Technical University of Denmark

Life Cycle Assessment of electricity generation: overview and methodological issues

Turconi, Roberto; Boldrin, Alessio; Astrup, Thomas Fruergaard

Publication date: 2012

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Turconi, R., Boldrin, A., & Astrup, T. F. (2012). Life Cycle Assessment of electricity generation: overview and methodological issues. Abstract from LCA XII, Tacoma, Washington, United States.

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Technical University of Denmark

Life Cycle Assessment of electricity generation: overview and methodological issues

Roberto Turconi, Alessio Boldrin, Thomas Astrup

Technical University of Denmark

DTU Environment Department of Environmental Engineering

Background

Electricity from natural gas, avg. UCTE plant (impacts per kWh)

Freshwater eutrophication kg P eq

Terrestrial acidification kg SO₂ eq

Marine eutrophication kg N eq

Objective of the study

 Research question: What are the key parameters determining the environmental impacts of an energy generation technology?

Complementary to NREL Harmonization study

- NREL: "Energy modeler" point of view
 - (**GHG**) Reduce variability \rightarrow Define <u>average</u> values
- This study: "LCA practitioner" point of view
 - (LCA) Find key parameters to identify a <u>specific</u> technology for a case study

Methodology

• Literature review: 167 case studies included

- Technologies considered:
 - Hard Coal
 - Lignite
 - Natural Gas
 - o Oil
 - Nuclear

- Hydro
- Solar PV
- Wind
- Biomass

• Emissions considered: GHG, NO_x, SO₂

Focus on technological and methodological aspects

Results – Fossil Fuels

- Main contributor: Direct emissions
- No methodological issues

Department of Environmental Engineering

DTU Environment

Results – Nuclear and renewables

Technology	Main contributor	Sources of variability
Nuclear	Fuel provision	Fuel enrichment, el. mix, methodology (IOA vs PCA)
Hydro, Wind, Solar PV	Infrastructures	Type, electricity mix, methodology (IOA vs PCA)
Biomass	?	Combination of methodology and technology 6

Why LCA rather than only GHG?

Hotspots definition

Example: Natural gas

• GHG:	Direct emissions	83%
• NO _x :	Fuel provision	54%
• SO ₂ :	Fuel provision	96%

Problem shifting

Example:	Natural gas	VS	Oil	
GHG	380-1000		530-900	g/kWh
SO ₂	0.01-0.32		0.85-8	g/kWh
		,		
	Solar PV	VS	Biomass	
GHG	8.5-130	\leftarrow	13-190	g/kWh
NO _x	0.15-0.40		0.08-1.7	g/kWh
		•		

Discussion

Technology	Technological factors	Methodological factors
Fossil fuels	Efficiency, FGC (NO _x and SO ₂), Fuel quality (SO ₂)	-
Nuclear	Electricity mix, fuel enrichment	IOA vs PCA data
Hydro, Wind, Solar PV	Electricity mix, reference year	IOA vs PCA data
Biomass	Type, quality, origin of the feedstock	Multi input/output system, land use, constrained resource

Conclusions

■ Existing literature: may be confusing
→ studies often built on different

assumptions/approaches/technologies

 What are the key parameters determining the environmental impacts of an energy generation technology?

- Technological and methodological aspects
 - Differ from one technology to another
 - Depend on the impact category

• LCA needs Transparency and Comprehensiveness

Thanks for your attention.

Questions?

Turconi, R., Boldrin, A., Astrup, T. - Life cycle assessment (LCA) of electricity generation technologies: overview, comparability and limitations. Submitted to Renewable and Sustainable Energy Reviews.

> Roberto Turconi robt@env.dtu.dk