

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Is Time Predictability Quantifiable?

Schoeberl, Martin

Published in:
International Conference on Embedded Computer Systems (SAMOS 2012)

Link to article, DOI:
10.1109/SAMOS.2012.6404196

Publication date:
2012

Document Version
Early version, also known as pre-print

Link back to DTU Orbit

Citation (APA):
Schoeberl, M. (2012). Is Time Predictability Quantifiable? In International Conference on Embedded Computer
Systems (SAMOS 2012) (pp. 333-338). IEEE. DOI: 10.1109/SAMOS.2012.6404196

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13800200?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/SAMOS.2012.6404196
http://orbit.dtu.dk/en/publications/is-time-predictability-quantifiable(8fa5499e-c572-44c5-a650-96676e5ac855).html

Is Time Predictability Quantifiable?
Martin Schoeberl

Abstract—Computer architects and researchers in the real-
time domain start to investigate processors and architectures
optimized for real-time systems. Optimized for real-time systems
means time predictable, i.e., architectures where it is possible to
statically derive a tight bound of the worst-case execution time.
To compare different approaches we would like to quantify time
predictability. That means we need to measure time predictability.
In this paper we discuss the different approaches for these
measurements and conclude that time predictability is practically
not quantifiable. We can only compare the worst-case execution
time bounds of different architectures.

I. INTRODUCTION

In computer architecture, and in natural science in general,
we want to measure and quantify. Computer architecture can
advance when we can say that processor A is 2 times faster
than processor B. We all like bigger is better. Of course
this simplified answer is not really possible, as average-case
performance depends also on the workload. But with a known
workload, such as SPEC benchmarks, such comparisons are
possible.

For real-time systems we need to know the worst-case
execution time (WCET). For modern processors deriving a
safe and tight bound on the WCET becomes practically
infeasible. Therefore, researchers in real-time systems and
computer architecture started to design processors to simplify
the static estimation of the WCET. Those architectures are
often called time predictable. The question now arises what
time predictable exactly mean. And can one find a measure-
ment methodology so we can state: processor A is more time
predictable than processor B? Or better: processor a is twice
as predictable as processor B.

II. PREDICTABLE HARDWARE

Digital hardware is in principle perfectly predictable. With
the same hardware start state and the same input data two
runs of a program will result in the same result and execution
time. However, the initial hardware state and variable input
data make WCET analysis for modern processor very hard.

As an answer to this issue several groups have started to
investigate predictable processors and memory hierarchies.

A. PRET

Edwards and Lee argue: “It is time for a new era of
processors whose temporal behavior is as easily controlled as
their logical function” [4]. The focus of the precision timed
(PRET) machine is primarily on repeatable timing and less
on predictable timing. A deadline instruction can be used to
enforce repeatable timing of a task. A first simulation of their
PRET architecture is presented in [12]. PRET implements
a RISC pipeline and performs chip-level multithreading for

four threads to eliminate data forwarding and branch predic-
tion [13]. Scratchpad memories are used instead of instruction
and data caches. The shared main memory is accessed via
a time-division multiple access (TDMA) scheme, called the
memory wheel. A recent version of PRET [3] defines time-
predictable access to SDRAM by assigning each thread a
dedicated bank in the memory chips. The access to the
individual banks is pipelined and the access time fixed. As
the memory banks are not shared between threads, thread
communication has to be performed via the shared scratchpad
memory. Although the PRET architecture is not a CMP
system, the concepts used in the multi-threaded pipeline can
also be applied to a CMP system. Each bank of the SDRAM
can be assigned to a set of CPUs. Within this set a TDMA
based memory arbitration can be used.

B. MERASA

The FP-7 project MERASA (Multi-Core Execution of Hard
Real-Time Applications Supporting Analysability) [24] in-
vestigated a bus-based CMP with a multi-threaded version
of the TriCore processor. The memory hierarchy issue for
real-time systems was attacked by a dynamic instruction
scratchpad [14]. The WCET analysis tool used in MERASA
was adapted to support the instruction set of the TriCore. A
memory arbiter was designed to support measurement-based
WCET analysis with the RapiTime tool [15].

C. PREDATOR

Thiele and Wilhelm argue that a new research discipline
is needed for time-predictable embedded systems [23]. Berg
et al. identify the following design principles for a time-
predictable processor: “... recoverability from information loss
in the analysis, minimal variation of the instruction timing,
non-interference between processor components, deterministic
processor behavior, and comprehensive documentation” [2].

The FP-7 project PREDATOR investigated time-predictable
hardware architectures and WCET-driven compilation. The au-
thors propose a processor architecture that meets these design
principles. The processor is a classic five-stage RISC pipeline
with minimal changes to the instruction set. Suggestions for
future architectures of memory hierarchies are given in [28].
Falk et al. [5], [6] developed the WCET-driven compiler WCC.
WCC is guided by the results of the aiT WCET analysis tool
and optimizes the worst-case path.

D. JEOPARD

The FP-7 JEOPARD (Java Environment for Parallel Re-
altime Development) investigated architectures and tools for

real-time Java on CMP systems. Within the hardware architec-
ture work package the Java processor JOP [20] was extended
to support time-predictable execution of Java applications on a
CMP. The TDMA based memory access arbitration [16] was
incorporated into the WCET analysis tool of JOP. Research
on time-predictable caching [21] for Java started within JEOP-
ARD.

E. York RTS Group

Whitham argues that the execution time of a basic block
has to be independent of the execution history [25]. To
reduce the WCET, Whitham proposes to implement the time
critical functions in microcode on a reconfigurable function
unit (RFU). The main processor implements a RISC ISA as a
microprogrammed, sequential processor. With several RFUs,
it is possible to explicitly extract instruction level parallelism
(ILP) from the original RISC code in a similar way to VLIW
architectures. Whitham and Audsley extend the MCGREP
architecture with a trace scratchpad [26]. The trace scratchpad
caches microcode and is placed after the decode stage. The
authors extract ILP at the microcode level and schedule the
instructions statically – similar to a VLIW architecture.

Superscalar out-of-order processors can achieve higher per-
formance than in-order designs, but are difficult to handle in
WCET analysis. Whitham and Audsley present modifications
to out-of-order processors to achieve time-predictable opera-
tion [27]. Virtual traces allow static WCET analysis, which is
performed before execution. Those virtual traces are formed
within the program and constrain the out-of order scheduler
built into the CPU to execute deterministically.

III. PREDICTABILITY DEFINITIONS

Thiele and Wilhelm are one the first to define time pre-
dictability [23]. The consider the difference between the real
WCET and the WCET bound, which is often called the
pessimism of the analysis, as a measure for predictability.
They also include the difference between the lower bound
and the best-case execution time (BCET) for the predictability
definition.

Kirner and Puschner present several variants of time pre-
dictability definitions [11]. The first definition is the interval
between the BCET and the WCET: [BCET, WCET], where a
smaller interval means better predictable and BCET = WCET
considered highest predictability. More informal they also
define that time predictability of a model is the ability to
calculate the execution time of a concrete system. Specific they
define predictability by the multiplication of analyzability with
stability, including weighting factors. The stability is given by
the quotient of BCET/WCET of the timing model. For WCET-
predictability the stability is ignored and the factor for it set
to zero. The analyzability, which is now equal to the WCET-
predictability, as the quotient of WCET and WCET bound.

Grund, Reineke, and Wilhelm investigate predictability and
provide a template for the definition [7]. The template consists
of three aspects: (1) the property to be predicted, (2) the source
of uncertainty, and (3) a quality measure. In the following they

concentrate on the property time and present a definition of
time predictability, which is defined as the a quotient between
the minimum and maximum execution time. A system with
quotient 1 is perfectly predictable. They argue that each system
has an inherent predictability factor and the WCET analysis
shall not be part of this factor. However, the real WCET and
BCET are usually not known. Therefore, it is not possible to
‘measure’ time predictability with this definition.

In summery following definitions of time predictability can
be found:

• BECT and WCET interval
• WCET/WCET bound quotient
• BCET/WCET quotient (excluding any analysis)
• BCET/WCET bound quotient (including the analysis)

All the above definitions share the same issue: they are
very impractical. We do not know the real WCET or BCET,
therefore we cannot calculate the predictability factors in
praxis. How can we help the real-time computer architect or
compiler writer?

IV. WHAT TO QUANTIFY?

Time predictability itself is is an interesting, but incomplete
property for a concrete system. We are still interested in perfor-
mance. For real-time systems it is the worst case performance,
which counts.

Let us assume a concrete example to look at the different
real-time related properties. For a given task X processor A
has a WCET of 1000 cycles and processor B 800 cycles. So
B is better. Maybe B is better be a factor of 10/8.

However, this is not the end of the story as we do not know
the exact WCET values. We can only infer a WCET bound
with static WCET analsys. We now introduce two WCET tools
Wa and Wb for the two processors. Wa gives a bound of 1100
cycles for task X on processor A and Wb a bound of 1300
cycles on processor B. Now processor A is better.

It looks like Wa is inferior to Wb as it gives a tighter bound,
even when the WCET on processor B is lower. Maybe Wa
performs the analysis in one day, but Wb gives a result after
one minute. Is in this case system B with Wb is more practical
than system A with Wa.

Furthermore, we have not yet included the compiler in
this WCET performance comparison. Similar to average case
measurements, also for the WCET performance the compiler
plays an important role.

We argue that a time predictability comparison shall be
a comparison of WCET bounds between two systems. And
those two systems include three components: the hardware,
the compiler, and the static WCET analysis tool.

We can state that any WCET performance measurement is
a relative one with different factors that can be considered.
(we did not yet consider the size or energy consumption of
processor A and B). Furthermore, we do not have a base
line as SPEC measurements have with the VAX machine for
comparison.

V. T-CREST

Guided by the fact that the WCET bound depends on the
hardware architecture, the compiler, and the WCET analysis
tool the EC funded project T-CREST (Time-predictable Multi-
Core Architecture for Embedded Systems) will research all
these aspects to build future time-predictable multicore sys-
tems.

Within T-CREST novel solutions for time-predictable multi-
core and many-core system architectures will be proposed. The
resulting time-predictable resources (processor, interconnect,
memories, etc.) will be a good target for WCET analysis and
the WCET performance will be outstanding compared to cur-
rent processors. Time-predictable caching and time-predictable
chip-multiprocessing (CMP) will provide a solution for the
need of increased processing power in the real-time domain.

Besides the hardware, a compiler infrastructure will be
developed in the project. WCET-aware optimization methods
will be developed along with detailed timing models such
that the compiler benefits from the known behavior of the
hardware. The WCET analysis tool aiT will be adapted to
support the developed hardware and guide the compilation.

The T-CREST hardware will be open-source under the
industry friendly, simplified BSD license.

A. The Processor

The basis of a time-predictable system is a time-predictable
processor. Within T-CREST we will develop a time-predictable
processor, named Patmos [22], as one approach to attack the
complexity issue of WCET analysis. Patmos is a statically
scheduled, dual-issue RISC processor that is optimized for
real-time systems. All instruction delays are visible at the
instruction set architecture (ISA). This puts more burden on
the compiler, but simplifies the WCET analysis tool. A major
challenge for the WCET analysis is the memory hierarchy
with multiple levels of caches. We attack this issue by caches
that are especially designed for WCET analysis. For instruc-
tions we adopt the method cache [19], which operates on
whole functions/methods and thus simplifies the modeling
for WCET analysis. Furthermore, we propose a split-cache
architecture [21] for data, offering dedicated caches for the
stack area, constants, static data, heap allocated objects, as
well as a compiler and program managed scratchpad memory.

Accesses to the different types of data areas are explicitly
encoded with the load and store instructions. We call this typed
load and store instructions, which direct the loads and stores
to the relevant cache. This feature helps the WCET analysis
to distinguish between the different data caches. Furthermore,
it can be detected earlier in the pipeline which cache will be
accessed.

Patmos also supports predication of all instructions. This
feature reduces the number of conditional branches and sup-
ports generation of single-path code [17], [18]. The compiler
LLVM will be extended with an optimization path that trans-
lates normal code into single-path code.

B. The Interconnect

In order to build a chip-multiprocessor system out of Patmos
processor cores we need a suitable interconnect – a network-
on-chip (NoC). The Patmos multi-processor platform will use
non-coherent distributed memory and the address space will
be populated by smaller memory blocks within the different
processor nodes and a large block of off-chip memory. The
NoC will support time-predictable read and write transactions
to memories in other processor nodes as well as to the off-chip
memory. The NoC is a shared resource and it must support
multiple concurrent read and write transactions.

To enable time-predictable usage of a shared resource the
resource arbitration has to be time-predictable. In the case
of a NoC, statically scheduled TDMA is a time-predictable
solution. This static schedule is repeated and the length of
the schedule is called the period. Like tasks in real-time
systems, also the communication is organized in periods. One
optimization point of the design is minimizing the period to
minimize the latency of delivering data and the size of the
schedule tables.

In the field of embedded systems, multi-processor platforms
are typically optimized for a given application or application
domain. The NoC structure and/or the routing schedules are
then optimized and are then application-specific. In the T-
CREST project our aim is to develop a general-purpose
platform – a platform that can be configured to optimize the
performance of the system or a platform which can be used
as is without any configuration.

Different types of data is transferred on the NoC, e.g.,
message passing data between cores, cache fills from main
memory, synchronization operations such as compare-and-
swap. In most architectures a single NoC serves all those
different types of data. However, the requirements of these
different data types with respect to e.g., packet size, address
ranges, and flow control are different. Therefore, T-CREST
will evaluate if several, for the traffic type optimized, NoCs
result in a more efficient solution than a single shared NoC.

C. Memory Hierarchy

The only memory layer that is under direct control of
the compiler is the register file. Other levels of the memory
hierarchy are usually not visible – they are not part of the
ISA abstraction. The placing of data in the different layers
is automatically performed. While caches are managed by the
hardware, virtual memory is managed by the operating system
(OS). The access time for a word that is in a memory block
paged out by the OS is several orders of magnitude higher
than a first level cache hit. Even the difference between a first
level cache access and a main memory access is in the order
of two magnitudes.

Cache memories for instructions and data are classic exam-
ples of the paradigm Make the common case fast. Plenty of
effort has gone into researching the integration of the instruc-
tion cache into the timing analysis [1] and the integration of
the cache analysis with the pipeline analysis [8]. The influence

of different cache architectures on WCET analysis is described
in [9].

Caches in general, and particularly data caches, are usually
hard to analyze statically. Therefore, we introduce caches
that are organized to speed-up execution time and provide
tight WCET bounds. We propose a split cache architecture
consisting of: (1) an instruction cache for full methods, (2) a
stack cache, (3) a cache for static data, constants, and type
information, and (4) a small, fully associative buffer for heap
access. Furthermore, we will also consider the integration of
program- or compiler-managed scratchpad memory for data
storage and inter-processor communication to tighten bounds
for hard-to-analyze memory-access patterns.

The shared memory abstraction that is prevalent in (embed-
ded) systems introduces contention on the shared memories.
Especially off-chip SDRAM and Flash memories, which are
performance bottlenecks, are heavily shared between multiple
processors. Cache misses or scratchpad memories prefetches
therefore have a highly variable response time due to con-
tention between processors. Worse, even without sharing,
response times are variable due to the effects such as different
read/write latencies, and bank open/close effects. In T-CREST
we will create time-predictable external SDRAM memory
controllers, as this is an essential ingredient in every embedded
system.

The combination of the TDMA based NoC and the time-
predictable memory controller allows, even on a CMP system,
to provide upper bounds on memory transactions. This upper
bound enables WCET analysis of individual tasks executing
on a CMP system.

D. Compiler and WCET Analysis

The performance of the dual-issue processor depends on
statically scheduled instructions. We argue that all architectural
features of a processor shall be exposed to the compiler to
generate time-predictable code. Within T-CREST the LLVM
compiler framework will be adapted to target Patmos. Further-
more, we will explore compiler optimizations for the WCET
instead of the average case execution time.

The processor is intended as a platform to explore various
time-predictable design trade-offs and their interaction with
WCET analysis techniques as well as WCET-aware compila-
tion. We propose the co-design of time-predictable processor
features with the WCET analysis tool, similar to the work
by Huber et al. [10] on caching of heap allocated objects
in a Java processor. Only features where we can provide
a static program analysis shall be added to the processor.
This includes, but is not limited to, time-predictable caching
mechanisms, chip-multiprocessing (CMP), as well as novel
pipeline organizations.

The WCET analysis tool aiT from AbsInt will be adapted to
support the VLIW processor Patmos. It is also the platform for
exploration of time-predictable processor features. The WCET
oriented optimization in the compiler will be tightly integrated
with the WCET analysis tool. The WCET tool will provide

informations on the worst-case path and basic block timings
to guide the optimization process.

E. Evaluation

T-CREST will be evaluated by use cases from two industrial
partners: GMV and INTECS. GMV will port a set of real-
world applications from the aeronautical domain with extreme
safety requirements to the T-CREST platform. INTECS will
port a specific use case from the railway industry.

VI. CONCLUSION

To build reliable real-time systems we need architectures
that support WCET analysis of tasks. Intuition tells that
predictable and especially time-predictable processors shall
be easier to analyze and shall result in tight WCET bounds.
We would like a notion of quantifiable time predictability
to guid our design of time-predictable processors. However,
time predictability is not quantifiable. Furthermore, just being
predictable, but very slow is not a practical solution. Therefore,
we shall compare statically derived WCET bounds of a task
on different architectures. The result depends then on (at least)
three components: the processor, the compiler, and the WCET
analysis tool.

ACKNOWLEDGEMENT

I would like to thank the T-CREST project members for
the interesting discussions on time-predictable architectures
during the project meetings. Contributions came form all
partners, in particular from Benny Akesson, Neil Audsley,
Florian Brandner, Christian Ferdinand, Kees Goossens, Scott
Hansen, Reinhold Heckmann, Guido Ioele, Peter Puschner,
Tobias Schoofs, Jens Sparsø, and Jack Whitham. Furthermore,
I would like to thank Edward Lee for discussions on pre-
dictability versus repeatability.

This work was partially funded under the European Union’s
7th Framework Programme under grant agreement no. 288008:
Time-predictable Multi-Core Architecture for Embedded Sys-
tems (T-CREST).

REFERENCES

[1] R. Arnold, F. Mueller, D. Whalley, and M. Harmon. Bounding
worst-case instruction cache performance. In IEEE Real-Time Systems
Symposium, pages 172–181, 1994.

[2] C. Berg, J. Engblom, and R. Wilhelm. Requirements for and design
of a processor with predictable timing. In L. Thiele and R. Wilhelm,
editors, Perspectives Workshop: Design of Systems with Predictable
Behaviour, number 03471 in Dagstuhl Seminar Proceedings, Dagstuhl,
Germany, 2004. Internationales Begegnungs- und Forschungszentrum
für Informatik (IBFI), Schloss Dagstuhl, Germany.

[3] S. A. Edwards, S. Kim, E. A. Lee, I. Liu, H. D. Patel, and M. Schoeberl.
A disruptive computer design idea: Architectures with repeatable timing.
In Proceedings of IEEE International Conference on Computer Design
(ICCD 2009), Lake Tahoe, CA, October 2009. IEEE.

[4] S. A. Edwards and E. A. Lee. The case for the precision timed (PRET)
machine. In DAC ’07: Proceedings of the 44th annual conference on
Design automation, pages 264–265, New York, NY, USA, 2007. ACM.

[5] H. Falk and J. C. Kleinsorge. Optimal static WCET-aware scratchpad
allocation of program code. In DAC ’09: Proceedings of the Conference
on Design Automation, pages 732–737, 2009.

[6] H. Falk and P. Lokuciejewski. A compiler framework for the reduction
of worst-case execution times. Real-Time Systems, pages 1–50, 2010.

[7] D. Grund, J. Reineke, and R. Wilhelm. A template for predictability
definitions with supporting evidence. In P. Lucas, L. Thiele, B. Triquet,
T. Ungerer, and R. Wilhelm, editors, Bringing Theory to Practice:
Predictability and Performance in Embedded Systems, volume 18 of
OpenAccess Series in Informatics (OASIcs), pages 22–31, Dagstuhl,
Germany, 2011. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[8] C. A. Healy, R. D. Arnold, F. Mueller, D. B. Whalley, and M. G.
Harmon. Bounding pipeline and instruction cache performance. IEEE
Trans. Computers, 48(1):53–70, 1999.

[9] R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm. The
influence of processor architecture on the design and results of WCET
tools. Proceedings of the IEEE, 91(7):1038–1054, Jul. 2003.

[10] B. Huber, W. Puffitsch, and M. Schoeberl. WCET driven design space
exploration of an object cache. In Proceedings of the 8th International
Workshop on Java Technologies for Real-time and Embedded Systems
(JTRES 2010), pages 26–35, New York, NY, USA, 2010. ACM.

[11] R. Kirner and P. Puschner. Time-predictable computing. In S. Min,
R. Pettit, P. Puschner, and T. Ungerer, editors, Software Technologies
for Embedded and Ubiquitous Systems, volume 6399 of Lecture Notes
in Computer Science, pages 23–34. Springer Berlin / Heidelberg, 2011.

[12] B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards, and E. A.
Lee. Predictable programming on a precision timed architecture. In
E. R. Altman, editor, Proceedings of the International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems (CASES
2008), pages 137–146, Atlanta, GA, USA, October 2008. ACM.

[13] I. Liu, J. Reineke, and E. A. Lee. A PRET architecture supporting
concurrent programs with composable timing properties. In Signals,
Systems and Computers, 2010 Conference Record of the Forty-Four
Asilomar Conference on, November 2010.

[14] S. Metzlaff, S. Uhrig, J. Mische, and T. Ungerer. Predictable dynamic
instruction scratchpad for simultaneous multithreaded processors. In
Proceedings of the 9th workshop on Memory performance (MEDEA
2008), pages 38–45, New York, NY, USA, 2008. ACM.

[15] M. Paolieri, E. Quiñones, F. J. Cazorla, G. Bernat, and M. Valero.
Hardware support for WCET analysis of hard real-time multicore
systems. In The 36th International Symposium on Computer Architecture
(ISCA 2009), pages 57–68, Austin, Texas, USA, 20-24, June 2009.
ACM.

[16] C. Pitter and M. Schoeberl. A real-time Java chip-multiprocessor. ACM
Trans. Embed. Comput. Syst., 10(1):9:1–34, 2010.

[17] P. Puschner. Transforming execution-time boundable code into tempo-
rally predictable code. In B. Kleinjohann, K. K. Kim, L. Kleinjohann,
and A. Rettberg, editors, Design and Analysis of Distributed Embedded
Systems, pages 163–172. Kluwer Academic Publishers, 2002. IFIP 17th
World Computer Congress - TC10 Stream on Distributed and Parallel
Embedded Systems (DIPES 2002).

[18] P. Puschner and A. Burns. Writing temporally predictable code. In
Proceedings of the The Seventh IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems (WORDS 2002), pages 85–94,
Washington, DC, USA, 2002. IEEE Computer Society.

[19] M. Schoeberl. A time predictable instruction cache for a Java processor.
In On the Move to Meaningful Internet Systems 2004: Workshop on
Java Technologies for Real-Time and Embedded Systems (JTRES 2004),
volume 3292 of LNCS, pages 371–382, Agia Napa, Cyprus, October
2004. Springer.

[20] M. Schoeberl. A Java processor architecture for embedded real-time
systems. Journal of Systems Architecture, 54/1–2:265–286, 2008.

[21] M. Schoeberl. Time-predictable cache organization. In Proceedings of
the First International Workshop on Software Technologies for Future
Dependable Distributed Systems (STFSSD 2009), pages 11–16, Tokyo,
Japan, March 2009. IEEE Computer Society.

[22] M. Schoeberl, P. Schleuniger, W. Puffitsch, F. Brandner, C. W. Probst,
S. Karlsson, and T. Thorn. Towards a time-predictable dual-issue
microprocessor: The Patmos approach. In First Workshop on Bring-
ing Theory to Practice: Predictability and Performance in Embedded
Systems (PPES 2011), pages 11–20, Grenoble, France, March 2011.

[23] L. Thiele and R. Wilhelm. Design for timing predictability. Real-Time
Systems, 28(2-3):157–177, 2004.

[24] T. Ungerer, F. Cazorla, P. Sainrat, G. Bernat, Z. Petrov, C. Rochange,
E. Quiñones, M. Gerdes, M. Paolieri, and J. Wolf. Merasa: Multi-core
execution of hard real-time applications supporting analysability. Micro,
IEEE, 30(5):66–75, 2010.

[25] J. Whitham. Real-time Processor Architectures for Worst Case Execution
Time Reduction. PhD thesis, University of York, 2008.

[26] J. Whitham and N. Audsley. Using trace scratchpads to reduce execution
times in predictable real-time architectures. In Proceedings of the Real-
Time and Embedded Technology and Applications Symposium (RTAS
2008), pages 305–316, April 2008.

[27] J. Whitham and N. Audsley. Time-predictable out-of-order execution for
hard real-time systems. IEEE Transactions on Computers, 59(9):1210–
1223, 2010.

[28] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and
C. Ferdinand. Memory hierarchies, pipelines, and buses for future
architectures in time-critical embedded systems. IEEE Transactions on
CAD of Integrated Circuits and Systems, 28(7):966–978, 2009.

