to the disturbance protocol, but 

the responses were species specific. Whereas roach and perch increased activity, the results for pike are 

less conclusive but indicate that pike responded by reducing their overall activity. Both roach and perch 

displayed maximum response immediately which then tapered off in the following hours, which is in 

accordance with Boussard (1981) who found a stronger response to the initial stimuli compared to 

subsequent. This might indicate a habituation effect where the fish no longer respond as much to or 

basically ignore the stimuli. However, although the activity returns towards control levels, the fish might 

still be influenced by the stimuli and their apparently normal activity level might represent behaviour 

differing from their normal undisturbed behaviour. An in-depth analysis of this would require visual 

observations of the individual fish detailed behaviour (e.g. foraging and hiding) thereby enabling a time-

budget analysis (e.g. Picciulin et al. 2010). Even though an APTS is unable to quantify fish behaviour per se 

the spatial data produced by the deployed APTS can be indicative of altered behaviour. For instance, the 

spatial distributions of roach during control and treatment days suggest that the distribution of roach was 

constricted during the disturbances (Fig. 5). Additionally, a comparison of spatial distributions for the 

individual perch (area of individual 90 % kernel density) for control and treatment days revealed that the 
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individual distributions expanded in response to the disturbances (Fig. 6; paired t-test, n = 22, p < 0.01; 

preliminary results). Thus, the disturbance protocol affects both fish activity and their spatial distributions. 

 

 

Fig. 5. Kernel density plots of the habitat utilisation of roach during control days (a; n = 10) and 
days with disturbance (b; n = 10). The roach seemingly responded to the disturbance by 
aggregating in the centre of the lake. 

 

 

 

Fig. 6. Selected examples (three perch) of individual 90% kernel density utilisation plots during 
days without (a; n = 10) and with disturbance (b; n = 10). During days of treatment the tagged 
perch utilized a larger area than during control days (paired t-test, n = 22, p < 0.01). 

 

Roach and perch are both potential prey for pike. As such, the spatial distribution of these species will, at 

least in part, be the result of a trade-off between foraging opportunity and the risk of being predated. It is 
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thus conceivable that the undisturbed distribution of both prey species to some extent represent the 

optimal compromise for the individual prey fish (Lima & Dill 1990). Therefore, the alteration of prey fish 

distribution induced by the disturbance protocols might result in the roach and perch experiencing sub-

optimal conditions, both in terms of available food and predation risk. Additionally, the induced increase in 

activity levels of roach and perch will ceteris paribus increase the probability of pike-prey encounters. 

However, the results from ms/III/ suggest that pike in Lake Gosmer (if anything) reduced their activity in 

response to the disturbances, potentially counteracting the increase in pike-prey encounter probability. 

Both Klefoth et al. (2011) and ms/IV/ found reduced activity in pike exposed to direct stimuli through 

capture and release. Though the stimuli used by Klefoth and colleagues are not directly comparable to 

those used in ms/III/ and ms/IV/, they support that pike display an innate behavioural response to 

disturbances (i.e. reduction of activity) as speculated by Klefoth et al. (2011). In contrast to ms/III/, Klefoth 

et al. (2011) found no behavioural response to angling related indirect disturbances. However, to quantify 

pike movement activity, Klefoth and colleagues utilized a manual tracking protocol that potentially caused 

the same type and amount of stimuli as the indirect angling derived disturbances they hypothesized could 

affect pike movement activity; boats and motors used in both tracking and fishing protocols were the same. 

As a side note, this overlap between treatment and data acquiring protocols exemplifies one of the 

potential shortcomings in telemetry relying on manual tracking: the tracking activity per se can potentially 

affect the volitional behaviour of the focal fish. The reduction of pike activity might reflect changes in pike 

behaviour resulting in a relaxation of the predation pressure on the roach and perch during the 

disturbances. If disturbance frequency and intensity are high, this could lead to decoupling of the predator-

prey interactions involved in structuring the lake ecosystem with potential effects on lower trophic levels 

(Carpenter & Kitchell 1993). Although interesting, the intricate interplay between anthropogenic 

disturbances and interspecific interactions was beyond the scope of this work but could be addressed in 

future studies. 

Catch and Release (C&R) 
Fisheries management based on the catch and release (C&R) principle has become quite popular in recent 

years as a mean to alleviate the potential conflict between high angling pressure on popular species and 

limited natural resources (Arlinghaus et al. 2007). A crucial assumption underlining C&R based 

management is that survival and fitness of the caught and released fish are not severely affected by the 

event. Multiple studies on C&R angling have documented post-release effects on behaviour (Pepperell & 

Davis 1999; Cooke et al. 2000; Thorstad et al. 2004; Thorstad et al. 2008; Thompson et al. 2008; Arlinghaus 

et al. 2008a) and physiological homeostasis (Gustaveson et al. 1991; Kieffer 2000; Cooke et al. 2002; 

Arlinghaus et al. 2009) which in turn can affect e.g. predator avoidance (Cooke & Philipp 2004), growth 
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(Siepker et al. 2006; Cline et al. 2012) and reproductive success (Ostrand et al. 2004). For exhaustive 

discussions of currently available knowledge on effects of C&R angling see Arlinghaus et al. (2007) and 

Lewin et al. (2006). 

Pike is a very popular target species for recreational fishing in both Europe and North America (Pierce et al. 

1995; Fayram 2003; Arlinghaus & Mehner 2004). To sustain viable population sizes and/or increase the 

chances of trophy fish, C&R is implemented in many pike fisheries either as mandatory or voluntary (Pierce 

et al. 1995; Paukert et al. 2001; Arlinghaus & Mehner 2004). However, despite intensions of the opposite in 

the C&R rationale some mortality directly linked to the capture events is unavoidable. Handling time, which 

can be substantial as “anglers may fear personal injury from this toothy predator” (quote Arlinghaus et al. 

2009), and hooking position are important factors in C&R related mortality in pike (DuBois et al. 1994). 

Mortality rates of pike related to C&R angling have been reported to range from zero and up to 33% 

(reviewed in Arlinghaus et al. 2008b). Besides post-release mortality, C&R is known to inflict several sub-

lethal effects on pike. For instance, Colotelo & Cooke (2011) found extensive damage to the epithelium of 

pike as a result of some non-optimal C&R practices. Furthermore, studies have found that an angling event 

induces a physiological response in terms of altered blood parameter levels (Schwalme & Mackay 1985a; 

Schwalme & Mackay 1985b; Arlinghaus et al. 2009). A few studies give indications regarding pike post-

release behaviour. From these there seems to be consensus that pike respond to the C&R event by 

temporarily decreasing their activity (Klefoth et al. 2008; Arlinghaus et al. 2009; Klefoth et al. 2011). 

Additionally, Kuparinen et al. (2010) found that past fishing effort influence short term angling catch rates, 

which they ascribed to a behavioural response.  

In ms/IV/ we present the first study utilizing an APTS to monitor the detailed behavioural response of pike 

to C&R events. The novelty of this study, besides the level of detail, is the inclusion of previously tagged but 

uncaught pike functioning as a control group undisturbed by a tracking protocol. We attempted to isolate 

the effects of the C&R event by comparing the behaviour before and after C&R and accounting for 

population wide effects using the control fish. The main finding was that caught and released pike generally 

displayed lower activity levels after relative to before the C&R event. This effect was transitory and could 

not be detected after two days. Additionally, the decrease in activity was positively correlated with water 

temperature, i.e. higher temperature resulted in a larger reduction in activity. Although the main finding is 

in line with previous studies (e.g. Klefoth et al. 2008; Arlinghaus et al. 2009; Klefoth et al. 2011) the detailed 

data on movement activity indicate that the response is more complex than a simple general decrease in 

activity. For instance, from figure 2 in ms/IV/ it is evident that some individuals react with an immediate 

activity cessation (e.g. third from the top) whereas others respond by a period of increased activity 

followed by an activity reduction (e.g. second from the top). 
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Summary | Human activities affecting fish behaviour 
The findings from ms/III/ and ms/IV/ add to the mounting evidence that recreational boating and angling 

can affect fish behaviour in several sub-lethal ways with potential implications for individual survival and 

fitness. From a management perspective this type of information can be valuable as it allows the 

formulation of management plans based on scientific knowledge regarding the response to human 

activities. For instance, establishment of areas with restricted or no access could be considered in larger 

lakes with high intensity of human activities.  

Inter-individual variability 
Inter-individual variation in animal behaviour has been acknowledged as being an important ecological and 

evolutionary characteristic of wild populations (Sih et al. 2004). However, the mechanisms involved in 

maintaining such consistent differences on both individual and population levels are not fully understood. 

The following section explores potentially explanatory relations between inter-individual variation in 

behaviour, metabolism and morphology through an inter-disciplinary approach. This was done by 

combining information on inter-individual variation in morphology, boldness and metabolism obtained in 

the laboratory with volitional behaviour in natural settings of the same individuals. 

Inter-individual variability in behaviour 
Field studies on fish behaviour often reveal a large inter-individual variation in many behavioural traits such 

as home range size, movement activity and swimming speed. A part of this variation can often be explained 

by simple measures such as body size (encompassing potential ontogenetic shifts in behaviour) and 

condition factor. However, even when correcting for this, the residual variation in behaviour is often 

considerable as noted in Jepsen et al. (2001): ”There were large behavioural differences between fish in the 

lake and in the reservoir and even more variation between individuals within each population”. In many 

behavioural studies, this residual variation is considered a nuisance and is often ignored as natural variation 

or noise complicating an extrapolation from tagged individuals to a population level (Careau et al. 2008). 

However, in recent years, these differences in behaviour of otherwise similar individuals have gained 

increased focus through the emergence of concepts such as behavioural syndromes, animal personalities 

(e.g. Sih et al. 2004; Bell 2007) and behavioural reaction norms (Dingemanse et al. 2010). These concepts 

are based on the recognition that individual animals often display some degree of behavioural consistency 

across different contexts (Fig. 7). Understanding the cause and effect of such consistent differences in 

behaviour is fundamental, as natural selection ultimately operates on an individual level. However, at 

present empirical data on free ranging animals with pre-quantified behavioural tendencies is scarce. 

Therefore, as part of the present work, we initiated a study focusing on the ecological relevance of 

laboratory derived measures by linking behavioural consistency in a lab experiment with volitional 
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behaviour in the field (Box 2). Unfortunately, this study was unsuccessful due to external factors and the 

time frame of the present work did not allow for further pursue of this interesting and burgeoning research 

area. However, future studies focusing on the ecological relevance of animal personalities are warranted.  

 

Fig. 7. Conceptual representation of consistent differences in individual behaviour between 
environments (E1 and E2): plasticity plot (a) and correlation between environments (b). E1 
and E2 represent, for instance, activity in environments without and with predators, 
respectively. The optimum activity for each environment is indicated by the asterisks. Each 
individual is represented by a line in (a) and a dot in (b). Solid and dashed lines in (b) 
represent the regression through the dots and a 1:1 reference line, respectively. Redrawn 
from Sih et al (2004).  

 

  
BOX 2 
Bold roach – lab effect or real life phenomenon? 
A study was designed to test the assumption that individual 
boldness measured in the lab entails behavioural differences 
in natural settings. Eighty five roach were captured and 
screened for behavioural consistency using a refuge 
emergence protocol (Brown et al. 2007). Chapman et al. 
2011 used a comparable protocol to assess boldness in roach 
and found behaviour to be consistent and repeatable. 
Individual roach were placed inside a closed refuge box and 
left to acclimatise for 15 minutes. A door was lifted and time 
for fish to fully emerge was used as an index of boldness. 
Each fish were assessed on two separate days to identify 
individuals showing consistent boldness. Based on these data 
we selected 39 individuals that were subsequently tagged 
with acoustic transmitters (Lotek MAP 6_2; burst interval 15 
sec) and released in the Lake Gosmer to quantify their 
behaviour in a natural environment. However, due to an 
unexpectedly high transmitter failure rate (33 of the 39 
malfunctioned) no useful data on the field behaviour of 
these fish were obtained. 

 
 
Selection of roach with repeatable 
boldness. Each point represents boldness 
scores of an individual roach from two 
separate days. Roach with consistent 
boldness (filled circles) were selected for 
tagging and release in Lake Gosmer. 
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Inter-individual variability in metabolism 
Researchers within the field of fish physiology are often faced with a situation comparable to behavioural 

biologists. Measures on metabolic rates most often contain inter-individual variation; also when studying 

animals of similar size (or correcting for size differences) and even when using siblings (Metcalfe et al. 

1995). Similar to the observed variation in behaviour, inter-individual physiological variability have 

traditionally been ignored as random noise (Bennet 1987). However, analogous to the behavioural 

consistency discussed above, metabolic rates are found to be repeatable and consistent (Cutts et al. 2001; 

Maciak & Konarzewski 2010; Norin & Malte 2011) and may reflect biologically important inter-individual 

differences ultimately affecting individual fitness (Burton et al. 2011). The exact causes of the inter-

individual differences in metabolic rates are complex and not fully understood but studies have found 

evidence that factors such as maternal effects (Giesing et al. 2011) and internal organ size (albeit in mice; 

Konarzewski & Diamond 1995) are influential.  

Linking metabolism and behaviour 
As the metabolic properties of an individual define the possibilities of that individual to perform aerobic 

fuelled activities, metabolism and behaviour are interlinked although the mechanisms behind are complex 

and the direction of causality is unknown. However, a potential link between consistent individuality in 

metabolism and behaviour has recently been acknowledged (Careau et al. 2008; Biro & Stamps 2010; 

Burton et al. 2011). A mechanism proposed to facilitate this coupling is the concept of an individually sized 

“metabolic machinery” that on one hand enables energy output but on the other hand requires 

maintenance (the ‘performance model’ sensu Careau et al. 2008). Following this, individuals with relatively 

large machinery capable of producing more energy to fuel aerobic activities (e.g. movement, generation of 

somatic or gonadal tissue) are faced with a need for higher and/or more efficient energy uptake. For 

example, as individuals are expected to display behaviour that increase food intake rate, ‘high energy’ 

individuals should be more active and explore larger areas to sustain their metabolic machinery, given they 

rely on an active food search strategy. Other feeding strategies can entail different behaviours to optimize 

food intake such as dominance and aggression. In contrast, ‘low energy’ individuals will have lower 

amounts of available energy for activity but also have lower maintenance needs i.e. a lower need to be 

active. The relative fitness of each strategy will then depend on, for instance, predation pressure (Fig. 7). 

Environments with low predation risk, will favour individuals with high energy throughput, whereas these 

individuals will have a disadvantage in high risk environments. Several studies on fish behaviour have found 

support for the performance model in form of positive correlations between metabolic rates and e.g. 

positioning in schools (Killen et al. 2012), vulnerability to angling (Redpath et al. 2010), behavioural 

dominance (Cutts et al. 2002), risk-taking (Killen et al. 2011) and migration propensity (Lans et al. 2011). As 

natural environments typically are unstable and both food availability and predation pressure fluctuate, 
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this mechanism constitutes a potential causal link between metabolism and behaviour. Furthermore, this 

link can potentially explain the co-existence of consistent differences in individual behaviour (i.e. 

behavioural syndromes). The majority of work in this field has been done in artificial laboratory settings and 

care should be taken when extrapolating from laboratory findings on both metabolism and behaviour to 

their respective relevance in nature (Blake 1991). For instance, fish behaviour in laboratory trials might not 

be a good predictor for fish behaviour in the wild as indicated in Klefoth et al. (2012). Furthermore, it is 

recognised that individual personality might affect the measurement accuracy in metabolic studies through 

individual differences in reactions to being confined in a respirometry chamber (Careau et al. 2008). Thus, 

although correlations between individual metabolism and behaviour have been found in laboratory 

experiments it is virtually unknown whether these correlations exist in nature.  

In ms/V/ we present a study focussing on this issue by testing the hypothesis that individual metabolic 

properties are correlated with behaviour in natural settings. In short, we captured 23 wild perch in the 

study lake, tagged them with acoustic transmitters, measured standard and maximum metabolic rates 

(SMR and MMR) in the laboratory (see box 3) and returned them to the lake to quantify their individual 

behaviour. Additionally, individual scope for aerobic activity was calculated as the difference between 

MMR and SMR. We estimated three behavioural measures each of which was expected to correlate with 

the metabolic properties: overall activity, average swimming speed and maximum swimming speed. 

Interestingly, the data showed no indications of the correlations between metabolic rates and behaviour as 

predicted from the performance model. This was surprising as the species used utilizes an active search 

feeding strategy. However, perch are known to undergo ontogenetic shifts in prey preferences and perch in 

the size range used will typically be feeding on either benthic invertebrates or pelagic prey fish (or a mix of 

these) (Hjelm et al. 2000) and may thus have constituted functionally different groups entailing different 

behaviours. Therefore, metabolism-behaviour correlations may have been present within each group but 

this could not be tested in the present study as no information on individual feeding strategy was available. 

Nevertheless, the data suggests that laboratory measures of metabolism per se are not linked to volitional 

behaviour in free swimming fish in an unambiguous way.   
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Inter-individual variability in morphology 
Swimming costs is one of the major components in the energy budgets of fish (and other aquatic animals) 

and adaptations to reduce these costs should be evolutionary favourable. The hydrodynamics of swimming 

fish are complex but can be approximated by simplifications as the energy required for simple objects (e.g. 

a cylinder or prolate spheroid (explained below)) to move through water can be modelled relatively 

precisely by complex physical formulae. A key component in physical modelling of movement is resistive 

  
BOX 3 
Measuring metabolic rates 
Metabolic rates (MRs) in fish are often measured as whole-animal metabolism using the automated intermittent-
flow method (e.g. Norin & Malte 2011). Individual fish are placed in a respirometry chamber immersed in an ambient 
tank containing fully aerated (dependent on research question) water. The chamber is connected to two separate 
water circuit systems generating flow through the chamber using computer controlled pumps operating alternately 
in a two-phased (flush and measurement) cycle. The flush phase (open circuit) is used to exchange the water in the 
chamber with ambient water, thereby avoiding accumulation of CO2 and other excretory products. During the 
measuring phase, water is recirculated in a closed circuit including a galvanic oxygen electrode measuring the oxygen 
tension in the water. As this is a closed circuit, fish respiration will result in continuously decreasing oxygen tensions. 
After correcting for oxygen solubility, atmospheric pressure and water temperature, fish oxygen consumption (i.e. 
metabolic rate (MR); unit: mg O2 * h-1) can be calculated as the slope of a regression line fitted through the oxygen 
tension vs. time values. To enable between-individual comparison, the obtained values are corrected for differences 
in mass using a scaling factor (0.8 is typically used (Clarke & Johnston 1999)) to accommodate the allometric 
relationship between metabolic rate and mass following the formulae: Mass specific MR = (1/fish mass)0.8 * MR 
(Reidy et al. 2000). Thus, mass specific MR (unit: mg O2 * h-1 * kg-1) is a measure of the MR for fish of a particular 
mass, typically 1 kg.  

Standard MR (SMR), maximum MR (MMR) and scope for aerobic activity (SAA) 
In ms/V/ we used a chase protocol (Cutts et al. 
2002) to measure the maximum metabolic rate of 
perch. This protocol relies on the assumption that 
an exhausted fish is respiring at maximum 
possible rate. Each fish was chased individually by 
hand in a small tank until it no longer reacted 
when turned up-side-down and partially lifted out 
of the water. At that point the fish was quickly 
transferred to a respirometry chamber and the 
measuring phase was started immediately. The 
first measured MR was defined as MMR. 
Subsequently, the fish were left undisturbed 
overnight while oxygen consumption was 
monitored continuously. During this period the 
MR reached a low and stable level, typically 
shortly after the lights were turned off. This level 
was defined as SMR. SAA was calculated as the 
difference between MMR and SMR. The figure 
shows data from one of the perch used in ms/V/. 
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drag, i.e. the resistance an object is subjected to as it moves through water. Overall shape is a major 

determinant of drag. By considering fish a simple object (a prolate spheroid; a spheroid in which the polar 

axis is greater than the equatorial diameter, e.g. an American football), the effect of body shape on 

swimming costs has been modelled using fineness ratio as a metric of overall body shape (Blake 1983). In 

this case, fineness ratio is defined as the ratio between length and maximum diameter. A fineness ratio of 

≈5 was found to be optimal for reducing drag according to a “simple” (quote Chung 2009) hydro-

mechanical model (Blake 1983). However, using a more advanced model Chung (2009) predicts fineness 

ratios ≈8 (i.e. a more elongated body) to be optimal. These numbers are approximations as a fish body is 

more complex than a rigid prolate spheroid due to e.g. protruding, moving fins and an asymmetrical, 

flexible body. Furthermore, different swimming gaits will potentially warrant different values to minimize 

swimming costs. Thus, although the exact value is debateable, fish should have evolved body shapes with 

fineness ratios in the range of 5 – 8 to minimize swimming costs; this is indeed found in many species of 

actively swimming fish, e.g. cod and herring (Blake 1983).  

Linking morphology and behaviour 
Following the above paragraph and assuming that the optimal fineness ratio for a given species is constant, 

inter-individual variation in fineness ratio should directly influence individual swimming costs which in turn 

could influence behaviour. Support for this has been found in several species. For instance, Ohlberger et al. 

(2006) found a direct relationship between swimming costs and fineness ratio in carp (Cyprinus carpio) and 

roach. Conformingly, Boily & Magnan (2002) found that stout (i.e. relatively low fineness) individuals of 

yellow perch (Perca flavescens)experienced higher swimming costs than slender individuals. However, 

standard laboratory protocols used to determine swimming costs involve forced swimming against a 

unidirectional constant flow; a situation few fish is ever faced in nature and which relevance for free 

swimming fish has been questioned (Boisclair & Tang 1993). Consequently, though fineness ratio has been 

found to influence swimming cost, it is basically unknown whether inter-individual variability in this metric 

correlate with volitional behaviour of free-ranging fish. An exception is Hanson et al. (2007b) who found 

that body shape (measured as a PCA-axis describing features that would correlate with fineness ratio) 

influenced both mean swimming speeds and travelled distance of nest guarding largemouth bass. 

Additionally, in ms/V/ we found positive correlations between fineness ratio and both mean daily speed 

and maximum daily speed; i.e. slender individuals swam faster than stout individuals. Although the 

prospect of a pure physical explanation (i.e. the hydrodynamic effects of fineness affecting swimming costs) 

of parts of the individual variability is alluring, this correlation most probably entails some biological 

components as well. For example, fineness ratio could be related to nutritional status as ‘fatter’ fish of a 

given length will have a lower fineness ratio. Moreover, in ms/V/ we used perch whose morphology is 
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known to be highly plastic and to correlate with both habitat structure and feeding mode (Olsson & Eklöv 

2005). Generally, deep bodied and thus highly manoeuvrable perch are associated with the benthic niche, 

whereas slender perch are associated with pelagic feeding (Hjelm et al. 2000; Svanback & Eklöv 2004). 

Regardless of the causal mechanism driving the correlations between fineness and behaviour, it is 

interesting that this simple metric can explain significant amount of inter-individual behavioural variation.  

Summary | Inter-individual variability 
During the course of the present work, inter-individual variability has been omni-present as is the case in 

most field studies on fish behaviour. In the present work, behavioural within-individual variation was often 

considerably smaller than between-individual variation. Thus, individual behaviour could be considered 

consistent and repeatable and could therefore be analysed within the framework of behavioural 

syndromes. A majority of work in this burgeoning field is based on theoretical or laboratory derived findings 

and very few studies provide empirical data from the field. In ms/V/ we present a field study exploring 

some of the factors potentially linked to individual behavioural consistency. We found none of the 

predicted correlations between metabolic properties and behaviour. Although the data potentially were 

confounded by other factors enshrouding a correlation, the findings suggest that metabolism is not an 

overriding determinant of individual volitional behaviour. In contrast, we found morphology to be 

correlated with behaviour but the causal mechanism behind this is unknown and can be multifarious and 

complex.  

Conclusions and perspectives 
The present work aimed at expanding the current knowledge on fish behaviour and factors potentially 

affecting it. To achieve this goal, an advanced telemetry system was deployed in a small lake. Validity of 

data obtained using the telemetry system was assessed and found to satisfactorily facilitate studies on fish 

behaviour in natural settings (ms/I/).  

By comparing activity levels in periods from summer through winter for two consecutive years, ms/II/ 

presents evidence that pike can be surprisingly active during this season. This adds to the rather limited but 

growing body of evidence that the fish component of lentic ecosystems is not static and inactive during 

winter as has previously been believed. Furthermore, ms/II/ suggests that the structuring effect of pike on 

lower trophic levels may be present during winter as well. This have been addressed in a subsequent study 

conducted in Lake Gosmer (winter 2011-2012) including roach, perch and pike, but these data have not yet 

been thoroughly analysed.  

Manuscript ms/III/ focused on the impact of human recreational activity on fish behaviour. It was 

documented that angling-related boating can affect both activity level and spatial distribution of roach and 
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perch, whereas the data on pike was inconclusive. The study indicates that disturbance from boating was 

the main factor affecting fish behaviour whereas the addition of angling activities did not cause increased 

response. To achieve a sufficiently long study period, the transmitters used in this study had relatively large 

burst intervals (30 sec). While adequate for the main focus of that study (i.e. is there an effect or not), this 

burst interval was unfortunately too large to allow further examination of the detailed response of the fish. 

For instance, it is likely that the magnitude of the response depends on the distance between boat/motor 

and fish and that the fish do not respond at all beyond a certain range. These questions could be addressed 

by using transmitters with lower burst intervals (e.g. 1.3 or 2.5 sec). 

Management of freshwater fisheries is often based on or include catch-and-release as a remedy to allow 

recreational fishing while protecting vulnerable populations and/or enhance the fishery. Ms/IV/ focused on 

the short term behavioural response of pike to C&R-events. The general response was found to be a 

transitory decrease in activity of C&R pike. As no effect could be detected after two days, the findings 

indicate that pike are relatively resilient to C&R and, thus, that C&R can be a feasible tool in successful 

management of pike fisheries.  

Consistent individual differences in behaviour, and the causes and consequences thereof, is a 

contemporary and burgeoning field of research primarily based on findings from laboratory studies. Ms/V/ 

presents one of the first studies attempting to bring this topic to the field through an inter-disciplinary 

approach. It was expected that metabolic properties and behaviour in natural settings was correlated. 

Although the existence of such correlations cannot be conclusively excluded, the findings suggest that 

metabolism is not necessarily an overriding factor determining behaviour and vice versa. Additionally, 

ms/V/ presents data suggesting that a simple measure of overall morphology potentially can explain a 

significant amount of variation in individual behaviour, although the mechanisms driving this relationship 

are unclear.  

Overall, the application of an APTS to study fish behaviour in a small lake proved to be feasible. The 

approach enabled the study of detailed fish behaviour by means of geographical positions, although the 

exact behaviour of the focal fish (e.g. foraging, digesting) remained unknown. However, indications of 

physiological status of the fish and discrimination of the intricate behaviour at these positions can be 

obtained through the use of advanced telemetry tags measuring various important parameters. Examples 

include tags capable of measuring heart rate, muscle activity, tail beat frequency, overall body posture and 

tri-axial acceleration (see for instance Lucas et al. 1993; Cooke et al. 2004; Svendsen et al. 2005; Ohlberger 

et al. 2007; Donaldson et al. 2008). A combination of this type of data with the positional data obtained by 

an APTS could be very interesting and give further insight in virtually every aspect of fish behaviour in 

natural settings.  
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The manuscripts included in the present thesis represent only a small part of the data produced by the 

APTS in Lake Gosmer and potential analyses thereof. At the time of writing, the Lake Gosmer database 

contains nearly 50 million observations on more than 250 individual fish. These data hold great potential 

for further analyses of, for instance, consumptive and non-consumptive predator-prey interactions as well 

as detailed and long term habitat utilization and spatial distribution. Additionally, the data can potentially 

be analysed within the framework of important ecological models and hypothesis such as ‘ideal free 

distribution’ and theories on optimal movement patterns (e.g. Brownian movement, correlated random 

walk and Lévy walk (Viswanathan et al. 1999; Codling et al. 2008)). 
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Abstract 
Acoustic positional telemetry systems (APT) represent a relatively new approach to studying aquatic animal 

behaviour. System manufacturers promise high quality positional data with high temporal and spatial 

resolution (sub-meter accuracy). Even though APT systems have been utilized for a number of biological 

studies, the achievable data quality has not yet been rigorously tested. Therefore, we conducted a series of 

standardized tests to assess the performance of two APT systems deployed to cover two freshwater lakes 

of different sizes (25 ha and 1 ha). The sub-meter accuracy claim from system manufacturers were met 

under certain conditions, but overall system performance was found to be dependent on habitat 

complexity. Although species associated with complex habitats can compromise system performance, our 

study reveals that APT systems can provide unprecedented data on aquatic animal behaviour under natural 

conditions. 
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Introduction 
Telemetry is one of the most versatile and important tools of biologist undertaking field studies on aquatic 

animal behaviour in natural settings. The technology can provide researchers detailed information on an 

individual level (Metcalfe & Arnold 1997) that would otherwise be unobtainable due to the challenges 

inherent in the study of underwater animals (Block 2005) and embodies a wide assemblage of technologies 

ranging from relatively simple Passive Integrated Transponders (PIT) to advanced data storage tags relaying 

collected information via satellites. Corresponding applications in the fields of fish ecology and ethology 

range from monitoring the migration patterns in small lakes and streams (Aarestrup et al. 2003; Svendsen 

et al. 2007; Skov et al. 2011) to studying the behaviour of oceanic species (Aarestrup et al. 2009; Block et al. 

2001). Studies on an intermediate spatial scale, e.g. river systems and lakes, have often utilized telemetry 

based on either radio or acoustic signals enabling tracking of animals equipped with transmitters. Typical 

tracking strategies include 1) automatic passive monitoring of the presence/absence of tagged individuals 

covering a large area (e.g. Aarestrup et al. 2008); 2) manual active tracking enabling precise positioning of 

the tagged individuals (e.g. Klefoth et al. 2008; Arlinghaus et al. 2008; Kobler et al. 2009) or 3) a 

combination of the two (e.g. Aarestrup et al. 1999; Koed et al. 2006). Using these techniques, many aspects 

of fish behaviour have been studied and revealed. However, widely used methods suffer from a trade-off 

between spatial and temporal resolution. Whereas the passive monitoring of presence/absence of tagged 

individuals typically is done with high temporal resolution, it yields little or no information regarding the 

location, habitat choice and activity of the fish within the covered area of interest, which often extend 

several thousands of square meters. In contrast to this, precise positioning of tagged individuals is 

achievable using manual tracking (Kobler et al. 2008). However, manual tracking is labour intensive as only 

one individual can be positioned at a time, often resulting in relatively short continuous tracking sessions 

with low temporal resolution. Furthermore, as manual tracking requires active movement of the tracking 

personnel, often in the vicinity of the focal animal, the tracking protocol per se can induce altered 

behaviour of the focal animal.  

Following the recent advent of acoustic positional telemetry (APT) systems, some limitations of traditional 

telemetry techniques are potentially surmounted (Niezgoda et al. 2002; Cooke et al. 2005). The APT 

rationale effectively minimizes the described trade-off between temporal and spatial resolution through 

automatic and continuous data collection and storage. In APT systems, arrays of multiple synchronized 

hydrophones located at fixed positions detect the acoustic signals emitted from tagged individuals and 

store the information. The temporal resolution of the data is thus determined by the burst interval of the 

used transmitters, typically sub-minute. Subsequently, acquired data are post processed to obtain time 

stamped geographic positions. Given that an acoustic signal from a transmitter is detected by at least three 

hydrophones, the position of the transmitter at the time of signal emission can be calculated from the 
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minute differences in time of arrival at each hydrophone using hyperbolic triangulation (for further 

technical details, see Cote et al. 1998 and Niezgoda et al. 2002). Moreover, as the data collection is 

automatic, unintentional disturbances of the study area can be limited to that associated with required 

hydrophone maintenance. Additionally, the number of study animals equipped with a transmitter can be 

chosen according to the sample size needed to answer a specific research question as it is not limited by a 

manageable observer effort. 

By deploying an APT to cover an entire ecosystem, such as a small to medium sized lake, it is thus possible 

to turn a natural lake into a field-laboratory providing detailed behavioural information of tagged animals. 

This enables the testing of both novel and established research questions and theories under natural 

conditions. For instance, predator-prey interactions and interactions on multi-species and multi-trophic 

levels can be investigated under natural conditions in the field. Furthermore, by linking laboratory protocols 

and field observations, new insights in areas such as bioenergetics (Burton et al. 2011) and behavioural 

syndromes are conceivable (Sih et al. 2012). Additionally, behavioural responses to anthropogenic 

disturbances, e.g. angling and boating, and ecosystem manipulations, such as experimental introduction of 

invasive species and degradation or enhancement of habitat quality and quantity, can be studied on an 

individual level. Moreover, as the focal animals are studied within their natural habitat, genotype by 

environment interactions, which can be a significant source of experimental bias under laboratory 

conditions and potential lead to false conclusions (Brown et al. 2007; Klefoth et al. 2012), can be avoided.  

To simultaneously and uniquely identify many tagged animals monitored by an APT system, the signals 

emitted from the transmitters need to be coded. This can be done using at least two markedly different 

methodologies. Conventional acoustic telemetry utilize pulse-position (PP) coding, in which information 

such as animal id and sensor data are embedded within the time intervals of a sequence of energy pulses. 

This method has a number of drawbacks including limitations in number of transmitters that can be 

monitored simultaneously in the same area (typically less than ten), poor code discrimination reliability 

under sub-optimal conditions and limitations in achievable accuracy. Alternatively, information from the 

transmitters can be encoded using code division multiple access (CDMA) technology, which is extensively 

used in e.g. cellular telephony and the Global Positioning System (GPS) (Niezgoda et al. 2002). This 

technology allows the simultaneous tracking of more transmitters with greater accuracy than the PP 

technology (see Niezgoda et al. 2002 for further discussion on PP and CDMA). 

In recent years, a number of biological studies employing APT systems have been published, showing the 

potential of the APT technology (e.g. Cote et al. 2002; Zamora & Moreno-Amich 2002; Hanson et al. 2007; 

Hasler et al. 2009a; Svendsen et al. 2011; Rillahan et al. 2011; Baktoft et al. 2012). Whereas performance of 

a PP based APT system has been tested and reported (Espinoza et al. 2011), performance assessments of 

CDMA based APT systems have not yet been published. Therefore, the aim of the present study was to test 
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the performance of two proprietary CDMA based APT systems deployed in two different lakes. Using a 

standardized protocol we assessed the efficiency, accuracy and precision of each system. Furthermore, as 

habitat structure and complexity are important factors in many ecological processes and can influence 

acoustic signal propagation (Diana et al. 1977), we tested the effect of habitat type and complexity on 

system performance.  

Materials and Methods 

Acoustic Positional Telemetry (APT) systems 
The study was conducted in two lakes each equipped with an APT system based on the CDMA technology 

(Niezgoda et al. 2002) operating at 200 kHz frequency. Both systems were deployed to cover the entire 

respective lake. Lake1 (Kleiner Döllnsee, 52°59´ N, 12°34´ E, Germany, 24 ha) was equipped with a wireless 

system (WHS 3050; Lotek Wireless Inc, Newmarket, Ontario, Canada) whereas Lake2 (Lake Gosmer, 55°55´ 

N, 10°10´ E, Denmark, 1 ha) was equipped with a cabled system (MAP600; Lotek Wireless Inc, Newmarket, 

Ontario, Canada). The ALPS in Lake1 consisted of 20 wireless hydrophones with integrated dataloggers, 

synchronized using dedicated beacon transmitters attached to each hydrophone. The APT in Lake2 

consisted of eight cabled hydrophones connected to a single onshore datalogger. While the hardware setup 

in the two lakes was dissimilar, both systems utilized comparable technology and the same rationale for 

calculating positions of the transmitters. In short, coded signals emitted from transmitters were detected 

by hydrophones and stored by a logger. The stored data was downloaded to a portable computer for 

subsequent analysis using proprietary software (Lake1: ALPS, ver. 2.22; Lake2: BioMAP ver. 2.1.12.1; both 

from Lotek Wireless Inc). If an emitted signal was detected by at least three hydrophones, a 2D position 

was calculated based on the minute differences in time of arrival at each hydrophone using hyperbolic 

triangulation techniques (for further information, see Cote et al. 1998; Niezgoda et al. 2002). The 

transmitters used in Lake1 was CH-TP16 (burst interval 9.2 s, but every fourth signal was relayed as a radio 

signal and thus not detectable by the APT; Lotek Wireless Inc) and in Lake2 MAP6_2 (burst interval 2.56 s; 

Lotek Wireless Inc) in Lake2. Although being different models, the used transmitters were technically 

comparable and used similar frequency and coding. Besides identification code the transmitters used in 

Lake1 relayed information from an integrated pressure sensor enabling calculation of the depth of the 

transmitter.  

Data processing and filtering 
The calculated positions originating from the proprietary software contain a variable amount of system 

induced outliers (Niezgoda et al. 2002). To remove extreme cases of these a slight filtering based on 

proprietary metrics (Dilution Of Precision (DOP), Condition Number (CN) and Reliability Number (RN)) was 

applied (the metrics are described Niezgoda et al. 2002) using the following values: DOP < 10, CN < 10, RN > 

0. The resulting data are henceforth referred to as ‘raw’ positions. To further and objectively reduce the 
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effect of system induced spurious outliers in the raw data, the raw positions were filtered using stricter 

values (DOP < 1, CN < 10, RN > 1) and subsequently smoothed using a Hidden Markov Model based 

approach with a t-distributed observation noise (Pedersen et al. 2008; Pedersen et al. 2011) yielding the 

most probable track of each transmitter, henceforth referred to as ‘filtered’ positions.  

Due to limitations in the proprietary software, position calculations could only be based on data from a 

maximum of eight hydrophones at a time. Thus, to fully utilize the data from all 20 hydrophones in Lake1 

several arrays consisting of eight hydrophones each were defined and processed separately. However, as 

the signals often were detected by several hydrophone arrays, this resulted in multiple calculated positions 

originating from the same signal. Furthermore, as the individual hydrophone arrays were not completely in 

sync with each other, the timestamps of the multiple calculated positions from the same signal differed 

slightly. Thus, the raw positions from Lake1 were processed to ensure that the multiple calculated positions 

from each emitted signal had identical timestamps prior to applying the Markov filter. The data produced 

by the Markov filter contains only one position per timestamp representing the most probable position 

based on all available information.  

Procedures to assess system efficiency, accuracy and precision 
To assess efficiency, accuracy and precision of the two systems a number of stationary tests were 

conducted (Lake1: n = 155; Lake2: n = 123). During the tests, transmitters were moored at known positions 

(± 0.2 meter using a differential gps (DGPS) unit, Trimble GeoXH, Sunnyvale, California, USA) for a period of 

time allowing the transmitters to emit several hundred signals. The transmitters were deployed to mimic 

potential positions of fish, by attaching them to a line, held in place by a heavy sink and kept vertical by a 

float. Up to four transmitters were attached to each line at known distances from the water surface. Each 

deployment of a transmitter is treated as a sampling unit in subsequent analyses. The habitat structure and 

complexity at the sites of deployment was categorized based on depth and the type and quantity of the 

vegetation in immediate vicinity of the transmitter. The following habitat categories were used: dense 

emergent macrophytes (ED), loose emergent macrphytes (EL), dense submerged macrophytes (SD), above 

submerged macrophytes (SA), shallow open water (OS) and deep open water (OD). All six habitat categories 

were present in Lake1 whereas Lake2 did not contain sufficient amounts of submerged macrophytes to 

facilitate transmitter deployments in these, i.e. categories SA and SD are not included in data from Lake2. 

System efficiency was defined as the proportion of emitted signals resulting in a calculated position. 

Accuracy of the calculated positions was defined as the deviation from the true position, i.e. the Euclidian 

distance between calculated and true position. For each stationary test, accuracy was calculated as the 

mean of these distances. Precision was defined as the variability of those distances and calculated for each 

stationary test as the standard deviation of the overall accuracy.  Efficiency, accuracy and precision were 

calculated for both raw and filtered positions.  
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For each trial in Lake1, the distance from transmitter to the water surface, henceforth referred to as true 

transmitter depth, was measured, thereby allowing an assessment of the depth reported by the 

transmitters.  

Tow test 
The stationary tests were obviously inadequate to assess system performance for moving animals. 

Therefore, a number tow tests (Lake1: n = 6; Lake2: n = 22) were conducted in each lake to mimic 

trajectories of fish swimming around and across the lake following a linear to curvilinear path. During these, 

three transmitters were attached to a solid vertical rod mounted on a boat, thus yielding 18 and 66 trials. 

The true trajectory was determined using a DGPS positioned directly above the transmitters. System 

efficiency for moving transmitters was assessed following the protocol from the stationary tests whereas 

accuracy calculations were based on minimum distances between calculated positions and the DGPS 

trajectory. Precision could not be calculated for the tow tests as the transmitters were moving. 

Statistics 
Potential effects of habitat type and complexity on efficiency, accuracy and precision on the filtered data 

were analysed by fitting linear models using generalized least squares (gls; Zuur et al. 2009), thereby 

allowing for unbalanced data sets. In each test, habitat type was entered as fixed factor and trial means of 

efficiency, accuracy or precision as dependent variable. Thus, a total of six models were fitted, one for each 

of the dependent variables in each lake. Habitat categories with less than four trials yielding positions were 

excluded from the analysis. Prior to fitting the models, efficiency was arcsin-transformed and both accuracy 

and precision was log(y + 0.1) transformed, according to Zar (1999). A variance structure was included to 

allow for heterogeneity of variances between habitat categories when this significantly improved model fit 

(Zuur et al. 2009). The relationship between true transmitter depth and depth reported by the transmitters 

were analysed by fitting a linear model using a general linear model (GLM). Trial means of reported depth 

was entered as explanatory variable and true transmitter depth as dependent variable. Habitat type was 

not included in this analysis as the transmitter depth measurement is based on pressure sensor technology 

and therefore not influenced by habitat type. Statistical analysis were done in R version 2.10.1 (R 

Development Core Team 2010) using the nlme 3.1-97 package (Pinheiro et al. 2010) in addition to core 

functions. 

Results 

Stationary tests 
There was a significant effect of habitat category on efficiency, accuracy and precision in both lakes (gls; p < 

0.01 in all tests; Table 1; Fig. 1). For all three performance measures, the non-structured open water 

habitats yielded best performance, whereas structured habitats generally reduced performance dependent 
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on macrophyte density (Fig. 1; Table 1). Additionally, there was considerable variation within habitat 

category in all performance measures in both lakes (Fig. 1; Table 1), indicating that other factors than 

habitat category influence system performance.  

The application of the Markov filter improved both accuracy and precision substantially compared to the 

raw data, although the final filtering step resulted in a slight decrease in system efficiency (Fig. 1).   

 

Fig. 1. Distributions of mean efficiency (a, d), accuracy (b, e) and precision (c, f) from Lake1 (a, b, c) and 
Lake2 (d, e, f) in the six different habitat types (SD = dense submerged macrophytes; SA = above 
submerged macrophytes; OS = shallow open water; OD = deep open water; EL = loose emergent 
macrophytes; ED = dense emergent macrophytes). R and F denote raw (white) and filtered (grey) data, 
respectively. Height of the plots indicates data point density. Mean values are given by solid vertical bars. 
NTrial indicates number of trials yielding positions / number of trials in each habitat type. The x-axes in 
panels a and c are dimensionless and meters in panels b, c, e and f. Note different scales on the x-axes 
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Table 1. Coefficient estimates (back transformed) from the linear models. Numbers in brackets 
are the coefficient estimates minus and plus standard deviation which is non-symmetrical due to 
the back-transformation. 
Lake1    
Habitat type Efficiency (%) Accuracy (m) Precision (m) 
SubmDense (SD) 0.7 (0.1 - 3.5) 6.1 (1.8 - 20.6) 0.8 (0.0 - 6.8) 
SubmAbove (SA) 41.6 (12.5 - 74.5) 4.4 (2.0 – 10.0) 1.5 (0.4 - 4.8) 
OpenShallow (OS) 58.1 (31.2 - 82.7) 3.1 (1.1 - 9.1) 1.1 (0.2 - 3.9) 
OpenDeep (AD) 70.8 (49.3 - 88.4) 1.9 (1.2 – 3.0) 0.6 (0.2 - 1.4) 
EmerLoose (EL) 11.6 (1.2 - 30.8) 10.3 (2.6 - 40.3) 3.9 (0.3 - 39.2) 
EmerDense (ED) 0.0 (0 - 0) - - - - 
 
Lake2 

      

Habitat type Efficiency (%) Accuracy (m) Precision (m) 
SubmDense (SD) - - - - - - 
SubmAbove (SA) - - - - - - 
OpenShallow (OS) 76.5 (52.2 - 94.0) 1.0 (0.6 - 1.7) 0.1 (0.0 - 0.5) 
OpenDeep (AD) 74.7 (50.0 - 92.9) 0.9 (0.6 - 1.3) 0.1 (0.0 - 0.4) 
EmerLoose (EL) 24.7 (6.7 - 49.2) 1.8 (0.6 - 5.2) 0.6 (0.1 - 2.7) 
EmerDense (ED) 1.2 (0.2 - 6.9) 2.3 (1.1 - 4.7) 1.6 (0.7 - 3.4) 
       

 

Depth 
There was a strong linear relationship between true transmitter depth and depth reported by the 

transmitters (Fig. 2; n = 155, GLM, no intercept, coefficient estimate = 1.01, std. error = 7.5 * 10-3, p < 

0.0001). Furthermore, the within-trial variation was small (mean standard deviation = 0.06 m). These 

findings indicate that the depths reported by the transmitters were correct and consistent. 

 

  

 

Fig. 2. Depth measured in the field 
versus depth reported by the stationary 
transmitters. Solid line is the regression 
line, broken and dotted lines are 95 % 
confidence and predictions intervals, 
respectively (n = 155, GLM, no intercept, 
coefficient estimate = 1.01, std. error = 
7.5 * 10-3, p < 0.0001). 
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Tow tests 
Mean trial efficiency of the tow tests was 0.51 (SD = 0.18) and 0.86 (SD = 0.11) in Lake1 and Lake2, 

respectively. Corresponding accuracies was 5.27 m (SD = 4.0) and 0.43 m (SD = 0.16) (Fig. 3). Mean speed of 

the boat during the tow tests was 0.58 m/s (SD = 0.16) in Lake1 and 0.43 m/s (SD = 0.066) in Lake2. 

 

 

Fig. 3. Visualisation of a subsample of the 
tow tests conducted in Lake2. Tracks of 
nine tows are shown. Only the track from a 
single of the three used transmitters is 
shown. Thick black line indicates perimeter 
of the lake. Overall there was good 
concordance between calculated (thin, 
black line) and true trajectory (grey line). 
However, accuracy can decline when the 
transmitter is outside the footprint of the 
hydrophone array as evident in the south-
west corner. 

 
 

Discussion 
The present study assessed the performance of two APT systems deployed in two freshwater lakes of 

different sizes by studying the efficiency, accuracy and precision of the systems. In both lakes, system 

performance was dependent on habitat category with decreased performance in structural complex 

habitats. Furthermore, within habitat category variation in the performance parameters was relatively 

large. The findings reflect the complex nature of aquatic acoustic positional telemetry. In general, the 

probability of detecting a signal at a given hydrophone is a function of the amount of signal attenuation 

caused by the water itself and obstacles such as macrophytes, and signal interference from multipath 

propagation caused by signal reflection from hard substrates or the water surface (MacLennan & 

Simmonds 1992). Furthermore, an emitted signal needs to be detected by at least three hydrophones to 

facilitate a position calculation. Thus, as signal attenuation ceteris paribus is positively correlated with 

habitat complexity, the observed decrease in system efficiency in complex habitats was expected. The 

within and between habitat category variation in both accuracy and precision can likely be explained by the 

position-dependent variability inherent in the hyperbolic triangulation algorithm (Niezgoda et al. 2002). 

Generally, the performance of the algorithm peaks at positions within the centre area of an equilateral 

triangle outlined by three hydrophones and degrades gradually for positions closer to and outside the 

triangle edges. Thus, positions outside the hydrophone array will generally be less accurate than positions 

inside (Niezgoda et al. 2002; Zamora & Moreno-Amich 2002). Alternatively, it is conceivable that complex 
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habitats can cause more signal interference than non-structured open water habitats and, therefore, the 

habitat category per se can influence system accuracy and precision. However, in the present study the 

effect of hydrophone geometry on system accuracy and precision could not be separated from the 

potential effect of habitat category as none of the structured habitat categories were present both within 

and outside the hydrophone arrays.  

The APT in Lake2 generally performed better than the APT in Lake1. This can most likely be explained by 

differences in lake size and hydrophone array configuration. Lake1 was approximately 20 times larger than 

Lake2 and, although more hydrophones were deployed in Lake1 to accommodate limits in acoustic range 

and signal blocking caused by lake bathymetry, the coverage of Lake1 in terms of between-hydrophone 

distances and area outside the hydrophone array was coarser. Furthermore, the proprietary positioning 

algorithm could only utilize a maximum of eight hydrophones simultaneously necessitating that multiple 

arrays, of up to eight hydrophones each, needed to be defined. In effect, this divided the whole-lake 

coverage of the twenty hydrophones into several smaller arrays, each covering a relatively small proportion 

of the entire lake. Therefore, a relatively large number of the stationary tests resulted in calculated 

positions that were well within the coverage of the twenty hydrophones, but were outside the array that 

actually calculated the position. Ultimately, this might have led to lower accuracy and precision.  

The calculated positions produced by the proprietary software were encumbered by a relatively large 

number of spurious outliers, resulting in poor accuracy and precision of the raw data in both lakes (see Fig. 

1). However, following the application of a Hidden Markov model (Pedersen et al. 2008; Pedersen et al. 

2011) system performance improved substantially. The Hidden Markov approach was chosen as it 

processes the data by estimating “the most probable track” of the transmitters by analysing each individual 

position while considering the preceding and following positions.  

The presence of spurious outliers was especially true for Lake1, in which the reduced quality of the raw 

data was partly caused by the limitations in the proprietary positioning software (limit of eight 

hydrophones). Although this limitation can be remedied by applying a multi-array structure as done in 

Lake1, researchers should be aware of potential challenges derived from this approach. These include 

multiple calculated positions originating from a single emitted signal caused by the signal being detected by 

more than one array. As discussed above, this will lead to a relatively large number of position calculations 

based on poor hydrophone geometry and, thus, poor accuracy and precision. Time drift of the internal 

clocks in the wireless hydrophones causing de-synchronization of the defined arrays will further complicate 

this, as it leads to different time stamps on the multiple positions originating from a single signal.  

Previous studies utilizing CDMA based APT systems often claim ‘sub-meter accuracy’ of their systems; 

either with reference to Niezgoda et al. (2002) or Cooke et al. (2005) (Hanson et al. 2007; Hasler et al. 
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2009b; O'Connor et al. 2010), own observations (Cote et al. 1998) or unreferenced (Cote et al. 2002; Cote 

et al. 2003). Although, the papers referred to (Niezgoda et al. 2002; Cooke et al. 2005) both mention that 

sub-meter accuracy is achievable, they do not provide rigorous standardized tests of whether this claims is 

general, and thus valid, for the entire extent of their study site. The results from the present study support 

the claim that sub-meter accuracy (and precision) is indeed possible. However, the findings also reveal that, 

at least in the two systems studied, this is not unambiguously correct.  

The tow tests revealed that the APT systems performed equally well for stationary and moving transmitters 

as efficiency and accuracy were similar to the stationary tests. Furthermore, the results illustrate the effect 

of hydrophone geometry on position accuracy, e.g. the degradation of accuracy as the transmitters are 

moved outside the hydrophone array (see Fig. 3, south-west corner). It should be noted that the accuracy 

estimates of the tow tests potentially are downward biased since the error of each calculated position on 

the axis parallel to the DGPS trajectory was ignored. However, as the true positions of the transmitters at 

the exact times of signal emissions were unknown, this component of the total positional error was 

unobtainable. Nevertheless, the tow tests verified that the APT systems were capable of tracking the 

moving transmitters, which, of course, is a crucial requirement for the applicability of the systems to 

successfully study free ranging animals.  

In summary, we conclude that both the deployed APT systems were capable of providing positional data of 

a high quality in terms of both temporal and spatial resolution. We advocate that, although sub-meter 

accuracy is not to be expected throughout a study site, the CDMA based APT systems are indeed a potent 

tool for studying aquatic animal behaviour and offer a major improvement to traditional telemetry 

methods regarding the combined temporal and spatial resolution of positional data. 

Comments and recommendations 
The effects of habitat complexity and hydrophone geometry on system performance should be considered 

during the design phase of studies employing APT systems. For instance, focal species that are known to 

reside in complex habitats close to the shore would warrant a different hydrophone array configuration 

than pelagic species primarily residing in the centre of a lake in order to facilitate better coverage. 

Moreover, as each lake is unique in terms of bathymetry and acoustic properties, we strongly advocate that 

rigorous tests of system performance should be considered an integral part of the initial phases of studies 

using APT systems. Without a proper knowledge on the performance of a particular system setup, 

erroneous interpretations of obtained data and, subsequently, false conclusions are prone to be made. 

Because the systems performances in our study could be significantly improved by application of a Hidden 

Markov Model, researchers are advised to consider the possibility of using such statistical options if high 

spatial resolutions are needed for answering the research questions. Additionally, we advise researchers to 

ensure that they have access to the knowhow required to process raw data as well as data handling and 
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analyses of the potentially very large data sets obtained using APT systems. This includes the development 

of databases and analysis algorithms, which, to a large extent, will need to be custom designed for each 

specific research project. 
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Abstract – Temperate lakes can be ice covered for several months each year, yet little is known about the behaviour
and activity of the fish during the cold season. As northern pike represents the top of the food web in many northern
temperate lakes and may structure the ecosystem both directly and indirectly, a detailed understanding of the
behaviour of this species during winter is important. We continuously monitored the activity of adult northern pike
(Esox lucius) in a small temperate lake from late summer to winter for two consecutive years using an automatic
acoustic positional telemetry system. Four subsample periods representing different temperature regimes from each
year were chosen for further investigation. The results revealed that pike activity was similar between seasons. In
all periods, a distinct diel pattern, showing increased activity during day as compared to night, was evident. Our
findings indicate that the fish component of temperate lentic ecosystems can be more active during the cold season
than previously assumed. This may have implications for the structuring effect of pike on the lower trophic levels.

Key words: winter biology; temperate lake; activity; Esox; diel patterns

Introduction

The winter season in temperate lakes is often consid-
ered to be a period of very low activity and production
and thus an ecologically insignificant period (Salonen
et al. 2009). The notion of an inactive ecosystem,
combined with the logistic and methodological chal-
lenges involved in winter field studies, has implicated
that the general knowledge on lake winter ecology is
limited (Salonen et al. 2009). However, evidence is
mounting that lake winter ecology is not static, at least
regarding the activity and behaviour of the fish (e.g.,
Jurvelius & Marjomaki 2008; Amundsen & Knudsen
2009; Salonen et al. 2009).

In many subarctic and temperate lakes in the
Northern Hemisphere, northern pike (Esox lucius),
henceforth termed pike, is the natural apex predator
(Craig 1996). Besides a regulatory effect on prey fish

abundance and population dynamics (Byström et al.
2007), more subtle nonconsumptive predator effects of
pike on prey fish communities are known, including
changes in morphology (Brönmark & Miner 1992;
Eklöv & Jonsson 2007), reduced activity (Lima & Dill
1990; Bean & Winfield 1995; Jacobsen & Berg 1998)
and altered habitat utilisation (Jacobsen & Perrow
1998). By altering prey fish abundance and behaviour,
pike can affect the local ecosystem, including nutrient
cycles and levels, through cascading top-down effects
(Prejs et al. 1994; Berg et al. 1997; Skov et al. 2011)
underpinning the ecological importance of this spe-
cies. Although the mechanisms mediating prey fish
response are variable and complex, both visual and
chemical cues from pike have been found to alter prey
fish behaviour (Mikheev et al. 2006; Martin et al.
2010). Pike are visual predators (Casselman 1996)
whose activity typically follows a diel pattern showing

Correspondence: Henrik Baktoft, National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600 Silkeborg, Denmark. E-mail:
hba@aqua.dtu.dk

Ecology of Freshwater Fish 2012
Printed in Malaysia Æ All rights reserved

� 2012 John Wiley & Sons A/S

ECOLOGY OF
FRESHWATER FISH

doi: 10.1111/j.1600-0633.2012.00558.x 1

60



lowest activity at night and higher activity during the
day, and activity peaks at dusk and dawn (Diana 1980;
Cook & Bergersen 1988; Beaumont et al. 2005).
However, given the ecological importance of this
species, relatively little is known about the detailed
pike winter biology including activity level and
behaviour.

In ectothermic animals, the upper limit of energy
available to, for example, behavioural activity is
primarily controlled by the temperature of the sur-
rounding media through the temperature dependency
of metabolic rates and enzymatic activity (Fry 1971).
Therefore, it is conceivable that volitional activity
could be positively correlated with water temperature.
This correlation has indeed been found in a laboratory
study, showing that pike swimming activity peaks at
approximately 20 �C and gradually decreases to a very
low level at 6 �C (Casselman 1978). Corroborating
this, Cook & Bergersen (1988) and Kobler et al.
(2008) found reduced swimming activity during
winter as compared to summer. Contrasting these
findings, other studies found winter activity to be
similar or even higher than summer activity (Diana
et al. 1977; Jepsen et al. 2001; Koed et al. 2006).
These discrepancies might reflect biological variability
in pike behaviour in different ecosystems. However,
the methodologies implemented are diverse, poten-
tially invalidating direct comparisons between studies.
Furthermore, the above-mentioned field studies used
telemetry with manual tracking protocols that can have
repercussions on the quality of the acquired data. For
instance, a trade-off between temporal resolution and
the number of fish tracked is inevitable. Moreover, the
manual tracking process per se may disturb the tagged
fish and thereby induce nonvolitional behaviour
biasing the data. A recently developed alternative to
manual tracking is acoustic positional telemetry sys-
tems (APTS), enabling continuous automatic posi-
tional telemetry (Niezgoda et al. 2002). This method
effectively surmounts potential imperfections of man-
ual tracking. A large number of fish can be positioned
simultaneously with high temporal and spatial resolu-
tion and, as the data collection is carried out automat-
ically by stationary hydrophones, the risk of disturbing
the focal fish as part of the tracking process is
eliminated.

In this study, we aimed at increasing the knowledge
on winter biology of pike. Specifically, patterns
and levels of activity, in terms of movement, are
investigated and compared between seasons. By
implementing an APTS, a very detailed data set on
pike behaviour in a natural environment was acquired.
Pike were continuously positioned through two con-
secutive years. From this data set, subsamples from
late summer through winter in both years were
selected for further analysis.

Materials and methods

Study area

The study was conducted in a small Danish eutrophic
temperate lake [Lake Gosmer; 55�9¢N, 10�2¢W; area
approximately 1 ha; ellipse-shaped, ca. 140 · 80 m;
maximum depth 8 m; mean annual Secchi depth 1.2 m
(range: 0.4–2.4 m)]. The lake is an isolated water body,
that is, there are no connected streams. The fish
community was dominated by pike, perch (Perca
fluviatilis) and roach (Rutilus rutilus). Submerged
vegetation was restricted to a single bed of water lilies
(Nuphar lutea) along the southern shore. Narrow and
dense stands of emergent macrophytes (Typha latifolia)
covered the majority of the shoreline apart from the
northern shore that was shaded by overhanging trees.

Environmental variables

Water temperature and dissolved oxygen content were
registered at four depths through the water column
(1.0 m, 2.5 m, 4.0 m and 5.5 m from the surface) by
stationary data loggers (FDO 700 IQ probes, IQ
Sensor Net, WTW GmbH, Weilheim, Germany).
Calculations of mean water temperature and oxygen
content were based on data from the loggers at 1.0 and
2.5 m. Lake volumes were calculated using GIS
software (ArcGis 9.3, ESRI, Redlands, CA, USA).

Fish

During the period March 2009–October 2010, a total of
29 pike were captured using rod and line, trammel nets
or electro fishing on several fishing occasions and
tagged at the time of capture. Pike were anesthetised in
0.5 mgÆl)1 solution of 2-phenoxyethanol, and an
acoustic transmitter (Lotek MA-TP11-25; 11 mm
diameter; 61 mm long; 11 g in air; 45 s burst interval,
Lotek Wireless Inc., Newmarket, Ontario, Canada) was
inserted into the body cavity through an incision
anterior to the pelvic fins. The incision was closed by
two separate sutures using absorbable suture material
(Vicryl 3-0 FS-2, ETHICON, Johnson & Johnson
Medical Limited, Livingston, Scotland). Total length
and body mass were registered. Duration of the
complete tagging procedure was 3–5 min. Finally, pike
were released following full recovery in aerated lake
water. A previous study using a comparable tagging
procedure (Jepsen & Aarestrup 1999) found no or only
minor adverse effects on growth and survival of pike.

Tracking system

The study lake was equipped with an APTS (Lotek
MAP_600; Lotek Wireless Inc., Newmarket, Ontario,
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Canada) that continuously monitored the tagged fish.
In short, a receiver stored data collected by eight
hydrophones covering the entire lake. The data were
processed using proprietary software (BioMap v.
2.1.12.1; build 2.633; Lotek Wireless Inc., New-
market, Ontario, Canada) yielding raw calculated
positions based on registration by at least three
hydrophones (Niezgoda et al. 2002). The raw posi-
tions were filtered and smoothed using a hidden
Markov model–based approach with a t-distributed
observation noise (Pedersen et al. 2008). Validity of
the tracking system was verified by monitoring
transmitters moored at known positions and transmit-
ters towed by a boat (Baktoft, unpublished results).

Data analysis and statistics

From the complete data set, four subsample periods
(PER) through late summer, autumn and winter were
selected for further analysis for two consecutive years,
2009 and 2010. Each period consisted of five consec-
utive days. The periods were selected to represent
different seasons and thus water temperature regimes
while keeping other environmental factors as identical
as possible. The lake was left undisturbed, for
example, no boat traffic, sampling or fishing while
data were collected.

Distance calculations

Activity of each individual pike was calculated as the
minimum moved distance per hour (DPHind) based on
observations within 60-min periods. Thus, in each of
the eight PERs, a total of 24 · 5 = 120 measures of
DPHind were made on each individual pike included in
the respective period. DPHind was defined as the
two-dimensional Euclidian distance between consec-
utive locations. As the transmitters used had a burst
interval of 45 s, each individual was positioned up to
80 times every hour, yielding a maximum of 79
calculated distances per hour. However, the actual
number of positions per hour (Nobs) varied between
zero and full coverage (79 calculated distances)
because of the probabilistic nature of detecting the
acoustic signals.

As observed activity is estimated as the sum of line
segment lengths, the maximum obtainable observed
activity (DPHind) will inevitably be a function of Nobs.
However, as the true level of activity is a finite value,
there exists a given threshold of Nobs above which the
observed activity credibly reflect true activity. Visual
inspection of mean DPHind plotted against Nobs

revealed that at Nobs < 24, there was a positive
correlation between Nobs and DPHind, indicating that
DPHind was underestimated. At Nobs ‡ 24, this corre-
lation was absent. Therefore, all data with Nobs < 24

were excluded from further analysis, reducing the data
set from 19,440 to 10,606 observations on DPHind.

Mean moved distance for each hour of the day
(DPHind mean) within each PER:Year combination was
calculated as the mean of DPHind means grouped by
time of day (TOD; [0:23] each representing an hour).
Thus, for each TOD in each PER:Year combination,
the mean moved distance was calculated for each
individual pike. Subsequently, the mean and variance
of these individual means were calculated to get the
overall mean moved distance (DPHTOD mean) and
corresponding variance for each TOD grouped by
PER:Year. Finally, these were summed within each
PER:Year combination to get mean daily moved
distances. Variances of the DPHTOD mean values were
summed and square rooted to give standard deviations
(SD) of the daily means.

Statistics

Statistical analyses were performed to investigate
how overall activity and diel patterns of activity
varied between periods and years. Initial analysis
according to Zuur et al. (2009) revealed (i) no
extreme outliers present in the data set, (ii) potential
interactions between PER:TOD and PER:Year and
(iii) the effect of TOD on DPHind was complex and
nonlinear. DPHind was log10(y + 1)-transformed to
meet the assumption of normality. Data were anal-
ysed using a mixed-effects model with random
intercept including individual fish (FishID) as a
random factor. This model imposes a compound
symmetry correlation structure allowing multiple
observations from the same individual to be corre-
lated (Pinheiro & Bates 2000). Furthermore, a first-
order autoregressive correlation structure (AR1; Pin-
heiro & Bates 2000) was included to model the
temporal correlation between observations within
each FishID nested in PER and Year. The model
was further extended to a generalised additive mixed-
effects model (GAMM; Wood 2006), thereby allow-
ing the nonlinear TOD-DPHind relationship to be
fitted by smoothers. Cyclic cubic regression splines
were used to model the cyclic nature of TOD (Wood
2006). Finally, total length, centred around 60 cm
(TL60), was included as a covariate. By centring total
length, the estimated intercept from the GAMM repre-
sents a 60-cm pike instead of a 0-cm pike.

In summary, the following GAMM was fitted:

Log10ðDPHind þ 1Þ ¼aþ TL60þ PERþYear

þ PER:Year

þ fðTODÞ:PER:Year

þ aþ e
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where a is the overall intercept; TL60 is total length
centred around 60 cm; PER is period of year;
f(TOD) is a smoothing function modelling time of
day using a cyclic cubic regression spline; a is a
random component that is normally distributed with
expectation 0 and variance r2

a; and, finally, e is the
error term, which is modelled by the AR1-structure
along with random noise following a normal
distribution. The effect on model fit of all included
terms and interactions was tested by comparing full
and nested models using Akaike information crite-
rion (AIC) as described by Zuur et al. (2009) and
Wood (2006). In short, AIC is a measure of
goodness of fit that incorporates model complexity;
the lower the AIC, the better the model fits the data.
Terms and interactions that did not improve model
fit were removed.

Statistical analyses were performed in R version
2.12.1 (R Development Core Team 2010) using the
mgcv 1.7-2 (Wood 2006) and the nlme 3.1-97
(Pinheiro et al. 2010) packages.

Results

The number of pike and summary of environmental
variables in each period are given in Table 1. A
thermocline at approximately 4 m from the surface
was present during PER1 in both years, rendering the
hypolimnion anoxic. The hypolimnion constituted
approximately 17% of total lake volume. No stratifi-
cation was present in other periods. The number of
pike varied, because of the longitudinal nature of the
study and associated natural mortality of tagged and
sequential tagging of new pike.

Mean daily movement ranged from 621 to
938 mÆday)1 in 2009 and 928 to 1248 mÆday)1 in
2010. Although between-period variation was appar-
ent, there was no consistent seasonal trend in mean
daily movement (Fig. 1).

In general, a distinct diel pattern was evident
showing lowest activity at night, activity peaks
around sunrise and sunset and intermediate activity
during the day (Figs 2 and 3). Timing of the
twilight-related peaks followed the seasonal changes
in time of sunrise and sunset. This pattern did show
some variability, especially in 2010 where activity
during the night remained relatively high in periods
one and two. However, although the diel patterns
were variable, the applied GAMM revealed that they
were best modelled by one smoother for each period
representing both years (Table 2, Fig. 3). This
indicates that, generally, the diel patterns varied
between the periods, and that the diel pattern in
each period was similar between years. However,
overall activity levels in each period varied between
years, as indicated by the PER:Year interaction, with
the fish generally being more active in 2010
(Table 2, Fig. 1).

Table 1. Characteristics of the periods (PER) included in the study. Num pike gives the number of tagged pike in each period; TL gives mean total length of the
tagged pike in centimetres, minimum and maximum are given in parentheses; temp and O2 give mean water temperature and mean oxygen content as well as
standard deviations.

Start date Num pike TL (cm) (min–max) Temp (�C) (SD) O2 (mg l)1) (SD)

2009 PER1 August 30, 2009 11 68 (46–99) 17.3 (0.4) 6.4 (1.2)
PER2 October 15, 2009 21 65 (42–99) 8.4 (0.3) 6.8 (0.6)
PER3 December 9, 2009 20 64 (36–99) 5.0 (0.3) 8.9 (0.1)
PER4* January 7, 2010 20 64 (36–99) 1.9 (0.0) 6.7 (0.9)

2010 PER1 September 9, 2010 21 65 (49–99) 15.5 (0.2) 5.7 (0.9)
PER2 October 20, 2010 23 64 (49–99) 8.4 (0.4) 6.3 (0.4)
PER3 November 18, 2010 23 64 (49–99) 4.5 (0.2) 9.2 (0.4)
PER4* December 23, 2010 23 64 (49–99) 1.0 (0.0) 7.8 (0.8)

*Indicates periods with at least 15 cm of ice covering the lake.
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Fig. 1. Observed mean activity per day (mÆday)1) in the four
periods (PER) grouped by year (2009: open bars; 2010: hatched
bars). Error bars indicate standard deviation (SD). Mean values are
calculated as the sum of the means of individual means per time of
day (TOD).
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Model validation by graphical inspection of the
residuals indicated homogeneity and normality of the
residuals. The AR1 correlation structure effectively

modelled the temporal autocorrelation as judged by
autocorrelation plot of the residuals.
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further influenced by the other fixed effect terms including PER, that is, the PER main effect and the PER:Year interaction. Thus,
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thereby modelling an interaction between TOD and period (PER). Dashed lines represent 95% confidence intervals around the main
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Discussion

Daily moved distance remained at a relatively constant
level through the seasons in both years and, although
between-year variation was apparent, the pike were
active in all periods. There was no consistent seasonal
trend in the activity of the pike. The observed level of
activity was surprisingly high considering the small
size of the lake. While pike is believed to be a
sedentary ambush predator (Eklöv 1992; Craig 1996),
studies have revealed that pike also utilise active
hunting strategies (Turesson & Brönmark 2004) and
regularly perform active movements (Diana 1980;
Jepsen et al. 2001; Kobler et al. 2008). The present
study corroborates these studies by showing that the
pike on average moved 621–1248 mÆday)1.

Variation in water temperature is an integral part of
the seasonal variation in lentic ecosystems and may
influence pike activity (Casselman 1978). However, in
longitudinal field studies, it is often impossible to
isolate the effect of water temperature from
other changing environmental factors that also may
affect pike activity, for example, photoperiod and
turbidity. Therefore, in the present study, potential
effects of water temperature on pike activity were not

statistically tested per se but were included in the
combined effect of the periods (Table 1). Thus, as
water temperature declined monotonically through the
periods whereas pike activity remained high, the
present study indicates that, although inconclusive,
water temperature and ice cover seem not to affect
pike activity levels. Previous studies report variable
seasonal effects on pike activity, including decreasing,
unchanging and increasing overall activity levels when
comparing summer and winter (Diana et al. 1977;
Cook & Bergersen 1988; Jepsen et al. 2001; Koed
et al. 2006; Kobler et al. 2008). However, a direct
comparison of these studies, including the present, is
difficult because of the differences in applied meth-
odology. Moreover, each study site comprises a
unique suite of complex biological, environmental
and physical variables and interactions, each of which
the pike potentially respond to or utilise in variable
ways. Indeed, considerable between-lake variation in
pike behaviour and response to environmental stimuli
has previously been documented (Jepsen et al. 2001;
Andersen et al. 2008). In this respect, Lake Gosmer
differs from the majority of study sites [e.g., Lac Ste.
Anne (Diana 1980), Eleven Mile Reservoir (Cook &
Bergersen 1988) and Lake Kleiner Döllnsee (Kobler
et al. 2008)] in being smaller, more turbid and lacking
submerged macrophytes. It is conceivable that the lack
of submerged macrophytes could reduce the success
rate of ambush attacks and oblige the pike to use more
active hunting methods. However, Turesson & Brön-
mark (2004) found that pike are able to utilise sit-and-
wait attacks even when exposed, by remaining
motionless for extended periods of time followed by
a sudden strike towards prey. Thus, macrophyte cover
might not be a prerequisite for the pike to utilise sit-
and-wait attacks. In that case, the relatively high
turbidity of Lake Gosmer might increase the sit-and-
wait success rate because the distance at which the
prey detects the pike is reduced (Turesson & Brönmark
2007). However, the reduced detection range also
influences the ability of pike to visually detect the prey
and, thus, reduces the visual predator–prey encounter
rate (Turesson & Brönmark 2007), which might impel
the pike to increase swimming activity in search of
prey. Inter-study differences aside, there seems to be
consensus from field studies that pike maintain at least
some activity through the cold seasons, even under ice
cover (Diana et al. 1977; Cook & Bergersen 1988;
Jepsen et al. 2001; Koed et al. 2006; Kobler et al.
2008). In contrast to this, Casselman (1978) found a
strong correlation between swimming activity and
temperature in laboratory settings, with optimum
activity at approximately 20 �C and virtually no
activity below 6 �C. In the light of Casselman
(1978) and the general effect of temperature on
physiological processes (Fry 1971), the observed

Table 2. Numeric results from the fixed component of the GAMM; see
Fig. 3 for smoothing curves of the TOD:PER interaction. (a) The optimal
model was determined using Akaike information criterion (AIC) to exclude
fixed effect terms and interactions that did not improve model fit. Models
excluding main effects of PER, Year and TOD were not tested as these effects
were included in interactions. (b) Fixed effect parameters estimated using
restricted maximum likelihood (REML). Note that the intercept represents the
expected activity of a 60 cm pike because of the centring of TL.

(a) Model selection using AIC

Model d.f. AIC DAICFinal

1 Full model1 20 14 423 50
2 Final model2 16 14 373 –

2a – TL60 15 14 380 7
2b – PER:Year 13 14 395 22
2c – TOD:PER 13 14 631 258

(b) Fixed effect parameter estimates (REML)

Estimate SE t-value Pr(>|t|)
Intercept 1.202 0.054 22.437 <0.0001
TL60 0.009 0.003 3.072 0.002
PER1 0 – – –
PER2 )0.211 0.046 )4.566 <0.0001
PER3 )0.209 0.049 )4.281 <0.0001
PER4 )0.228 0.047 )4.850 <0.0001
Year2009 0 – – –
Year2010 )0.007 0.049 )0.135 0.892
PER1:Year2010 0 – – –
PER2:Year2010 0.254 0.062 4.113 <0.0001
PER3:Year2010 0.240 0.066 3.655 <0.001
PER4:Year2010 0.062 0.062 1.002 0.317

1Full model: Log10(DPHind + 1) = a + TL60 + PER + Year + PER:Year +
f(TOD):PER:Year
2Final model: Log10(DPHind + 1) = a + TL60 + PER + Year + PER:Year +
f(TOD):PER
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pattern of high activity levels during the cold season
may seem surprising. However, although decreasing
water temperature affects the fish’s maximum swim-
ming speed (Claireaux et al. 2006), it does not render
the pike immobile. Furthermore, the findings of
Casselman (1978) are based on juvenile and subadult
pike, whereas the present and other field studies
(Diana et al. 1977; Cook & Bergersen 1988; Jepsen
et al. 2001; Koed et al. 2006; Kobler et al. 2008)
examined adult pike. Moreover, Casselman (1978)
provided the pike food ad libitum, which might have
reduced the pike’s motivation for movement. Addi-
tionally, Schwalme & Mackay (1992) suggest that the
majority of fatty acids accumulating during winter in
recrudescing pike ovaries originate from dietary
nutrients consumed during ovarian recrudescence as
opposed to transfers from somatic tissue. This indi-
cates that at least mature female pike forage and, thus,
are active, year-round, to optimise reproductive suc-
cess. Supporting this, Diana (1979) found that both
female and male pike from Lac Ste. Anne forage
through winter, although daily rations were low.

A distinct diel pattern was evident in all periods,
showing differences in activity between night and day.
The shifts from night to day, and vice versa, were
often accompanied by a peak in activity (Figs 2 and 3).
Furthermore, timing of these shifts between night and
day levels of activity followed the times of sunrise and
sunset. Previous field studies have found diel varia-
tions in activity with main findings comparable to the
present study (Diana 1980; Cook & Bergersen 1988;
Jepsen et al. 2001; Beaumont et al. 2005; Kobler et al.
2008) and, although variation is ubiquitous, there
seems to be consensus that pike activity is low at
night, higher at daylight and peaks at twilight. This
diel pattern substantiates the notion that pike generally
is a visual predator feeding during the crepuscular
periods (Casselman 1996), even though it should be
noticed that movement per se might not be a good
indicator of pike foraging periods as pike are known to
utilise a sit-and-wait foraging strategy (Eklöv 1992;
Craig 1996). Nevertheless, as discussed above, pike
may also use active hunting strategies (Turesson &
Brönmark 2004) and the low-light conditions in
twilight might promote these. Thus, the activity peaks
at twilight could be related to increased forage
intensity whereby the pike could exploit a competitive
advantage as stated by the ‘twilight hypothesis’
(Pitcher & Turner 1986). According to this, the pike
have an advantage in low-light conditions as the prey
react later than in full light, when approached by a
stalking pike (Pitcher & Turner 1986).

In spite of progressively reduced day lengths, the
pike sustained a relatively high daily activity level
throughout the periods (Fig. 1). This might be caused
by increased activity during the illuminated hours of

which there are some indications in Fig. 2. Temperate
lake prey fish are known to display significant
seasonal changes in behaviour including reduced
activity and altered habitat utilisation (Jacobsen et al.
2004; Skov et al. 2011). This could, although specu-
lative, be a reasonable explanation for the increased
pike activity in winter as the pike may have to increase
movement in order to encounter prey.

Temperate freshwater lakes are often considered to
be inactive and static ecosystems during winter
(Salonen et al. 2009). However, as shown in the
present study, the natural apex predator in these lakes
remains active in cold water and even under ice. It is
well known that pike can have a profound structuring
effect on lower trophic levels in freshwater lakes
during summer, through cascading top-down effects
exerted on the prey fish community (Prejs et al. 1994;
Berg et al. 1997; Skov et al. 2011). Besides the direct
effects on prey fish abundance and population struc-
ture, mediated through predation, indirect effects on
the prey fish community are known. These include
changes in morphology (Brönmark & Miner 1992;
Eklöv & Jonsson 2007), reduced activity (Lima & Dill
1990; Bean & Winfield 1995; Jacobsen & Berg 1998)
and altered habitat utilisation (Jacobsen & Perrow
1998) underpinning the ecological importance of this
species. The overriding factor driving this structuring
effect is undoubtedly that the pike represents an instant
threat to the prey fish. As visual cues from pike induce
changes in prey fish behaviour (Mikheev et al. 2006;
Martin et al. 2010) and the probability of pike–prey
encounters, ceteris paribus, is positively correlated
with pike activity, the magnitude of the structuring
effect is likely linked to pike activity. Furthermore, as
discussed above, at least mature female pike appear to
be foraging year-round. As our study strongly suggests
that pike remain active to the same extent summer and
winter, it seems plausible that some structuring effects
of pike on the prey fish community might also be
present during winter. Supporting the hypothesis of a
structuring effect during winter, Skov et al. (2011)
found that in partially migratory prey fish communi-
ties, the individual propensity to migrate for predation
refuge in connected streams during winter is positively
correlated with individual size-related risk of predation
from pike. However, more research, simultaneously
studying the behaviour of pike and prey fish during
winter, is warranted to further test the hypothesis of a
year-round structuring effect.

The implementation of an ATPS to study the
behaviour of a lentic fish species proved to be
successful by yielding unprecedented time series on
individual pike behaviour in natural settings. From this
large data set, it is evident that the behaviour of pike is
very variable both within and between individuals
(data not presented here). As the present study and the
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applied statistical model focus on establishing and
analysing general patterns in pike behaviour, it should
be noted that these general patterns potentially
enshroud this large variation. Furthermore, it should
be noted that the presented results are based on the
behaviour of pike in a single lake for which reason
replicate studies should be carried out to test the
generality of the findings. Nevertheless, the present
study covers two consecutive years and although year-
to-year variation was apparent, winter activity was
high in both years. Furthermore, owing to the small
size of the study lake, long unidirectional movements
(i.e. >140 m), as have been found in larger lakes
(e.g. Kobler et al. 2008), were impossible. Therefore,
it is conceivable that activity could be at the same level
or even higher in larger lakes. We acknowledge that
the habitat constriction in PER1 both years caused by
a thermocline rendering 17% of lake volume anoxic
potentially compromises the between-period compar-
isons. However, as the reduction in available habitat
was relatively small (17%), we believe that the
additional information gained from including a period
with warm water, relative to the other periods,
outweighs the potential impediments.

In conclusion, the present study indicates that the
activity of pike in a temperate lake remains high
through the seasons from late summer to winter. These
findings add to the accumulating evidence, suggesting
that lentic ecosystems are less static and more active
during the cold season than previously assumed.
Furthermore, the findings suggest that the structuring
effects of pike on lower trophic levels, which have
been documented during summer, potentially can be
present during the winter as well.
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Abstract 
Recreational activities are increasing in nature. Such activities will interfere with the related ecosystem and 

eventually affect fish in various ways, potentially leading to suboptimal behaviour. The effect of angling and 

boating on roach, perch and pike behaviour was explored by high resolution tracking using an automatic 

acoustic telemetry system and transmitters with sub-minute burst rates. Two protocols of four hours 

disturbance were performed in the lake every third day for 32 days, boating with a combustion engine or 

boating + angling with artificial lures. Responses to disturbance were very species specific; Roach swimming 

speed were considerably higher during the four hours of disturbance compared to days with no disturbance 

with an immediate reaction when the engine started. Perch reacted most during the first hour, whereas 

pike seemed rather to lower activity level. There was no difference between boating and boating + angling, 

indicating that boating was the primary source of disturbance.  
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Introduction 

Many recreational activities in nature are associated with water. Depending on intensity such activities, e.g. 

angling and boating, will interfere with the related ecosystem either temporarily or more persistently. 

Besides deterioration of the physical habitat, shore line or vegetation (Lewin et al. 2006), also wildlife can 

be affected. Especially the effect on birds due to shoreline deterioration and direct disturbance has been 

studied and proved to interrupt nesting, resting and feeding with implications for distribution and species 

richness (see Lewin et al. 2006).  

Recently attention has been drawn to how underwater noise, especially from boats and vessels may affect 

fish behaviour (Graham & Cooke 2008; Popper & Hastings 2009; Picciulin et al. 2010; Slabbekoorn et al. 

2010; Purser & Radford 2011) and the need of understanding possible implications on ecosystem level 

(Slabbekoorn et al. 2010).  Recreational boating and angling is increasingly popular and the effect on fish is 

highly relevant for management purposes. Angling activity is done both from the shore, where it can induce 

damage or disturbance to the riparian habitat and wildlife (see Lewin et al. 2006), and from boats. Besides 

being noisy, approaching boats might also disturb fish by sight or by propulsion waves (Wolter & Arlinghaus 

2003).   

Fish might react to disturbances in the water by a change in behaviour, for instance changing activity level 

or habitat use, the behavioural response to a moving boat being similar to the response to an approaching 

predator (Lima & Dill 1990). These changes in behaviour might be energetically expensive and lead to 

suboptimal performance. Hence, a change in activity e.g. flight or fright response is costly both in the 

amount of energy used but also in term of time lost from important behaviours (Brown et al. 2005; Cooke 

et al. 2003). This could mean reduced focus on foraging, as shown for sticklebacks (Gasterosteus aculeatus) 

(Purser & Radford 2011) as well as distracting attention from important mating behaviour or territoriality 

(Sebastianutto et al. 2011). Eventually attention shifts due to disturbance might lead to increased 

vulnerability to predators by preventing anti predator behaviour or by accidental dislocation to higher risk 

habitats (Chan et al. 2010). Noise linked to boating can affect fish hearing, for some species of fish this can 

be detrimental since they use hearing to obtain information from conspecifics, about predators or food or 

during mating (Amoser & Ladich 2005.). 

The behavioural reactions are coupled to physiological processes, i.e. the immediate raised swimming 

speed as a fright reaction is facilitated by a raise in stress hormones (Lima & Dill 1990; Brown et al. 2005). In 

line, most studies of fish reactions to boat disturbances have been conducted by studying fish physiological 

reactions in the laboratory. For instance largemouth bass (Micropterus salmoides (L.)) has shown raised 
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cardiac output (increase in heart rate and decrease in stroke volume) (Graham & Cooke 2008) when 

exposed to boat noise in an aquarium setup. Ship noise has also proved to be a stressor on three 

freshwater fish species by inducing a higher cortisol secretion (Wysocki et al. 2006).  

Some studies have combined video recordings or sound recordings in the wild with experimental 

approaches in the lab (Boussard 1981; Wysocki et al. 2006), or vice versa, studying fish reactions in the wild 

by replaying boat noise recordings (Picciulin et al. 2010) showing slight changes in activity or avoidance of 

noise. However, there is a lack of knowledge on free swimming fish in the wild and their reactions to 

disturbances (Graham & Cooke 2008; Slabbekorn et al. 2010).  

A prerequisite for studying fish behaviour when disturbed by humans and to show any effect on fish in their 

natural environment is the possibility to determine the undisturbed situation, hence being able to monitor 

the fish by a non-disturbing method. Monitoring of fish normally imply fishing gear, hydro acoustics or 

conventional telemetry, which all involves a manual monitoring protocol which in itself cause the fish to be 

exposed to disturbance. To circumvent this we used an automatic acoustic telemetry positioning system 

which makes it possible to study fish behaviour with no concurrent interference of the natural situation.  

The system renders high resolution data on fish positions with high spatial accuracy several times a minute 

and a large number of fish can be positioned simultaneously (see Niezgoda et al. 2002). This way the effect 

of any changes induced to the environment could be monitored with increased precision compared to 

traditional telemetry and without unintentionally disturbing the fish. 

The present study aimed to assess the effect of recreational boating and rod angling on fish behaviour in a 

small lake on a short time scale. It was hypothesized that going with a low speed combustion engine would 

have a direct effect on fish behaviour by altering fish activity levels. Additionally, it was hypothesised that 

angling with artificial lures would interfere with fish behaviour, having in mind that anglers often 

experience fishing success to decrease a while after extensive fishing effort (Askey et al. 2006). Since 

angling cannot be done without shore activity or boat activity, the effect of angling from a boat is tested, 

presuming that angling might add to the disturbance effect of the boat. 

The experiment comprised three species of common lacustrine fish in Northern Europe, roach (Rutilus 

rutilus (L.)), European perch (Perca fluviatilis L.) and northern pike (Esox lucius L.). The three species were 

expected to react to disturbances to a variable degree due to their inherent behavioural patterns. 
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Methods and Study area 
The study was conducted in the small Lake Gosmer (area approximately 1 ha, max depth 8 m) in Mid 

Jutland, Denmark. The lake is on private land and there is no public access. The lake is eutrophic (secchi 

depth annual mean 1.2, range 0.4-2.4) and has no submerged vegetation, but dense stands of reeds (Typha 

latfolia L.) along most of the shoreline interrupted by a single bed of water lilies (Nuphar luthea (L.)). The 

north-western shoreline of the lake is shaded by overhanging trees. The fish community consisted of pike, 

roach and perch as well as a small population of stocked eel (Anguilla anguilla L.).   

The tracking/telemetry system 

A CDMA based acoustic positioning telemetry system (Lotek MAP 600; Lotek Wireless, Inc.) was installed in 

the study lake. The system works with eight hydrophones situated around the lake along the shoreline to 

ensure to cover the lake area in the most optimal way (see Niezgoda et al. 2002; Cooke et al. 2005). The 

hydrophones were positioned ca. 1m below water surface and connected to the receiving data logging 

station on the bank side by underwater cabling. Positions of fish were logged and data processed by use of 

proprietary software (BioMap v. 2.1.12.1; build 2.633; Lotek Wireless, Inc.), each position based on three or 

more synchronized hydrophone recordings (see Niezgoda et al. 2002). The raw positions were 

subsequently filtered using a Hidden Markov model based approach (Pedersen et al. 2008), in order to 

objectively remove outliers inevitably produced by the proprietary software (see Niezgoda et al. 2002). 

Fish 

Twenty-one pike (total length 48-100 cm) caught by angling, trammel net or electrofishing from March 

2009 to September 2010 and concurrently tagged were employed in the study. In September 2010, 21 

roach (total length 16.6 – 24.3 cm) and 23 perch (total length 16.2-24.0 cm) were caught in the lake by 

angling with barbless hooks. All tagging of fish followed the same surgical procedure. After capture the fish 

were kept in a keeping box (large, submerged, perforated wooden box) and before tagging they were 

anesthetised in a solution of MS-222. Individual pike were tagged with an acoustic transmitter (MAP TP11- 

25, weight in air; 11g; Lotek Wireless Inc.) with a guaranteed battery life of 889 days and a burst interval of 

45 sec. Roach and perch were tagged with MAP 6-2 transmitters (weight in water 0.9 g; Lotek Wireless Inc), 

with a guaranteed battery life of 42 days and a burst interval of 30.7 sec. The transmitter was surgically 

implanted in the buccal cavity close to the pelvic girdle. The fish were also tagged with a Passive Integrated 

Transponder (PIT; 11.9 mm long; 1.9 mm diameter; Texas Instruments) for simple identification. The 

incision was closed with one or two separate sutures (Viacryl absorbable, ETHICON, Johnson & Johnson). 

Tagging procedure lasted 3-5 min and fish were allowed to recover from anaesthesia in a separate tank 

containing aerated lake water before released into the lake.  
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Experimental protocol 

The tagged fish were left undisturbed in the lake for minimum seven days before the experiment was 

carried out from 14 of September to 11 of October 2010. A treatment protocol was performed with two 

types of disturbance, either boating (with a four stroke outboard combustion engine, 4HP) or 

boating+angling. Boating was in both cases done in a predefined pattern simulating the boating activity 

during angling; i.e. engine was turned on, boat moved 1-2 min. (63.5 ± 21,1 m) to a pre-determined 

position (position of a hydrophone), engine turned off again. Every 15 min. the boat moved to another pre-

determined position and after 4 hours most of the lake was covered in a star-like pattern. During the 

boating+angling treatment the boat moved in exactly the same pattern, but when pausing at the fixed 

position, two persons angled by casting a small artificial lure (3.5 g standard spinner) in a circular pattern 

until next move. The boat was mounted with a transmitter (Map 6-2, burst rate 2.5 sec.; Lotek Wireless 

Inc.), in order to accurately follow the boat track. 

Disturbance took place from 9.00 to 13.00 every third day during the study period, alternating between the 

two types of disturbance. Five days (replicates) of each disturbance protocol were performed and in-

between the system was left undisturbed. The day before each disturbance was used as controls 

representing the undisturbed natural situation (n=10). 

Data analysis 

Fish behavior was quantified using swimming speed (cm * s-1) calculated for all instances where the 

maximum obtainable temporal resolution was achieved; i.e. instances where the time between two 

consecutive positions was equal to the transmitter burst interval (= 30 sec). These values were summarized 

as day specific individual hourly median speeds, thus yielding 24 hour time series on the individual median 

swimming speeds. These time series were analysed using generalized additive mixed models (GAMM), one 

model for each species, following the procedures in Zuur et al. (2009) and Wood (2006). In each model 

swimming speed was entered as dependent variable and WaterTemp, Total Length (TL), Treatment (i.e. 

control, boating and boating+angling), TimeOfDay (TOD) and the Treatment*TOD interaction as 

independent variables. FishID was entered as a random variable, thereby imposing a compound symmetry 

correlation structure allowing the repeated measures made on each fish to be correlated (random 

intercept model). Furthermore, a first order autoregressive autocorrelation (AR1) structure was included to 

model the temporal correlation between observations made on each fish. Relevant variance structures 

were tested in each model to account for variance heteroscedacity. The additive model framework was 

chosen to model the non-linear effect of TOD on swimming speed by employing smoothing functions. Cyclic 

cubic regression splines were used to model the cyclic nature of TOD. For each species, the optimal number 

74



of degrees of freedom for the smoothing functions was determined using AIC-values (Keele, 2008). To 

model the Treatment*TOD interaction separate smoothers for each level of the Treatment factor (i.e. 

control, boating and boating+angling) were fitted. Additionally, reduced models with two smoothers (one 

for control and one for boating and boating+angling combined), models with a single smoother (one for 

control and one for boating and boating+angling combined) and models excluding TOD were fitted. By 

comparing these reduced models to the full model using AIC values, we tested whether there was an 

overall effect of Treatment on fish swimming speed. Model selection was based on Akaike Information 

Criterion (AIC). The hourly median swimming speeds were transformed (log(y + 0.01)) to meet model 

assumptions of normality. Additionally, individual fish length was centered to the mean length of all fish 

included in each model to make model parameters representing a fish with TL = mean length instead of a 

fish with TL = 0 cm.  

The applied GAMM approach allowed a robust assessment of whether there was an overall effect of 

Treatment on fish swimming speed by utilizing the entire dataset on each species to model and compare 

daily patterns. However, as this approach utilized the entire dataset it was less appropriate for detecting 

sudden changes in the response variable such as those potentially induced by the treatment protocol. To 

assess whether such instantaneous effects of Treatment were present, we tested the significance of the 

Treatment within each TOD. Thus, for each species, 24 identical linear mixed effect models (random 

intercept) were fitted using log(Speed + 0.01) as response variable, WaterTemp, TL and Treatment as 

explanatory variables and FishID as random variable.  The significance of Treatment in each model was 

tested using likelihood ratio test according to Zuur et al. (2009). To correct for the multiple tests, Bonferroni 

corrected p-values was calculated as pBon = 0.05 / 24  (Quinn & Keough, 2002).  

Changes in spatial distribution of fish caused by disturbance was described by mapping all positions of fish 

during 9-13 on days without disturbance and days with disturbances, both boating and boating+angling.   
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Results 
Roach was significantly affected by disturbance with an overall change in the daily pattern of hourly activity 

(swimming speed) compared to control days (Figure 1a). There was no significant difference between 

boating disturbance and boating+angling disturbance (2 smoothers better than both 3 and 1); both 

disturbances caused increased swimming speeds (Table 1; Figure 1a). 

 

 

Fig. 1  Upper row: overall median of individual hourly median swimming speed (cm * s-1) for roach (a; n = 
XX), perch (b; n = YY) and pike (c; n = ZZ) during days of control (solid, n = 10), boating (dashed, n = 5) and 
boating + angling (dotted, n = 5). Lower row: statistical effect of treatment per hour (-log10 transformed p-
values) for roach (d), perch (e) and pike (f). See main text for further explanation. Notice different scales 
on the y-axis in both rows. Vertical dashed lines indicate start (TOD = 9) and end (TOD = 13) of the 
disturbance protocol. 

 

There was an immediate effect of disturbance on roach swimming speed (highly significant; p < 1E-14) from 

9:00, when disturbance was initiated and throughout the disturbance period (all p-values well below the 

Bonferroni corrected threshold, Figure 1b). There was no difference in swimming speed between 

disturbance days and control days in the hours before and after disturbances (Figure 1b). The increased 
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activity leveled off during the disturbance period, and no effect was seen after disturbance had ended. 

Throughout the disturbance periods roach reacted instantaneously to boat noise by increasing swimming 

speed during the 2-3 min. the boat engine was running, revealed as an increase in swimming speed every 

15 min. (Figure 2). 

 

 
Fig. 2. Individual swimming speed for each roach during control days (left) and days with 
boating from 9-13 (right). 

 

The model revealed a tendency (p > 0.05) to positive effects of length (TL) and water temperature on roach 

swimming speed (Table 1). 

For perch there was no statistical evidence for an overall disturbance effect on daily pattern of swimming 

speed (Table 1; one smoother for control, boating+angling was better (lower AIC) than three or two 

smoothers), see Figure 1c. However, non-significant tendencies towards positive effect of disturbance on 

swimming speed were apparent (Figure 1c). Testing each hour separately revealed an immediate effect at 

9:00, when disturbance started, well below Bonferroni corrected p-threshold (see Figure 1d). There was no 

effect of length (TL) and water temperature on perch swimming speed. 

The model output for pike revealed no evidence for overall effect of disturbance (Table 1; one smoother 

better than two or three) see Figure 1e. However, there were indications of boating and boating+angling 

causing pike activity to be lowered; but this was inconclusive. The activity for pike was highly variable 

(compared to roach and perch) which potentially clouded detection of a disturbance effect (Tabel 1) . The 
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model further revealed significant effects of water temperature (negative effect) and length (TL) (positive 

effect) on pike activity (swimming speed). There were no indications for any effect within disturbance 

period, when testing each hour separately (Figure 1f).  

Spatial distribution of roach changed from a more diverse pattern in the lake under control conditions to a 

more condensed pattern in the middle part of the lake with avoidance of certain spots of previous 

preference, when disturbance took place (Figure 3 a-b). Especially, roach avoided the spots where the boat 

anchored up e.g. in the middle of the lake, where the boat anchored at a floating data logger station. 

Perch and pike did not seem to change their overall distribution in the lake due to disturbance (Figure 3c-f). 

Perch as well as pike concentrated in certain areas; perch seemed to prefer the edge of the deeper part of 

the lake, whereas pike occupied the littoral zone also in the shallower parts of the lake. 

 

 

Fig. 3. Habitat distribution during control days 9-13 (left) and during 
days of disturbances 9-13 (right) for roach (a-b), perch(c-d) and pike 
(e-f). Kernel density plots – the darker, the more positions. 

78



Table I. Model summaries for the applied GAMMs for roach (a), perch (b) and pike (c). The effect of 
Treatment was tested using Akaike Information Criterion (AIC) by comparing a full model (three 
smoothers: Control, Boat, Boat+Angling (B+A)) to models with two smoothers (Control, Treat (Boat 
and Boat+Angling combined)) and models with a single smoother. Smoothing terms are indicated by 
f(). Models with best fit are highlighted in bold. Effects of Temp and Length were tested using 
likelihood ratio tests; significant effects are highlighted in bold. Note that parameter estimates and 
standard errors (s.e.) are on the log(y+0.01)-transformed scale. 
 Parameter  Estimate (s.e.) AIC ΔAIC P  
a) Roach      
Full Model   33599.46 - - 
 Intercept -2.378 (0.257) - - - 
 Temp 0.0221 (0.0196) 33600.21 0.75 0.0973 
 Length 0.00367 (0.00237) 33600.65 1.19 0.0738 
 Treatment - - - - 
    Control 0 - - - 
    Sail 0.280 (0.0589) - - - 
    Fish 0.2549 (0.059) - - - 
 f(TOD; Control, Boat, B+A) - - - - 
Reduced models f(TOD; Control, Treat) - 33555.67 -43.79 - 
 f(TOD; 1 smoother) - 33591.21 -8.25 - 
 f(TOD) removed - 35638.20 2038.74 - 
b) Perch      
Full Model   33644.82 - - 
 Intercept -2.446 (0.304) - - - 
 Temp 0.0149 (0.0212) 33643.61 -1.21 0.3735 
 Length 0.00415 (0.00676) 33643.12 -1.7 0.582 
 Treatment - - - - 
    Control 0 - - - 
    Sail 0.137 (0.0697) - - - 
    Fish 0.0797 (0.0696) - - - 
 f(TOD; Control, Boat, B+A) - - - - 
Reduced models f(TOD; Control, Treat) - 33605.39 -39.43 - 
 f(TOD; 1 smoother) - 33566.69 -78.13 - 
 f(TOD) removed - 35635.90 1991.08 - 
c) Pike      
Full Model   29296.43 - - 
 Intercept -1.599 (0.344) - - - 
 Temp -0.05254 (0.0250) 29307.70 11.27 0.0003 
 Length 0.00373 (0.00105) 29313.05 16.62 <0.0001 
 Treatment - - - - 
    Control 0 - - - 
    Sail -0.0979 (0.0746) - - - 
    Fish -0.0463 (0.0773) - - - 
 f(TOD; Control, Boat, B+A) - - - - 
Reduced models f(TOD; Control, Treat) - 29280.61 -15.82 - 
 f(TOD; 1 smoother) - 29261.23 -35.2 - 
 f(TOD removed) - 29848.64 552.21 - 
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Discussion    
The study confirmed our expectations, that boating with a combustion engine will affect fish behaviour in a 

lake, however with a species specific outcome. The reaction from roach was highly significant and 

instantaneous, increasing swimming speed, when disturbance started. When disturbance ended roach 

returned to normal swimming speeds during the first hour, so no long term effect of disturbance was 

apparent. None of the species showed any additional disturbance effect when boating was combined with 

angling with artificial lures, suggesting that boating was the main disturbance factor of the two.  It should 

be noted though that the present study design does not allow for conclusions on the isolated effect of 

angling, since angling was only conducted in combination with boating. Klefoth et al. (2011) concluded that 

there was no indirect effect of angling on pike activity levels, however, they were monitoring pike in angling 

and non-angling areas by manual tracking from a boat. Other studies of angling effect on fish behaviour 

have focused on the direct effect of catching fish and the rationale of catch and release (Klefoth et al. 2008; 

Arlinghaus et al. 2009). 

The present study suggests that reaction to disturbance is species specific. Compared to roach, perch 

showed a large variation in activity patterns during daytime with a less clear overall reaction to disturbance 

compared to control days. It was, though, apparent that perch increased swimming speed during the first 

hour, but hereafter, there was no effect on activity levels of the continued disturbance. It could be 

explained by the perch getting used to the noise during the first hour; habituation to constant noise 

(Gaussian noise) has been described for some species (Brown et al. 2005) and roach and rudd (Scardinus 

erypthropthalmus L.) showed some habituation to noise bursts (Boussard 1981). Alternatively, perch were 

seeking areas away from the disturbance, though these might be transitory, since boating took place in 

most of the lake during the four hours. The deeper parts in the middle of the lake could form a refuge from 

boat noise, however, even though the maps of distribution indicated that perch might prefer other spots 

during disturbances, they did not move to the middle of the lake.  

Pike did not react to boating or boating + angling by increased activity levels. It rather seems that the 

median swimming speed decreased during the last part of the disturbance period, indicating that pike 

might have decided for quiet littoral zone parts and deceased activity as a response to boating.  Maps of 

distribution confirmed that pike stayed in the littoral with no obvious change in preferred area. Pike has a 

very large individual variation in behaviour (Jepsen et al. 2001; Kobler et al 2009); whereas some pike 

remain rather inactive during daytime probably due to its ambush hunting style, others are more active, 

adopting a more stalking hunting mode (Jepsen et al. 2001). The slight decline in median swimming speed 

might imply that the more active individuals ceased their hunting activity during disturbance.  
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Roach is a pelagic fish species with a high swimming capacity preferring the surface waters during summer 

(Eklöv & Persson 1995; Brosse et al. 1999; Tudorache et al. 2008; Linløkken et al. 2010). This behavioural 

feature might render roach more sensitive to disturbances and imply a more active fleeing behaviour. 

Species specific hearing sensibility might also explain why roach reacted so abruptly and significant to boat 

noise (Wysocki et al. 2006; Boussard 1981). As other cyprinids, roach is a hearing specialist, able to hear far 

lower intensities and more frequencies of sounds than perch and pike, both categorized as hearing 

generalist (Amoser & Ladich 2005).  The fact that roach responded more substantial to disturbance might 

also be explained  by  species specific differences in stress responses (Pottinger 2010); cyprinids species 

have shown  higher and more sustained stress responses, i.e. induces plasma cortisol and glucose levels 

(indicator of stress-induced energy mobilization), compared to salmonids (Pottinger 2010). 

The overall effect of the four hours of disturbance ceased less than an hour after disturbance stopped. This 

is in accordance with Graham & Cooke (2008), who found that the effect of a combustion engine on 

cardiovascular output lasted up till 38 min; this effect was obtained after engine noise for only 60 sec. Most 

studies of responses to boat noise are done in lab conditions (see Graham & Cooke 2008 for review) where 

fish are in close proximity to the source of noise during the whole period, experimental condition not 

allowing for fleeing from the source of disturbance. Hence, the level of physiological stress or loss of 

hearing is likely to be unnaturally high.  In our study, fish likely fled away from the boat when the engine 

started running and the individuals in closest proximity to the boat might have been eliciting the highest 

immediate swimming speed simultaneously with the boat start. This was not tested further due to the 30 

sec. burst interval of the transmitters, which is inadequate for studying detailed fleeing behaviour. The fact 

that the fish seemed to avoid the areas of noise would affect the level of physiological stress and temporary 

hearing losses. 

In the present study the boat engine was running for 2-3 min. every 15 min. Though individual variation in 

proximity to the noise source might cause individual levels of physiological stress (Graham & Cooke 2008), 

it is rather feasible that fish might not return to normal physiological state in-between boat movements.  

Graham and Cooke (2008) found the effect of noise on largemouth bass cardiac output to vary according to 

boat type. Whereas canoe paddling showed some effect, electric trolling motors increased the magnitude 

of the effect and a 9.9 hp combustion engine showed the most extreme effect, underpinned by studies on 

high speed boats (Boussard 1981, Sebastianutto et al. 2011), so it is likely to conclude that combustion 

engine noise in our study is a main trigger. However, other stimuli such as sight of the approaching boat as 

well at the mechanical pressure from the moving boat (Wolter & Arlinghaus 2003) could influence fish 

behaviour. The fact that roach actively avoid the location of boat anchoring, most explicitly seen in the 
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centre of the lake insinuates that sight of the boat or, most likely, a prolonged effect of the short time 

engine noise was operative as well.  

The abrupt increase in swimming speed provoked by the boat, resembling flight response to potential 

danger, will both induce physiological changes (Brown et al. 2005) and have energetic costs, if the fish is 

forced to move faster than routine swimming speed (Forstner & Wieser 1990). Stress response is not only 

costly in terms of raised metabolic costs but also in lost time for important activities as feeding, mating and 

territoriality (Brown et al. 2005; Purser & Radford 2011; Sebastianutto et al. 2011). Individual fitness is 

likely to decrease along with repeated and extended disturbances. In the present study disturbance was of 

limited periods, and the fish might be able to cope with this and do compensatory feeding when 

disturbance ends. Nevertheless, the results imply a potential large negative effect on fish behaviour in lakes 

with constant disturbance from recreational boating and fishing as well as other activities as vessel traffic 

and water piling.  

In general, results from roach indicate that the chosen approach seems to be appropriate to detect 

treatment effects if any were present. Precaution should be taken, when concluding on results from a 

single lake, as well as for the size of the lake in the present study; it is likely that disturbance effects would 

be less in a larger or deeper lake, where fish might be able to retreat to areas out of range of noise 

disturbance. The capture and tagging of fish is not believed to affect results since the procedure has been 

evaluated in earlier studies (Jepsen et al. 2002) as well as in previous experiments carried out in Lake 

Gosmer, where a large amount (>200) of fish have been tagged over more years with no observations of 

negative effects of tagging (mortality, predation, abnormal behaviour).  

In perspective, human recreational activities are likely to disrupt fish normal behaviour with possible 

implications for individual fitness as well as for the freshwater ecosystem, if this pressure is intense. 

Predator prey interactions can be a driving force in structuring lake ecosystems with cascading effects 

down to lower trophic levels (Carpenter & Kitchell 1993): The species specific behavioural alterations due 

to anthropogenic disturbance, as seen in the present study, might uncouple these interactions with 

consequences on ecosystem level.  

Recreational activities and noise from other anthropogenic sources is increasing in nature (Slabbekoorn et 

al. 2010; Popper & Hastings 2009), hence, more focus on this is needed. The fact that some fish species are 

very sensitive to boat engines underlines the need for managing recreational activities on lakes in time and 

space.   
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The present study shows that fish not only react by physiological stress symptoms as shown by several 

authors in the lab (e.g. Wysowski et al. 2006; Graham & Cooke 2008) but also by changing behaviour. 

Hence, this is the first study to report on detailed behavioural response of free swimming fish in nature. 

The possibility of studying high resolution behaviours in both disturbed and natural situations by use of the 

acoustic positioning system made this kind of study possible and seems promising for studying 

anthropogenic impacts. Further details of immediate response and proximity to the source of noise could 

be possible by use of transmitters with shorter burst interval, though this is a trade off with longevity of 

study periods depending on fish size.  
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Abstract 
Anthropogenic disturbances such as angling and manual handling may have long term effects on the 

behaviour of pike (Esox lucius L.), an ecologically important species. Using automatic continuous high 

resolution positional telemetry, this study compared the swimming activity levels of handled and 

unhandled pike in a small lake. Pike pre-equipped with acoustic transmitters were angled and exposed to a 

handling protocol including measurements of length and mass. Not recaptured pike constituted an 

unhandled control group. Results demonstrated that the handling protocol caused temperature dependent 

changes in pike activity, with higher temperatures leading to lower activity of the recaptured pike. The 

effects however, were transitory and not detectable after 48 hours post release. These findings indicate 

that pike are relatively resilient to handling and quickly resumes pre handling activity. 
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Introduction 
Time series information on fish positional behaviour and activity can be generated by implementing a 

variety of technologies (Lucas & Baras 2000). In recent years, the use of positional telemetry on free-

ranging fish has enabled accurate quantification of changes in the use of space over time on an individual 

level (Lucas & Baras 2001). Telemetry has been utilized to study various aspects of fish biology (e.g. 

migration, survival and behaviour (Svendsen et al. 2004; Aarestrup et al. 2009)) as well as anthropogenic 

impacts on fish behaviour and survival (e.g. effects of angling and habitat alterations (Koed et al. 2006; 

Thorstad et al. 2008; Arlinghaus et al. 2008)). The strength of positional telemetric data is dependent on 

both the spatial precision and the temporal resolution of the data. Recent technological advances have 

increased both parameters allowing for continuous high resolution monitoring of tagged fish (Ehrenberg & 

Steig 2003; Cooke et al. 2005).  

Most telemetric studies assume that any adverse effect of the tagging protocol on the behaviour of the 

focal fish is temporary and negligible after a given period of time (Koed & Thorstad 2001; Svendsen et al. 

2004). Numerous studies have examined the effects of tagging and cover both physiological and 

behavioural aspects (e.g. Moore et al. 1990; Jepsen et al. 2002; Jepsen et al. 2008). Typically, these studies 

include a protocol describing the acquisition (e.g. by angling, netting or electro fishing) and handling (e.g. 

measurements of length and mass) of the fish prior to tagging and release. When based on angling, these 

fish acquisition protocols often resemble the catch-and-release practices employed by many recreational 

fisheries.  

Telemetric studies describing the effects of catch-and-release angling report variable responses of the 

angled fish including reduced activity (Gurshin & Szedlmayer 2004; Klefoth et al. 2008), hyperactivity 

(Thorstad et al. 2004) and abnormal behaviour (Makinen et al. 2000; Thorstad et al. 2003). The tracking 

protocols of this type of studies are frequently based on manual positioning of the fish, i.e. personnel 

actively approach the fish in order to pin point the location of the fish. (e.g. Jepsen et al. 2000). This 

approach sets a natural limit to the temporal and/or spatial resolution achievable without disturbing the 

fish. Furthermore, as manual tracking is labour intensive, the duration and frequency of tracking sessions 

are often restricted. To avoid these potential shortcomings, an alternative method (high resolution 

positional telemetry (Niezgoda et al. 2002)) was used in the present study.  

Being a wide spread top-level predator in many freshwater ecosystems (Craig 1996) and a popular target 

for recreational and commercial fisheries (Pierce et al. 1995; Arlinghaus & Mehner 2004), the potential 

impacts of anthropogenic disturbances on pike (Esox lucius L.) must be well documented in order to 

facilitate qualified management of this resource. Management regimes of pike populations often include 
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size specific restrictions on the removal of individuals for consumption, which in turn necessitates release 

of captured individuals outside the allowable size range. Previous studies on the effects of catch-and-

release angling of pike have found transitory behavioural and physiological effects (Klefoth et al. 2008; 

Arlinghaus et al. 2009). However, the behavioural parts of these studies were based on manual tracking 

and, thus, were susceptible to the previously mentioned potential shortcomings. Furthermore, the studies 

did not include a control group of non-manipulated pike to account for whole system alterations (changes 

in temperature, water clarity, etc.) that could be causing behavioural changes.  

Data for the present study originate from a long term study on pike behaviour in which pike were caught by 

angling or netting during five temporally separated sessions and equipped with acoustic transmitters. 

During these sessions some of the already tagged pike were inevitably recaptured. These recaptured pike 

were handled to simulate standard procedures normally undertaken in telemetric (and other) studies 

including careful de-hooking, weighing and short or prolonged keeping in tanks or other holding facilities. 

By comparing behavioural changes in already tagged individuals before and after recapture with non 

recaptured tagged conspecifics (control group), this study evaluates the effects of a non-tagging handling 

and angling protocol on the post handling behaviour.  

In summary, the main objective of the present study was to assess how the angling and handling protocol, 

comparable to what is often used when acquiring wild fish for research purposes, on its own, influences the 

activity of pike. This was done using automated positional telemetry allowing a high resolution comparison 

of activity just prior to and immediately following handling events.  

Materials and methods 

Study area 
The study was conducted in a small Danish eutrophic lake (Lake Gosmer; 55°55´42 N, 10°10´50 E; wetted 

area approximately 1 ha; maximum depth 8 meters; total phosphorous 0.42 mg/l; mean secchi depth 107 

cm in study period, fig. 1). The fish community consists of pike, perch, Perca fluvaitilis L. and roach, Rutilus 

rutilus (L). Submerged vegetation is restricted to a single bed of water lilies, Nuphar lutea (L.) along the 

southern shore. Narrow but dense stands of emergent macrophytes, Typha latifolia L. cover the majority of 

the shoreline apart from the northern shore which is shaded by overhanging trees.  

Initial fish capture and tagging procedure 
A total of 26 pike (mean length (SD) = 64.3 cm (13.9); mean weight (SD) = 2.0 kg (1.4)) were angled (24 fish) 

or caught in trammel-nets (2 fish) in five 2 – 3 days fishing sessions from March 3 to September 28 2009.  

Angling was done using ordinary recreational fishing gear equipped with either live bait or artificial lures. 
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The fish were equipped with coded acoustic sensor (temperature and pressure) transmitters (Lotek MA-

TP11-25; 11 mm diameter; 61 mm long; 11 g in air; 45 second burst interval). Maximum transmitter:fish 

weight ratio was 2.5 %. Emitted signals contained information on temperature and pressure alternating in a 

1:1 ratio. Fish were anesthetized using a 0.5 mg/l solution of 2-phenoxyethanol. The transmitters were 

inserted into the body cavity through an incision approximately 50 mm anterior to the pelvic fins. To allow 

for easy subsequent identification of the tagged fish, they were additionally equipped with a PIT-tag (Texas 

Instruments, RI-TRP-RRHP, half duplex, 134 kHz, 23.1 mm long, 3.85 mm diameter, 0.6 g in air) inserted 

through the same incision. Following tag insertions, the incision was closed using two separate sutures. 

During the tagging procedure, an anaesthetic solution (0.25 mg/l) covered the head of the fish and 

continuously irrigated the gills. Tags and instruments were disinfected in ethanol (96 %) and rinsed in 

deionised water. Furthermore, total length (TL) and fish mass were recorded. Duration of the complete 

tagging procedure was approximately 5 minutes per fish. After full recovery (10 – 30 minutes), the fish 

were returned to the lake. All fish were released at the same position in the lake.  

 

 
Fig. 1.Map of the study area showing positions of hydrophones (stars), recaptures 
(circles) and vegetation cover (hatched areas). 
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Experimental treatment 
Nine tagged pike were recaptured in a total of 14 recapture events (one fish was recaptured five times and 

another fish was recaptured two times) during five angling sessions. The recapture events of the nine fish 

and the subsequent handling constituted the experimental treatment applied in the study. Only the first 

recapture event of each individual fish was included in subsequent analysis. Tagged fish not recaptured 

during a fishing session constituted the controls for that session (table 1). Newly tagged fish in a given 

session were not included in the analysis of that particular session. Handling of the recaptured fish involved 

quick de-hooking, identification and weighing in a net. Holding ranged from immediate release to 

prolonged holding in a plastic container (up to one hour) or a larger well box (up to 24 hours). Handling was 

conducted to minimize air exposure and overall handling time.  

 

Table 1. Overview of number of recaptures and controls in the five fishing sessions. 
Session Centred timestamp TEMP #recaptures #controls #total  
I 2009-03-20 09:15 5.4 2 8 10 
II 2009-05-28 11:15 16.1 1 7 8 
III 2009-09-07 02:05 16.0 1 6 7 
IV 2009-09-27 15:29 14.7 3 11 14 
V 2009-10-20 22:37 7.9 2 17 20 
Total   9 49 58 

 

Data acquisition and processing 
The tagged pike were continuously monitored using a Lotek MAP_600 system with eight cabled 

hydrophones distributed along the shore. The system is based on code division multiple access (CDMA) 

enabling simultaneously high resolution tracking of a large number of tagged fish (Niezgoda et al. 2002). To 

acquire the calculated positions of the tagged fish, raw data obtained by the hydrophones were processed 

using company supplied software (BioMap v. 2.1.12.1; build 2.633; Lotek Wireless Inc.). In order to 

objectively reduce the effect of spurious observations unavoidably produced by the BioMap software, the 

raw positions were filtered and smoothed using a hidden Markov Model based approach with a t-

distributed observation noise (Pedersen et al. 2008). The most probable track was then calculated by 

linking the means of the time marginal posterior distributions returned from the smoothing algorithm. All 

presented data are based on these most probable tracks. Average water temperature (TEMP) for each 

fishing session was calculated based on registrations recorded by a stationary temperature data logger 

positioned at the centre of the lake at one meters depth.   
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Data analysis and statistics 
Moved distance per hour (DPH) of each fish was calculated as the accumulated distance between positions 

on an hourly basis. Mean number of positions per fish per hour was 34, thus DPH was on average 

determined as the total length of 33 line segments. 

For each sampling session a centred timestamp (TIME0(control)) was defined as the middle time between 

first and last release of a recaptured fish when two fish or more was recaptured. In sessions where only one 

fish was recaptured TIME0(control) was defined as the time of release of that recapture. TIME0(control) for 

each session was assigned to all control fish in that session. For all individual recaptured fish TIME0(recap) 

was defined as the time of release. Maximum deviation of TIME0(control) from TIME0(recap) was 22 hours. 

Henceforth, the term TIME0 represents both TIME0(control) and TIME0(recap).  

For all individuals, accumulated moved distances in the preceding (DIST_BEFORE) and following 

(DIST_DAY0-2) 48 hours relative to TIME0 were calculated as the sum of DPH in these periods. Similarly, 

accumulated distances in the following periods (all given as hours after TIME0) were calculated: 24 – 72 

hours (DIST_DAY1-3), 48 – 96 hours (DIST_DAY2-4) and 72 – 120 hours (DIST_DAY3-5).  

To obtain estimates of the individual differences in activity before and after TIME0, the relative change in 

accumulated distance was calculated for all combinations of individual fish and post TIME0 accumulated 

distances (DIST_DAY0-2, DIST_DAY1-3, DIST_DAY2-4 and DIST_DAY3-5) relative to DIST_BEFORE as e.g.: 

REL_DIST_DAY0-2 = (DIST_DAY0-2 – DIST_BEFORE) / DIST_BEFORE. These relative measures of activity 

differences were log10(x+1) transformed to meet the normality and homoscedasticity requirements of 

parametric analysis. The relative changes in accumulated distance of the recaptured group could be biased 

by the fact that foraging (and thus susceptibility to being caught) fish might exhibit different behavioural 

patterns resulting in increased activity compared to non-foraging fish. In order to test for this, a t-test was 

used to compare DIST_BEFORE for the recaptured and control groups assuming that no difference between 

the two would reflect similar pre-tagging activity patterns.  

A General Linear Model (GLM) was applied to evaluate the effects of the handling protocol on the activity 

of the fish. The relative change in activity of individual fish was entered as the response variable, recapture 

(yes/no) as a fixed factor and TL and TEMP were entered as covariates. All interaction terms were included 

in the starting model and subsequently removed using backwards elimination (P > 0.10 to remove). The 

model was initially fitted to the response variable REL_DIST_DAY0-2 and afterwards the same model was 

applied to the remaining three response variables in order to ensure comparability between all four 

models. All statistical tests were done in SPSS 17.0 using α = 0.05 as the level of significance. 
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Results 
A single fish died immediately after tagging. During the study period (March 20 – October 25 2009) another 

two of the tagged pike died of unknown reasons (transmitters suddenly remained stationary with no 

subsequent movement). These fish are not included in the present study. Two other tagged individuals 

were predated by other tagged pike. These two are included in the analysis up to the predation event. 

Disregarding the tagging induced mortality, the total natural mortality rate during the study period was 

16.7 % (4 out of 24 fish). 

DIST_BEFORE of recaptures and controls was indistinguishable (t = 0.08, df = 56, P = 0.94) indicating that 

the relative changes in activity for the recaptured fish were not biased by systematically different 

behavioural patterns between the non captured control group and the recaptured individuals. Activity 

levels and patterns were highly variable in both the control and the recapture group both before and after 

TIME0 (table 2, fig. 2).  

 

Table 2. Descriptive statistics of the accumulated moved distances in the periods before and after TIME0 
for the control group and for the group of recaptures. All units are meters per hour. N(control) = 49; 
N(recap) = 9. 
  DIST_BEFORE DIST_DAY0-2 DIST_DAY1-3 DIST_DAY2-4 DIST_DAY3-5 
Mean (SE) Control  1615 (185) 1479 (205) 1473 (186) 1547 (176) 1670 (202) 
 Recap  1650 (369) 991 (190) 991 (274) 1004 (311) 1146 (279) 
Range Control 67 – 6543 61 – 5902 73 – 5051 202 – 4993 123 – 7105 
 Recap 409 – 3438 289 – 2078 276 – 2698 159 – 2697 205 – 2637 
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Fig. 2. Moved distance per hour for the nine recaptured fish five days before and after the recapture. Data 
preceding BEFORE (grey area) is not included in the analysis and shown for reference purposes only. Gaps 
in lines represents hours where one or none positions of the fish were obtained. Total number of positions 
(Nobs) in the ten day period of each individual fish as well as mean water temperature (Temp in degrees 
Celsius) in the period are given.  
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The GLMs revealed a significant effect of the RECAP*TEMP interaction on the relative change in moved 

distance observed in the first two periods (DAY0-2 and DAY1-3) but none thereafter (table 3). This 

interaction demonstrates that an effect of RECAP was present in the first two post TIME0 intervals and 

further that this effect was dependent on water temperature with higher temperatures increasing the 

effect, i.e., resulting in a further decrease in the activity of recaptured fish (fig. 3). No significant effect of TL 

was observed. 

 

Table 3. Results of GLM analysis of the effects of RECAP, TL and TEMP on 
the relative changes in activity. Activity in all four post TIME0 periods (DAY0-
2, DAY1-3, DAY2-4 and DAY3-5) are compared to activity in the period 
before TIME0. Significant effects are indicated in bold. 
 Type III SS F df p-value 
DAY0-2 (overall model) 1.129 3.833 4 .008 
RECAP .262 3.560 1 .065 
TL .002 .029 1 .864 
TEMP .020 .268 1 .607 
RECAP*TEMP .399 5.424 1 .024 
DAY1-3 (overall model) .901 2.694 4 .041  
RECAP .195 2.331 1 .133 
TL .065 .780 1 .381 
TEMP .000 .004 1 .947 
RECAP*TEMP .391 4.673 1 .035 
DAY2-4 (overall model) .688 2.041 4 .102 
RECAP .009 .109 1 .743 
TL .089 1.057 1 .309 
TEMP 2.62E-5 .000 1 .986 
RECAP*TEMP .028 .336 1 .565 
DAY3-5 (overall model) .440 1.266 4 .295 
RECAP .021 .241 1 .626 
TL .094 1.085 1 .302 
TEMP .042 .482 1 .490 
RECAP*TEMP .001 .009 1 .923 
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Fig. 3. Effect of water temperature on relative changes in activity in each of the four periods (DAY0-2, 
DAY1-3, DAY2-4 and DAY3-5) for recaptured (x) and control fish (o). The effect was significant for DAY0-2 
and DAY1-3 as shown in table 3. Lines represent best linear fit of the data for the two groups (broken line: 
recaptured; solid line: control). 
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Discussion 
The present study tested the effects of a handling protocol including catch-and-release on the volitional 

swimming activity of pike. This was done by contrasting activity before and after handling of recaptured fish 

compared with a control group. The results show that the handling protocol inflicted temporary changes in 

the relative activity of the treated pike compared to the control group and that this effect was temperature 

dependent.  

From a management point of view the results are ambiguous. Indeed there was an effect of the 

recapturing, but it was transitory and could not be detected 48 hours post release. This suggests that 

recreational catch-and-release based fishing does not impart long term effects on the behaviour of the 

individual pike. However, there may be long term effects from catch-and-release that may not translate 

into changes in activity, e.g. physiological disturbances, though these have yet to be described (see 

Arlinghaus et al. (2009) for a discussion of catch-and-release induced physiological disturbances in pike).  

In relation to future studies on pike behaviour, the results from the present study suggest that behavioural 

changes due to angling events of the focal fish are of a relative short duration. Moreover, since the 

handling protocol presented in the present study is based on angling, it is relevant to compare the present 

results with previous studies describing the effects of catch-and-release angling on activity levels of pike as 

e.g. Klefoth et al. (2008). Similar to the present study, they found that angled pike display reduced activity 

for a relative short period post release. Studies of catch-and-release in other species have also found 

reduced post release activity (Sundstrom & Gruber 2002; Gurshin & Szedlmayer 2004) and altered 

behaviour (Makinen et al. 2000; Thorstad et al. 2003). However, the strength and novelty of the present 

study is the inclusion of a control group of previously tagged fish that were not caught during the angling 

session in question. Assuming that tagged pike overall are not affected by long term post tagging stressors, 

this control group represents an estimate of the natural activity level of comparable conspecifics 

throughout the post angling periods. This approach increases the possibility of separating the effects of the 

actual catch-and-release treatment from uncontrollable whole system stimuli that could alter the activity 

levels of all individuals.  

The continuous high resolution positional telemetry used in this study proved to be successful in getting 

detailed measures of the pike activity levels revealing large individual and temporal variation (fig. 2). This 

underlines the potential shortcomings of manual positional telemetry compared to automated telemetry 

regarding the resolution of data. If the present study had employed a manual tracking protocol (e.g. 

yielding ten positions per day), underestimation of the activity levels seems likely as discussed by Cooke et 
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al. (2001) and Hanson et al. (2007) and it is possible that the observed effect of the handling regime would 

not have been detected.  

The present study was done in a rather small lake effectively restricting the opportunities for the pike to 

perform long directional movements. Nevertheless, although all the tagged pike could traverse the entire 

lake within minutes, this was rarely observed (Baktoft, unpublished results), indicating that fine scale 

movements constituted a major part of their overall activity. Whether or not pike in larger lakes exhibits 

the same fine scale movements as observed in this study (in addition to longer displacements) is at present 

largely unknown, but it has been shown to be the case in smallmouth bass, Micropterus dolomieu Lacépède 

(Cooke et al. 2001). This warrants further studies, since the fine scale movements could represent a large 

and variable fraction of the activity not being observed using manual tracking, potentially clouding 

conclusions.  
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Abstract 
Studies on animal behaviour often find considerable variation between individuals. This variation has 

historically been ignored as natural variation complicating an extrapolation from tagged individuals to 

population level. However, inter-individual variation in behaviour has recently been acknowledged as being 

an important ecological and evolutionary characteristic of wild populations but the mechanisms involved in 

maintaining such consistent differences are not fully understood. The present work explores potentially 

explanatory relations between inter-individual variation in behaviour, metabolism and morphology through 

an inter-disciplinary approach by combining laboratory protocols, a simple morphometric measure and high 

resolution telemetry on the same individuals. Sixteen European perch (Perca fluviatilis) were captured from 

a wild population, transferred to a laboratory and equipped with acoustic transmitters. Following a 

recovery period, morphometric and metabolic properties of each individual were determined. Finally, the 

fish were returned to their native environment, where an array of hydrophones allowed for automated 

continuous positioning of the fish. While data showed no correlation between metabolic properties and 

field activity, we identified links between individual morphology and behaviour. Thus, our analyses provide 

empirical field based data indicating that 1) individual metabolic properties are not strongly linked to 

volitional behaviour in free swimming fish, and 2) individual morphological differences affecting cost of 

transport are correlated with several behavioural measures. 
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Introduction 
Unexplained inter-individual variation in the behaviour of otherwise similar conspecific individual has often 

been considered “noise”, potentially obscuring a desired extrapolation from the observed animals to an 

overall population mean (Careau et al. 2008). However, in recent years, this residual variation has gained 

increased focus through the emergence of concepts such as behavioural syndromes, based on the 

recognition that individuals often display a degree of behavioural consistency across different situations 

(Sih et al. 2004; Sih et al. 2012). For instance, some individuals are consistently more responsive and active 

than others across different contexts like routine behaviour and novel object inspection. It has recently 

been suggested that such consistent individual differences in behaviour could be linked to metabolic 

properties (Biro & Stamps 2008; Careau et al. 2008; Biro & Stamps 2010).  

Standard metabolic rate (SMR) is a measure of the basic maintenance requirements of resting post-

absorptive unstressed animals below which physiological function is impaired (Priede 1985). At the other 

end of the aerobic scale, maximum metabolic rate (MMR) sets the upper limit of aerobic metabolism. 

Energy requirements of activities based on aerobic metabolism (e.g. routine swimming and gonadal 

development) are met within the SMR-MMR range, termed the scope for aerobic activity (SAA). Because 

these individual properties fundamentally set the limits within which the individual fish must survive, feed 

and reproduce, it is conceivable that they correlate with individual behaviour. Indeed, previous studies 

have found correlations between metabolic rates and several aspects of fish behaviour, e.g. positioning in 

schools (Killen et al. 2012b), vulnerability to angling (Redpath et al. 2010), behavioural dominance (Cutts et 

al. 2002), risk-taking (Killen et al. 2011) and migration propensity (Lans et al. 2011). 

Interspecific differences in morphology of fish are known to reflect differences in swimming capabilities and 

general behaviour. For instance, the posterior positioning of dorsal and anal fin in pike (Esox lucius) reflects 

an adaptation to sprint based foraging (Craig 1996) while thunniform body shapes are optimal for cruising 

(Webb 1984). Likewise, intraspecific individual variations in body shape may affect the cost of transport in 

several species. For fish moving through water, overall body shape is a major determinant of resistive drag 

and thereby cost of transport. In hydrodynamic modelling of this, fish body form is typically simplified to 

e.g. a prolate spheroid and described by fineness ratio defined as length divided by maximum diameter. 

From such modelling, fineness ratios of approximately 5 to 8 have been shown to be most efficient (Blake 

1983; Chung 2009). As such an optimum exist, it is conceivable that individual morphological differences 

will influence cost of transport and subsequently behaviour. Using a slightly modified version of fineness 

ratio, Ohlberger et al. (2006) found a direct relationship between swimming costs and fish morphology in 

carp (Cyprinus carpio) and roach (Rutilus rutilus). Additionally, Boily & Magnan (2002) found that swimming 

costs were higher for stout than slender individuals of both brook char (Salvelinus fontinalis) and yellow 
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perch (Perca flavescens). Moreover, in the first study linking morphology and detailed behaviour of free-

swimming fish, Hanson et al. (2007) found that body shape influenced both mean swimming speeds and 

travelled distance of nest guarding male largemouth bass (Micropterus salmoides). Although Boily & 

Magnan (2002) and Hanson et al. (2007) did not use fineness ratios, their findings are in line with Ohlberger 

et al. (2006) as the morphological measures used correlate with fineness ratio.  

Most studies linking both functional morphology and metabolic properties to swimming performance and 

behaviour are performed in artificial laboratory settings. However, recent technological advents have 

enabled field studies on detailed fish behaviour (Lucas & Baras 2000; Cooke et al. 2005) thereby facilitating 

the inclusion of volitional behaviour of free-swimming animals in this research area (as in Hanson et al. 

2007; Hasler et al. 2009a; Hasler et al. 2009b).  

In the present study we test the hypothesis that individual behavioural variation is correlated with 

individual variation in physiological and/or morphological properties. To test this, we combined laboratory 

measurements of individual metabolic rates and morphology with individual behavioural parameters 

obtained from free-swimming perch. Individual standard and maximum metabolic rates and aerobic scope 

for activity from 16 perch were obtained using intermittent flow respirometry. Additionally, individual 

fineness ratio was determined as a measure of overall body shape. Subsequently, the same individuals 

were returned to their natal lake and following a re-habituation period of seven days, their undisturbed 

volitional behaviour was monitored for ten consecutive days using an acoustic telemetry array system 

which in effect turned the lake into a ‘monitored field aquarium’.  

Materials and Methods 

Fish 
Twenty three perch (fork length (FL) range 141 – 197 mm) were captured in a small lake (Lake Gosmer; 

55°55´42 N, 10°10´50 E; area approximately 1 ha; see Baktoft et al. (2012) for further info) using rod and 

reel and transferred to the laboratory. The perch were kept in square tanks (3 * 3 meters) using 

recirculated water kept at 16 (+- 1) degrees Celsius and fed daily with small live roach. Light regime was 

12:12 (light:dark). Each perch was tagged with an acoustic transmitter (Lotek MAP 6_2, Burst interval 30 

sec, 0.7 g in water) and a small PIT-tag (12 * 2.12 mm; 95 mg in air; LoligoSystems, Tjele, Denmark) to allow 

for rapid identification. Both tags were inserted through an incision in the body cavity following standard 

procedures as described in e.g. Jepsen et al. (2002). The fish were allowed a ten days recovery period 

before the onset on metabolic trials.  
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Metabolic properties 
Respirometry was performed using automated intermittent closed respirometry as described in e.g. 

Svendsen et al. (2012). In short, four acrylic respirometer chambers were used concurrently allowing for 

simultaneous measurements on four fish. All chambers were submerged in ambient fully aerated water 

drawn from the recirculating system, i.e. the same water as the fish were held in. Ambient water 

temperature was kept at 16 (± 0.1) degree Celsius using thermostat controlled heater and cooler. Oxygen 

tension was continuously monitored at 1Hz using proprietary software (AutoResp, LoligoSystems, Tjele, 

Denmark) and subsequently post processed to yield oxygen consumption. Fish were isolated and unfed for 

22 hours before trials.  

MMR was determined using a customized version of the chase protocol described in Cutts et al. (2002) and 

previously adopted in e.g. Norin & Malte (2011) and Svendsen et al. (2012). Individual perch were 

transferred to a small tank and chased by hand until complete exhaustion as evidenced by the fish not 

reacting to being turned up-side-down and lifted partially out of the water. This typically took 

approximately five minutes. When exhausted, perch were immediately transferred to the respirometer and 

measuring of oxygen consumption commenced within 10 sec. The first measurement (always the highest 

for each individual) was assumed to represent MMR. Subsequently, the fish were left in the chambers for 

20 hours until next morning. During this, the entire setup was shrouded in curtains to exclude visual 

disturbance of the perch. Additionally, each perch was visually shielded using vertical opaque acrylic 

screens. Pilot experiments showed that perch metabolic rate (MR) reached a stable low level shortly after 

the light went off. The mean value of the data acquired during the period of low and stable MR was used as 

a measure of SMR. To enable comparison between individuals, absolute MMR and SMR were converted to 

mass specific MR (O2*kg-1*h-1) using a scaling factor of 0.8 (Clarke & Johnston 1999) following this 

equation: Mass specific MR = (1/fish mass)0.8 * MR (Reidy et al. 2000). SAA was calculated as the absolute 

difference in mass specific MMR and SMR. Following each trial, all equipment was disassembled, 

disinfected and thoroughly rinsed. Pre- and post-trial runs showed a negligible background respiration from 

bacteria which therefore was disregarded in the analyses. 

Morphology 
Fork length, maximum body depth and breadth were measured to enable calculation of fineness ratio 

(FINE) as fork length divided by the square root of maximum depth*maximum breadth following Ohlberger 

et al. (2006). This definition of FINE was chosen as it makes more biological sense than the definition used 

in hydrodynamic modelling (length:maximum diameter ratio; Blake 1983) since a prolate spheroid is a poor 

descriptor of perch body form. FINE is a dimensionless measure of overall body shape in which low and 

high values indicate stout and slender individuals, respectively. 
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Behavioural measures 
The perch were returned to their natal lake upon completion of the laboratory protocol. An acoustic 

positional telemetry system was used to obtain observations on volitional behaviour in Lake Gosmer. In 

short, the telemetry system enabled continuous monitoring of tagged fish with high temporal and spatial 

resolution by yielding time-stamped geographic coordinates (see Baktoft et al. 2012 for further details). 

From these data we calculated 1) daily individual activity as total moved distance in 24 hours (ACT; m * day-

1), 2) mean daily individual swimming speed (SPEED; m * s-1) and 3) daily maximum individual swimming 

speed (VMAX; m * s-1). Thus, one data point for all three measures was obtained for each individual each 

day. The first seven days were excluded to allow the perch to re-habituate to their natural environment. All 

behavioural measures were calculated from data obtained from the following 12 days during which the lake 

was left undisturbed.  

ACT was calculated as the daily sum of Euclidian distances between consecutive positions. As described in 

Baktoft et al. (2012) there was a probabilistic component in the positioning system, potentially affecting the 

number of positions calculated for each fish each day (Nobs). To assess whether this influenced the ACT 

measure we examined the data for correlations between ACT and Nobs. 

Point-to-point swimming speeds were calculated as the two-dimensional Euclidian distance between two 

consecutive points divided by delta time. To objectively and qualitatively optimize the data, only instances 

where the maximum obtainable temporal resolution, i.e. the transmitters burst interval (= 30 sec), were 

used. Furthermore, as the variable of interest was swimming speed, only periods where the individual 

perch were actually active were included. To objectively identify these periods we used a hidden Markov 

model with location and level of activity as hidden states (Pedersen et al. 2011) providing an activity metric, 

specifically the probability that the fish was active at a given time (Pactive). Only observations with Pactive >= 

0.75 were included in calculation of SPEED. VMAX was defined as the daily individual maximum of the 

point-to-point swimming speeds where Pactive >= 0.75.  

Statistical analysis 
Linear mixed effect models with random intercepts were employed following Zuur et al. (2009) and 

Pinheiro & Bates (2000) to analyse the data. By including FishID as a random effect, the models accounted 

for potential correlation between repeated measures on each individual. A series of models were fitted for 

each behavioural measure (ACT, SPEED and VMAX). In each model ACT, SPEED or VMAX was included as 

the response variable modelled by a common intercept (α), fork length (FL), one of the metabolic 

properties or the fineness ratio, FishID as a random effect (a) and residual noise (ε). For example: 

MSMR: ACT ~ α + FL + SMR + a + ε (~ represents “modelled by”). The significance of each metabolic property 

and fineness ratio was tested by comparing the models to a reduced model, e.g. MRED: ACT ~ α + FL + a + ε, 
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thus excluding SMR in this example. Finally, MRED was compared to a null model excluding FL, 

MNULL: ACT ~ α + a + ε. This approach was chosen over backwards elimination of a full model including all 

terms due to numerical problems caused by the relatively low sample size. All model comparisons were 

done using likelihood ratio tests as described in Zuur et al. (2009). Where appropriate, variance structures 

were included to accommodate residual heterogeneity (Zuur et al. 2009). Subsequent model validation 

plots showed no signs of violation of model assumptions. Fork length was chosen as a measure of body size 

as this is typically used in behavioural studies, although body mass is more commonly used in studies on 

metabolic rates. Fork length and body mass were highly correlated (r = 0.97) and could therefore not both 

be included in the statistical models. Pearson correlation coefficients were calculated using individual mean 

values. A prerequisite for the relevance of the present study was (at least some level of) consistency in the 

behavioural measures. This was assessed using the intraclass correlation coefficient (ICC) for each 

behavioural measure extracted from the mixed models following Zuur et al. (2009). ICC is a measure of 

within-individual correlation, i.e. the consistency of the observations made on each individual (Nespolo & 

Franco 2007). All statistical analyses were done in R version 2.12.1 (R Development Core Team 2010) using 

the nlme 3.1-97 package (Pinheiro et al. 2010). 

Results 
Of the 23 perch, three were consumed by tagged pike in the lake. The pike were tagged as part of another 

study in which it was estimated that more than 95% of pike over 40 cm were tagged (Baktoft, unpublished 

data). Additionally, four of the transmitters malfunctioned, leaving a total of 16 fish to be included in the 

analyses.  

Intraclass correlation coefficients for the three behavioural measures were ACT: 0.99, SPEED: 0.14 and 

VMAX: 0.77. Thus, values of ACT and VMAX were highly consistent within individuals whereas values of 

SPEED were more variable. 

The range of Nobs was 329 – 2433 equal to a position averagely every 262 – 35 sec. During the hours where 

the majority of perch activity took place (07:00 to 16:00) range of Nobs was 197 – 1057 equalling a position 

on average every 183 – 34 sec. There were no indications of correlation between ACT and Nobs (Pearson r = 

0.037; Fig. 1). Therefore, Nobs was not considered in any subsequent analyses.  
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Fig. 1. Daily activity (ACT) plotted 
against Nobs. A quadratic curve 
fitted to the data is included to 
visualise that no correlation 
between ACT and Nobs is apparent. 

 

There was no correlation between ACT and SPEED (Pearson r = -0.07; Fig. 2) indicating variation in the 

amount of time individual perch were registered as being active (i.e. Pactive >= 0.75).  

FINE and FL was not correlated (Pearson r = -0.14). 

 

 

 

 
Fig. 2. Mean daily individual 
swimming speed as a 
function of mean daily 
individual activity (bars 
indicate s.e.m.).  
 

 

 

Neither SMR, MMR, SAA nor FINE could explain a significant proportion of the residual variation in ACT 

when correcting for fork length (Table 1a). However, fork length did explain a significant amount of 

variation through a positive correlation (P = 0.0063; Fig. 3a). 

FINE was positively correlated with the residual variation in SPEED when accounting for FL (P = 0.025; 

Fig. 3b). Neither of the metabolic properties explained a significant proportion of variation in SPEED (Table 
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1b). The isolated effect of fork length was not tested as fork length was included in the model testing for 

the effect of FINE. 

Both FL and FINE explained a significant part of the variation in VMAX (P = 0.0064 and P = 0.0027, 

respectively; Table 1c; Fig. 3cd). Neither SMR, MMR nor SAA could explain a significant proportion of the 

variation in VMAX. 

 

 

 
Fig. 3. Graphical representation of significant results from the mixed models in table 1. a) Mean daily 
activity (ACT) vs. fork length (FL) (P = 0.0063). b) Mean daily swimming speeds (SPEED) vs. fineness ratio 
(FINE) (P = 0.025). c) . Mean daily maximum swimming speed (VMAX) vs. fork length (FL) (P = 0.0027). d) 
Mean daily maximum swimming speed (VMAX) vs. fineness ratio (FINE) (P = 0.0064). All values are 
presented as individual means ± s.e.m. Solid lines represent the regression line from the corresponding 
mixed models. 
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Table 1. Results from mixed models testing the significance of MMR, SMR, SAA 
and FINE in explaining individual variation in three behavioural measures a) 
ACT, b) SPEED and c) VMAX. MNULL was redundant in panel c as a more complex 
model was significant. Significant models are highlighted using bold face. 
Notice, FL was not significant in panel b model MFINE, hence the final significant 
model was MRED2 (P=0.027). 
a) ACT     
Model   Test Term tested P 
MMMR ACT ~ α + FL + MMR  MMMR vs MRed MMR 0.45  
MSMR ACT ~ α + FL + SMR  MSMR vs MRed SMR 0.44  
MSAA ACT ~ α + FL + SAA  MSAA vs MRed SAA 0.95  
MFINE ACT ~ α + FL + FINE  MFINE vs MRed FINE 0.59  
MRed ACT ~ α + FL  MRed vs MNull FL 0.0063  
MNull ACT ~ α  -  - -  
b) SPEED     
Model   Test   P 
MMMR SPEED ~ α + FL + MMR  MMMR vs MRed MMR 0.62  
MSMR SPEED ~ α + FL + SMR  MSMR vs MRed SMR 0.33  
MSAA SPEED ~ α + FL + SAA  MSAA vs MRed SAA 0.72  
MFINE SPEED ~ α + FL + FINE  MFINE vs MRed FINE 0.025  
MFINE SPEED ~ α + FL + FINE  MFINE vs MRed2 FL 0.69 
MRed SPEED ~ α + FL  MRED vs MNULL FL 0.85 
MRed2 SPEED ~ α + FINE MRED2 vs MNULL FINE 0.027 
MNULL SPEED ~ α - - - 
c) VMAX     
Model   Test   P 
MMMR VMAX ~ α + FL + MMR  MMMR vs MRed MMR 0.72 
MSMR VMAX ~ α + FL + SMR  MSMR vs MRed SMR 0.77 
MSAA VMAX ~ α + FL + SAA  MSAA vs MRed SAA 0.73 
MFINE VMAX ~ α + FL + FINE  MFINE vs MRed FINE 0.0064 
MFINE VMAX ~ α + FL + FINE  MFINE vs MRed2 FL 0.0027 
MRed VMAX ~ α + FL  - - -  
MRed2 VMAX ~ α + FINE  - - - 

 

 

Discussion 

Metabolism 
None of the examined metabolic properties (SMR, MMR and SAA) explained a significant amount of the 

variation in any of the three behavioural parameters (ACT, SPEED and VMAX). This is somewhat surprising 

since these properties represent the metabolic constraints within which the individual fish can perform 
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aerobic fuelled activity including routine behaviour such as foraging and swimming (Priede 1985). SMR (or 

equivalents) are the most-studied aspect of vertebrate metabolism (Careau et al. 2008) and numerous 

studies have found positive correlations between SMR and behavioural parameters such as aggression, 

dominance and boldness in several taxa including fish (reviewed in Biro & Stamps 2010). However, 

empirical studies on the correlation between SMR and volitional movement activity in fish are scarce; a 

single study (Farwell & McLaughlin 2009) was identified in the review by Biro & Stamps (2010). In their 

study on recently emerged brook charr, Farwell & McLaughlin (2009) found no correlation between SMR 

and activity measured as time spent moving. Interestingly, Killen et al. (2012a) found positive correlation 

between routine metabolic rate (RMR) and activity measures under severe hypoxia but not in moderate 

hypoxia or normoxia. Moreover, Killen et al. (2012a) suggest that effects of RMR on behaviour might only 

be manifested during exposure to a stressor or that a stressor may amplify RMR-related differences in 

behaviour. Thus, although SMR correlates with some behavioural parameters, the link between SMR and 

activity in non-stressed conditions can be weak or non-existing as found in the present study.  

Critical, maximum and optimal swimming speeds (Ucrit, Umax and Uopt respectively; see Tudorache et al. 2008 

for definitions) are measures of fish swimming performance obtained using laboratory protocols involving 

forced swimming (e.g. Claireaux et al. 2006; Tudorache et al. 2008). Although the mechanisms are not fully 

understood, these performance measures are linked to metabolic rates. For instance, Claireaux et al. (2006) 

present data suggesting that European sea bass (Dicentrarchus labrax) reach their maximum aerobic 

capacity at swimming speeds near Ucrit. Furthermore, they found that oxygen consumption when swimming 

at Uopt represented a consistent percentage of MMR (Claireaux et al. 2006). Based on these findings a 

correlation between VMAX and MMR (and/or SAA) was expected but not found in the present study. 

Additionally, under the assumption often used in the literature that free ranging fish swim at or near Uopt 

during routine swimming (Claireaux et al. 2006), a correlation between SPEED and MMR and/or SAA was 

expected but not found in the present study. There are several possible explanations for this lack of 

expected correlations, including: 1) when determining Umax and Ucrit, fish are typically forced to swim until 

exhaustion. Although these measures give insights in the maximum capacity of the fish, they may not be 

biologically relevant as is it currently unknown to what extent fish utilize their full aerobic potential in 

natural settings. 2) Similarly, the assumed relation between Uopt and spontaneous swimming speed of wild 

fish has yet to be confirmed (Claireaux et al. 2006). 3)  The relatively long transmitter burst interval (30 sec) 

might integrate a period too long to solely reflect swimming activity (but see below).  

In summary, the data showed no indications of the expected correlations between metabolic properties 

and behaviour. However, perch in the size range used will typically be feeding on either benthic 

invertebrates or pelagic prey fish (or a mix of these) (Hjelm et al. 2000) and may thus have constituted 
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functionally different groups entailing different behaviours. There were some indications of differences in 

feeding strategy apparent from the morphological measure as discussed below. Therefore, metabolism-

behaviour correlations may have been present within each functional group but this could not be tested in 

the present study as no information on individual feeding strategy was available. 

Morphology 
Individual fork length was positively correlated with both daily activity (ACT) and daily maximum swimming 

speed (VMAX) but not with mean daily swimming speed (SPEED). The positive correlation with ACT and 

VMAX were expected as larger fish generally utilize larger areas and are able to swim faster. Following this 

rationale, a correlation between FL and SPEED was also expected. These data could indicate that wild perch 

spend considerable time on activities with small scale movement in which case the burst interval of the 

used transmitters (30 sec) might have been too high to detect these movements. However, Zamora & 

Moreno-Amich (2002) found comparable swimming speed of perch obtained in the field (average 10.4 cm * 

s-1) albeit in larger fish (24 – 26 cm). Furthermore, Linlokken et al. (2010) found swimming speeds in 

laboratory experiments on perch foraging behaviour comparable to the present study when correcting for 

differences in fish length (ca. 5 – 7 cm * s-1 @ mean TL = 11.8 cm (total length) in Linlokken et al. 2010 vs. 

ca. 10 – 13 cm * s-1 @ mean FL = 16.4 cm in the present study). This indicates that measured SPEED in the 

present study is within a credible range.  

Fineness ratio explained significant proportions of the variation in both SPEED and VMAX. Fineness ratio is 

a dimensionless measure of body slenderness in which higher values indicate more slender bodies. 

Previous studies have shown that higher fineness ratios (up to a given threshold) generally are associated 

with lower swimming costs (Boily & Magnan 2002; Ohlberger et al. 2006). Additionally, it is known that 

morphological polymorphism in perch is associated with differences in foraging efficiency and search 

velocity in pelagic versus littoral habitats (Svanback & Eklöv 2004). The only previous field study linking 

detailed fish behaviour with morphological characters found correlations between a composite 

morphometric measure comparable to FINE and mean speed and mean daily distance in largemouth bass 

(Hanson et al. 2007). The present study adds empirical field data emphasising the biological relevance of 

individual morphological differences. Although the prospect of a pure physical explanation (i.e. the 

hydrodynamic effects of fineness affecting swimming costs) of parts of the individual variability is alluring, 

this correlation most probably entails some biological components as well. For example, fineness ratio 

could be related to nutritional status as ‘fatter’ fish of a given length will have a lower fineness ratio. 

Moreover, we used perch whose morphology is known to be highly plastic and to correlate with both 

habitat structure and feeding mode (Olsson & Eklöv 2005). Generally, deep bodied and thus more 

manoeuvrable perch are associated with the benthic niche, whereas slender perch are associated with 
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pelagic feeding (Hjelm et al. 2000; Svanback & Eklöv 2004). However, regardless of the causal mechanism 

driving the correlations between fineness and behaviour, it is interesting that a simple metric can explain 

significant amount of inter-individual behavioural variation. 

The present study relies on several crucial assumptions. First of all, we assumed that the measured 

metabolic rates were repeatable and temporally consistent. This could not be verified due to time 

restrictions set by the transmitter battery life, but previous studies suggest that this was a valid assumption 

(Nespolo & Franco 2007; Maciak & Konarzewski 2010; Norin & Malte 2011). Analogous, some level of 

consistency in the behavioural measures was a prerequisite for the relevance of the present study. This 

criterion was met for both ACT and VMAX as suggested by their respective ICC values, whereas the intra-

individual consistency of SPEED was considerably smaller. Additionally, we assumed that the behavioural 

parameters obtained using the telemetry system truthfully reflected fish behaviour. The validity of the 

system has previously been assessed by towing transmitters to mimic swimming fish. These tracks showed 

very good concordance with true tracks obtained using DGPS (Baktoft et al, in prep). The estimation 

accuracy of behavioural parameters (especially SPEED and VMAX) might have been influenced by the 

relatively long burst intervals (30 sec). The selected BI was chosen as a compromise between battery life 

expectancy (i.e. longevity of the study period) and transmitter size/weight. Finally, it should be noted that 

the results in the present study are based on a relatively low sample size, partly due to misfortunate 

happenings, i.e. transmitter failure and predation. Therefore, care should be taken when interpreting the 

results. However, even when correcting for pseudo-replication by using a mixed model approach, several of 

the findings were highly significant adding credibility to the results.  

In summary, the present study suggests that although the metabolic properties define the aerobic 

capacities of fish, a direct link to volitional routine behaviour is missing. In contrast, we found several 

indications that fish size and morphology correlates with fish activity, suggesting a stronger link between 

these factors.  
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