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Abstract: This paper presents a fault tolerant navigation system for a remotely operated vehicle
(ROV). The navigation system uses hydro-acoustic position reference (HPR) and Doppler
velocity log (DVL) measurements to achieve an integrated navigation. The fault tolerant
functionality is based on a modified particle filter. This particle filter is able to run in an
asynchronous manner to accommodate the measurement drop out problem, and it overcomes
the measurement outliers by switching observation models. Simulations with experimental data
show that this fault tolerant navigation system can accurately estimate the ROV kinematic
states, even when sensor failures appear frequently.
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1. INTRODUCTION

ROVs are widely used in various subsea operations, typi-
cally in offshore hydrocarbon exploration and production.
A large amount of these operations are safety critical, and
accurate positioning and control of the ROVs are required.
In this aspect, it is necessary to realize high-precision and
fault tolerant ROV navigation.

Commonly used ROV navigation sensors have been dis-
cussed in Kinsey et al. (2006). These sensors use differ-
ent principles and have different features. Hence, their
update rate, precision, and range are generally different.
ROVs are usually equipped with several types of sensors
to form an integrated navigation system that overcomes
the disadvantages of each type of sensor, and to obtain
an accurate position estimation. Applications of ROV in-
tegrated navigation are reported in Blain et al. (2003),
Kinsey and Whitcomb (2004), and Dukan et al. (2011). In
Blain et al. (2003), a navigation system which uses Kalman
filtering to merge data received from an acoustic position
system, a bathymeter, and a DVL has been developed and
implemented in simulation and also in a real submarine. A
more mature application is given in Kinsey and Whitcomb
(2004). The new result in Dukan et al. (2011) show the
integrated navigation system of an ROV with an extended
Kalman filter.

In practice it is common that we encounter disturbances
on the raw measurements due to sensor faults and noise.
If disturbed measurements are used in the estimation of
the system states, the effect is difficult to predict. Sensor
faults can be diagnosed by checking the consistency of
the measurements from the redundant sensors. However,
because of limitations, it is not always possible to install
redundant sensors on the ROVs. In this case, making use
of all available information from different types of sensors
to achieve a model-based software redundancy is preferred.

In the past decade, particle filters have been widely studied
and proved to be powerful tools in nonlinear and/or non-
Gaussian system state estimation. Yardim et al. (2011)
gives a review of using particle filtering techniques in
ocean acoustics. An application of a particle filter for ROV
navigation can be found in Zhao et al. (2012). It has also
been shown that particle filters are suitable to handle the
estimation problem on jump Markov systems, which is
a reasonable model of systems subject to failures. Some
applications of using this technique in fault tolerant sensor
systems can be found in Caron et al. (2007) and Tafazoli
and Sun (2006).

In this paper we consider designing a fault tolerant naviga-
tion system of an ROV with HPR and DVL. As observed
in the ROV sea trials, the HPR and DVL suffer especially
from the following failures;
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Fig. 1. ROV navigation: body and NE coordinate systems.

(1) HPR drop outs.
(2) HPR measurement outliers.
(3) DVL drop outs.

Besides these three failure modes, another practical issue
to be handled is the update rate of the HPR measurements
that become uneven when the ROV dives to deep water.

The paper is organized as follows. An ROV kinematic
model is given in Section 2, and the HPR and DVL mea-
surement models in fault-free condition are also studied.
Based on these fault-free models, a particle filter based
navigation algorithm is given in Section 3. Then in Section
4, failure modes of the sensors are listed and studied.
Section 5 gives the details of the modifications to the
particle filter to handle the listed failure modes. Then
a simulation study is given in Section 6 to verify the
proposed navigation system.

2. SYSTEM MODELING

2.1 System Description

The navigation problem considered in this paper is mo-
tivated by full-scale ROV experiments conducted by the
Applied Underwater Robotics Laboratory (AUR-Lab) of
NTNU. The AUR-Lab aims at developing new technology
for marine monitoring and ocean observation. Designing
a robust and high-performing ROV navigation system is
essential to this development.

The operational setup of the ROV experiment is to use
a support vessel performing station-keeping or low-speed
tracking, while the ROV is controlled from an onboard
command station. Figure 1 shows the definitions of the
reference frames and corresponding position and velocity
vectors. The earth-fixed North-East (NE) frame are indi-
cated with ‘n’. A body-fixed frame for the ROV is defined
with origin at a given fixed center point OROV, the xROV-
axis is along the vessel longitudinal direction, and the
yROV-axis is along the vessel transversal direction. Vectors
expressed in the ROV body-fixed frame are indicated by
‘ROV’. For instance, the DVL measures the ROV surge
velocity uROV and ROV sway velocity vROV along the
xROV- and yROV− axis, respectively. And the position and
linear velocity vectors of the ROV with respect to the NE-
frame decomposed in the NE-frame are named as pn

ROV/n

and vn
ROV/n, respectively.

2.2 ROV Kinematic Model

At the present stage, the research is focusing on estimating
the ROV kinematic states by only using the motion
sensors, meaning that the propulsion of the ROV is not
considered. Hence, we aim for a noise driven kinematic
model. A discrete kinematic model in the NE frame is[

pn
ROV/n,k+1

vn
ROV/n,k+1

]
︸ ︷︷ ︸

xk+1

=

[
I T I

0 I

]
︸ ︷︷ ︸

Ax

[
pn
ROV/n,k

vn
ROV/n,k

]
︸ ︷︷ ︸

xk

+

[
1
2T

2I

T I

]
︸ ︷︷ ︸

Bx

wa,k, (1)

where wa,k is the white process noise sequence, k denotes
the time index, I is 2-by-2 unit matrix, and T is the
sampling interval. The model is written compactly as

xk+1 = Axxk + Bxwa,k (2)

where xk following from (1) is the kinematic state vector
of the ROV, and Ax, Bx also follow from (1). Equation (2)
can be transformed into an equivalent stochastic process
as

p (xk+1 |xk ) = N (Axxk,Cov [Bxwa,k]) , (3)

where N (µ,Σ) denotes the multivariate normal density
function with mean µ and covariance Σ.

2.3 Measurement Modeling

HPR Measurement The HPR system positions an un-
derwater target by measuring its acoustic distance and
direction, so the measurement is originally made in spher-
ical coordinates, and then transformed to Cartesian coor-
dinates by the build-in algorithm of HPR system. Hence,
there will be correlation between the measurement in each
direction of the Cartesian coordinates. The covariance of
the HPR measurement noise is estimated recursively from
data. With measurement at instant k being pA,k and
p̃A = pA − p̄A, where p̄A is a moving window average
of pA, the estimate of the covariance ΣA is

ΣA,N =
1

N + 1

N∑
k=1

(
p̃A,k(p̃A,k)>

)
=

N

N + 1

(
ΣA,N−1 +

1

N
(p̃A,N ) (p̃A,N )

>
)
, (4)

then, the HPR measurement pA has the multivariate
normal distribution

p
(
pA,k

∣∣∣pn
ROV/n,k

)
= N

(
pn
ROV/n,k,ΣA,k

)
. (5)

DVL measurement The DVL measures the velocity of
the ROV with respect to the NE frame. Decomposed in
the ROV body-fixed frame, it is expressed as vROV

ROV/n =

[uROV vROV]
>

. To transform the DVL measurement into
the NE frame where the kinematic equation of the ROV
is given, the heading of the ROV ψROV is introduced.
The ROV heading is estimated from the measurement of
a fluxgate compass and a yaw rate gyro (Dukan et al.
(2011)). Then vROV

ROV/n is related to the general ROV

kinematics by

vROV
ROV/n = R> (ψROV) vn

ROV/n, (6)

where R (ψROV) is the corresponding 3DOF rotation ma-
trix.



Assuming that the DVL measurement noise in each direc-
tion are independent identical normally distributed, the
DVL velocity measurement vD,k can be seen as a multi-
variate normally distributed random vector with expecta-
tion vROV

ROV/n and covariance matrix σ2
DI, where σ2

D is the

variance of the DVL measurement noise in each direction.
To sum up, the DVL measurement vD,k can be expressed
as

p
(
vD,k

∣∣∣vn
ROV/n,k

)
= N

(
R> (ψROV) vn

ROV/n,k,σ
2
DI
)
.

(7)

3. PARTICLE FILTER DESIGN

Collecting the ROV kinematic model (2), and the mea-
surement models (5), (7) yields the following navigation
model of the ROV as

p (xk+1 |xk ) = N (Axxk,Cov [Bxwa,k]) (8)

p
(
pA,k

∣∣∣pn
ROV/n,k

)
= N

(
pn
ROV/n,k,ΣA

)
(9)

p
(
vD,k

∣∣∣vn
ROV/n,k

)
= N

(
R> (ψROV) vn

ROV/n,k,σ
2
DI
)
,

(10)

where Cp = [I2×2 02×2] and Cv = [02×2 I2×2].

The particle filter applied in this application follows the
sampling importance re-sample algorithm in Arulampalam
et al. (2002), which is given in Appendix A.

With this algorithm, the posterior density of the system
state at k can be estimated as

p (xk |[pA,l:k vD,l:k] ) ≈
Ns∑
i=1

wi
k δ
(
xk − xi

k

)
, (11)

where pA,l:k and vD,l:k are the HPR and DVL measure-
ment sequence from time l to k, respectively, and δ (·)
is the Dirac function. Following the estimated posterior
density, the ROV kinematics can be obtained by taking
the weighted sum of the empirical distribution as

x̂k =

Ns∑
i=1

wi
kxi

k. (12)

4. FAILURE MODES ANALYSIS

When sensors suffer from faults, their measurement models
are different from the fault-free conditions. This section
gives the measurement models in different failure modes.
These models will be used in the fault tolerant navigation
system to detect and handle the failures. In the following,
the sensor failure modes are named asM with superscript
representing the sensor and a number representing the
failure mode index.

Failure modeMHPR,1 – Loss of HPR measurement The
previous HPR measurement model in (5) is valid when
the ROV is in shallow water, where the HPR holds a
constant update rate. It is known that the HPR update
rate depends on the slant range between the transponder
and the transducer. So when the ROV dives down to deep
water, the HPR update rate becomes lower and uneven.
This phenomenon is observed in the sea trial and shown
in Figure 2. The nonuniform update rate of the acoustic
measurement must be accommodated.
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Fig. 2. A segment of the acoustic position measurement
and its update interval. Notice that the horizontal axis
is the measurement index instead of time.
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of this figure, are ignored.

Failure modeMHPR,2 – HPR measurement outliers Also
shown in Figure 2, the position measurement frequently
suffers from outliers. Figure 3 shows the time difference of
the HPR measurements on a 2-D plane. The difference
is obtained by subtracting each measurement from the
successor. Since the velocity of the ROV is low, measure-
ments with large differences are suspected to be outliers.
In Gustafsson (2001), the measurement outliers are seen
as samples from another process whose measurement noise
variance is significantly greater than the one in the normal
case. That is, the outliers in the HPR measurement are
subject to the distribution

N (Cpxk,ΣA,o) , (13)

where ΣA,o is conceptually chosen as ‖ΣA,o‖ � ‖ΣA‖ .

Failure mode MDVL,1 – Loss of DVL measurement
When the DVL looses sea bottom tracking, it reports a
sentinel max velocity, thus we lose the velocity measure-
ment at this moment.
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Simultaneous failures In the sea trial, it is also observed
that the HPR and DVL failures can happen simultane-
ously, which results in the following two simultaneous
failure modes.

(1) WhenMHPR,1 andMDVL,1 happen at the same time,
the system loses all measurement.

(2) MHPR,2 and MDVL,1 happen at the same time; that
is, the DVL measurement is lost and the HPR mea-
surement is an outlier. This condition can be more
harsh. A navigation system without a robust fault
tolerant algorithm may believe the HPR reports a
fault-free measurement, since there is no other mea-
surement as a reference. Once the faulty measurement
is involved in the estimation of the ROV position, the
navigation system calculates an incorrect value, which
is unlikely to be removed afterwards.

5. PARTICLE FILTER BASED FAULT TOLERANT
ROV NAVIGATION

In order to accommodate the above mentioned failure
modes, a particle filter based fault tolerant ROV naviga-
tion system is proposed in this section. This fault tolerant
navigation algorithm supports asynchronous measurement
update, system mode augmented system state, and switch-
ing between observation models.

5.1 Asynchronous measurement update

The navigation algorithm is desired to run in an asyn-
chronous manner to accommodate the HPR and DVL
measurement drop outMHPR,1 andMDVL,1. That is, the
time update of the particle filter runs at every time step,
while the measurement update only runs whenever a new
measurement is obtained (Bar-Shalom et al. (2001)).

The particle filter runs its time update step in each time to
continuously estimate the propagation of the distribution
of the states over time by drawing new samples from (A.1).
If failure modeMHPR,1 occurs, the particle filter skips the
position measurement update, such that the weights of the
particles will be updated according to

wi
k ∝ wi

k−1 p
(
vD,k|xi

k

)
, (14)

where the conditional probability density function follows
from equation (10). When the DVL measurement is lost

Table 1. System flag state transition probabil-
ity.

MHPR,i

Pij MHPR,0 MHPR,1 MHPR,2

MHPR,0 0.98 0.95 0.99

MHPR,j MHPR,1 N/A N/A N/A

MHPR,2 0.02 0.05 0.01

as failure modeMDVL,1, the particle weights are updated
by

wi
k ∝ wi

k−1 p
(
pA,k

∣∣xi
k

)
, (15)

where the conditional probability density function follows
(9). When the system is experiencing simultaneous failures
MHPR,1 andMDVL,1, the particle filter skips the measure-
ment update, such that the weights of the particle preserve
the value at last time instance as

wi
k = wi

k−1. (16)

Thus, by doing the measurement update asynchronously,
the particle filter is able to tackle the measurement drop
out failure modes.

5.2 Switching observation models for outliers detection in
the HPR measurements

The outliers are defined as a sample from another distri-
bution with large variance, as described by (13). While in
fault-free condition, the measurements should be given by
the distribution (5). Then the task of the outliers detection
transforms into identifying from which distribution the
measurements originate.

In order to embed the outliers detection into the particle
filter, we augment the system model with a flag state
m ∈

{
MHPR,0,MHPR,1,MHPR,2

}
representing the status

of the HPR measurement, and mk is the flag state at
time k. The notations MHPR,1 and MHPR,2 follows the
corresponding failure modes in Section 4, and MHPR,0

means the HPR measurement is fault-free. Then the de-
tection problem of the HPR measurement is transformed
into the estimation problem of sequencemk (k = 1, 2, . . . ).
Assuming that the probability of outliers occurrence does
not change with time, we can define a stationary Markov
chain, such as

Pr
(
mk+1 =MHPR,j

∣∣mk =MHPR,i
)

= Pij, (17)

to describe the mode transition, where i, j ∈ {0, 1, 2},
and Pij denotes the probability of the system flag state
m transfer from mi =MHPR,i to mk+1 =MHPR,j.

For instance, as shown in Table 1, if the measurement is
fault-free, the probability of the next measurement is an
outlier is P02 = 0.02. As observed in the sea trial, if the
HPR measurement is lost, the probability of “the next
HPR measurement is an outlier” is higher and assigned as
P12 = 0.05. Also concluded from the experimental data,
the probability that the two outliers come in sequence
is low. Hence, we assign the prior P22 = 0.01. Because
the failure modeMHPR,1 can be decided deterministically
whenever the HPR measurement is lost, the transition
probabilities to mode mk+1 =MHPR,1 are not considered
and denoted as “N/A” in Table 1.



5.3 Fault tolerant navigation algorithm

The newly defined flag state m and its transition equation
(17) combining with the model (8)-(10) forms a new
system model. The particle filter algorithm is modified
according to the description in Appendix B in addition
to the algorithm given in Appendix A to work extensively
on this model.

The marginal probability mass of each system mode is
calculated as

Pr
(
mk =MHPR,m |[pA,l:k vD,l:k]

)
=

Ns∑
i=1

wi
kD

(
mi

k,MHPR,m
)
, (18)

where the function D (·, ·) is defined as

D (ξ, ζ) =

{
1 ξ = ζ

0 ξ 6= ζ
. (19)

Then the estimated system mode m̂k is obtained by
picking up the mode with the largest marginal probability
mass. The ROV kinematics is estimated by taking the
expectation of the posterior density expanded by the
particles with the estimated system mode m̂k, as

x̂k =

Ns∑
i=1

wi
kxi

kD
(
mi

k, m̂k

)
. (20)

6. SIMULATION

The proposed fault tolerant navigation algorithm has been
examined by simulation. The simulation uses the recorded
sensor measurements from an ROV sea trial as input
to the particle filter. However, some faults are added
to the sensor measurements artificially to test the fault
tolerant capability of the navigation algorithm. In the
simulation, 1000 particles are used in the particle filter.
At 5Hz sampling frequency, the particle filter is able to
processes 600 seconds real-time data within 340 seconds
computing time on a standard laptop computer 1 in the
Matlab/Simulink environment. Hence, the computation
load of the particle filter is acceptable.

In the simulation, the HPR measurement noise covariance
matrix takes the value [ 0.2111 0.0181

0.0181 0.0997 ], which is calculated
from the whole dataset with equation (4), and the DVL
measurement noise covariance matrix is [ 0.1 0

0 0.1 ]. The sys-
tem mode transition probabilities are shown in Table 1.

A representative segment is picked out from the entire sim-
ulation result, which is shown in Figure 5, where (a) and
(b) are the ROV position measurement and the estimated
position in North and East direction, respectively; (c) and
(d) show the ROV surge and sway speed measurement
and estimation, respectively; and (e) shows the estimated
system mode.

When the sensors are fault-free (Mode#0), the proposed
navigation algorithm accurately estimates the position and
velocity of the ROV. The estimation error in position is
generally small, and there is no significant delay in the
velocity estimation.
1 The computer equipped 64-bit dual core CPU at 2.93GHz, but
only one core is used in the simulation.

When the system mode is estimated between Mode#1
to Mode#5, the sensors are detected as faulty. Then the
measurement update in the filter follows Table B.1.

During the period of an HPR drop out (from 470 sec.
to 550 sec.), the navigation system estimates the ROV
kinematic states only with velocity measurements, which
is commonly referred to as dead reckoning. The estimated
position at the end of this period is close to the HPR
measured position. Around 525 sec., neither HPR nor
DVL measurements are available, so that the system
mode is determined as Mode#4 and the weight update
follows (16). Since the process noise of the particle filter
is zero-mean Gaussian, the velocity estimation trends in
short term to hold the last value before losing the DVL
measurement. During the short term HPR dropout (about
220 sec), a smooth estimation of the position is obtained
by dead reckoning, which improves the performance of the
ROV control.

There are several HPR outliers in this segment. All of them
are detected by the particle filter, with the result that these
outliers have little effect on the estimation performance.
Following the algorithm, the HPR outliers are detected
since the velocity measurement does not support this
significant position variation. Especially, there are outliers
at about 305 sec. and 315 sec. when the DVL drops out.
These measurements are detected as outliers since they are
far beyond the expectation of the model.

During the period of DVL dropouts, the position of the
ROV is estimated based only on the HPR measurements,
while the ROV velocity is reconstructed from the position
estimation.

In general, the results show that the state estimation
performance is acceptable in the different conditions. In
addition, outliers and dropouts of the sensors are handled
well.

7. CONCLUSION

A particle filter based fault tolerant navigation algorithm
for an ROV with HPR and DVL measurements was pre-
sented in this paper. To detect the sensor faults, a flag state
representing the system mode was introduced, such that
the modified particle filter algorithm could extensively run
on this model. With this augmented model, the particle
filter could estimate the system mode and the ROV kine-
matic states at the same time. A simulation study showed
that the proposed navigation algorithm was able to detect
the faults in the sensors, with the result of accurate and
fault-free estimation of the ROV kinematic states.

The current research is to use the thrust commands of the
ROV controller to complete the navigation model. A new
experiment is also planned.
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Table B.1. Measurement update equations ac-
cording to system mode

System mode Measurement update equations

#0 no fault (9) and (10)

#1 MHPR,1 (10)

#2 MHPR,2 (13) and (10)

#3 MDVL,1 (9)

#4 MDVL,1, MHPR,1 no measurement update, as (16)

#5 MDVL,1, MHPR,2 (13)

Appendix A. PARTICLE FILTER ALGORITHM

(1) Initialising: Assume the particle filter starts to es-
timate the system states at time l. Then the particles
are initialized with the sensor measurements at time

l− 1 as xi
l−1 =

[(
pi
l−1
)> (

vi
l−1
)>]> (i = 1, · · · , Ns),

where pi
l−1 are drawn from distribution (9) with

k = l − 1, and vi
l−1 are drawn from distribution (10)

also with k = l− 1, and Ns is the number of particles
in the particle filter. The weights of these particles
are initialized as wi

l−1 = 1/Ns.
(2) Time update: The new particles are drawn from

the importance density q
(
xk

∣∣xi
k−1, [pA,k vD,k]

)
=

p
(
xk|xi

k−1
)
. That is, xi

k are drawn from the distri-
bution

p
(
xk|xi

k−1
)

= N
(
Axxi

k−1,Cov (Bxwa,k)
)
. (A.1)

(3) Measurement update: At this step, the sensor
measurements are used to update the weights of
the particles. Since the importance density has been
chosen as (A.1), the update process of the weights
follows

wi
k ∝wi

k−1 p
(
[pA,k vD,k]

∣∣xi
k

)
∝wi

k−1 p
(
pA,k

∣∣pi
k

)
p
(
vD,k|vi

k

)
. (A.2)

(4) Re-sampling: All commonly recognized re-sampling
methods are suitable for this PF algorithm. The PF
in this research uses the residual re-sampling method
proposed in Liu and Chen (1998) to prevent the
degeneracy problem.

(5) Go to step 2 and start the next cycle.

Appendix B. MODIFICATION OF PARTICLE FILTER
ALGORITHM

The particle filter running on the augmented ROV model
with fault flag state m is based on the basic particle
filter algorithm given in Appendix A, and with following
modifications.

(1) Initialising: The flag state of the particles are
initialized as mi

l−1 = MHPR,0. This means we as-
sume that the HPR measurement is fault-free at the
beginning.

(2) Time update: For each particle, besides the time
update of the vector xi

k, the flag state mi
k are drawn

from the conditional probability mass function (17).

The exception is when the HPR measurement is not
available, in which case all particles adopt flag state
MHPR,1 deterministically.

(3) Measurement update: According to the failure
modes of the sensors, the particles adopt different
measurement updating equations, as shown in Table
B.1, where “no fault” is also listed as a failure mode
for convenience.

(4) Resampling: The same as the original particle filter.
(5) Go to step 2 and start the next cycle.

REFERENCES

Arulampalam, M., Maskell, S., Gordon, N., and Clapp,
T. (2002). A tutorial on particle filters for on-
line nonlinear/non-Gaussian Bayesian tracking. IEEE
Transactions on Signal Processing, 50(2), 174–188.

Bar-Shalom, Y., Li, X.R., and Kirubarajan, T. (2001). Es-
timation with Applications to Tracking and Navigation:
Theory Algorithms and Software.

Blain, M., Lemieux, S., and Houde, R. (2003). Imple-
mentation of a ROV navigation system using acous-
tic/Doppler sensors and Kalman filtering. In Proc.
OCEANS 2003, volume 3, 1255–1260. IEEE.

Caron, F., Davy, M., Duflos, E., and Vanheeghe, P. (2007).
Particle filtering for multisensor data fusion with switch-
ing observation models: application to land vehicle posi-
tioning. IEEE Transactions on Signal Processing, 55(6),
2703–2719. doi:10.1109/TSP.2007.893914.

Dukan, F., Ludvigsen, M., and S{\o}rensen, A. (2011).
Dynamic positioning system for a small size ROV with
experimental results. In OCEANS, 2011, 1–10.

Gustafsson, F. (2001). Adaptive Filtering and Change
Detection. John Wiley & Sons, Ltd, Chichester, UK,
1 edition.

Kinsey, J., Eustice, R., and Whitcomb, L. (2006). A survey
of underwater vehicle navigation: Recent advances and
new challenges. In Proceedings of the 7th Conference
on Maneuvering and Control of Marine Craft (MCMC
2006). IFAC, Lisbon.

Kinsey, J. and Whitcomb, L.L. (2004). Preliminary field
experience with the DVLNAV integrated navigation sys-
tem for oceanographic submersibles. Control Engineer-
ing Practice, 12(12), 1541–1549.

Liu, J.S. and Chen, R. (1998). Sequential Monte Carlo
Methods for Dynamic Systems. Journal of the American
Statistical Association, 93(443), 1032–1044.

Tafazoli, S. and Sun, X. (2006). Hybrid System State
Tracking and Fault Detection Using Particle Filters.
IEEE Transactions on Control Systems Technology,
14(6), 1078–1087.

Yardim, C., Michalopoulou, Z.H., and Gerstoft, P. (2011).
An Overview of Sequential Bayesian Filtering in Ocean
Acoustics. IEEE Journal of Oceanic Engineering, 36(1),
73–91.

Zhao, B., Blanke, M., and Skjetne, R. (2012). Particle
Filter ROV Navigation using Hydroacoustic Position
and Speed Log Measurements. In the 2012 American
Control Conference [Accepted].



100 200 300 400 500 600
0

50

100

150

200

Time [s]
(a)

R
O

V
 N

or
th

 p
os

iti
on

 [m
]

 

 N
HPR

N
PF

100 200 300 400 500 600
−25

−20

−15

−10

Time [s]
(b)

R
O

V
 E

as
t p

os
iti

on
 [m

]

 

 E
HPR

E
PF

100 200 300 400 500 600
−0.2

0

0.2

0.4

0.6

Time [s]
(c)

R
O

V
 s

ur
ge

 s
pe

ed
 [m

/s
]

 

 

u
DVL

u
PF

100 200 300 400 500 600
−0.2

0

0.2

0.4

Time [s]
(d)

R
O

V
 s

w
ay

 s
pe

ed
 [m

/s
]

 

 
v

DVL

v
PF

100 200 300 400 500 600

Mode #0
Mode #1
Mode #2
Mode #3
Mode #4
Mode #5

System mode

Time [s]
(e)

DVL drop out

HPR outliers

HPR drop out

Fig. 5. Performance of the fault tolerant particle filter based ROV navigation. ROV position measurement and its
estimation are in (a) and (b). ROV velocity and its estimation are in (c) and (d). The estimated system mode is
in (e). Definitions of system modes in (e) refers to Table B.1.


