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ABSTRACT

Resonant control makes use of a controller with a resonance frequency and an equivalent damping ratio.
A simple explicit calibration procedure is presented for a family of resonant controllers in which the frequency
is tuned to the natural frequency of the targeted mode in sucha way that the two resulting modes exhibit identical
damping ratio. This tuning is independent of the imposed controller damping. The controller damping is then
selected as an optimal compromise between too small damping, and too large damping at which the modal
frequencies coincide, and thereby produce undesirable constructive interference. This ‘equal modal damping’
procedure leads to explicit calibration formulae, and produces a nearly level plateau in the frequency response
curve with lower response than the traditional double-rootcalibration.

Keywords: Resonant damping, active control, structural vibration.

1 INTRODUCTION

Resonant vibration control represents a group of control ordamping strategies where a reso-
nance in the controller is calibrated specifically with respect to the targeted vibration mode(s) of the
structure. When designed and calibrated properly this dedicated control results in effective damping
and response mitigation at a limited controller cost. The present paper presents a general resonant
vibration control format and a corresponding calibration procedure. The classic resonant control
formats are the positive position feedback and the acceleration feedback, where position (strain or
extension) or acceleration are measured at the controller location and passed through a resonant sec-
ond order filter, [1]. For positive position feedback the stiffness is reduced by the controller and the
performance is limited by stability when eliminating the stiffness of a particular mode [2], while in
acceleration feedback the phase is the opposite of positiveposition feedback, resulting in uncondi-
tional stability. Thus, if the acceleration signal of the low-frequency dynamics can be measured with
sufficient by accelerometers, the resonant acceleration feedback format constitutes a robust vibration
control method.

The efficiency of resonant control basically requires that the filter frequency of the controller is
close to the natural frequency of the structural target mode, and that the filter damping is appropriately
balanced to provide the desired dissipation. A calibrationprocedure for acceleration feedback was
presented in [3], in which the choice of unit frequency ratioand critical filter damping leads to design
at the cross-over point in the root locus diagram. The performance of the acceleration feedback
procedure has subsequently been illustrated e.g. in [4, 5].

The design and calibration of resonant vibration control with position feedback has mainly been
developed for piezoelectric transducers [6]. As observed in [7] a piezoelectric transducer shunted with
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a suitable electric circuit can generate resonant damping similar to the concept of mechanical vibra-
tion absorbers, and in particular the series and parallel RLshunt circuits are commonly applied for
passive resonant damping of flexible structures [8, 9]. Various calibration strategies have been pre-
sented for these circuits. In [7] the shunt parameters were calibrated with respect to maximum modal
damping, resulting in a double root in the associated characteristic equation. Although this leads to
large modal damping it also results in constructive interference of the involved modes. Effective vi-
bration reduction can be obtained by designing the shunt circuits with respect to minimum frequency
response amplitude [7, 8] or by a fixed-point calibration procedure [10] known from design of the
mechanical tuned mass damper [11]. A review of various calibration procedures for RL-circuits has
been given in [8]. Piezoelectric transducers are strain (position) based feedback systems, the there-
fore the robustness and efficiency associated with acceleration feedback control can in principle be
obtained by introducing the double time derivative of the acceleration indirectly via the control, as
demonstrated in [12] for the so-called negative position feedback. An alternative implementation of
resonant acceleration feedback follows from electromagnetic shunt damping, where an electromag-
net is coupled to a circuit in which the resonant property is generated via an external capacitance C
[13, 14, 15].

The present paper introduces a simple general design procedure for resonant controllers with
either acceleration or position feedback. When a controller is introduced to act in resonance with a
selected mode, this mode splits into two modes with closely spaced frequencies. By tuning of the
resonant controller frequency these closely spaced modes can be given equal damping ratio. When
increasing the damping ratio of the resonant controller themodal damping of the two coupled modes
increases, while the two frequencies approach each other. The optimal controller damping ratio con-
stitutes a compromise between introducing sufficient modaldamping and avoiding constructive inter-
ference of the two modes. The optimal design parameters are expressed in simple analytic form using
the complex root-locus diagram for an equivalent two-degrees-of-freedom system.

2 RESONANT VIBRATION DAMPING

The principle of resonant vibration control is illustratedin Figure 1, where a control forcefc
acts on a structure. The sensor signalG(ω)x is passed through a resonant filter with frequencyωc and
bandwidth parameterζc, and the frequency characteristics of the actuator are governed byF (ω).

fc

G(ω)x

ω2
r
F (ω)

ω2
c
− ω2 + 2iζcωcω

Figure 1: Flexible structure with collocated resonant vibration control.

Whenx(t) represents a displacement associated with a particular mode r with modal stiffness
kr and modal massmr, and a corresponding external load componentf(t), the normalized equation
of motion for the structure can be written as

ẍ+ 2ζrωrẋ+ ω2
rx = ω2

r

fc + f

kr
, (1)

with the natural frequencyωr = (kr/mr)
1/2 and the damping ratioζr. The resonant controller is

described by the second order filter equation presented in Figure 1,

ξ̈ + 2ζcωcξ̇ + ω2
cξ = ω2

rg , (2)
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with control variableξ(t) and sensor signalg(t). In the frequency domain the control forcefc and the
sensor signalg are linear frequency dependent functions ofξ andx, respectively,

fc/kr = αF (ω)ξ, g = G(ω)x. (3)

The frequency response relation for this system is

x =
(ω2

c − ω2 + 2iζcωcω)ω
2
r

(ω2
r − ω2 + 2iζrωrω)(ω2

c − ω2 + 2iζcωcω)− αω4
rF (ω)G(ω)

f

kr
. (4)

The idea of resonant control is the use of a controller frequency close to the natural system
frequency to be controlled,ωc ≃ ωr, whereby the response will be governed by the damping viaζr
andζc. Substitution of the frequency representation (3) leads tothe approximate response at resonance

x ≃ 1

2iζeq

f

kr
, ζeq ≃ ζr +

α

4ζc
F (ωr)G(ωr). (5)

This illustrates the basic requirement thatF (ωr)G(ωr) should have a dominating positive real part
and that the damping parameterζc must be ‘small’ for the control to be effective around resonance.

2.1 Root Locus Analysis

The roots of the characteristic polynomial associated with(1) and (2) describe some of the
important properties of the combined system, and it has beendemonstrated in [16] that the classic
frequency response calibration for the mechanical tuned mass damper corresponds to equal modal
damping. In the following this pole placement based criteria is used for the calibration of the resonant
position and acceleration feedback control formats.

Re[ω]

Im[ω]

ω0−ω0

ω1

ω2

ω3

ω4

Figure 2: Complex rootsω1, ω2 andω3, ω4 as inverse points of circle|ω| = ω0.

Let the four roots of a characteristic polynomial be denotedω1, · · · , ω4. The corresponding
modes have equal damping ratio, ifω1 andω2 lie on the same line containing the origin of the complex
plane, as illustrated in Figure 2. This implies that they areinverse points in the complex plane with
respect to some real-valued frequencyω0, i.e.

ω2/ω0 = ω0/ω
∗

1, (6)

whereω∗

1 denotes the conjugate ofω1. This reciprocal relation leads to a specific format of the
corresponding characteristic polynomial with two parametersχ andλ,

ω4 − (2 + 4χ2)ω2
0ω

2 + ω4
0 − 4iλ χω0ω

(

ω2 − ω2
0

)

= 0. (7)

The property of equal modal damping, as expressed by the inverse root relation (6), is equivalent to
imposing a balance in (7) between the cubic and linear terms,so that they cancel atω = ±ω0.

Root locus diagrams for this particular format are illustrated in Fig. 3. Forλ = 0 there is no
damping, and the natural frequenciesω1 andω2 appear as points on the positive real axis. When
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Figure 3: Root locus diagram: (a)χ = 0.4, λ = 0, 0.05, 0.10 · · · ; (b) χ = 0, 0.05, 0.10, · · · , λ =
√
2/2.

increasingλ for a fixed value of the parameterχ < 1, the roots move into the complex plane as
illustrated in Fig. 3a. It follows from the inverse point property, illustrated in Fig. 2, that the two roots
ω1 andω2 have equal argument, corresponding to equal damping of the corresponding free modes.
This situation changes at the bifurcation pointωb, which is reached forλ = 1. The roots then branch
off along a circle centered at the origin, with one branch following the circle towards the real axis
and the other branch approaching a new branch point on the imaginary axis. In damping of structures
the interval of interest is0 < λ ≤ 1. As demonstrated in [16] the special properties of the four roots
in Fig. 2 can be used to derive an expression for the damping ratio ζ , and for small values ofχ it
becomes

ζ =
λχ

1
2

(

|ω1|/ω0 + ω0/|ω1|
) ≃ λχ. (8)

It is seen that damping increases withλ. However, at the bifurcation point constructive interference
between the two modes leads to amplification of the response amplitude around resonance, and it
follows from the analysis of the mechanical tuned mass damper in [16] that the parameter value
λ =

√
2/2 is the optimal compromise, where the two rootsω1 andω2 move into the complex plane

along curves forming an angle of±45◦ with the real axis. By (8) this implies the modal damping ratio

ζ ≃ 1
2

√
2χ. (9)

In the following, optimal control parameters are determined by identification of the appropriate coef-
ficients of the characteristic polynomial of the control formats with the coefficients in (7).

2.2 Parameter Calibration

The calibration of the filter parameters follows from comparison of the numerator of the fre-
quency response function in (4) with the generic polynomialin (7). For acceleration-position control
ω2
rF (ω) = ω2

c andω2
rG(ω) = ω2, [17]. Upon elimination of the reference frequencyω0 it is found

that
ωc = ωr. (10)

The filter damping is subsequently identified by comparison of both the quadratic and cubic terms,
and upon elimination ofχ this gives

ζ2c = 1
2
α. (11)

There is a simple and important relation between the modal damping ratioζ of the controlled modes
and the damping ratioζc of the controller. In the present case

ζ ≃ 1
2
ζc. (12)

This result permits explicit design of the controller from the desired modal damping ratio. Similar re-
sults apply to the other resonant controller formats as discussed in relation to multi-degree-of-freedom
systems next.
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3 DESIGN OF CONTROL FORMATS

The calibration of four (single gain) resonant control formats is summarized in this section.
For a single collocated sensor/actuator pair acting on a MDOF structure the frequency equation of
motion is

(

− ω2
M+ iωD+K

)

x = wfc + f , (13)

where the scalar control force is represented in terms of thefrequency transfer functionF (ω) as

fc = β F (ω) ξ , (14)

and the corresponding resonant control equation is
(

− ω2 + 2iζcωcω + ω2
c

)

ξ = G(ω)wTx. (15)

In the above expressionsβ is the scalar gain parameter, while the connectivity array reduces to a
column vectorw in the case of a single transducer. The calibration of the various resonant control
formats is based on the free vibration characteristics of the structure. The controller is targeted at
moder with mode shape vectorur normalized to unit modal mass. The calibration is based on a
single-mode representation of the response,

x = urxr, (16)

wherexr is the modal coordinate. Substitution of (16) into both (13)and (15), followed by pre-
multiplication of (13) withuT

r , gives the scalar structural equation
(

− ω2 + 2iζrωrω + ω2
r

)

xr = νrβF (ω) ξ , (17)

and the control equation
(

− ω2 + 2iζcωcω + ω2
c

)

ξ = νrG(ω)xr . (18)

The parameterνr = wTur represents the modal amplitude of the structure at the sensor/actuator
location, and may for all formats be absorbed by the gain parameter asα = ν2

rβ. Four resonant
control formats are summarized and characterized in Table 1in terms ofG(ω) andF (ω), where the
acceleration-position format discussed in Section 2.2 appears as the first case. The last column gives
the stability limit, discussed in detail in [18].

Table 1: Frequency functions and stability limit for resonant control formats.

Control format G(ω) F (ω) βstab

Acceleration ω2 ω2

c
∞

Extended acceleration ω2 ω2
c
+ 2iζcωcω ∞

Position ω2

r
ω2

c

(

wTK−1w
)

−1
/ω2

r

Extended position ω2

r
ω2

c
+ 2iζcωcω

(

wTK−1w
)

−1
/ω2

r

The calibration of the four control formats is based on direct comparison of the characteristic
equation with the generic equation (7), as discussed in Section 2.2. The results are summarized in
Table 2, where the first row corresponds to (10)-(12).

Frequency curves for the dynamic amplification of an ideal SDOF structure are shown for the
four control formats in Figure 4. The dotted curves, corresponding to integer powers ofω, indicate
the inclination of the plateau around resonance. It is seen that the additional derivative in the extended
formats is able to reduce the inclination compared to the corresponding simple feedback format.

5



Table 2: Resonant control parameters.

Feedback format ωc ζc ζ

Acceleration ωr

√

1

2
α 1

2
ζc

Extended Acceleration ωr/(1 + α)
√

1

2
α/(1 + α) 1

2
ζc
√
1 + α

Position ωr/
√
1− α

√

1

2
α 1

2
ζc/

√
1− α

Extended position ωr

√
1− α

√

1

2
α/(1− α) 1

2
ζc
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Figure 4: Dynamic amplification factor: (a) velocity, (b) extended acceleration, (c) position, (d) extended position feed-
back. Gain parameterα = 0.02, 0.04 and 0.08.

The performance of resonant vibration control when acting on a flexible structure is in this case
illustrated for a transducer acting on a simply supported beam, as shown in Figure 1. The beam is
modelled by 10 Bernoulli Euler beam elements of equal length, and the controller/actuator are located
at a distance from the supporta/ℓ = 0.5 or 0.2, where the latter location implies reduced authority
compared to the former. Numerical results are presented foracceleration feedback with parameters
as described in the first rows in Tables 1 and 2. Figures 5(a,c)show the root locus curves for the
present calibration (solid) and the double root calibration (dashed) from e.g. [7, 8]. The damping
ratio ζ = Im[ω/|ω| is shown in Figs. 5(b,d). It is seen that equal modal damping is attained to great
accuracy by the present calibration procedure ata/ℓ = 0.5, and also with fairly good accuracy in the
case of the indirect control ata/ℓ = 0.2, while double-root calibration is less robust as well as less
efficient due to constructive mode interference.

The dynamic amplification of the harmonic response at the center of the beam is shown in Fig-
ure 6(a,c). The transverse load is uniformly distributed over the entire span of the beam. It is seen
that the present calibration procedure effectively reduces the response amplitude, while for the dou-
ble root calibration the closely spaced poles result in amplification of the response around resonance.
The amplitude of the control force is shown in Figs. 6(b,d), which indicates that the improved per-
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Figure 5: Acceleration feedback: Root locus (a,c) and modaldamping (b,d) fora/ℓ = 0.5 (a,b) and 0.2 (c,d).
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Figure 6: Acceleration feedback: Displacement (a,c) and control force (b,d) amplitudes fora/ℓ = 0.5 (a,b) and 0.2 (c,d).

formance of the present calibration results in a slightly larger bandwidth compared to the double-root
calibration.

4 CONCLUSIONS

A design procedure has been presented for calibration of collocated resonant control of struc-
tures. The is based on equal modal damping ratio of the two modes generated via interference of
the targeted mode and the controller. A key point is the separation of the frequencies of these modes
whereby better effect than for the more classic double-rootcalibration is attained. The procedure is
described in more detail in [18]. When used in connection with flexible structures the influence of the
flexibility from non-targeted high-frequency vibration modes can be taken into account by a quasi-
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static correction of the sensor signal. This leads to modified calibration expressions, as demonstrated
in [19, 20, 21].
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