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Summary 

 

In order to move beyond simplified covariance based a 

priori models, which are typically used for inverse 

problems, more complex multiple-point-based a priori 

models have to be considered. By means of marginal 

probability distributions ‘learned’ from a training image, 

sequential simulation has proven to be an efficient way of 

obtaining multiple realizations that honor the same 

multiple-point statistics as the training image. The 

frequency matching method provides an alternative way of 

formulating multiple-point-based a priori models. In this 

strategy the pattern frequency distributions (i.e. marginals) 

of the training image and a subsurface model are matched 

in order to obtain a solution with the same multiple-point 

statistics as the training image. Sequential Gibbs sampling 

is a simulation strategy that provides an efficient way of 

applying sequential simulation based algorithms as a priori 

information in probabilistic inverse problems. 

Unfortunately, when this strategy is applied with the 

multiple-point-based simulation algorithm SNESIM the 

reproducibility of training image patterns is violated. In this 

study we suggest to combine sequential simulation with the 

frequency matching method in order to improve the pattern 

reproducibility while maintaining the efficiency of the 

sequential Gibbs sampling strategy. We compare 

realizations of three types of a priori models. Finally, the 

results are exemplified through crosshole travel time 

tomography.   

 

Introduction 

 

In geostatistical and probabilistic inverse modeling, a priori 

models that describe the expectations of the spatial 

distribution of the geological structures under study are 

important (Journel and Zhang, 2006).  Traditionally, a 

priori models rely on two-point statistics described through 

covariance models. However, such a priori models cannot 

capture realistically geological curvilinear structures such 

as tortuous channels. In order to overcome this 

shortcoming, multiple-point statistics has to be introduced 

(Guardiano and Srivastava, 1993). The Single Normal 

Equation SIMulation (SNESIM) algorithm is a 

computationally very efficient way of obtaining realizations 

from a joint probability density function (pdf) based on 

multiple-point statistics learned from a training image using 

sequential simulation (Strebelle, 2002).  

 

The extended Metropolis algorithm is a general sampling 

algorithm that can be used to sample the solution to 

nonlinear inverse problems (Mosegaard and Tarantola, 

1995). The extended Metropolis algorithm demands an 

algorithm that is able to produce perturbations between 

realizations from the a priori model. An efficient way of 

obtaining this is through sequential Gibbs sampling 

(Hansen et al., 2012). The extended Metropolis algorithm 

has previously been used in conjunction with sequential 

Gibbs sampling for a priori information defined through the 

SNESIM algorithm to sample the solution of a tomographic 

full waveform inverse problem (Cordua et al., 2012).  

 

An alternative way of defining the multiple-point-based a 

priori pdf is the Frequency Matching Method (FMM) 

(Lange et al., 2011). In this approach the frequency 

distributions of patterns (i.e. marginal probabilities) 

counted in a given solution to the subsurface and in the 

training image are compared. By means of the Chi-square 

statistics, Lange et al. (2011) quantified the match between 

frequency distributions. In this way, they were able to 

jointly optimize for the a priori expectations and a 

tomographic dataset. Here, we define a FMM-based a priori 

pdf using the Dirichlet probability distribution. We show 

the results of sampling this distribution using the 

Metropolis algorithm. 

 

When sequential Gibbs sampling is applied with the 

SNESIM algorithm, the reproducibility of the spatial 

continuity seen in the training image is reduced. This is 

caused by the conditional simulation technique inhered in 

SNESIM, which reduces the number of conditional data 

events when inconsistencies (i.e. singularities) occurs 

during the simulation. These effects are reduced for full 

unconditional SNESIM realizations, but are evident for the 

iterative perturbation strategy performed by the sequential 

Gibbs sampling. We suggest an a priori pdf that combines 

the SNESIM and FMM based a priori pdfs in order to 

overcome these shortcomings. We show that realizations 

from the combined a priori pdf ensures better 

reproducibility of spatial structures found in the training 

image than compared to the individual SNESIM and FMM-

based a priori pdfs, respectively.  

 

The importance of the reproducibility when solving inverse 

problems is demonstrated through a crosshole travel time 

tomographic inverse problem. The solution to this nonlinear 

inverse problem is sampled using the extended Metropolis 



Combining Sequential Simulation with the Frequency Matching Method 

algorithm with both the SNESIM and the combined 

SNESIM-FMM-based a priori pdfs, respectively.  

 

Methodology 

 

Consider that the subsurface can be represented by a 

discrete set of model parameters m . In geophysical inverse 

problems, information about the unknown model 

parameters is retrieved based on a set of indirect 

observations d (e.g. travel time data), a theoretical forward 

problem that relates model parameters and the data, and 

some a priori information on the model parameters. The 

forward relation between the model parameters and the data 

can be expressed as (e.g. Tarantola, 2005):  

 

( )gd m ,   (1) 

 

where g is a linear or nonlinear function that often relies on 

a physical law. In this study equation 1 is a nonlinear 

relation that provides a set of travel time data at the receiver 

positions given a 2D velocity field. The forward relation is 

based on ray-theory and is calculated using the Eikonal 

equation (Zelt and Barton, 1998).  

 

In a probabilistic formulation, the solution to the inverse 

problem is given as an a posteriori probability density over 

the model parameters (e.g. Tarantola, 2005): 

 

( ) ( ) ( )M Mk L m m m ,  (2) 

 

where k is a normalization constant, ( )M m is the a priori 

pdf, and ( )L m  is the likelihood function. ( )M m describes 

the probability that the model satisfies the a priori 

information. ( )L m  describes how well the modeled data 

explains the observed data given a data uncertainty. Hence, 

the a posteriori probability density describes the combined 

states of information provided by the data and the a priori 

information.  

 

The extended Metropolis algorithm 

The extended Metropolis algorithm can be used to sample 

the a posteriori probability density of a general nonlinear 

inverse problem as formulated in equation 2. This algorithm 

only requires: 1) A “black box” algorithm that is able to 

produce perturbations between realizations from the a priori 

pdf. 2) An algorithm that is able to compute the likelihood 

for a given set of model parameters. The extended 

Metropolis algorithm contains the following steps:  

1) The exploration step: 

An a priori sampler proposes a realization, proposem , from 

the a priori pdf. proposem  is a perturbation of a current 

realization, currentm .  

2) The exploitation step: 

The proposed realization is accepted with the probability:  

 

( )
min 1,

( )

propose

accept

current

L
P

L

 
  

 

m

m
  (3) 

 

If the proposed model is accepted, proposem  becomes 

currentm , otherwise 
currentm  counts again.  

The above procedure is continued until a desirable number 

of realizations have been accepted. Together, all the 

accepted realizations constitute a sample of the a posteriori 

probability density (Mosegaard and Tarantola, 1995).  

 

Sequential Gibbs sampling 

Sequential Gibbs sampling is a computationally efficient 

way to sample complex a priori models as quantified by 

most geostatistical simulation algorithms, such as for 

example the SNESIM algorithm (Hansen et al., 2012). With 

sequential Gibbs sampling the degree of perturbation 

between realizations can be controlled. In this way, a priori 

information quantified by geostatistical simulation 

algorithms serve as a “black box” algorithm that can be 

applied with the extended Metropolis algorithm to sample 

the solution for probabilistic inverse problems.  

 

The flow of sequential Gibbs sampling is:  

1) A current unconditional realization of the a priori pdf is 

provided.  

2) A subset of the model parameters in the current 

realization is randomly chosen.  

3) The model parameters within this subset are resimulated 

using sequential simulation conditional to the remaining 

model parameters (using e.g. the SNESIM algorithm).   

4) Step (2) and (3) of this procedure are repeated in order to 

obtain multiple realizations of the a priori pdf.  

 

The size of the subset of model parameters to be 

resimulated is chosen subjectively and controls the 

explorations nature of the Metropolis algorithm. For large 

subsets the exploration step becomes large and the 

probability of accept (in equation 3) decreases. On the other 

hand, smaller exploration steps leads to a higher accept 

probability. However, a small exploration step causes 

successive accepted realizations of the Metropolis 

algorithm to become statistically more dependent and, 

hence, more realizations have to be accepted to obtain 

statistically independent realizations. For more details on 

this topic see Hansen et al. (2012) and Cordua et al. (2012).   

 

The frequency matching method 

Multiple-point sample algorithms rely on sequential 

simulation, which is based on the fact that the complete 

joint probability density can be factorized by conditional 



Combining Sequential Simulation with the Frequency Matching Method 

probability densities. The conditional probability densities 

can (according to the product rule) be expressed by means 

of marginal probability densities. These “marginals” are 

extracted (or learned) from the training image by simply 

counting the number of times a certain pattern occurs in 

image. The number of pixels within the patterns is fixed 

and determined by a template. The marginal pdf obtained in 

this way can be viewed as a frequency distribution (i.e. a 

normalized histogram), which is the same as the content of 

the search tree, as referred to by Strebelle (2002).  

 

In the frequency matching method (Lange et al., 2011) the 

multiple-point-based a priori pdf is quantified by measuring 

the degree of fit between the frequency distribution of the 

training image and a current realization. In this way it 

becomes possible to actually quantify the multiple-point a 

priori pdf, which is not possible using the SNESIM 

algorithm.  

 

Here, we defined the frequency matching measure using the 

Dirichlet pdf, which is different from the approach of 

Lange et al. (2011): 

 

11
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m , (4) 

 

where cur

kH is the number of counts in the k’th bin of the 

(unnormalized) histogram obtained from a current 

realization m . TI

kH  is the number of counts in the k’th bin 

of the (unnormalized) histogram obtained from training 

image. TK c  is the number of possible pattern 

combinations, which is function of the template size T and 

the number of categories c . Further, we have that:  
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where prior

kH  is the k’th bin of the a priori (unnormalized) 

histogram, which represents the a priori expectation of the 

histogram related to underlying process before the training 

image histogram is observed. Hence, prior

kH can be used to 

quantify the degree of expected match between the 

frequency distributions of a current subsurface image and 

the training image. For small values of prior

kH the current 

model is expected to match the training image frequency 

distribution better than for large values. Note that the 

Dirichlet distribution only needs to be evaluated for the bins 

 | 0cur

jk j H  . All other bins do not contribute to the 

probability. Hence, the histograms becomes sparse, which, 

in particular, saves memory for large template sizes and/or 

many categories of the model parameter values. 

  

Combining FMM with the SNESIM algorithm 

Figure 2 shows realizations from the SNESIM-based priori 

model using the sequential Gibbs sample strategy. Figure 3 

shows realizations from the Dirichlet (i.e. FMM-based) a 

priori probability distribution. The multiple-point statistics 

of these a priori models is obtained from the training image 

seen in figure 1. By comparing figure 2 and 3 with the 

training image it is obvious that the continuous structures 

seen in the training image are not very well reproduced.  

In order to improve this, we suggest combining the FMM 

with the SNESIM algorithm such that we obtained an a 

priori pdf defined as: 

 

( ) ( ) ( )M SNESIM FMM  m m m   (8) 

 

This a priori pdf can efficiently be sampled using the 

extended Metropolis algorithm in conjunction with 

sequential Gibbs sampling. By substituting ( )FMM m with 

the likelihood function ( )L m  in equation (2) and (3), 

realizations from the combined a priori in equation 8 can be 

obtained. Note that, in this way, the value of ( )SNESIM m  

does not need to be evaluated. 

 
Figure 1. Training image used for obtaining the multiple-

point a priori statistics. 

 

Results  

 

Figure 4 shows realizations obtained from the combined a 

priori model defined in equation 8. In this study we choose 

the a priori histogram to be a homogenous distribution with 

 5, | 0prior cur

k jH k j H    and a template size of 3 
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pixels x 3 pixels. The results demonstrate that the combined 

FMM-SNESIM-based a priori probability density recovers 

the structures of the training image better than compared to 

both the SNESIM and FMM-based a priori pdfs.  

 
Figure 2. Realizations from the SNESIM a priori model 

using sequential Gibbs sampling.  

 

 
Figure 3. Realizations of the Dirichlet pdf (i.e. FFM-based 

a priori pdf) using the Metropolis algorithm with a 

homogenous proposal pdf.  

 

 
Figure 4. Realizations from the combined SNESIM-FMM-

based a priori pdf using the extended Metropolis algorithm 

in conjunction with sequential Gibbs sampling. 

 

Crosshole travel time tomography 

In order to demonstrate how the different a priori models 

influence the solution to a nonlinear inverse problem, we 

consider a crosshole ground penetrating radar tomographic 

inverse problem (see e.g. Cordua et al., 2009). A synthetic 

reference model, from which a synthetic data set is 

obtained, is seen in figure 5. This model is a fully 

unconditional realization of the SNESIM based a priori pdf. 

A zero mean uncorrelated Gaussian noise component with a 

standard deviation of 1 ns (~2.7 % of the signal) is added to 

the data. The likelihood function is a Gaussian pdf that 

takes into account the statistics of the noise. The result of 

the inversion is seen in figure 6 and 7. It is clear that the 

improved FMM-SNESIM-based a priori probability density 

provides realizations that resemble the reference model 

better than when using the SNESIM-based a priori pdf. 

Moreover, the variability between the individual 

realizations becomes smaller when considering the 

combined a priori model. This shows that the improved a 

priori information improves the resolution of the solution. 

 
Figure 5. Reference model used for travel time tomography. 

The red rays give an indication of the data coverage. 

 
Figure 6. Realizations from the a posteriori pdf with a priori 

information defined by SNESIM using sequential Gibbs 

sampling. 

 
Figure 7. Realizations from the a posteriori pdf based on the 

combined SNESIM-FMM a priori pdf using sequential 

Gibbs sampling. 

 

Discussion and Conclusion  

 

We have demonstrated the potential of combining the FMM 

with the sequential simulation strategy provided by 

SNESIM. In this way, realizations obtained when using 

sequential Gibbs sampling reproduces the spatial structures 

of the training image much better then when only 

considering SNESIM. At the same time, the suggested 

strategy ensures that the computationally efficiency of 

sequential simulation is maintained.  

The combined SNESIM-FMM-based a priori model 

demonstrates to improve the resolution when applied for a 

tomographic nonlinear inverse problem. 
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