

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

On the dimensions of software documents — An idea for framing the software
engineering process.

Kindler, Ekkart; Baumeister, Hubert; Haxthausen, Anne Elisabeth; Kiniry, Joseph

Published in:
The Semat Workshop on a General Theory of Software Engineering 2012

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Kindler, E., Baumeister, H., Haxthausen, A. E., & Kiniry, J. (2012). On the dimensions of software documents —
An idea for framing the software engineering process. In I. Jacobsen, M. Goedicke, & P. Johnson (Eds.), The
Semat Workshop on a General Theory of Software Engineering 2012: Proceedings (pp. 21-22)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13800076?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/on-the-dimensions-of-software-documents--an-idea-for-framing-the-software-engineering-process(ba1b24f3-f96d-4fea-abd3-380f39202e70).html

On the dimensions of software documents –
An idea for framing the software engineering process

E. Kindler, H. Baumeister, A. Haxthausen, and J. Kiniry
DTU Informatics

DK-2800 Lyngby, Denmark
{eki,hub,ah,jkin}@imm.dtu.dk

Keywords-software engineering documents; software devel-
opment process; software engineering theory;

I. INTRODUCTION

In a call for action [1], Jacobson, Meyer, and Soley,
together with many other signatories, encourage the software
engineering discipline to “re-found” software engineering
based on a “solid theory” [2]: The SEMAT initiative. In
a soon to be published book [3], the “The Essence of
Software Engineering” is presented by “Applying the SE-
MAT Kernel”. This SEMAT kernel identifies the essential
concepts or “things” that need to be kept track of in order to
successfully develop software, the so-called alphas (α). This
way, SEMAT conceptualizes the “things” going on in the
software development process, independently from a specific
software development approach, methodology or philosophy.
The alphas allow us to talk about what things need to done
and monitored, discussed and taught in software engineering
independently from how they are done in a specific develop-
ment approach. This agnostics when identifying the alphas
is one of the strength of SEMAT’s conceptualisation.

Surprisingly enough, the artefacts that are used for soft-
ware development seem not to be of primary concern in
SEMAT: documents describing the software in some form
or the other. In this paper, we understand software documents
in the broadest possible sense, which would subsume single
paragraphs with the product objective, product definitions,
systems specifications, source code, binary code, tests (exe-
cutable and not), all kinds of UML and non-UML diagrams,
formal models, user stories, GUI definitions, and handbooks;
in short, any written or graphical artefact we encounter
during the software development process (be it on paper
or in electronic form).

We can only guess as to why software documents do
not play a more prominent role in the SEMAT kernel;
one reason might be that discussing any of these software
documents specifically, would introduce a bias towards some
specific development approaches – SEMAT would not be
agnostic anymore. When discussing specific documents –
and in particular when defining specific structures and how
they should be written – we might introduce a bias towards

how things should be done, and this way towards a specific
software development philosophy.

Still, we believe that software documents are way too
important not to be a primary concept of a theory of software
engineering. In this paper, we will have a first glance at
the space of software documents and their characteristics
– independently from a specific software development phi-
losophy. In order to understand this space, we identify
some first dimensions that span the space of all software
documents with their different characteristics; we give a
glimpse of how these dimensions could be used to better
understand what should be done during the software devel-
opment process, which, in particular, would help teaching
software engineering. Moreover, the way and order in which
different software development approaches create documents
with their specific characteristics in this space – i. e. the
project’s software document trajectory in this space – might
characterise specific software development approaches and
provide insights into the way they work.

In this paper, we will discuss some ideas of how this could
look like. This paper, however, does not provide the answer
yet – we do not even dare to fix the most essential dimen-
sions yet. The dimensions and examples discussed in this
paper, should demonstrate that it is worthwhile investigating
the dimensions, and that, eventually, these dimensions could
be an ingredient to the theory of software engineering.

II. DIMENSIONS AND THEIR PURPOSE

Next, we discuss some first candidates for some of the
dimensions of software documents, and how they reflect on
the development process.

A. Some dimensions

Figure 1 depicts three dimensions, which – from our
teaching experience – seem to be important for software
development. For lack of a better name1, we call the first
one the “What-How” dimension; the idea of this dimension
is that in the early phases it should be defined “what” the
final software product should do, in contrast to “how” this

1A Sofa Seminar discussion of the Software Engineering Section of DTU
Informatics resulted in a proposal to call this dimension the Abbott-Costello
dimension after the famous “Who’s on first?” performance from 1945.

what how

rough

detailed

formal

informal

Figure 1. Three dimensions of software documents

is finally technically realized and implemented. The second
dimension is level of detail, which runs from “rough” to “de-
tailed” – we will see later, that the level of detail, probably,
can be decomposed into two independent dimensions. The
third and, for now, last dimension is formality, which runs
from “informal” to “formal”. Also for formality, it appears
that it can be decomposed – at least its is entangled with
another dimension, executability (see Sect. II-C).

Of course, there are more dimensions; which ones are the
most relevant and helpful ones, is still an open issue. For
getting a grip on the issue, we will start some form of wiki
or open document, where all interested people could con-
tribute their perspective. A reasonable schema for defining a
dimension could consist of a name, an (informal) definition
or characterisation, and a “litmus test” for identifying on
which side of a dimension a software document would be
located; in some cases, there could be even some metrics
for measuring documents with respect to the dimension;
most importantly, there should be a set of examples that
show which kind of document would be at which end of
the resp. dimension. For example, the “product objective”,
which typically is a single sentence or paragraph of what
should be achieved with the product, would be about the
“what”, “informal”, and “rough”; by contrast, the handbook
would be about the “what”, more or less “formal”, but
“detailed”. The result of an object oriented analysis would
still be about the “what”, would be more “formal”, and
more “detailed”. The code – remember that we also consider
code as a document – would be about the “how”, would be
“formal”, and “detailed”. It is a worthwhile exercise to place
more kinds of software documents in this space.

B. Dimensions and development process

Now, let us have a brief look at how software engineers
would navigate through the space of software documents.
Figure 2 shows three cases. The left one, is where there
might be a rough product idea or objective initially, and an
implementation finally. The middle once shows one iteration
of agile development: it goes from an initial user story,
via an (automated) test, to the final impelementation. The
right one, shows a more waterfall-like process, which more
systematically covers all stages. Being agnostic about the
process, we do not prefer one over the other – it certainly
depends on the kind and size of software what is better.
Anyway, Fig. 2 suggest that the trajectory of a process in
the space of software documents tells something about the

what how

rough

detailed

formal

informal

what how

rough

detailed

formal

informal

what how

rough

detailed

formal

informal

Figure 2. Process trajectories

underlying process – for the left one, there almost certainly
is no handbook, since this would imply that the “detailed”
“what” area is covered.

As mentioned, the middle trajectory shows one iteration
of a agile development process only. When going through
different iterations the collected user stories and implemen-
tation would cover more and more features of the final
software. This observation, actually gives rise to another
dimension: coverage, which is not yet shown in Fig. 2.

C. More dimensions and entanglement

The coverage mentioned above seems to introduce another
dimension of software documents (or in the case of agile a
collection of documents). Somehow this is related to the
level of detail – just organized according to the product’s
features or functions. The level of detail seems to have two
independent components: coverage and abstraction, which
however needs more investigation.

Likewise, there are other dimensions like non-
executable/executable, which, however, is entangled
with (i. e. is not full independent of) formality, since
executability implies some form of formality. And there
are more dimensions, that should be discussed before
ultimately deciding on the dimensions of software
documents: “textual/graphical”, “imprecise/precise”, etc.

III. CONCLUSION

In this paper, we gave a glimpse of the dimensions of
software documents – barely enough to see that it might be a
worthwhile endeavour to better understand these dimensions,
which then could be a part of software engineering theory.
In this endeavour, existing characterisations of kinds of
software documents such as the one discussed by Bjørner
[4] should be taken into account.

REFERENCES

[1] I. Jacobsen, B. Meyer, and R. Soley, “The SEMAT ini-
tiative: A call for action,” Dr. Dobb’s Journal, Dec. 2009,
http://www.ddj.com/architect/222001342.

[2] I. Jacobsen and I. Spence, “Why we need a theory
for software engineering,” Dr. Dobb’s Journal, Oct. 2009,
http://www.ddj.com/architect/220300840.

[3] I. Jacobsen, P.-W. Ng, P. E. McMahon, I. Spence, and S. Lid-
man, The Essence of Software Engineering. Addison Wesley,
2013, pre-publication draft.

[4] D. Bjørner, Software Engineering 1. Springer, 2006.

