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ESTIMATION OF THE BLOOD VELOCITY SPECTRUM USING A 
RECURSIVE LATTICE  FILTER 

J0rgen  Arendt  Jensen,  Claus  Buelund, Allan J0rgensen  and  Peter  Munk 

Department of Information  Technology,  Build. 344, 
Technical  University of Denmark, DK-2800 Lyngby,  Denmark 

Abstract for  real-time processing. 

In medical ultrasound the blood velocity distribution in a ves- 
sel can be found by emitting a pulsed field into  the  patient. 
The field is then scattered by the  tissues and the red blood 
cells, and a single complex sample set is acquired at  the  depth 
of  interest for each pulse emitted. This gives  a sampled signal 
in  the audio range due  to the slow  movement of the scatter- 
ers through the measurement  gate. The velocity distribution 
within the  gate can then  be determined by Fourier transfom- 
ing the sampled signal. The signals acquired for showing the 
blood  velocity distribution  are inherently non-stationary, due 
to the pulsatility of the Row. All current signal processing 

dow of  analysis, although this is an approximation. 
schemes assume  that the signal is stationary within the  win- 

In this paper a  recursive least-squares  lattice filter is used 
for finding a parametric model for  the velocity distribution. A 

time, and it  is thus  possible to track the non-stationary prop- 
new  set  of complex coefficients is calculated for each point in 

teristics of  the non-stationarity are incorporated through an 
erties  of  the stochastic velocity signal. The dynamic charac- 

exponential decay factor,  that sets the exponential horizon of 
the  filter. A factor  close to 1 gives a long horizon with low 

flow. Setting the factor is therefore a compromise between 
variance estimates, but can not  track a highly non-stationary 

estimate variance and the filter's dynamic adaptation. Using 
a lattice filter gives a structure that is easy and robust, when 
implemented with fixed point arithmetic. 

vivo data, and  gives  spectral estimates quite different  from  the 
The procedure has been tested on both simulated and in- 

normal FFT approach. Synthetic data were  generated based 
on the  measured time evolution of  the  spatial mean  velocity 
in the femoral artery. The smooth theoretical  velocity distri- 
bution is then known and can be compared to  the estimated 
distribution. Using 8 parameters  a  very smooth estimate of 
the  velocity distribution is seen, more in line with the actual 
distributions that always will  be smooth. Setting  the exponen- 

data  from  the  carotid artery. The filter can  easily be imple- 
tial decay factor to 0.99 gives  satisfactory results  for in-vivo 

mented using a standard fixed-point signal processing chip 

1 Introduction 
The distribution  of blood  velocities  in human vessels  can be 
measured  non-invasively by using ultrasound. The measure- 
ment is performed by emitting a number of consecutive ultra- 
sound pulses. A single complex sample set is acquired at  the 
depth of  interest  for each pulse emitted.  This gives a sampled 
signal  in the audio range due to  the slow  movement  of the 
scatterers through the measurement gate [l]. The frequency 
of the received digital  signal is  given by: 

where f, is the emitted frequency, c is the speed of sound, 

propagation. The  received  frequency, fr, is thus proportional 
and vs is the blood  velocity along  the ultrasound direction of 

to the blood  velocity. In  general, a velocity distribution is 
found in the vessel giving  rise 10 a distribution of  fre.quen- 
cies. The received signal's spectrum corresponds to  this dis- 
tribution. An example is shown in Fig. 1. Here the ideal  ve- 
locity  distribution as a function of time is shown for a femoral 
artery. The distribution was calculated from the Fourier com- 
ponents for  the  mean  velocity  in a vessel as given  by  Evans et 
al. [Z], and using the theory developed  by  Womersley [3] and 
Evans [4]. The distribution is continuous, as the  velocity is a 
continuous function of space and time. 

ultrasound  signal. This is done by short time Fourier trans- 
The distribution can be estimated from the acquired digital 

formation, where  the  signal is divided into small overlapping 
segments and  Fourier transformed. The resulting  spectra  are 
displayed side by side i n  a sonogram display as shown in 
Fig. 2.  The displayed spectra  are  stochastic, due  to the un- 

of the sonogram is seen. The sonogram is thus not a faithful 
derlying stochastic signal, and a typical speckle appearance 

display of the velocity distribution, and it  would be appropri- 
ate to find a method for displaying the continuous and smooth 
distribution. 
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where y(n) is  the  observed  signal e(.) is the  white,  stochas- 
tic signal driving the model, and M is the model order. The 
model is estimated by minimizing the  variance of  the predic- 
tion  error: 

v = E{(Y(.) - Y(.lQ))21 (3) 

5 0.5 
E where y(nl0) is the prediction of y ( n )  and B contains the  es- g timated  parameters. Some authors have found the AR CO- 

O efficients using the Yule-Walker equations directly hy  divid- 

- 

ing the data  into segments, and then detemined the param- 
eters [5], [6]. This, however, assumes that the signal is sta- 
tionary within the segment, which  in  general is not a  valid 
assumption. There is therefore a compromise between se- 

and at  the  same  time  getting enough data  for a low-variance 
Figure 1: Velocity distribution in the femoral artery. estimate. The situation can he improved  by using a time- 

recursive estimation scheme, where the parameters for  the 
process are continuouslyestimated  as a function of time. The 
non-stationarity is then handled by introducing an exponen- 
tial decay X, in which the  lag to the  current estimation time 
determines the weight of the  data. The exponential factor is 

-0.5 

- 1  
0 0, a *  o s  0 1  0 5  0 8  0 7  0 8  (1.9 lecting a small segment, where the  signal is quasi-stationary, 

T,ms ,81 

sonogam 

i 
3 - 

adjusted to  the rate of change in  spectral properties of the  sig- 
nal. The time horizon in number of samples is given by 

E 
- 
h 1 .v = __ 

l - X  % '  (4) 
X 
i 

3 Recursive  least  squares lattice filter 

I , , , , , , , , , I  A number of different methods for  implementinga recursive 
% 0 1  0 2  03 0 4  05 0.6 0.7 0 8  08 least squares estimate of the AR  parameters exits.  The re- 

cursive  least squares lattice filter as developed by Morf et 
Figure 2: Sonogram of velocity distribution in the femoral al. (1977) offers a number of advantages. It can be used on 
artery. non-stationary signals, uses  few calculations, and  converges 

rapidly. Further,  the  lattice  structure is numerically stable and 

T8ns I31 

2 Parametric  spectral  estimation 
is  suited  for fixed-point implementation. 

The least squares lattice  filter can he written as [SI: 

One method for  finding a continuous spectrum from a 

model then fits the power density spectrum of the process,  and 
stochastic signal is to introduce a parametric model. The 

the  stochastic nature of the  signal is modeled by the stochas- 
tic input signal driving the model. The most common models 
are  the  AR (AutoRegressive) model and the ARMA (AutoRe- 
gressive Moving Average) model. The ARMA model  can 
be difficult to use, due to  the  indirect estimation of the MA 
part. The  AR model will he used  in this work, due  to  the fast 
and  numerically stable algorithms for estimating it. The  AR 
model is given  by: 

y(n) = - a l y ( n - l ) - a z y ( n - - 2 ) - . . - a , ~ ~ y ( n - M ) + e ( n )  
(2) 

TIME RECURSION: 

for n = 1 to N 
fo(n) 
F,(n) = Bo(.) = XFo(n - 1) + IV(.)IZ 

= bo(n)  = ~ ( n )  

To(n-  1) = 1 
4 . 1  
co(n - 1)  = 1 

= l  

ORDER RECURSION: 

for m = 1 to M 
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x* denotes the complex conjugate. The variables  are: 

fm - Forward a posteriori prediction error 
b, - Backward a  posteriori prediction error 
rl - Forward reflection  coefficient 
r b  - Backward reflection  coefficient 
X - Exponential decay factor 
a - AR parameters 

y - Input  signal 

Division by a very small number can take  place  during  the 

discarded, and the term  with the  division  is  neglected. The 
initial phase of the filtration. A divisor below 10W6 is thus 

filter is initialized by setting: 

Am-i(0) z 0 
F,”-l(O) = d 
Bm-l(0) z 6 

efficients are then contained in  the  matrix a,  and  can be used 
where d is some small number (0.01 here). The  AR filter co- 

for finding the parametric estimate of the  power spectrum by: 

P(f, n) = M (5) 
d 

(1 +Ci=la,(n)exp(-j2rrfiAT)i2 

where U: is the variance of  e(n).  This need  not be determined 
since U: is essentially constant over the  heart  cycle.  Note that 

the velocities can he displayed. The parametric sonogram is 
the filter estimates complex AR parameters, and the sign of 

at regular intervals evaluating (5) and displaying  the  result. 
then found by continuously estimating the  AR parameters and 

All coefficients in  the  lattice filter are normalized to be be- 

for  fixed-point implementation. The number of calculations 
tween -1 and + l ,  which makes it  very  easy to scale the filter 

I 
O (I I 0 2  0.3 0.1 0.5 0.6 0 1  0.8 0 8  

T8me Is] 

Figure 3: Parameteric sonogram from artificial data from the 
femoral artery. An 8th order AR model is used  with X = 0.99. 

to  he performed per sample is proportional to M and is on 
the order of 60M multiplications and additions and 1 6 M  di- 
visions per sample, well within the reach of modern signal 
processing  chips. 

4 Examples 

The first example is run on data  from simulated  flow  in the 
femoral artery. The  data was generated by the method de- 
scribed  in Section l .  The lattice filter algorithm was  run us- 
ing the complex data and  a filter order of 8. The exponential 
decay factor was s e t  to 0.99. The resulting parametric sono- 
gram is shown  in Fig. 3. This should be compared to the 
sonogram for  the  same  situation shown in Fig. 2. A smooth 
velocity distribution is now seen, which  better resembles the 
actual continuous distribution  from Fig. I .  It is thus possible 
to estimate the continuous  distribution, when the underlying 
data is noise free. 

artery of a healthy 29-years old  male. A B&K Medical 3535 
The second example is for in-vivo data from the  carotid 

ultrasound scanner with a 5 MHz type 8545 conbex  array 
transducer wasused  for the acquisition. The scanner wascon- 
nected to our dedicated sampling system [9], which  used a 
sampling frequency  of 15 MHz, and acquired 50 RF samples 
for  each  pulse emission. The pulse repetition  frequency was 

acquired. 
5 kHz, and a total  of 19,000 lines  or  3.8 seconds of data was 

The  RFdata was preprocessed by  the  matched  filter/Hilberf 
transform approach described by Jensen (1996). A  filter 
matched to  the emitted pulse is first applied to the  data, and 
then a Hilbert transform is used to  calculate  the imaginary 
part of the signal. One complex set of samples is then ex- 
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5 Conclusion 
1 6  It has  been shown that parametric spectral  estimation using 

1.2 estimates that are  closer to the  actual underlyingdistributions. 
a  recursive lattice filter can yield smooth velocity distribution 

A  very good resemblance to the theoretical distribution was 
attained for synthetic  data from the femoral artery. The in- 
vivo data was less conclusive, since  the  signal-to-noise  ratio 
for  these  data was quite low.  A  study using higher quality 
data is, thus, needed. 

- 
g 0.8 ; (Is 
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