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How the Subpolar gyre strength influences phytoplankton blooms dynamics in the 

North Atlantic

Ferreira ASA, Payne MR, MacKenzie BR, Visser AW

Abstract

Changes in the North Atlantic Subpolar gyre (NASPG) have been linked to the interannual variability of  

primary production. However, little is known about the mechanisms behind both environmental processes, 

and how the NASPG strength may extend its potential impacts to higher trophic levels, including early life  

stages of commercial fish species. We assess NASPG strength effect on North Atlantic phytoplankton bloom 

dynamics.  We analysed  time series  (from 1998 to  2010)  of  chlorophyll  α  as  a  proxy  of  phytoplankton 

abundance, and the NASPG as a proxy for environmental variability. 17 regions were strategically chosen to 

characterize positions relative to the NASPG and its dynamics. It is hypothesized that a strong NASPG index 

will be associated with a low abundance, late phytoplankton bloom, possibly induced by higher heat losses, 

and thus lower temperatures. In general, across the entire North Atlantic, later blooms were observed in  

higher latitudes and for stronger NAPSG index (negative values). This pattern though has regional variations. 

In the eastern sectors, latitudinal timing differences are much stronger for strong NAPSG index than for weak 

index. Indications of a strong influence of NASPG index are related to areas within the NAPSG, which may 

have an impact in the ecosystem functioning. The results also suggest that physical forcing other than the  

strength of the NASPG influences primary production, particularly at regional scales.
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Introduction

Phytoplankton require light and nutrients in order to grow. When the concentration of nutrients and light  

availability match phytoplankton demands, blooms occur. The entrainment of nutrients, as well as retention  

of phytoplankton, is strongly influenced by physical processes, such as mixing of water masses (Racault et 

al. 2012). Increased mixing has been linked to an increase in nutrient supply, but may also act as a light-

limiting factor. As Huisman et al (1999) reported, there has to be a balance between water-column depth and 

diffusivity coefficient so the phytoplankton can flourish. Phytoplankton will then have a cascading effect on 

zooplankton production and, subsequently, on fish survival (Hátún et al. 2009b, Platt et al. 2009).

Ocean currents influence the outcome of primary production (Longhurst 1995, Mann 1993). Wind-influenced 

currents may form large systems of water masses with similar properties. The North Atlantic SubPolar Gyre  

(NASPG)  is  formed  by  four  major  currents  (North  Atlantic  Current  -  NAC,  Irminger  Current  -  IC,  East 
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Greenland Current - EGC, and Labrador Current -  LC) with a counterclockwise circulation (Schmitz and 

McCartney 1993). A strong gyre is, thus, defined by eastward drift of cold, fresh waters; while a weak gyre is  

defined by westward drift of warm, saline waters (Hátún et al. 2009a). Previous studies have looked at the 

influence of NASPG in phytoplankton abundance (Hátún et al. 2009b). Additionally, there have been some 

discussions regarding the onset of phytoplankton blooms (Chiswell 2011). Yet, no studies have focused on 

the influence of NASPG on the bloom dynamics: timing, duration, and magnitude. However, their relevance 

has been noticed, for they  may extend their potential impacts to higher trophic levels, including early life 

stages of commercial fish species.

Even though several attempts to describe phytoplankton blooms according to physical properties (Behrenfeld 

2010), a clear answer for “what is a bloom” is yet to be answered. This study aims at investigating bloom 

dynamics  (magnitude,  timing,  duration,  and inter-annual  variability)  response  from physical  forcing  at  a 

regional  scale,  by  using  satellites  imagery. Climate  and  oceanographic  forcing  conditions  may  trigger 

different responses in regards to the whole NA and within smaller regions.  Depending on the strength of 

NASPG, different properties are expected to occur at specific locations surrounding the NASPG region. For 

instance, Hátún et al (2009b) reported an increase in phytoplankton abundance after 1995, a period coupled 

to a decline of  the gyre index.  For strong gyre characteristics  in relation to a weak gyre,  later and low 

amplitude blooms are expected, especially within regions of strong influence by the NASPG.

Material and Methods

Here,  focus  is  given  on two  different  spatial  scales:  a)  the  whole  NA,  and b)  smaller  regions  that  are 

expected to differently respond to physical forcing (e.g. North Atlantic Subpolar gyre – NASPG). Therefore,  

17 different regions were strategically chosen to describe physical forcing (Fig. 1). For instance, regions 1, 2, 

and 3, were chosen to describe the dynamics over the Irminger Current (IC); the North Atlantic Current 

(NAC) and its northwards drift; and the within NASPG dynamics, respectively.

Figure 1: Map of region of interest (ROI), region of the NASPG (Gyre), and the 17 regions selected.

Chlorophyll   α  

Weekly and daily chlorophyll α (chl α) data 

product  was  downloaded  from  the 

Globcolour  Project 

(http://www.globcolour.info),  from 1998 to 

2010,  on  1º  by  1º  resolution.  Bloom 

initiation  (bloom  timing)  was  defined  by 

five different definitions: 1) week with the 

fastest  rate  of  increase  of  chl  α 

concentrations  (maximum  growth);  2) 

week when chl  α is above 5 % of median 

value  (Henson  et  al.  2009,  Siegel  et  al. 

2002); 3) week when chl  α reaches 20 % 

of  cumulative  distribution;  4)  week when 

chl  α reaches  5  %  of  maximum  values 

averaged  over  12  years;  and  5)  week 
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when chl  α presented the maximum sum of daily increase rate (maximum growth). In order to choose the 

best definition from this list, all definitions were ranked according to the week of initiation, i.e. the definition 

that returns the earliest bloom gets a ranking value of 1, and a ranking 5 is given to the one that returns the  

latest. This analysis showed that different definitions apply better to different regions. In addition, all bloom 

timings were significantly different across latitudes (p-value < 0.05). Definitions 2 and 4 were removed, for  

they could not  be used at  the lowest latitudinal  ranges.  There was a high variability  in  the rankings of 

definitions 1  and 3.  Therefore,  definition 5 was selected.  Bloom end was set  as the week when chl  α 

concentrations went back to the value at bloom timing. Bloom duration was defined as the number of weeks 

between bloom timing and bloom ending.

Figure 2: Chl  α concentrations, averaged for each week, on logarithmic scale (block, dotted line), 3-week 

running  mean of  chl  α (red  line),  timing  of  maximum chlorophyll  (red,  vertical  line),  bloom period  from 

definition 5 - maximum growth rate on daily data (shaded area), and the inverted NASPG index (green, 

horizontal line) for region 1 (see Fig 1).



Gyre index

The NASPG used in this study has been published by Hátún and Gaard (2010) and Larsen et al (2012), and 

is based on an empirical orthogonal function (EOF) (Preisendorfer et al. 1988) created by Häkkinen & Rhines 

(2004) from gridded  sea surface height (SSH) data. Here, we use a time series of the gyre index from 1997 

to 2010, as in Larsen et al (2012).

Figure 3: Chlorophyll concentrations and NAPSG.

Results and discussion

As expected, in years with a strong  NASPG index (negative values), average chl  α  concentrations were 

lower (Fig 3 and 4). Bloom timing was significantly different for the entire range of latitudes within ROI and 

NASPG strength (p-value < 0.05), but not for NASPG alone. 

Later blooms were observed in higher latitudes and lower longitudes (Fig 5 left). This is in accordance with  

previous findings that used different definitions for bloom timing (Racault et al 2012). Racault et al ( 2012) 

also noticed longer blooms at higher latitudes. Here, however, we found that bloom duration is higher in both 

the Northeastern and Southwestern sided of the NASPG. Similarities were found for bloom timing in the  

centre of the NASPG region (Fig 5 right). This may have implications in the recruitment of fish species that  

spawn within and outside the NASPG region, such as blue whiting (Hátún et al. 2009a, Hátún et al. 2009b), 

North Atlantic cod (ICES 2005), haddock (Platt et al. 2003), Atlantic salmon (Beaugrand and Reid 2003, Todd 

et al 2008), Northern shrimp (Koeller et al. 2009), and possibly Bluefin tuna (Lutcavage et al. 1999). The 

earlier the bloom initiates, and the longer it lasts, the higher the probability for the timing of copepod blooms 

to match of timing of fish spawning (Platt et al. 2003).

For years with a strong NASPG, bloom timing was highly variable across latitudes (Fig 6 left). This may  

indicate that a strong NASPG, ant thus an eastward shift  of  cold, freshwater,  has a stronger impact on 

phytoplankton growth than a weak NASPG. This impact is even steeper when we focus on a single longitude 

(Fig 6 right). This finding emphasizes how important it is to cover the physical properties of the North Atlantic 

waters, for there may be key regional patterns triggering different phytoplankton responses.



Figure 4: Chlorophyll concentrations on logarithmic scale averaged for each year for the ROI (see Fig 1).



Figure 5: Maps of bloom timing (left) and duration (right) averaged for all years.

Figure 6: Scatter plots of bloom timing averaged for all years for all latitudes and NASPG strength for all  

longitudes (left) and when longitude was set to 15 ºW (right).

Conclusions

In order to understand how the bloom dynamics may impact fish recruitment, it is crucial to focus on the 

factors influencing the physical environment at more regional scales. Indications of a strong influence of 

NASPG index are related to areas within the gyre, which may have an impact in the ecosystem functioning. 

Moreover, it has been long known that bloom dynamics are described by different processes in different 

regions of the North Atlantic. This is specially true when one compares high-seasonality, light-limited regions, 

such as at high latitudes, with the more nutrient-limited, low latitudes regions. The results also suggest that 

physical forcing other than the strength of the NASPG may be influence the primary production of the more 

northerly  regions east  and west of  Iceland. We hereby conclude that  researched on physical  forcing is  

central to characterise different scenarios on the phytoplankton phenology.
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