

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Code Generation for Protocols from CPN models Annotated with Pragmatics

Simonsen, Kent Inge; Kristensen, Lars Michael ; Kindler, Ekkart

Publication date:
2012

Link back to DTU Orbit

Citation (APA):
Simonsen, K. I., Kristensen, L. M., & Kindler, E. (2012). Code Generation for Protocols from CPN models
Annotated with Pragmatics. Paper presented at 24th Nordic Workshop on Programming Theory (NWPT 2012),
Bergen, Norway.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13800077?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/code-generation-for-protocols-from-cpn-models-annotated-with-pragmatics(dfcba6da-92c4-48de-a371-e33328d4693b).html

Code Generation for Protocols from

CPN models Annotated with Pragmatics

Kent Inge Fagerland Simonsen1,2, Lars Michael Kristensen1 and Ekkart Kindler2

1 Department of Computer Engineering, Bergen University College, Norway
Email: {lmkr,kifs}@hib.no

2 DTU Informatics, Technical University of Denmark, Denmark
Email: {kisi,eki}@imm.dtu.dk

Introduction. Model-driven software engineering (MDE) [3] provides a foundation for automatically
generating software based on models. Models allow software designs to be specified focusing on the
problem domain and abstracting from the details of underlying implementation platforms. When applied
in the context of formal modelling languages, MDE further has the advantage that models are amenable
to model checking [1] which allows key behavioural properties of the software design to be verified. The
combination of formally verified models and automated code generation contributes to a high degree of
assurance that the resulting software implementation is correct according to the verified properties.

Coloured Petri Nets (CPNs) [2] have been widely used to model and verify protocol software [4], but
limited work exists on using CPN models of protocol software as a basis for automated code generation.
In this paper we present an approach for generating protocol software from a restricted class of CPN
models. The class of CPN models considered aims at being descriptive in that the models are intended
to be helpful in understanding and conveying the operation of the protocol while at the same time being
close to a verifiable version of the same model and sufficiently detailed to serve as a basis for automated
code generation when annotated with code generation pragmatics. The purpose of the pragmatics is to
address the problem that models with enough details for generating code from them tend to be verbose
and cluttered.

Our code generation approach consists of two main steps starting from a CPN model annotated with
pragmatics: the first step is to construct an abstract template tree (ATT). The ATT then directs the
code generation in the second step in that each node of the ATT has associated code templates that are
invoked to generate code. In the following we first introduce pragmatics and the class of CPN models
considered using a small example of a unidirectional data framing protocol. Next, we use the framing
protocol example to illustrate the two main steps of the code generation.

CPN model structure and pragmatics. A protocol system consists of a set of principals commu-
nicating over channels. This structure is reflected in the modular structure of the class of CPN models
considered: there is a module for each principal and each channel, and our generation approach generates
the code for each of the principals. The unidirectional data framing protocol used as an example in this
paper consists of a sender principal and a receiver principal communicating over a FIFO channel. Each
principal, in turn contains sub-modules for each of the service primitives (methods) that the principal
provides to upper layer protocols or applications. To enable code generation, we introduce the concept
of pragmatics which are syntactical annotations that can be associated with CPN model elements (e.g.,
places, transitions, and inscriptions) and are indicated between <<>>. The pragmatics are either added
explicitly by the modeller or are implicit in that they are inferred automatically derived from the struc-
ture of the CPN model. The pragmatics used in this paper fall into two categories: operation pragmatics
and control flow pragmatics.

Figure 1 shows the CPN module representing the send method primitive provided by the sender in
the framing protocol. Due to space limitations, we only sketch how code generation is performed at
the method level and omit the principal and API levels (which are comparably simpler). The transition
Send (top) annotated with an <<external>> pragmatic represent the entry point of the send method.
The msg parameter specifies that the send method takes a message (msg) as parameter. Using CPNs for
modelling protocols typically follows some general principles which clearly separate between control flow
elements and data elements. Automatically identifying the control flow elements, however, is sometimes
a bit tricky. Therefore, our approach assumes that the control flow pragmatics <<ID>> provides this
information, which the modeller had in mind when designing the CPN model.

1

if mss = []
then (1,m)
else (0,m)

() mss

()

()

mss

m::mss

SendCPacket(p,ep,epid)

ep

()

epid

partition m

p

()

(1,m)

m

()

p

msg

(0,m)

()

Completed
<<return>>

Next

Allsent

Send
Packet

Next
Message

Partition

Send
<<external

 (msg : Message)>>

Send
Completed
<<ID>>

UNIT

Channel
<<channel>>
I/O

Endpoint

Open
<<LCV>>

I/O

UNIT

Receiver
<<state>>

In
EndpointId

Outgoing
<<state>>

Messages

Packet Sent
<<ID>>

Packet

Created
<<ID>>

Packet

Start
<<ID>>

UNIT

Message
<<ID>>

Message

In

I/O

I/O

Figure 1: Send CPN submodule (sender principal).

In the CPN model from Fig. 1, each in-
coming message is first partitioned (tran-
sition Partition) into a set of Outgoing Mes-
sages (fragments). Next, the control flow
enters a loop (place Start) where each of
the fragments are sent together with a
flag indicating whether or not it is the
last frame of the message. The loop ter-
minates (transition AllSent) after the last
frame has been sent and the send method
returns. The latter is modelled by the
Completed transition annotated with the
<<return>> pragmatic.

Abstract template tree construc-

tion. The abstract syntax tree (ATT)
for a CPN module is an ordered tree
that has nodes corresponding to explicit
and inferred pragmatics. The ATT is
derived from the CPN model based on
the pragmatics. The ATT represents the
control structure of the CPN indepen-
dently from a specific programming lan-
gage. The nodes of the ATT is bound
to code templates which are then applied
during code generation. When construct-
ing the ATT representing the part of the
protocol shown in Fig. 1, the control flow
path as determined by the <<ID>> prag-
matic is traversed starting from the tran-
sition annotated with the <<external>>

pragmatic. The <<external>> pragmatic is translated into a container node in the ATT which will
contain all nodes for this module.

The implicit pragmatics are computed in a preprocessing stage prior to the actual ATT construction.
The send module has some implicit pragmatics that are inferred during the traversal of the CPN module
corresponding to operations that are to executed at different points along the control flow path of the
principal. One example is <<partition>> which is determined by the partition function used in the
arc expression on the arc from transition Partition to Outgoing Messages. Another example is a <<send>>

pragmatic inferred from the model pattern used at the SendPacket transition for accessing the place
Channel for sending a packet.

 Send

 <<external>>

 Partition

 <<partition>>

 Start

 <<loop>>

 Completed

 <<return>>

 Next Message

 <<pop>>

 Send Packet

 <<send>>

 Packet Sent

 <<endLoop>>

Figure 2: ATT for the send CPN submodule.

While traversing the CPN module for inferring de-
rived pragmatics, the block structure of the CPN model
is computed. This block structure characterises the
control flow structures of the CPN, such as branches,
loops, and sequences. This decomposition is, on the
on hand side, used for inferring implict control flow
pragmatics – e. g. tagging places with start and end
loop pragmatics, where the end loop pragmatics holds
a boolean condition for continuing the loop. On the
other hand side, the block structure is represented as
the ATT, which captures the control flow independently
from any specific programming language or platform.

Figure 2 shows a simplified representation of the
the ATT corresponding to the send CPN module in
Fig. 1 (right). The <<external>> root node of the ATT
contains nodes for partitioning the message, executing

2

a loop, and returning. It should be noted that sequences are not explicitly represented in the ATTs but
given by the order of child nodes. The <<loop>> node contains nodes for extracting the next fragment,
sending a packet, and ending the loop.

Code Generation. After the ATT has been created, code is generated by applying templates for each
pragmatic on each node in the ATT. Below we illustrate how code can be generated implementing the
framing protocol in the Groovy programming language. In this context, template texts are combined
replacing the %%yield%% directive in container templates with the code generated for its child nodes.

As an example of a container template, the template for a Loop pragmatic for the Groovy language is
given in Listing 1. The template creates a while-loop which continues while the __LOOP_VAR__ variable
is true. The body of the Loop is populated by replacing the %%yield%% directive with the code generated
by the templates of the sub-nodes in the ATT. The __LOOP_VAR__ is updated at the end of the loop by
the <<endLoop>> pragmatic which is always present as the last child element of a loop. The <<send>>

pragmatic is an example of an operation and is used to send a message over a channel. Listing 2 show
the template for the Send pragmatic which requires two parameters: one is the name of the socket that
the message should be sent on, and the other is the variable that holds the message to be sent.

Listing 3 shows the generated Groovy code corresponding to the loop in the send method. The code
generated for the send pragmatic in the example above is highlighted in Listing 3.

Listing 1: Template for loops in Groovy.

%%VARS:__LOOP_VAR__%%
__LOOP_VAR__ = true
while(__LOOP_VAR__){

%%yield%%
}

Listing 2: Template for sending a message.

${params[0]}.getOutputStream()
.newObjectOutputStream()
.writeObject(${params[1]})

%%VARS:${params[1]}%%

Listing 3: Generated code for the loop.

__LOOP_VAR__ = true
while(__LOOP_VAR__){

def m = OutgoingMessage.remove(0)
if(OutgoingMessage.size() > 0){
__TOKEN__ = [1,m]

} else {
__TOKEN__ = [0,m]

}
Receiver.getOutputStream()

.newObjectOutputStream()

.writeObject(__TOKEN__)
__TOKEN__
__LOOP_VAR__ = 1 == __TOKEN__[0]

}

Conclusion. The code generation approach presented in this paper is still work in progress. Prototypes
have been implemented that have allowed initial application of the approach on the data framing protocol
and a security protocol. Next steps in the development of the approach will be a formalisation of the
concepts and application to larger examples of protocols. A key aspect of this is also the mapping from
operations in the CPN models (which are written in Standard ML) into pragmatics and operations on the
underlying platform. Here we proposes that operations and corresponding pragmatics can be grouped
into packages according to their function in a manner similar to libraries in conventional programming
languages. We propose to predefine a set of essential packages with operations that are common to most
protocols. However, we acknowledge that it will not be possible to create a full set of operations for the
protocol software domain. Therefore, we also provide a way for the modeller to define protocol specific
operations. This provides our approach with a high degree of flexibility.

References

[1] C. Baier and J-P Katoen. Principles of Model Checking. MIT Press, 2008.

[2] K. Jensen and L.M. Kristensen. Coloured Petri Nets - Modelling and Validation of Concurrent Systems.
Springer, 2009.

[3] S. Kent. Model Driven Engineering. In Proc. of Integrated Formal Methods, volume 2335 of LNCS, pages
286–298. Springer, 2002.

[4] L.M. Kristensen and K. Simonsen. Applications of Coloured Petri Nets for Functional Validation of Protocol
Designs. In Proc. of Advanced Course on Petri Nets, LNCS. Springer, 2012. To appear.

3

