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Summary: An evolution of distribution and orientation of fibres in the fibre reinforced self-compacting 
concrete during the casting process is an important matter as the final orientation and distribution of 
fibres can significantly influence mechanical properties of the structural elements. A two-way coupled 
model for flow of suspension of rigid solid particles in a non-Newtonian fluid with a free surface has 
been developed for such a purpose and is shortly presented in this paper. Several experiments using 
an apparent yield stress fluid, i.e. Carbopol® Ultrez 21 Polymer transparent gel, were conducted and 
analysed by means of digital image analysis. Orientation tensor fields coming from the digital image 
analysis were compared with the simulation to verify the ability of the model to properly represent the 
flow of the fibre reinforced self-compacting concrete. 

1 INTRODUCTION 

Knowledge of the final orientation and distribution of fibres is an important component in a proper 
understanding of the behaviour of cast structural elements. Self-compacting concrete is unfortunately 
not transparent which makes the experimental determination of the fibre orientation and distribution 
difficult. One approach in the determination of the fibre orientation might be to cast the structural 
element and retrieve a 3D image of the fibres using a CT scanning device [15]. Another approach 
might be to cast the element, cut it into sections and visually count the number of fibres at the cross-
section [11]. In this paper, we present yet another approach where we, similarly to [2], substituted the 
self-compacting concrete by suspension of fibres in transparent Carbopol Ultrez 21 Polymer (from now 
on called Carbopol) allowing a direct observation of fibres. 

Experimental determination of the orientation and dispersion of fibres in the self-compacting 
concrete is a time and resource consuming procedure. A model capable of properly simulating the 
given problem is therefore desired. We have developed such a model and briefly introduce it in this 
paper. Finally we compare the resulting fibre orientation fields coming from the experiment with the 
fibre orientation fields coming from the simulation model. The orientation fields of fibres are 
represented by second order orientation tensor fields [1]. 

2 METHODS 

In this section, we present the two-ways coupled model for the flow of suspensions of rigid solid 
particles in non-Newtonian fluid. The model consists of the fluid dynamics part used to predict the free 
surface flow of a homogeneous fluid solved using the Lattice Boltzmann method [12, 16]. The other 
part of the model predicts the time and space evolution of the solid particle suspension where 
dynamics of the solid particles is solved using Newton's classical equations of motion. Mutual 
interactions between the fluid and the solid particles are represented by means of the Immersed 
Boundary Method with direct forcing [4]. 
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Due to the diversity of the individual methods, the overall model is separated into three distinct 
levels (Figure 1): 

a) Level of fluid: Flow of a non-Newtonian free surface fluid is solved at this level. The 
Lattice Boltzmann method is used as the fluid dynamics solver whereas the Mass Tracking 
Algorithm describes the free surface of the flow. The Lattice Boltzmann method is spatially 
discretized into a square / cubic grid of Eulerian nodes

1
 (see square marks in Figure 1a). 

This level is influenced by the interaction forces coming from the “Level of fluid - solid 
particles interaction”. 

b) Level of fluid – solid particles interaction: This intermediate level provides a 
communication channel between the “Level of fluid” and the “Level of solid particles”. The 
communication takes place via force interactions. We have used the Immersed boundary 
method with direct forcing to accommodate the communication between the two levels. 
Solid particles are discretized by a set of Lagrangian nodes

2
 at this level (see black circle 

marks in Figure 1b). No-slip boundary condition between the fluid and the solid particles is 
enforced at those Lagrangian nodes. To satisfy this condition, an interaction force is 
created and sent back to the “Level of fluid” and the “Level of solid particles”.  

c) Level of solid particles: Solid particles with an exact analytical geometry are used at this 
level (see Figure 1c). The dynamics of the solid particles is solved using Newton's 
equations of motion. Interactions among the solid particles and between the solid particles 
and the boundaries (such as walls etc.) are also solved at this level. A coefficient of 
restitution has been incorporated to account for elastic to plastic collisions and a Coulomb 
friction scheme to approximate the friction. Another force, which is applied onto the solid 
particles, comes from the “Level of fluid - solid particles interaction” to account for the 
interaction between the fluid and the solid particles. 

 

Figure 1: Scheme of the model. a) Level of fluid. b) Level of fluid – solid particles interaction. 
c) Level of solid particles. 

3 LEVEL OF FLUID 

Level of fluid solves the flow of a homogeneous non-Newtonian free surface fluid, such as the self-
compacting concrete and thus consists of the fluid dynamics and free surface solver. 

                                                      
1
 Nodes fixed in space 

2
 Position of the nodes evolves in time 
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3.1 Fluid Dynamics Solver 

In contrast to the traditional computational fluid dynamics methods, where the problem is 
formulated by means of macroscopic quantities such as space and time dependent velocity and 
pressure fields, the Lattice Boltzmann method, with its roots in the kinetic theory of gases, treats the 
fluid as clouds of microscopic particles (e.g. molecules). Individual microscopic particles are assumed 
to be freely propagating through the space while instantaneously colliding among each other from time 
to time (see Lattice gas cellular automata [16]). The clouds of particles are approximated by 
continuous particle distribution functions (i.e. probability of a particle occurrence). The particle 
distribution functions are further discretized by a set of discrete particle distributions to limit the number 
of unknowns. Lattice Boltzmann equation provides rules for mutual collisions and propagation of the 
particle distributions. The macroscopic quantities (density, velocity et.) can then be computed as 
moments of the particle distributions. 

The computational domain is typically discretized by a set of Eulerian cells of a uniform size (see 
Figure 1a). Continuous fields of macroscopic quantities (such as velocity fields) are then approximated 
by the mean values of the quantities in the discretized cells. Similarly, the time is discretized into 
uniform time steps. 

In a given time step, the state of the fluid in a cell is fully described by the particle distributions in 
that cell. The particle distributions in the given time step at a certain position are computed from the 
particle distributions in neighbouring cells in the previous step. This accounts for the propagation of 
the particle distributions. Collisions of the particle distributions are in the simplest case approximated 
by a linear transformation of the particle distributions towards the local equilibrium state. Such a 
transformation is called Bhatnagar-Gross-Krook collision operator [3]. The local equilibrium state is 
based on the Maxwell-Boltzmann distribution, and is computed from the local macroscopic velocity 
and pressure (density) of the fluid. The difference between the current state of the particle distributions 
and the local equilibrium state allows for a simple approximation of the local shear rate and shear 
stress tensors [9]. 

3.2 Free surface algorithm 

A free surface has been implemented in the form of the Mass Tracking Algorithm [6]. The algorithm 
makes use of the same Eulerian discretized domain as the Lattice Boltzmann method where fluid, gas 
and interface cells are introduced. The Lattice Boltzmann equation is computed in the fluid and 
interface cells, only. Gas cells are empty cells where nothing is computed. Interface cells separate 
fluid phase and gas phase and are therefore responsible for a correct implementation of the free 
surface algorithm and for the correct mass conservation of the fluid. Interface cells are moreover the 
only place where the Mass Tracking Algorithm comes into play in the form of local mass tracking and 
reconstruction of missing information from the gas phase. 

3.3 Level of fluid - solid particles interaction 

The Immersed boundary method with direct forcing [4] provides a direct linkage between the “Level 
of fluid” and the “Level of solid particles”. The fluid can “feel” the solid particles in the form of a force 
field. In the same manner, the solid particles can “feel” the fluid in the form of forces acting on the solid 
particles. At this level, the solid particles are discretized into a set of Lagrangian nodes. It is assumed 
that the velocity of a solid particle and the fluid at the same Lagrangian node are equal due to the no-
slip boundary condition. Non-equal velocities are transformed into a force field acting on both the 
particle and the fluid. The force is in the simplest form computed based on Newton's second law of 
motion (i.e. such a force to accelerate a certain volume of the fluid that is surrounding the Lagrangian 
node to the velocity of the solid particle at that Lagrangian node). Since the Lagrangian nodes do not 
coincide with the Eulerian nodes coming from the “Level of fluid”, the velocity of the fluid in the 
Lagrangian nodes is obtained by a volume averaging of the velocities at the Eulerian nodes. The 
volume averaging is conducted by means of a Dirac delta function [17]. The resulting forces are 
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usually extrapolated from the Lagrangian nodes back to the Eulerian nodes (i.e. to the “Level of fluid”) 
using the same Dirac delta function. 

The Immersed Boundary Method provides, contrary to other methods (eg. bounce-back wall 
scheme [7, 8]), smooth and stable time evolution of all the quantities (i.e. the position of the solid 
particles or forces acting on them). The most important feature of the Immersed Boundary Method, 
however, is its ability to simulate small objects of only a few lattice units or even sub-grid sized objects, 
see [14]. This results in a significant reduction of the computational time needed. 

3.4 Level of solid particles 

At this level, the solid particles are assumed to be rigid bodies of a simple geometric shape 
(sphere, ellipsoid or cylinder) with the ability to move, rotate and interact among each other, with fluid, 
walls and other obstacles. The dynamics of those immersed solid particles is driven by Newton's 
second law of motion which is discretized with the explicit Runge-Kutta-Fehlberg time integration 
scheme with an adaptive time step. The numerical integration scheme that we adopted ensures the 
stability and accuracy of the simulation even for a highly non-linear behaviour. 

An accurate and robust treatment of interactions among the solid particles and between the solid 
particles and other obstacles such as walls or reinforcement plays an important role in a proper 
description of the relevant phenomena. The model includes two types of interactions, namely mutual 
instantaneous collisions of solid particles and continuous forcing of a general type. The instantaneous 
collisions were approximated by means of force impulses [13]. An example of the continuous forcing 
could be a lubrication force correcting the fluid flow between two solid particles in the case when the 
two solid particles approach each other to a sub-grid distance [10]. 

4 APPLICATIONS 

Verification of a newly developed model is a crucial part of its development phase. We presented a 
full description of our model and its basic verification in [13]. A comparison of the model with a real-
world casting of a fibre reinforced self-compacting concrete plate was given in [15]. In this paper, we 
aim to compare the presented model with an L-Box experiment with the use of a transparent yield 
stress fluid, Carbopol. 

                         

Figure 2: Transparent L-Box form (see Section 4.2 for the dimensions and other parameters) 
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4.1 Transparent L-Box experiment 

In this experiment, we cast a suspension of stainless steel fibres in Carbopol into a formwork and 
visually study how the fibres orient and disperse due to the flow. We have chosen the L-Box form as a 
primary formwork of the study. Figure 2 shows the shape of the transparent plastic standard-sized L-
Box both in the emptied and filled state. 

As mentioned, we have used a gel-like fluid Carbopol which is a transparent shear thinning 
polymer with an apparent yield stress. It can further be assumed to follow a Bingham rheology model 
for shear rates between 0 and 5 s

-1
 [5]. The two features, i.e. transparency and Bingham rheology, 

make Carbopol a suitable substitute for the fluid matrix in self-compacting concrete. Carbopol has, 
compared to the self-compacting concrete, a relatively low pH (ca. 6.5). We have therefore used 
stainless steel fibres Dramix rl 80/30sn produced by Bekaert Belgium to avoid any corrosion of the 
suspended fibres. 

The Carbopol was produced according to the guidelines of the Lubrizol Company. We did not, 
however, succeed to avoid the creation of a large amount of air voids in the fluid. A desiccator was 
therefore used to produce a high under-pressure and thus to boil the air voids out of the fluid. We 
produced two different batches of the Carbopol fluid. One with the 0.125 volume percentage of 
Carbopol, the other one with double the amount of Carbopol in the fluid. 

The resulting mean values of the plastic viscosity and the yield stress of the two batches were 
measured by Advanced Rheometer 2000 produced by TA Instruments, and read 5 Pa.s, 8 Pa and 
15 Pa.s, 30 Pa, respectively. Although different values of the Bingham parameters were reached, the 
final shapes of the orientation ellipses of the fibres were very similar. We therefore present results of 
the first batch only. 

Each casting was done three times to account for the natural variance in results. Photographs of 
the final state of the three castings together with the orientation ellipses of the fibres are shown in 
Figure 3. 

 

          

Figure 3: Top view photographs of the final state of 3 experiments and their orientation ellipses. 
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The orientation ellipses of the fibres serve as a visual representation of the second order 
orientation tensors as described in [1]. The thinner the ellipses the more oriented fibres occur in the 
region. Vice versa, the circular ellipses stand for a random orientation of the fibres in the region. 

To obtain the orientation ellipses, we took high resolution photographs of the final state of the flow 
(see Figure 3). The photographs were then transformed by Bradley local thresholding, adaptive 
smoothing and simple skeletonization technique to obtain a binary image (see AForge.NET 
framework). The binary image was then converted into the second order orientation tensors as 
described in [5] and visualized by orientation ellipses. 

As can be seen in Figure 3, there are regions which are very complicated to analyse due to either 
spurious elements (eg. horizontal bar in the upper part of the figure), decreased transparency of the 
form due to reinforcement mounting or due to high fibre volume concentrations. Resulting orientation 
ellipses should therefore be treated with caution, especially when compared to the ideal situation in 
the case of numerical simulations. 

4.2 L-Box simulation 

An L-Box simulation was run and the results of the simulation were compared to the experimental 
results. The initial and boundary conditions of the simulation were as follows. The height, length and 
the width of the L-Box were 0.6 x 0.7 x 0.2 m. Three reinforcing bars of the diameter of 9 mm were 
placed into the L-Box. Spacing of the bars was 62 mm, 38 mm, 38 mm and 62 mm. The density, 
plastic viscosity and the yield stress of the fluid were set to 950 kg/m

3
, 5 Pa.s and 8 Pa. A total amount 

of 0.5 % volume fraction of the fibres was used in the simulation. Straight fibres of the length 6 cm, 
aspect ratio 80 and density 7500 kg/m

3
 were used. All the collisions of the fibres with the surrounding 

(fibres, walls, reinforcing bars) were assumed to be plastic, i.e. the coefficient of restitution was set to 
zero. 

 

                                               

 Figure 4: 3D section of the initial state of the simulation; Top view of the final state of the 
simulation and its orientation ellipses 
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Friction of the fibres was assumed to follow Coulomb friction model with the dynamic and static 
friction coefficient set to 0.3. The domain was spatially discretized by 1 cm = 3 lattice units. The fibre 
length was therefore 18 lattice units and the diameter was 0.225 lattice units. A correction term as 
described in [14] was applied to adjust the force fields in the Immersed boundary methoddue to the 
sub-grid diameter of the fibres. A 3D view of the initial state, the top view of the final state and the top 
view of the orientation ellipses of the final state are presented in Figure 4. 

Approximately 5 seconds of flow was simulated corresponding to ca. 20 000 time steps. The 
number of fibres in the simulation was 21734. The simulation took ca. 20 days on a single core 2 GHz 
CPU. Two thirds of the computation time was consumed by the “Level of solid particles” and the “Level 
of fluid – solid particles interaction”. One third of the computation time was consumed by the “Level of 
fluid”. 

5 RESULTS AND DISCUSSION 

We have developed a computational model capable of simulating a suspension of aggregates and 
fibres in the non-Newtonian free surface fluid. The model has recently been parallelized and is 
therefore presently capable of simulating ca. 100 000 particles in a reasonable amount of time based 
on the computational power available. This makes the micro-, meso- up to macro-scale simulations 
possible. 

We have conducted an experimental work with a transparent yield stress fluid, Carbopol, and 
analysed the final states of the fibre orientation by means of orientation ellipses. 

The comparison of the orientation ellipses coming from the experimental work and coming from the 
simulation indicates the ability of our model to correctly predict the final orientation of fibres in the fibre 
reinforced self-compacting concrete. 

6 ACKNOWLEDGEMENTS 

We thank E. M. Hvilsom and G. D. Rasmussen for their important contribution during the 
experimental work. 

The first author acknowledges funding from the Danish Agency for Science Technology and 
Innovation, “Sustainable Concrete Structures with Steel Fibres - The SFRC Consortium” Grant no. 09-
069955. 

The second author acknowledges funding from the Danish Agency for Science Technology and 
Innovation (project 09-065049/FTP: Prediction of flow induced inhomogeneities in self-compacting 
concrete).  

REFERENCES 

[1] Advani, S.G. 1987. The Use of Tensors to Describe and Predict Fiber Orientation in Short Fiber 
Composites. Journal of Rheology. 31, 8 (1987), 751. 

[2] Boulekbache, B. et al. 2010. Flowability of fibre-reinforced concrete and its effect on the 
mechanical properties of the material. Construction and Building Materials. 24, 9 (Sep. 2010), 
1664-1671. 

[3] Chen, S. and Doolen, G.D. 1998. Lattice Boltzmann method for fluid flows. Annual Review of 
Fluid Mechanics. 30, 1 (Jan. 1998), 329-364. 

[4] Feng, Z. and Michaelides, E. 2005. Proteus: a direct forcing method in the simulations of 
particulate flows. Journal of Computational Physics. 202, 1 (Jan. 2005), 20-51. 



BEFIB2012:   Oldřich Švec, Jan Skoček, John Forbes Olesen, Henrik Stang 

 8 

[5] Hvilsom, E.M. and Rasmussen, G.D. 2011. Fibre Orientation and Distribution in Steel Fibre 
Reinforced SCC. Technical University of Denmark. 

[6] Körner, C. et al. 2005. Lattice Boltzmann Model for Free Surface Flow for Modeling Foaming. 
Journal of Statistical Physics. 121, 1-2 (Oct. 2005), 179-196. 

[7] Ladd, A. 1994. Numerical simulations of particulate suspensions via a discretized Boltzmann 
equation. Part 1. Theoretical foundation. Journal of Fluid Mechanics. 211, (1994). 

[8] Ladd, A.J.C. 1994. Numerical simulations of particulate suspensions via a discretized 
Boltzmann equation. Part 2. Numerical results. Journal of Fluid Mechanics. 271, 1 (1994), 311–
339. 

[9] Mei, R. et al. 2002. Force evaluation in the lattice Boltzmann method involving curved 
geometry. Physical Review E. 65, 4 (Apr. 2002), 1-14. 

[10] Nguyen, N.-Q. and Ladd, A. 2002. Lubrication corrections for lattice-Boltzmann simulations of 
particle suspensions. Physical Review E. 66, 4 (Oct. 2002), 1-12. 

[11] Sarmiento, E.V. 2011. Influence of concrete flow on the mechanical properties of ordinary and 
fibre reinforced concrete. Technical University of Catalonia. 

[12] Sukop, M.C. and Thorne, D.T. 2005. Lattice Boltzmann Modeling: An Introduction for 
Geoscientists and Engineers. Springer. 

[13] Svec, O. and Skocek, J. 2012. Model predicting the flow of a suspension of rigid solid particles 
in a non-Newtonian fluid. To be published. (2012). 

[14] Svec, O. et al. 2011. Flow simulation of fiber reinforced self compacting concrete using Lattice 
Boltzmann method. Proceedings of ICCC (2011). 

[15] Svec, O. et al. 2012. Application of the fluid dynamics model to the field of fibre reinforced self-
compacting concrete. Proceedings of SSCS (2012). 

[16] Wolf-Gladrow, D.A. 2000. Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An 
Introduction (Lecture Notes in Mathematics). Springer. 

[17] Yang, X. et al. 2009. A smoothing technique for discrete delta functions with application to 
immersed boundary method in moving boundary simulations. Journal of Computational 
Physics. 228, 20 (Nov. 2009), 7821-7836.  

 


