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Abstract

Background: Nucleic acids based therapeutic approaches have gained significant interest in recent years towards the
development of therapeutics against many diseases. Recently, research on aptamers led to the marketing of MacugenH, an
inhibitor of vascular endothelial growth factor (VEGF) for the treatment of age related macular degeneration (AMD).
Aptamer technology may prove useful as a therapeutic alternative against an array of human maladies. Considering the
increased interest in aptamer technology globally that rival antibody mediated therapeutic approaches, a simplified
selection, possibly in one-step, technique is required for developing aptamers in limited time period.

Principal Findings: Herein, we present a simple one-step selection of DNA aptamers against a-bungarotoxin. A toxin
immobilized glass coverslip was subjected to nucleic acid pool binding and extensive washing followed by PCR enrichment
of the selected aptamers. One round of selection successfully identified a DNA aptamer sequence with a binding affinity of
7.58 mM.

Conclusion: We have demonstrated a one-step method for rapid production of nucleic acid aptamers. Although the
reported binding affinity is in the low micromolar range, we believe that this could be further improved by using larger
targets, increasing the stringency of selection and also by combining a capillary electrophoresis separation prior to the one-
step selection. Furthermore, the method presented here is a user-friendly, cheap and an easy way of deriving an aptamer
unlike the time consuming conventional SELEX-based approach. The most important application of this method is that
chemically-modified nucleic acid libraries can also be used for aptamer selection as it requires only one enzymatic step. This
method could equally be suitable for developing RNA aptamers.
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Introduction

In recent years, nucleic acids-based therapy has attracted

significant interest for the treatment of many diseases. It comprises

several approaches based on nucleic acid as the active component,

which include antisense [1,2], ribozymes [2], short interfering

RNA (siRNA) [2–4], microRNA (miRNA) [5,6], and aptamers [7–

11]. Aptamer technology is one of the most promising and

important approaches for therapeutic development. Aptamers are

short single-stranded (ss) DNA or RNA oligonucleotides that can

bind to its target with high affinity and specificity due to their

ability to adopt three-dimensional shapes in solution. These

structured sequence-specific ssDNA or RNA aptamers can

specifically bind to a myriad of different targets [11]. Coupled

with superior storage stability and easy solid-phase production

steps, aptamers have become prime candidates for therapeutic and

diagnostic applications. Furthermore, research on aptamers led to

the marketing of MacugenH, an inhibitor of vascular endothelial

growth factor (VEGF) for the treatment of age related macular

degeneration (AMD) [12].

Traditionally, aptamers are generated by a process referred to

as SELEX (Systematic Evolution of Ligands by Exponential

enrichment) [13–15]. This method is very time consuming and

involves several enzymatic steps. Aptamers composed of natural

DNA and RNA pose some serious limitations such as poor

nuclease resistance and decreased binding affinity. To combat

these problems, chemically modified nucleotides are used.

However, the use of modified nucleotides in SELEX is very

limited because of their poor enzymatic recognition capabilities,

demanding an alternative approach for aptamer selection [16,17].

In addition, the repetitive nature of the SELEX procedure

increases the risk of inducing mutations during the enzymatic

amplifications steps and consequently losing important sequence

information before isolating the high binding aptamers [18].
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We have selected a-bungarotoxin (7984 Da) as the target in our

study. a-Bungarotoxin is one of the toxic components of krait

snake (Bungarus multicinctus) venom. The toxin binds irreversibly

and competitively to the acetylcholine receptor found at the

neuromuscular junction, causing paralysis, respiratory failure and

ultimately death in the victim. Krait snakebite is lethal and often

encountered in Southeast Asia and the Indian subcontinent. The

treatment often becomes difficult unless the snake is properly

spotted and also noted that there is frequently little or no pain at

the site of a krait bite, which can lead to false-reassurance to the

victim [19,20].

Results

One-step Selection on a Glass Coverslip
Our approach of one-step aptamer selection is schematically

illustrated in Figure 1. First, the target a-bungarotoxin was

covalently linked to the surface of a glass coverslip which was

coated with N-hydroxysuccinimide (NHS) functionalized poly-

ethylene glycol (PEG) for reaction with primary amines of the

target. The non-linked sites were blocked with a deactivation

buffer supplied by the manufacturer. The coverslip is very thin and

fragile that makes it difficult to work with. In our experience, it was

best to handle the coverslip on a piece of Parafilm. The nucleic

acid library was first incubated with a deactivated coverslip

without the target peptide to remove the sequences that have

affinity to the surface (negative selection). The remaining unbound

pool was collected and added on to the coverslip immobilized with

a-bungarotoxin and incubated overnight in a humidifying cham-

ber. The coverslip was then washed with a large excess of the

binding buffer and dried by gently blowing N2 gas. The aptamer

binding to the target was monitored directly by fluorescence

microscopy. The absence of high background fluorescence and the

appearance of localized fluorescent spots indicated a successful

aptamer selection against a-bungarotoxin (Figure 2A).

After the initial observation by fluorescence showing aptamer

binding to the toxin, the bound aptamers were eluted by crushing

the glass coverslip well and soaking in water in a 1.5 mL

Eppendorf tube followed by vortexing and heating at 90uC for ten

minutes. The supernatant was collected and PCR amplification

yielded a single band on an agarose gel corresponding to the

expected library size (Figure 2B). The purified PCR product was

later cloned into E.coli and fifty five positive clones were collected

and the purified individual plasmid DNA was sequenced. The

obtained crude sequences were screened and only those sequences,

which retained the initial library design with correct primer

binding regions, were considered for further analyses. Although

most sequences contained a particular motif -GGGC-, we have

only selected the repeating sequences with the motif -GGGC- for

binding studies, which are listed in Table 1.

Aptamer Binding Affinity Determination
The binding interaction between the selected aptamer and a-

bungarotoxin was determined by surface Plasmon resonance

(SPR)-based Biacore 3000 instrument. The selected aptamer

sequences were chemically synthesized which contained a biotin

tag at 59-end. The biotinylated aptamer sequences were then

immobilized on a sensor chip SA (streptavidin coated chip, GE life

sciences). Varying concentrations of a-bungarotoxin (500 nM –

50 mM) was then passed through the surface immobilized with the

aptamer. SPR data showed that the aptamer sequence of clone 24

& 51 can bind to a-bungarotoxin with a KD of 7.5 mM (Figure 3A).

In contrast, aptamer sequences of clones 15, 22 & 42; 28 & 45 and

1 & 16 showed negligible binding (data not shown). We have also

performed non-specific binding analyses using a non-sense target,

insulin. There was no binding observed as expected, even at

higher concentrations.

Discussion

Highly sensitive and specific nucleic acid aptamers against a–
bungarotoxin can be extremely useful as a diagnostic and

therapeutic against krait snake envenomation. Aptamers offer

a unique alternative to the existing antibodies against the toxins

which are much larger, easily degraded, expensive and require the

use of animals for a laborious time consuming production [9,21].

On the other hand, aptamers are easily synthesized and can be

modified with reporter molecules or other nucleotide analogues to

enhance their properties like nuclease resistance. Aptamers also

adopt unique sequence-dependent three-dimensional shapes, so

they are in a sense, shape libraries that may bind to a target based

on their sequence, conformation and/or charge through interac-

tions with binding pockets, hydrogen bonds, stacking of aromatic

rings, van der Waals forces, or a combination of these [21].

Aptamers are normally developed by SELEX, an in vitro evolution

process developed around twenty years ago. Since the invention,

several SELEX protocols employing different selection approaches

have been developed [13,22]. The majority of these modified

protocols still require repetitive selection and enrichment steps for

selecting high affinity aptamers. Considering the increased interest

in aptamer technology globally that rival antibody approach,

a simplified selection, possibly in one-step, technique is required

for developing aptamers in limited time period and to avoid

repeated enzymatic steps that might induce sequence mutations.

In this direction, there are few reports showing the selection of

aptamers in a single step [23–25]. One approach was called

MonoLEX in which a DNA aptamer was selected against the

Vaccinia virus [23]. The technique involved an affinity chroma-

tography step followed by subsequent physical partitioning of the

affinity resin and PCR amplification of the bound aptamers.

Another method to develop aptamers in one step was by using

a combination of atomic force and fluorescence microscopy called

NanoSelection [24]. However, the major problem with this

approach was that the selection was carried out with a very small

pool of randomized preselected thrombin binding aptamer

oligonucleotides unlike a conventional SELEX library and there

was no further report on aptamer selection against new targets by

this approach. Krylov and co-workers reported a Non-SELEX

selection of aptamers using capillary electrophoresis by which they

were able to develop aptamer with affinity in the low micro molar

range [26].

We have developed a one-step method for rapid selection of

aptamers that is simple, cheap and user-friendly. For successful

aptamer selection, three key steps that need to function optimally;

1) efficient separation of the target bound aptamers, 2) enzymatic

amplification by PCR and 3) regeneration of the selected single-

stranded aptamers. One major highlight of our method is that it

eliminates the need for repeated enzymatic amplification and

regeneration of the single-stranded aptamer that always compli-

cate and affect the selection success. In one step selection method,

we have adopted an easy to use glass coverslip for immobilizing

the target for selecting aptamers by monitoring fluorescence under

a microscope to ensure that we are in fact selecting and processing

the target bound aptamer. One-step selection of aptamers on

a glass coverslip is an easy way for generating aptamers even for

a small biomolecular target like a-bungarotoxin (7984 Da) used in

this study. The target immobilization on to the coverslip was

verified by using an Alexa Fluor 555 dye-labeled a-bungarotoxin

DNA Aptamer against a-Bungarotoxin in One Step
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followed by fluorescence microscopy (Figure S1B). A large pool of

fluorescein (FAM) dye–labeled DNA oligonucleotides (100 mL of

40 mM, contains 2.461015 members, the protocol allows using

much larger sized libraries, however, this may increase the

background fluorescence and force non-specific binding) was then

incubated with the target-immobilized coverslip. We speculate

that a stringent washing procedure employed might also account

to a great extent for the successful aptamer identification by this

approach followed by fluorescence microscopy. The coverslip was

later viewed under a microscope and observed the green spots

indicating that we have selected an aptamer. A control experiment

was performed to make sure that we have selected the aptamers

against the intended target peptide immobilized on to the

coverslip. For this purpose, we used the Alexa Flour 555-labeled

a-bungarotoxin and FAM-labeled DNA library and performed the

selection as mentioned. Later, we did overlay the images. A target

specific selection should turn to an orangish-yellow color upon

overlay. If not, both the target and the aptamer will remain as red

and green spots respectively. In our case, we have seen very

distinct orangish-yellow spots upon overlay reassuring the target

specific aptamer selection (Figure S1). Based on this experiment,

we believe that the aptamer was indeed selected specifically to a-
bungarotoxin.

Negative selection using a deactivated coverslip is also

a necessary step prior to the actual aptamer selection against the

target. However, it is important to mention that some of the most

potent binders to a-bungarotoxin that might also have affinity for

the coverslip surface will be removed by this step even before the

actual aptamer selection. But, in this selection protocol this

negative selection is required mainly to avoid the non-specific

surface binding aptamers. Majority of the glass surface binding

aptamers can be removed by this step and other week non-specific

binders can subsequently be washed away by very stringent

washing procedure. To further verify this, we have performed one

selection without performing negative selection using a deactivated

glass coverslip. But in this case, we observed an increased amount

of green fluorescence on the coverslip indicating nonspecific

selection of the aptamers against the glass surface (data not shown).

The binding affinity (KD= 7.52 mM) of the identified aptamer

(from clone 24 & 51, Table 1) against a-bungarotoxin is not very

high. The binding affinity can be improved by truncating the

selected aptamer based on its predicted structure by mfold web

server (Figure 3B) [27]. Although we cannot generalize, we believe

that using our method, the binding affinity can be improved by

adopting various strategies. Using a larger target protein (.15 kD)

may improve the probability in selecting high affinity aptamers to

Figure 1. Single-step selection method. FAM-labeled oligonucleotide library containing a 40 nt random region was incubated with a target
immobilized on a glass coverslip. Unbound sequences were discarded by extensive washing followed by fluorescence microscopy. The coverslip was
later crushed and eluted the bound sequences by heating in water. The selected aptamers were amplified by PCR and cloned into E.coli and the
purified individual plasmid DNA was sequenced.
doi:10.1371/journal.pone.0041702.g001

DNA Aptamer against a-Bungarotoxin in One Step
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some extent because of their structural diversity and immobiliza-

tion efficiency on the coverslip. We also foresee that by combining

capillary electrophoresis [26,28] and our one-step protocol may

yield high affinity aptamers, ie, the target bound aptamer

candidates are first separated by capillary electrophoresis followed

by incubation on the target immobilized coverslip to remove all

week binders monitored by fluorescence microscopy. It is

noteworthy to mention that our selection protocol allows aptamer

selection within 24 hrs, much shorter than a month long

conventional SELEX selection procedure.

In summary, we have demonstrated a simple, rapid one-step

selection protocol for developing nucleic acid aptamers. Using this

method, one DNA aptamer against a-bungarotoxin was identified

with a dissociation constant of 7.5 mM. This method opens up new

ways for aptamer selection in a very limited time at low cost. So

far, the use of important chemically-modified nucleotides in

aptamer selection is limited due to their poor enzymatic

recognition capabilities. Our approach may prove useful especially

for using modified nucleotides containing library-based aptamer

selection. Although we reported a DNA aptamer selection using

this approach, it could equally be suitable for developing RNA

aptamers.

Materials and Methods

All DNA oligonucleotide sequences were purchased from

Integrated DNA technologies (Coralville, USA). The N-hydro-

xysuccinimide activated glass coverslip was purchased from

MicroSurfaces Inc (supplied by Stratech Scientific, Australia).

Phusion DNA polymerase was purchased from New England

Biolabs (supplied by Genesearch Australia). NucleoSpinH Extract

II kit for PCR clean up was purchased from Macherey-Nagel

(supplied by Scientifix Australia). For cloning the PCR product,

the plasmid pCRH-Blunt was purchased from Invitrogen,

Australia. Plasmid DNA was extracted and purified using

a QIAprep Miniprep Kit (purchased from Qiagen, Australia).

Fluorescence microscopy was performed using a Laser Scanning

Microscope (LSM) 710 from Zeiss and a 20x objective at an

excitation wavelength of 488 nm and laser power of 1 mW.

The designed nucleic acid library contained a 40nt random

region flanked by two primer binding regions (59-GGACAG-

GACCACACCCAGCG-40nt-

GGCTCCTGTGTGTCGCTTTGT-FAM-39) and the library

was labeled with a fluorescent tag (FAM) and purchased from

IDT in 1 mmol scale. The library was dissolved in 16PBS

containing 5 mM MgCl2 to yield a concentration of 40 mM and

denatured by heating at 90uC for 5 min followed by cooling in ice.

Before use, the library was kept at room temperature for 15 min to

adjust the temperature.

Single-step Selection on Glass Coverslip
The N-hydroxysuccinimide activated glass coverslip was treated

as per the protocol recommended by the manufacturer. In short,

25 mL of the a-bungarotoxin (125 mM) was dissolved in 30 mL
PBS containing 10% glycerol and applied drop by drop on to the

NHS activated coverslip which was placed on a piece of ParafilmH
M and incubated for 30–40 min at 24uC in a humidifying

chamber. The glass coverslip was then washed with 36200 mL
washing buffer (16PBS containing 0.05% Tween 20) by adding

Figure 2. One-step selection and amplification of the aptamer candidates. A. The observed fluorescence on the toxin immobilized glass
coverslip after washing. The glass coverslip was washed with extensive amounts of binding buffer, effectively removing all nonspecific adhesion to
the coverslip. The pattern of highly localized fluorescent dots and the absence of background smear provide an indication of successful selection; B.
PCR amplification of the eluted bound sequence. Lane 1: Marker DNA, lane 2: Amplified product from the eluted DNA aptamers, lane 3: PCR
amplification without using a template DNA (negative control).
doi:10.1371/journal.pone.0041702.g002

Table 1. Aptamer sequences obtained from the selected
clones.

Clones Sequences

15, 22 & 42 ATCATGTCTTTTCGGGATGGGCAAGAAGGGAAATAATGC

28 &45 AGAAACGTAGCGGTAACTGCTAGAATGCGCCGAGAGAGCG

24 & 51 GCGAGGTGTTCGAGAGTTAGGGGCGACATGACCAAACGTT

1 & 16 AGGGCACAGAGAAGAAGTCGTGGATTTGAATGGTTTTGGT

Only the sequences from the random regions are shown.
doi:10.1371/journal.pone.0041702.t001

DNA Aptamer against a-Bungarotoxin in One Step
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droplets to a piece of ParafilmH M and then by gently placing the

coverslip upside down soaking the coverslip in 200 mL washing

buffer and waiting for 5 min at 24uC. The coverslip was then

placed in 300 mL deactivation buffer (supplied by the manufac-

turer) to block any unreacted groups for 35 minutes in a humid-

ifying chamber. The coverslip were subsequently washed two

times with PBS containing 0.05% Tween 20. After this immobi-

lization step, 120 mL of the prepared library was incubated for

30 min on an inactivated coverslip without a-bungarotoxin
immobilization (negative selection). Then, 100 mL of the count-

er-selected nucleic acid library was transferred to the a-bungar-
otoxin immobilized coverslip and incubated overnight at 24uC in

a humidifying chamber. Extensive washing was then performed

with 4 mL washing buffer (56800 mL), followed by drying the

coverslip by gently blowing nitrogen gas. The backside of the

coverslip was cleaned with a clean tissue soaked in ethanol before

fluorescent imaging by microscopy.

The toxin bound aptamers were later eluted by crushing the

glass coverslip in an Eppendorf tube followed by heating in Milli-

Q water at 90uC for 20 minutes. The resulting solution was

centrifuged at 14000 rpm and the supernatant was collected for

the subsequent PCR amplification step. In short, the PCR mixture

was prepared in a total volume of 50 mL by adding 10 mL 56
Phusion HF buffer (included in the Phusion DNA polymerase kit),

4 mL of dNTPs (400 mM), 28 mL of two times distilled water,

1.5 mL of forward primer (50 mM), 1.5 mL of reverse primer

(50 mM), 5 mL of template (supernatant) and 0.5 mL of Phusion

DNA polymerase (250 U/mL). The reaction mixtures were gently

vortexed and then amplified using a thermal cycler (S1000TM

Thermal cycler, Bio-Rad). A 25-cycle PCR consisted of de-

naturation at 98uC for 10 seconds, annealing at 55uC for

15 seconds and extension at 72uC for 25 seconds. After the

polymerase reactions, gel-loading buffer (included in Ultra Low

DNA size marker kit from Fermentas, supplied by VWR Australia)

was added (1.5 mL) and the products were analysed by 4% agarose

gel electrophoresis followed by UV-photography. The PCR

product was later purified by using the NucleoSpinH Extract II kit.

Cloning and Sequencing
Purified PCR products (50 ng) were cloned into E.coli using

a pCRH-Blunt (Invitrogen) vector according to the manufacturer’s

instructions. Plasmid DNA was extracted using QIAprep (Qiagen)

and sequenced by the Australian Genome Research Facility

(AGRF, Brisbane, Australia).

KD Determination by SPR
The binding affinities of the selected aptamers against a-

bungarotoxin were analyzed by Surface Plasmon Resonance using

a Biacore 3000 Instrument (GE) at 24uC. Streptavidin immobi-

lized sensor chip SA (GE, for Biacore 3000) was used for all

measurements of kinetics and 16PBS binding buffer (137 mM

NaCl, 2.7 mM KCl, 4.2 mM Na2HPO4, 1.47 mM KH2PO4,

0.005% Tween 20) was used as the running buffer. The sensor

chip was preconditioned with 1 mL of the running buffer at a flow

rate of 100 mL/min. Then, the 59-biotinylated aptamer sequences

were immobilized on the chip as recommended by manufacturer’s

manual. Varying concentrations of a-bungarotoxin was then

injected at a flow rate of 30 mL/min for 2 min. The surface was

regenerated by treating with 10 mM NaOH. The KD values were

calculated on the basis of a 1:1 Langmuir binding model by fitting

the association and dissociation rates using the Biacore 3000

evaluation software.

Supporting Information

Figure S1 Fluorescence-based characterization of the a-
bungarotoxin aptamer selection by one-step protocol. A.
An overlay image (orangish-yellow spot indicating aptamer

binding to a-bungarotoxin) of the immobilized a-bungarotoxin
labeled with Alexa Fluor 555 (red colour) and the toxin bound

FAM-labeled DNA aptamer (green fluorescence); B. Character-

Figure 3. Aptamer characterization. A. Binding specificity of the aptamer obtained from clone 24 & 51 by surface plasmon resonance (SPR)
technique using Biacore 3000. Various concentrations of a-bungarotoxin (1, 10, 20, 30, and 40 mM) were passed through the aptamer which was
immobilized on a streptavidin coated sensor chip. The obtained sensorgrams demonstrate the aptamer binding to a-bungarotoxin; B. Predicted
structure of the obtained aptamer using the DNA folding platform from mfold web server [26].
doi:10.1371/journal.pone.0041702.g003
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ization of the a-bungarotoxin labeled with Alexa Fluor 555 (red

colour) immobilized on a glass coverslip; C. a-bungarotoxin bound

FAM-labeled DNA aptamer (green fluorescence).

(TIF)
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