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ABSTRACT

Shunting of piezoelectric transducers and suitable electric circuits constitutes an effective pas-
sive approach to resonant vibration damping of structures.Most common design concepts for
resonantRL shunt circuits rely on either maximization of the attainable modal damping or
minimization of the frequency response amplitude, see [1, 2, 3]. However, the maximimum
modal damping is sub-optimal near resonance, where it leadsto constructive interference of
two modes with identical frequency, while frequency response minimization leads to reduced
implemented damping.

Assuming that the vibrations of the structure are dominatedby a single mode, the equations
of motion for the series RL electromechanical system can be written as, see e.g. [2],
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The present paper proposes an explicit fully pole placementbased design procedure for both
series and parallelRL circuits. The procedure relies on equal modal damping and sufficient
separation of the complex poles to avoid constructive interference of the two modes. It fol-
lows the procedure explained for the tuned mass damper in [4]and developed for a family of
resonant control formats in [5]. It leads to the following expressions for the series circuit
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while for the parallel circuit it gives
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Figure 1 shows (a) the frequency response amplitude of the structure, (b) the frequency am-
plitude of the control, (c) the root locus trajectories and (d) the modal damping ratio. By com-
parison with existing design procedures it is demonstratedthat the present calibration leads to
a balanced compromise between large modal damping and effective response reduction with
limited damping effort.
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Figure 1: SeriesRL: (a) Response amplitude, (b) voltage amplitude, (c) root locus, (d) damp-
ing ratio. Balanced design (——), maximum damping (– – –), minimum amplitude (· · · · · · ),
fixed point (– · – · –). Design damping ratioζ∗ = 0.02 (×) and 0.04 (◦) in (a,b) and
ζ∗ = 0 . . . 0.2 in (c,d).
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