
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Apr 01, 2019

Quantum Optical Multiple Scattering

Ott, Johan Raunkjær

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Ott, J. R. (2012). Quantum Optical Multiple Scattering. Kgs. Lyngby: Technical University of Denmark (DTU).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13799537?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/quantum-optical-multiple-scattering(16b91651-a579-452b-9c60-9f48bbeef7d4).html


Quantum Optical Multiple

Scattering

Johan Raunkjær Ott
Ph.D. Thesis

Supervisors:

Professor N. Asger Mortensen,
Technical University of Denmark

Professor Peter Lodahl,
Copenhagen University

Associate Professor Martijn Wubs,
Technical University of Denmark

DTU Fotonik

Kgs. Lyngby,
November 22, 2012

Johan Raunkjær Ott



Abstract

This thesis concerns the theoretical investigation of interference phenomena
related to elastic and inelastic scattering of quantized light. The presented
work is naturally divided into two parts, the first is concerning elastic scat-
tering while the second explores inelastic scattering.

In the first part we use a scattering-matrix formalism combined with re-
sults from random-matrix theory to investigate the interference of quantum
optical states on a multiple scattering medium. We investigate a single real-
ization of a scattering medium thereby showing that it is possible to create
entangled states by interference of squeezed beams. Mixing photon states on
the single realization also shows that quantum interference naturally arises
by interfering quantum states. We further investigate the ensemble aver-
aged transmission properties of the quantized light and see that the induced
quantum interference survives even after disorder averaging. The quantum
interference manifests itself through increased photon correlations. Further-
more, the theoretical description of a measurement procedure is presented.
In this work we relate the noise power spectrum of the total transmitted
or reflected light to the photon correlations after ensemble averaging. This
analysis enables us to describe an experimental observation of the quantum
nature of light that survives the averaging over disorder.

In the second part we investigate inelastic scattering. This we do by first
treating the scattering of light on dipoles embedded in an arbitrary dielectric
environment. By considering the two different models for dipole interaction
known as the minimal-coupling and electric-dipole interaction Hamiltonians,
we find exact relations between the electric field and the dipole operators
in the Heisenberg picture, while keeping the model of the dipoles arbitrary.
Due to the exact treatment of the electric-field operators, we obtain kernels
known from classical scattering theory to describe the propagation of the
field from the dipoles. Using the found electric field operators we derive
the Heisenberg equations of motion for the dipoles while treating them as
quantum two-level systems and using the Born–Markov and rotating-wave
approximations. Postponing the rotating-wave approximation to the very
end of the formal calculations allows us to identify the different physical pa-
rameters of the dipole evolution in terms of physical quantities known from
optics. Finally, we use our Heisenberg picture formalism to treat a dilute
cloud of two-level atoms, by simplifying the equations of motion using a
single-scattering approximation for the interaction between the atoms. This



ii

enables us to derive expressions for the steady-state population and fluores-
cence spectrum, where we find cooperative effects in both the elastic and the
inelastic spectra.



Resumé

Denne afhandling omhandler den teoretiske undersøgelse af interferens fæno-
mener relaterede til elastisk og inelastisk spredning af kvantiseret lys. Det
præsenterede arbejde er naturligt opdelt i to dele, den første vedrører elastisk
spredning mens den anden udforsker inelastisk spredning.

I den første del benytter vi sprednings matrice formalismen kombineret
med resultater fra teorien om tilfældige matricer til at undersøge interferensen
af kvanteoptiske tilstande p̊a et multipelt spredende medie. Vi undersøger
en enkelt realisation af et spredende medie hvorved det vises at det er muligt
at frembringe sammenfiltrede tilstande ved at interferere squeezed lysstr̊aler.
Ved at blande foton tilstande p̊a denne enkelte realisation viser ogs̊a at kvan-
teinterferens naturligt opst̊ar ved at interferere kvantetilstande. Derefter
undersøger vi de ensembel midlede transmissions egenskaber af kvantiseret
lys og ser at den inducerede kvanteinterferens overlever selv efter midling af
uordenen. Kvanteinterferensen manifesterer sig gennem øgede foton korrela-
tioner. Derudover præsenteres en teoretisk beskrivelse af en m̊alemetode. I
dette arbejde relaterer vi støj spektret af det totale transmitterede og reflek-
terede lys til foton korrelationerne efter ensemble midling. Denne analyse
gør det muligt for os at beskrive en eksperimentel observation af at den
kvantemekaniske natur for lys overlever midling over uorden.

I den anden del undersøger vi inelastisk spredning. Dette gør vi ved først
at behandle spredning af lys p̊a dipoler indlejret i et arbitrært dielektrisk ma-
teriale. Ved at undersøge to forskellige modeller for dipol interaktionen, kendt
som minimal-kobling og elektrisk-dipol interaktions Hamiltonerne, finder vi
eksakte relationer mellem det elektriske felt og dipol operatorerne i Heisen-
berg billedet, mens vi lader modellen for dipolerne være valgfri. P̊a grund af
den eksakte behandling af operatorerne for det elektriske felt opn̊ar vi ele-
menter kendt fra klassisk sprednings teori til at beskrive udbredelsen af feltet
fra dipolerne. Ved at bruge de fundne operatorer fra det elektriske felt udleder
vi Heisenbergs bevægelses ligninger for dipolerne som vi beskriver som kvan-
temekaniske to-niveau systemer og benytter Born-Markov og roterende-bølge
approksimationerne. Ved at udsætte brugen af roterende-bølge approksima-
tionen til slutningen af vores udledning gør det muligt for os at identificere
forskellige fysiske parametre for dipol evolutionen i forhold til fysiske kvan-
titeter kendt fra optikken. Til slut benytter vi vores Heisenberg formalisme
til at beskrive en tynd sky af to-niveau atomer ved at simplificere bevægelses-
ligningerne med en enkelt spredning approksimation for interaktionen atom-
erne imellem. Dette gør det muligt for os at udlede udtryk for slut tilstanden
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for populationen of fluorescence spektret hvor vi finder kooperative effekter
i b̊ade de elastiske og inelastiske spektre.
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1
Introduction

1.1

We have been taught throughout our life that light propagates as waves,
giving rise to constructive and destructive interference. It is thus often not
considered strange when the light quanta, known as photons, are found to
make similar interference patterns. Opposite to electrons or other quantum
particles, the quantum nature of light is often thought of being the particle
properties and not the wave properties.

Let us try to illustrate the weirdness of the quantum optics by the simple
scattering setup known as the double-slit or Young’s experiment. It consist
of a detector hidden at some distance behind a plate with two slits, which
is then illuminated by a light source. This give rise to the detection of a
regular pattern which is caused by the interference between the light passing
through the different slits. This makes perfect sense because we learned this
in one of the first physics classes in school. Let us now imagine that we
send in a single photon onto the double slit. Of course, the detector will
only be able to detect a single hit since there is only one photon, but if we
redo the experiment a large number of times the same pattern will appear.
The photon, even though it is a single quantum, is thus able to interfere
with itself. This surprisingly simple, yet mind-boggling experiment was first
conducted by Taylor in 1909 [1].

By increasing the complexity of scattering of classical waves, studies of
elastic scattering of waves have revealed a range of fascinating wave phe-
nomena, including Anderson localization [2], enhanced coherent backscat-
tering [3, 4], and universal conductance fluctuations [5]. These phenomena
originate from wave interference and appear even after averaging over all
configurations of disorder [6, 7]. Recently it was shown experimentally that
light-matter interaction is strongly enhanced in disordered photonic crys-
tal waveguides, enabling cavity quantum electrodynamics with Anderson-
localized modes [8]. This, along with the advancement of controlling the
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light-matter interaction between in cold atom experiments lead to the need
of a formalism which can deal with multiple elastic and inelastic scattering
of light in a quantum mechanical setting. This is the topic of this thesis.

1.2 Thesis Outline

The thesis is naturally divided into two parts, one concerning elastic scat-
tering while the other concern inelastic scattering. The first part concerning
elastic scattering consist of Chaps. 2 to 4 while the second part is contained
in Chaps. 5 and 6. The chapters are structured as follows.

In Chap. 2 we introduce some background theory of classical light propa-
gation and multiple scattering and review the quantization of the electromag-
netic field. After this we introduce the concepts of quantum interference and
entanglement which are illustrated by the simple scattering device known as
a beam splitter.

Then, in Chap. 3, we explore the possibility to induce quantum interfer-
ence and entanglement by interfering several quantum states of light on a
multiple scattering medium. We first explore the interference effects of prop-
agation through a single configuration of scatterers and then investigate the
properties of interference of quantum optical states on a multiple scattering
medium averaged over all configurations of the scatterers.

After this, in Chap. 4, we relate the experimentally measurable noise
power spectrum to the photon correlations between two output ports. This
we do in order to describe an experimental observation of the preserved
quantum nature of light after averaging the scattering configurations.

In the second part of the thesis we include inelastic effects through the
scattering on dipoles. This is done in Chap. 5, where the scattering of light
on point dipoles embedded in an arbitrary dielectric structure is treated
quantum mechanically. Using two models for the interaction, known as the
electric-dipole and minimal-coupling interaction Hamiltonians, we describe
the general evolution of the electric-field operators through an arbitrary di-
electric medium with dipoles in the Heisenberg picture, first without intro-
ducing a specific model for the dipoles. This is then used to derive the
Heisenberg equations of motion for N dipoles each described as a quantum
two-level model system.

Finally, in Chap. 6 we consider a dilute cloud of two-level atoms driven by
a laser field. Using the equations of motion derived in the previous chapter
along with a single-scattering assumption, we derive analytic expressions for
the steady-state population and fluorescence spectrum.

The results of the thesis are summarized in Chap. 7.
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Scattering





2
Background Theory

Since this thesis deals with multiple scattering of quantized light it is advan-
tageous to know some quantum optics and multiple scattering formalisms.
The purpose of this chapter is to briefly review the two fields in order to
make readers more familiar with some of the concepts used throughout the
thesis. We will start out in Sec. 2.1 by going through a bit of classical optics
ending up with the expression for the energy of the electromagnetic radia-
tion in terms of the vector potential. Next in Sec. 2.2 the basics of classical
elastic multiple scattering is explained through some Green function analysis
and scattering matrix theory. After this in Sec. 2.3, using the results of the
previous sections, we quantize the electric field and introduce two quantum
phenomena, quantum interference and entanglement. Then, in Sec. 2.4 we
illustrate the scattering formalism for quantum optics and discuss the intro-
duced quantum phenomena by analyzing the scattering of quantum optical
states on one of the simplest scatterers imaginable, the beam splitter. At
last we summarize the findings of the chapter in Sec. 2.5. Let us start out
with some classical optics.

2.1 Classical Light Propagation

In this section we will briefly review classical light propagation using usual
potential theory to derive the total energy of the electromagnetic field and
relate it to the energy of a sum of harmonic oscillators. As always we start out
with Maxwell’s equations [9, 10] (see also any textbook on light propagation)

∇×E(r, t) = −∂B(r, t)

∂t
, (2.1.1a)

∇×H(r, t) =
∂D(r, t)

∂t
+ J(r, t), (2.1.1b)

∇ ·D(r, t) = σ(r, t), (2.1.1c)

∇ ·B(r, t) = 0, (2.1.1d)
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where σ(r, t) and J(r, t) are respectively the charge and current densities.
Furthermore, E(r, t) and B(r, t) are the electric and magnetic fields which
in a local, linear, non-magnetic, dielectric medium are related to the electric
displacement field, D(r, t), and the auxiliary magnetic field, H(r, t), through

D(r, t) = ε0ε(r)E(r, t), (2.1.2a)

B(r, t) = µ0H(r, t), (2.1.2b)

where ε0 and µ0 are the vacuum permittivity and permeability respectively.
Furthermore the dielectric function, ε(r), describing the geometric distribu-
tion of dielectric material, is considered real-valued, i.e. we assume a medium
without loss or gain. In this chapter we will not consider charges and currents
in the structures, but these will be included in Chap. 5.

We will now show that the energy of electromagnetic radiation is related
to the energy of a sum of harmonic oscillators. This we do in order to, in
a hand-waving way, introduce the first quantization in a general dielectric
medium in Sec. 2.3 in a similar way as the treatment of quantization of light
in vacuum, see eg. Refs. [11, 12]. A more rigorous treatment can be found
in Ref. [13]. Let us thus introduce the vector potential A(r, t) by

B(r, t) = ∇×A(r, t) (2.1.3a)

and furthermore the scalar potential φ(r, t) such that the electric field

E(r, t) = −∇φ(r, t)− ∂A(r, t)

∂t
(2.1.3b)

automatically obeys Eq. (2.1.1a). The potentials can be chosen with a certain
degree of freedom since any gauge transformationA(r, t) = A′(r, t)−∇Ξ(r, t)

and φ(r, t) = φ′(r, t) + ∂Ξ(r,t)
∂t

will leave E(r, t) and B(r, t) unaltered. Due
to the absence of charges it is easy to show that we can choose the scalar
potential to be zero, φ(r, t) = 0, and thus we fix the vector potential by the
so called generalized Coulomb gauge

∇ · [ε(r)A(r, t)] = 0. (2.1.4)

Insertion of Eq. (2.1.3a) into the Maxwell Eq. (2.1.1b) then gives the wave
equation

[

L̂+
ε(r)

c2
∂2

∂t2

]

A(r, t) = 0, (2.1.5)

with the double curl operator defined as L̂ = ∇×∇×.
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We now define the complex mode function fλ(r) as the solution of the
eigenvalue problem

[

L̂− ε(r)ω2
λ

c2

]

fλ(r) = 0, (2.1.6)

which with appropriate boundary conditions is seen to be Hermitian with the
normal inner product for fλ(r) = gλ(r)/

√

ε(r) such that the eigenfunctions
fλ(r) form a full set of solutions having the orthonormality condition

∫

dr ε(r)fλ(r) · f∗λ′(r) = δλ,λ′ , (2.1.7)

where δλ,λ′ is the Kroenecker delta function. The indices λ label the specific
independent modes of the field and we can choose λ = {k, s} corresponds to
the specific state with momentum k and polarization s such that the sum
over λ is a generalized sum over {k, s}. We can now make an eigenfunction
expansion of the vector potential in the new eigenfunctions

A(r, t) =
∑

λ

[Aλ(t)fλ(r) + A∗
λ(t)f

∗
λ(r)] , (2.1.8)

where Aλ(t) are some complex-valued, time-dependent expansion coefficients
which by insertion into Eq. (2.1.5), using the definition of the eigenfunctions,
Eq. (2.1.6), and the orthonormality condition, Eq. (2.1.7), are found to evolve
harmonically as Aλ(t) = Aλ(0)e

−iωλt. For vacuum (ε(r) = 1) the expansion
reduces to the usual plane-wave mode expansion known from textbooks, see
eg. Refs. [12, 11]. The energy of the electromagnetic radiation is given by
the volume integral of the sum of the energy densities of the electric field and
the magnetic field,

ER =
1

2

∫

dr

[

ε0ε(r)E(r, t) · E(r, t) +
1

µ0
B(r, t) ·B(r, t)

]

(2.1.9)

and thus by insertion of the vector potential we get a sum of time-independent
contributions of the modes

ER = ε0
∑

λ

ω2
λ [Aλ(t)A

∗
λ(t) + A∗

λ(t)Aλ(t)] , (2.1.10)

where we have left the order of the mode coefficients even though they of
course commute in the classical case. If we now introduce the real-valued
coefficients Qλ(t) = Aλ(t) + A∗

λ(t) and Pλ(t) = −iω [Aλ − A∗
λ(t)] we get

ER =
ε0
2

∑

λ

[

P 2
λ (t) + ω2

λQ
2
λ(t)
]

, (2.1.11)
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which strongly resembles a sum of individual harmonic oscillators. This
resemblance is not a coincidence, but rather is caused by the explicit use
of ”matter in motion” in the original derivation of Maxwell [10]. It is thus
more curious that Maxwell’s equations also describe light propagation in
vacuum. In Sec. 2.3 we put hats on the mode coefficients and call them
operators and relate the energy to the energy of the quantum mechanical
harmonic oscillator. This is of course a too simplified way to carry out the
first quantization, but it is sufficient for the present purpose. In the following
section we will go through the basics of classical light propagation through
multiple scattering systems.

2.2 Classical Multiple Scattering

In the previous section we introduced some rather general results from clas-
sical optics. Here we investigate the effect of multiple scattering of classical
light. This will give the reader a strong feeling of classical wave scattering and
the related formalism. This we do by first in Sec. 2.2.1 revisiting the method
of Green functions to give a simple and intuitive microscopic way of treating
weak multiple scattering. This is used to introduce the so-called scattering
matrix which makes it possible to investigate scattering in a macroscopic de-
scription by the use of random matrix theory which is discussed in Sec. 2.2.2.
This will give an intuitive understanding of intensity correlations in classical
multiple scattering.

2.2.1 The Green Function and Scattering Matrix

Now we will use the Green function method to find the time evolution of the
electric field. We then use the intuitive physical interpretation of the Green
function as a way to investigate propagation in a scattering medium. After
this we relate the Green function to the scattering matrix.

By taking the curl of Eq. (2.1.1a) and performing the Fourier transform
we get the wave equation for the electric field

[

L̂− ω2ε(r)

c2

]

E(r, ω) = 0. (2.2.1)

If we now assume the medium to be homogeneous ε(r) = εb, where the
subscript b is for background, and phenomenologically add a source term
S(r, ω) we get

[

L̂− ω2εb
c2

]

Eb(r, ω) = S(r, ω). (2.2.2)
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We will now find the resulting field due to the source using the Green function
method. The source could be interpreted as the field at some initial stage
and we thus investigate the time evolution of such an initial field.

The dyadic Green function is defined as the solution of
[

L̂− ω2εb
c2

]

Gb(r, r
′, ω) = δ(r− r′)I (2.2.3)

where I is the unit matrix, such that, using that the operator in Eq. (2.2.2)
is Hermitian, we have that

Eb(r, ω) =

∫

dr′Gb(r, r
′, ω) · S(r′, ω). (2.2.4)

The Green function gives the probability amplitude for the light to go from
r′ to r. Now let us introduce the scattering elements into the structure by
including the geometric distribution of dielectric material, ε(r). This we do
by defining the difference δε(r) = εb − ε(r) such that

[

L̂− ε(r)ω2

c2

]

E(r, ω) = S(r, ω). (2.2.5)

We see that this can be written as
[

L̂− εbω
2

c2

]

E(r, ω) = S(r, ω) +
δε(r)ω2

c2
E(r, ω) (2.2.6)

which has the formal solution

E(r, ω) = Eb(r, ω) +
ω2

c2

∫

dr′Gb(r, r
′, ω) · δε(r′)E(r′, ω). (2.2.7)

This has the clear physical interpretation that by introducing some change
in the scattering environment, δε(r′), the field at r, E(r, ω) is given by the
field without the change Eb plus a scattering term being an implicit integral
of the field over all the positions where the environment is changed, r′, and
weighted with the amount it is changed at that position, δε(r′). If we assume
that the scattering is weak, such that Gb(r, r

′, ω)δε(r′) is small, then we can
iterate once on this implicit equation, Eq. (2.2.7), and assume all second-
and higher-order terms to be negligible

E(r, ω) = Eb(r, ω) +
ω2

c2

∫

dr′Gb(r, r
′, ω) · δε(r′)Eb(r

′, ω)

+
ω4

c4

∫

dr′Gb(r, r
′, ω) · δε(r′)

∫

dr′′Gb(r
′, r′′, ω) · δε(r′′)E(r′′, ω)

≈ Eb(r, ω) +
ω2

c2

∫

dr′Gb(r, r
′, ω) · δε(r′)Eb(r

′, ω). (2.2.8)
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This is known as the first-order Born approximation and describes how the
electric field at position r is approximated by the light that would have
arrived there without the change in the scattering environment plus the light
scattered once and arriving at r. If the change in the scattering environment
was due to a collection of isotropic point scatterers δε(r) =

∑

m δεmδ(r−rm)
then

E(r, ω) = Eb(r, ω) +
ω2

c2

∑

m

Gb(r, rm, ω) · δεmEb(rm, ω)

+
ω4

c4

∑

m

∑

n

δεmδεnGb(r, rm, ω) ·Gb(rm, rn, ω) ·E(rn, ω)

≈ Eb(r, ω) +
ω2

c2

∑

m

Gb(r, rm, ω) · δεmEb(rm, ω), (2.2.9)

which is seen to be valid if either the scattering strengths δεm are small or the
probability of going from rm to rn, Gb(rn, rm, ω) is small, i.e. if the proba-
bility of scattering between different scatterers is small. This approximation
will be used in Chap. 6 to calculate the fluorescence spectrum of a driven
cloud of cold atoms.

When scattering is not weak it is not always preferable to use the micro-
scopic approach of Green functions since the explicit propagation path is not
usually important for the end result. Therefore one often uses the scattering-
matrix approach, a macroscopic approach which only consider the probability
of a mode i to propagate to another mode α1. The scattering matrix, S, is
related to the Green function through the Fisher–Lee relation [14]. The rela-
tion is not stated here since it not explicitly used, but one could in principle
use the relation to calculate the scattering matrix elements given the knowl-
edge of the Green function of the full scattering medium. The scattering
matrix method is however only applicable when the transport is linear [15]
and will thus not be used in the second part of the thesis concerning strong
light-matter interaction.

2.2.2 Classical Correlations by Multiple Scattering

Let us now use the scattering matrix method to describe multiple scattering.
Since the present work consider scattering processes with random distribu-
tions of scatterers the usual way to describe such type of propagation is to

1Here and in the following we use the notation that Roman letters correspond to incom-
ing modes while Greek letters indicate outgoing modes. Furthermore we use the notion
”modes” while the term ”states” is also often used in the literature. We will reserve the
use of ”states” to quantum states.
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investigate its ensemble-averaged properties. Due to the randomness one
might expect that performing an average would wash out all correlations in
the system, but as we will see this is not the case.

Here we perform the ensemble average by using the scattering matrix the-
ory and then use random-matrix theory on the products of scattering matrix
elements, see eg. Ref. [7]. Random matrix theory builds on using the general
properties of the scattering matrices concerning the specific physical situa-
tion under investigation. For example energy conservation and time-reversal
symmetry of light propagation in multiple scattering media lead to unitar-
ity and hermiticity of the scattering matrix. Furthermore random matrix
theory assumes that the eigenvalues of the scattering matrix has some statis-
tical distribution. Specifically we look at the transport through a disordered
waveguide and use the expressions for the averaged products of two or four
scattering matrix elements obtained in Ref. [16] using the Dorokhov–Mello–
Pereyra–Kumar (DMPK) scaling equation [17, 18]. The DMPK equation is
built on only a few general properties, namely of flux conservation, time-
reversal symmetry and the maximum entropy hypothesis [19].

Let us look at the intensity of a given output mode α after transmission
which is generally given by

Iα =
∑

i

∑

j

tiαt
∗
jαEiE

∗
j (2.2.10)

where tαi is the scattering matrix element giving the probability amplitude
of the field amplitude incident in mode i, Ei, to be transmitted to the output
mode α, and the sum is over all N possible modes of the structure. If we
now perform an ensemble average we obtain

Iα =
∑

i

∑

j

tiαt∗jαEiE
∗
j = τ

∑

i

Ii (2.2.11)

where the overline denotes the averaging, tiαt∗jα = Tiαδij = τδij is the av-
erage single channel intensity transmission coefficient, with Tiα being the
intensity transmission coefficient, and Ii = |Ei|2 is the intensity of the light
incident in the i’th mode. We thus see that the intensity transmission is
given by the average conductance g = N2τ through the medium. Further-
more, only the intensity transmission coefficients rather than the individual
amplitude transmission coefficients contribute to the transmitted intensity.
From this, one might expect that all correlations between the intensities of
different modes would wash out since the averaging procedure would seem
to remove all phase information. This is however only partially true. Due
to constructive and destructive interference amongst different paths, some
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intensity correlations will in fact survive ensemble-averaging. The correla-
tion function for scalar wave propagation through disordered media was first
found using a diagrammatic technique to have the form [20]

Cαiβj =
TiαTjβ

Tiα Tjβ
− 1 = C

(1)
iαjβ + C

(2)
iαjβ + C

(3)
iαjβ, (2.2.12)

independent of the details of the scattering mechanisms. The same form was
later found using random matrix theory giving [21, 22]

Ciαjβ = C1δαβδij + C2(δαβ + δij) + C3. (2.2.13)

The different coefficients has a transparent physical interpretation which will
be explained in the following. The three coefficients C1, C2, and C3 corre-
spond respectively to the so-called short-range, long-range, and infinite-range
correlations. We will spend the rest of this section describing in detail the
dependence of g, C1, C2, and C3 on the degree of scattering to be explained in
a moment. Furthermore, it is explained how these coefficients are related to
the fluctuations and correlations of the speckle pattern produced in a classi-
cal multiple scattering experiment. The discussion will also lead us to define
the ballistic, weak scattering, and localized regimes.

In general, g, C1, C2, and C3 only depend on two quantities, i) the number
of possible modes of the structure, N , and ii) the ratio, s = L

ℓ
, between the

length of the scattering region of the medium, L, and the scattering mean
free path, ℓ [7]. Since systems with different N have qualitatively the same
dependence on s, we will illustrate C1, C2, C3, and g using a waveguide having
N = 20 with data generously supplied by L. S. Froufe-Pérez, Ref. [16]. In
the following we describe the four different quantities seperately.

Conductance g : The conductance, g, has its name from electronic trans-
port where disorder was first investigated. It describes the average number
of modes that are conducting, i.e. where light can pass through the sample.
Intuitively it is expected that the conductance decreases as the amount of
scattering, s, increases, this can be seen in the upper plot in Fig. 2.1. Fur-
thermore we see that as we increase s, we reach a point where g < 1 which
signifies that, on average, less than one mode will be conducting. The g = 1,
see dashed lines in Fig. 2.1, thus marks the conducting to insulating tran-
sition and the region g < 1 is defined as the localized regime. The precise
value of s at the transition depends on the number of modes N and increases
with N .
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Figure 2.1 The dependence of g and C1 versus s = L/ℓ. The upper plot shows the
conductance g as a function of the amount of scattering s = L/ℓ. At g = 1 there is
a transition from conducting to becoming insulating defining the localized regime. The
lower plot shows the short-range correlation C1, also as function of s. The quantity C1 is
also identified as the single speckle intensity fluctuations and in the localized regime C1

increases dramatically. The plot is for a disordered waveguide with N = 20 modes with
the data gratefully supplied by L. S. Froufe-Pérez published in Ref. [16]. Systems with
different N have qualitatively the same dependence of s.

Short-range correlation C1 : The short range correlation, C1, is often
identified as the so-called speckle contrast or single-speckle intensity fluctu-
ations since it is the leading term in Cαiβj with α = β and i = j [19]. That
is, it is the leading term when considering a single input channel, i.e. i = j,
and a single output channel, i.e. α = β. In the lower plot in Fig. 2.1 the
dependence of C1 as a function of s is shown. First of all we see that up
until the localized regime, we have C1 ≈ 1 indicating small sample-to-sample
speckle intensity fluctuations. Furthermore we notice a dramatic increase of
C1 in the localized regime. The reason is that most often light will not pass
through when the system becomes insulating, but for a few realizations it
will, thus giving rise to large fluctuations in the sample- to- sample speckle
intensity.
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Long-range correlation C2 : The long-range correlations C2 can be iden-
tified as the intensity correlations between different speckles in the speckle
pattern since it is the leading term in Cαiβj with α 6= β and i = j [19].
That is, it is the leading term when considering a single input channel, i.e.
i = j, and two different output channel, i.e. α 6= β. The dependence of C2

versus s is shown in the upper plot of Fig. 2.2 showing a similar behavior
as C1 except for two striking features. Firstly, we see that C2 ≈ 0 below
the localized regime which signifies that the different speckles are almost un-
correlated. This would be expected from weak scattering or diffusion theory
which build on the ansatz that all phase information is averaged out and thus
no correlations caused by interference can occur. Secondly, we notice that for
small amounts of scattering C2 actually becomes negative which signifies that
the intensity of two speckles becomes anti-correlated. This can be explained
follows. As the amount of scatterers decreases the propagation becomes bal-
listic. Since we are considering transmission from only one input channel,
ballistic propagation would signify that observation of high intensity in one
speckle will decrease the possibility of high intensity in another speckle. The
extreme case is free space propagation which of cause would only give a single
speckle spot from the laser itself. This transition from negative to positive
C2 thus marks the transition from the ballistic regime to the weak scattering
regime. It occurs at s ≈ 2, independent of N [23]. Let us now take a look
at the behavior of C2 in the localized regime. As mentioned, the dependence
is very similar to that of C1 and in fact as we can see by the solid line in
the lower plot of Fig. 2.2 the difference C1 − C2 actually goes to zero in the
localized regime. This is because in the localized regime the system turns
insulating and thus, since less than one mode is propagating through the
structure, two speckles in the same speckle pattern will result from the same
mode such that C1 and C2 actually probe the same transmitted mode.

Infinite-range correlation C3 : Finally, the infinite-range correlations,
C3, are actually equal to C1 − 1 [16] which can be seen from the dash dotted
line in the lower plot of Fig. 2.2. We have thus seen that, in classical wave
propagation through disordered media, correlations between intensities of
different output modes persist ensemble averaging and that correlations are
actually increased as the amount of scattering increases. This along with
the knowledge about the dependence of g, C1, C2, and C3 is used in the
next chapter where quantum optical phenomena in connection to multiple
scattering are investigated. However, to that end we first need to introduce
quantum optics which is the subject of the next section.
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Figure 2.2 The evolution of C2 and C1 −C2 and C1 −C3 versus s = L/ℓ. The upper plot
shows the long-range correlations, C2, as a function of the amount of scattering, s. The
quantity C2 is also identified as the speckle intensity correlation function and is observed
to be approximately zero in the weak scattering regime having a transition from negative
to positive around s ≈ 2 corresponding to the transition from ballistic to weak scattering.
In the localized regime C2 approach C1 as is seen from the solid line in the lower plot.
The dash-dotted horizontal line correspond to C1 − C3 showing that C3 = C1 − 1. The
vertical lines correspond to the transitions from ballistic to weak scattering and from weak
scattering to localized respectively. The small ripples in the curve around s ≈ 60 are
due to an incomplete convergence in the numerical ensemble averaging. The plot is for
a disordered waveguide with N = 20 modes with the data gratefully supplied by L. S.
Froufe-Pérez published in Ref. [16]. Systems with different N have qualitatively the same
dependence of s.

2.3 Quantization of Light

In the previous sections we have reviewed classical light propagation and
multiple scattering. In the present section we will turn our attention to
the procedure of quantization of light and the connection between multiple
scattering and quantum optics. We will start out in Sec. 2.3.1 by briefly
going through the quantum treatment of the harmonic oscillator and relate
it to the energy of the radiation found in the beginning of this chapter. Then
in Sec. 2.3.2 we will use this approach to find the quantized electric field
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and relate this to the scattering matrix approach discussed in the previous
section. This will enable us to describe multiple scattering in a quantum
optical setting.

2.3.1 The Quantum-Mechanical Harmonic Oscillator

Let us take a look at the quantum mechanical description of the harmonic
oscillator which we will write in a form that looks like the energy of the
classical electric field found in Sec. 2.1. We will start with the Hamiltonian
of a one-dimensional quantum-mechanical harmonic oscillator (QHO)

HQHO =
p̂2(t)

2m
+

1

2
mω2q̂2(t), (2.3.1)

which is found by taking the total energy of the classical system and promot-
ing the canonical variables to operators by adding hats on them and assume
the usual commutation relation [q̂(t), p̂(t)] = i~, see eg. Refs. [11, 12, 24].
By defining the operators

â(t) =
1√
2~ω

[mωq̂(t) + ip̂(t)] , (2.3.2a)

â†(t) =
1√
n~ω

[mωq̂(t)− ip̂(t)] , (2.3.2b)

where [â(t), â†(t)] = 1, such that we can write the Hamiltonian as

HQHO =
1

2
~ω
[

â(t)â†(t) + â†(t)â(t)
]

= ~ω

[

â†(t)â(t) +
1

2

]

. (2.3.3)

The observant reader will already have noticed the similarities to the total
energy of the radiation field Eqs. (2.1.10) and (2.1.11) and we will make use
of this shortly.

In order to understand the physical meaning of the operators â(t) and
â†(t) we define the eigenstates |n〉 and eigenenergies En such that H |n〉 =
En |n〉. Using the commutation relations of â(t) and â†(t) we then get that
Hâ†(t) |n〉 = (En + ~ω)â†(t) |n〉 and Hâ(t) |n〉 = (En − ~ω)â(t) |n〉. We
thus see that â†(t) |n〉 and â(t) |n〉 are eigenstates of the harmonic oscillator
with respective eigenenergies ~ω higher or lower than En. This signifies that
the QHO has equally spaced discrete eigenenergies, but since the potential
and kinetic energies of the oscillator are positive quantities there must be
a lowest energy level E0 which we define as â(t) |0〉 = 0. If we now use
the Hamiltonian, Eq. (2.3.3), we get that H |0〉 = 1

2
~ω |0〉. That is, very

different from classical mechanics, the oscillator has a ground state energy
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E0 =
1
2
~ω, known as the vacuum energy, different from zero. From repeated

use of Hâ†(t) |n〉 = (En + ~ω)â†(t) |n〉 we get that the discrete eigenenergies
of the the quantum harmonic oscillator are En = ~ω(n + 1

2
). Finally, we

define the operator n̂(t) = â†(t)â(t) which commutes with the Hamiltonian
and thus has the same eigenstates as H. From Eq. (2.3.3) along with En we
have that n̂(t) |n〉 = n |n〉, i.e. the operator n̂(t) probes the specific energy
level of the state of a QHO.

In the theory of the QHO the eigenstates are eigenoscillations of the
system having separate eigenenergies. In quantum optics, on the other hand,
the eigenstates correspond to the number of photons in the specific mode and
n̂(t) is thus known as the photon number operator. Furthermore, â†(t) and
â(t) are known as the creation and annihilation operators since applying them
on an eigenstate respectively increase and decrease the number of photons
in that state, i.e.

â†(t) |n〉 =
√
n+ 1 |n+ 1〉 , (2.3.4a)

â(t) |n〉 =
√
n |n− 1〉 . (2.3.4b)

Furthermore, it is useful to defined the quadrature operators

X̂(t) =
1√
2

[

â†(t) + â(t)
]

, (2.3.5a)

Ŷ (t) =
i√
2

[

â†(t)− â(t)
]

, (2.3.5b)

describing the real and imaginary parts of the field amplitude. The opera-
tors â(t) and â†(t) are very important in quantum optics and will reappear
throughout the remaining of this thesis while X̂(t), Ŷ (t), and n̂(t) are used
extensively in this and the next two chapters.

2.3.2 Quantization of the Electromagnetic Field

Let us now turn to the quantization of the electromagnetic field. Similar
to the QHO discussion we write the quantum-mechanical Hamiltonian of the
electric field by taking the expression for the total energy of the classical field
and stating that the modes are now operators. This is of course a somewhat
backwards way to do quantization. The more strict mathematical way is to
first derive the classical Lagrangian and identifying the canonical variables,
see eg. Ref. [25], then turn the canonical variables into operators in the
Lagrangian and use this to find the Hamiltonian from the Euler–Lagrange
equations. See eg. Ref. [24] for a general treatment of quantization and
Ref. [13] for a treatment of field quantization in dielectric structures. In the
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current case the two methods though give the same results [13] and thus
without further ado we simply write

HR = ε0
∑

λ

ω2
λ

[

Âλ(t)Â
†
λ(t) + Â†

λ(t)Âλ(t)
]

. (2.3.6)

The resemblance between the terms of the sum in HR and the QHO Hamil-
tonian, Eq. (2.3.3), is striking and we thus associate a quantum mechanical
harmonic oscillator to each mode λ by writing

Âλ(t) =

√

~

2ε0ωλ
âλ(t) (2.3.7)

such that

HR =
∑

λ

~ωλ

[

â†λ(t)âλ(t) +
1

2

]

. (2.3.8)

Since the terms in the sum are equal to the Hamiltonian for the QHO we can
attribute the same relations to âλ and â†λ as of â and â† in Sec. 2.3.1, while
all operators with different λ commute.

Using Eq. (2.3.7) we get the vector potential operator

Â(r, t) =
∑

λ

√

~

2ε0ωλ

[

âλ(0)e
−iωλtfλ(r) + â†λ(0)e

iωλtf∗λ(r)
]

, (2.3.9)

such that the electric field operator is

Ê(r, t) = −∂Â(r, t)

∂t
= i
∑

λ

√

~ωλ

2ε0

[

âλ(0)e
−iωλtfλ(r)− â†λ(0)e

iωλtf∗λ(r)
]

.

(2.3.10)

There is a tradition of writing the electric field as a sum of two contributions
Ê(±)(r, t) known as the positive- and negative-frequency components, i.e.

Ê(+)(r, t) = i
∑

λ

√

~ωλ

2ε0
âλ(0)e

−iωλtfλ(r), (2.3.11a)

Ê(−)(r, t) = −i
∑

λ

√

~ωλ

2ε0
â†λ(0)e

iωλtf∗λ(r), (2.3.11b)

owing to the fact that Eq. (2.3.10) resemble the positive and negative parts
of a Fourier integral [26] and we will use this notation throughout the thesis.
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Let us for a moment dwell on the significance of Eqs. (2.3.11). First of
all we notice that the spatial mode profile and dynamics of the electric-field
operators is the same as for the classical field, i.e. e−iωλfλ(r). The quantum
electrodynamics description thus seems to give rise to the same interference
patterns as in the classical case. This is indeed often true when considering
amplitude or intensity propagation, such as for example the double-slit ex-
periment described in Chap. 1. The difference between the classical and the
quantum treatment do arise because not all operators commute. This gives
rise to differences when we look at higher-order moments of the field, such
as photon fluctuations, coincidences, and noise.

For simplicity we will in the rest of this chapter and the next consider
stationary single-mode excitations which is often sufficient to describe quan-
tum optical experiments in non-interacting systems [11] and we thus only
need to look at the evolution of the optical operators of the individual modes
using the scattering matrix approach. That is, we can write the operator
of an output mode α as a sum of the contributions from the input modes i
through the scattering-matrix elements sαi, i.e. [27, 28]

âα =
∑

i

sαiâi. (2.3.12)

This will be used in the next section to illustrate quantum optical phenomena
on the simple scattering on a beam splitter and, more importantly, in the
next chapter to describe the propagation of quantum optical states through
a multiple scattering medium.

2.4 A Simple Example - The Beam Splitter

The key elements in most linear quantum information protocols are the phase
shifter, the beam splitter (BS) and the quarter- and half-plates [29]. These
elements can be described by unitary transforms having two input ports and
two output ports, i.e. having two by two scattering or transmission matrices.
In the following the model of the lossless BS is briefly reviewed. Then,
in Sec. 2.4.1, the photon number correlation function is defined and used to
illustrate quantum interference. Finally, in Sec. 2.4.2 we introduce the degree
of quadrature entanglement, an entanglement measure, and use the BS as a
simple illustrative example of how to obtain entangled states.

The input-output relation for a BS, illustrated in Fig. 2.3, can in general
be written as

âα = Sâi, (2.4.1)
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Figure 2.3 A sketch of a beam splitter. Light is incident from mode 1 or 2 and is scattered
into modes 3 and 4.

where âα and âi are vectors containing the annihilation operators of the
outgoing and incident fields, respectively, and S is the scattering matrix. In
reality the BS has 4 modes, but the mode pairs 1 and 2 do not couple and
likewise the modes 3 and 4. Therefore we can limit ourself to consider the 2 by
2 system consisting of one of the off-diagonal block elements in the scattering
matrix. We thus take âi = (â1, â2) and âα = (â3, â4) as respectively the input
and output annihilation operators and the unitary scattering matrix, S, is
given by

S =

(

t31 r32
r41 t42

)

. (2.4.2)

Due to the unitarity, the coefficients are related as r32 =
√
Rei(φR+φ0), r41 =√

Re−i(φR−φ0), t31 = i
√
T e−i(φT−φ0) and t42 = −i

√
T ei(φT+φ0), i.e.

S = eiφ0

(
√
T eiφT

√
ReiφR√

Re−iφR −
√
T e−iφT

)

, (2.4.3)

with R and T being the real-valued intensity reflection and transmission
coefficients with R + T = 1 and φT − φR = ±π [30]. Since φT − φR = ±π
one can eliminate φR. This yields that the general system can be described
by the scattering matrix

S =

(

−
√
T eiφI

√
ReiφI√

Re−iφI

√
T e−iφI

)

, (2.4.4)
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where φI is the inherent BS phase. This looks very similar to the classical
treatment of a BS and indeed the scattering matrix is the same as the classical
since the mode wave-function is the same as the classical as described in
Sec. 2.3. The quantum character however allready appears if we consider
the simplest case possible: transmission of light incident only in a single
mode of the beam splitter, say mode 1. In the classical case we would then
simply put the field in mode 2 to zero and not worry about this for further
calculations. If one naively does the same in the quantum optical case, i.e.
taking â2 = 0, then the operator commutation relations become violated,
e.g. giving [â3; â

†
4] = RT e2iφI 6= 0. This would signify that the output modes

were suddenly not independent which is of course not the case since they
are separate eigenmodes of the electric field. The error is easily corrected by
simply including the operator of the mode where no field is incident thereby
fixing the commutation relations. It is thus evident that the discrepancy is
caused by the lack of inclusion of the vacuum field which, in stark contrast
to classical optics, is important for describing even the simplest of scattering
systems.

A valid question is now; does this have any physical implications or is it
simply a mathematical artifact which demands the inclusion vacuum modes?
We will answer the question in the following section by investigating the
photon correlations after transmission through the beam splitter. This will
further lead us to the introduction of a concept called quantum interference
for which the photon correlation function is seen to be a good measure.

2.4.1 Spatial Correlations

Let us introduce a measure of the quantum correlations between the intensity
of two distinct modes defined as the covariance of the intensity in the modes
α and β and normalized with respect to the respective intensities. Since the
intensity of a mode is proportional to the number of photons we have, see
eg. Ref. [11],

Cαβ =
〈n̂αn̂β〉 − 〈n̂α〉 〈n̂β〉

〈n̂α〉 〈n̂β〉
=

〈

â†αâαâ
†
β âβ

〉

−
〈

â†αâα
〉

〈

â†βâβ

〉

〈

â†αâα

〉〈

â†βâβ

〉 . (2.4.5)

This corresponds to the conditional probability that, given the measurement
of a photon in one mode what is the probability to measure a photon in the
other. A negative value of Cαβ thus corresponds to anti-correlated modes,
i.e. that detection in one mode reduces the probability of detection in the
other, and similarly Cαβ > 0 correspond to correlated modes. The limiting
case of Cαβ = 0 corresponds to the two output modes being uncorrelated
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and is often known as the classical limit since Cαβ < 0 is impossible for
classical light [11]. In the case of a multiple-scattering medium as in the
next chapter the modes correspond to two different output directions. In the
present section the situation corresponds to the two output modes of the BS
and the setup is known as Hanbury Brown–Twiss interferometry [31].

If we first look at the case of an arbitrary input state in mode 1 and
vacuum input in mode 2, |ψin〉 = |φ1, 02〉, such that â2 |φ1, 02〉 = 0, then we
obtain

〈n̂3n̂4〉 = RT
[

〈

n̂2
1

〉

−
〈

â1â2â
†
2â1

〉]

= RT
[

〈

n̂2
1

〉

−
〈

â1(â
†
2â2 + 1)â1

〉]

= RT
[〈

n̂2
1

〉

− 〈n̂1〉
]

. (2.4.6)

Notice that the included calculations, even though they are trivial, consti-
tute prime examples of the difference between classical and quantum the-
ory. In classical theory everything commutes and we would obtain 〈n̂3n̂4〉 =
RT 〈n̂2

1〉 = 〈n̂3〉 〈n̂4〉 such that, no matter the type of input state in mode 1
we would have uncorrelated photon output. In quantum optics on the other
hand we need to take the effect of the vacuum field and its commutation
relation into account. As we see from the first to the second line the com-
mutation relation of the vacuum field adds a contribution to the correlation
similar to the introduction of an extra photon and is thus identified as a
contribution of vacuum fluctuations to spatial correlations.

We will now take two examples of specific input states. If we first consider
a so-called coherent state (or Glauber state) of amplitude a1 as the input
state, |ψin〉 = |a1, 02〉, such that â1 |a1, 02〉 = a1 |a1, 02〉, then we readily
obtain 〈n̂3n̂4〉 = RT |a1|4 = 〈n̂3〉 〈n̂4〉 giving exactly the classical result of
uncorrelated photon statistics of the output modes. This is because the
coherent state is the quantum mechanical counterpart of classical light. If, on
the other hand, we consider an incident n1 photon Fock state, |ψin〉 = |n1, 02〉,
such that n̂1 |n1, 02〉 = n1 |n1, 02〉, then we get 〈n̂3n̂4〉 = RT n1(n1−1), which
for n1 = 1 shows the striking result 〈n̂3n̂4〉 = 0. This has the clear physical
interpretation that when only a single photon is incident, then measuring a
photon in one mode will leave it impossible to measure a photon in the other
mode.

In order to identify what is often meant by quantum interference (QI)
we will consider the case when single-photon Fock states are incident in
each input mode, i.e. |ψin〉 = |11, 12〉, giving 〈n̂3n̂4〉 = (T − R)2. For a
symmetric BS, T = R = 1

2
, we see that the two photons will interfere

and leave the BS through the same mode. Thus it is impossible to make a



2.4 A Simple Example - The Beam Splitter 23

coinciding measurement of photons in the two output modes, that is, either
both photons exit in mode 3 or in mode 4. This effect is called QI and
stems from the fact that the two photons are indistinguishable quantum
particles. Therefore the photon probability amplitudes of the two photon
paths corresponding to the photons exiting separately must be added before
forming the absolute value in order to get the probability outcome. Due to
the phase shift of reflection and transmission the two paths are exactly π
out of phase and thus cancel [12]. It might not seem surprising that photons
interfere since we are perfectly used to the interference of light as waves, but
one should remember that when considering photons we are considering the
”particle” properties of light for which interference might seem impossible.

For reference, we note that for general Fock states incident in the two
BS modes, the correlation function is always less than or equal to zero since
detection of a photon in one of the output modes will decrease the number of
photons in the system and thus the two output modes will be anti-correlated
or at most uncorrelated. Peculiarly this is not the case for transmission
through multiple scattering media as we will find in Chap. 3, but first we
will introduce an entanglement measure and illustrate its properties on the
simple BS.

2.4.2 Degree of Quadrature Entanglement

Finally, we introduce a measure for continuous-variable quantum entangle-
ment between the quadratures of two different modes and illustrate its prop-
erties with the example of a BS. The measure we will use is the Duan–Simon
criterion determining the degree of separability of two different continuous-
variable operators [32, 33]. We will use the quadrature operators as our
continuous-variable operators for which the degree of entanglement is quan-
tified in terms of the quadrature variance product (QVP) [34]

εαβ = ∆(X̂α − X̂β)
2∆(Ŷα + Ŷβ)

2. (2.4.7)

This product determines the degree of separability of the quadratures of two
distinct modes α and β. Physically, the QVP determines the ability to predict
a noise measurement in mode β given the result of a noise measurement on
mode α, and for εαβ < 1 (> 1) the outcome is predictable below (above)
the quantum noise limit, εαβ = 1. Thus εαβ < 1 implies that the quantum
state of the two output modes α and β is unseparable, i.e. entangled [34].
Furthermore, if εαβ <

1
4
the states are called EPR entangled [35] and obey

the very strict entanglement criteria introduced by Bell [36] making them
especially useful for quantum information processing [29, 35].
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The QVP will be used in the next chapter to investigate the possibility
of creating entangled states between two separate modes by interference of
squeezed states on a multiple scattering medium. In this section we will
illustrate the phenomena using the example of a BS. First of all, it is easy to
show (see App. A.1) that mixing any coherent states, i.e. classical laser light,
on the BS simply gives a QVP equal to unity corresponding to the quantum
noise limit. This is because the BS is a linear device and thus cannot create
quantum effects out of classical states. Let us instead take a look at the effect
of mixing two quadrature squeezed states on a BS. For illustrative purposes
we will look at the simple case of a symmetric phase-less BS and squeezed
states with equal squeezing amplitude, s, while a more general treatment
is found in App. A.1. The phase-less symmetric BS and equal amplitude
squeezed states give us

∆(X̂3 − X̂4)
2 = sin2

(

θ1
2

)

e2s + cos2
(

θ1
2

)

e−2s, (2.4.8a)

∆(Ŷ3 + Ŷ4)
2 = cos2

(

θ2
2

)

e2s + sin2

(

θ2
2

)

e−2s, (2.4.8b)

with θi being the squeezing phase of the state incident in mode i. We note
that s = 0, corresponding to a coherent state, again gives the quantum noise
limit as it should. Let us instead play around with the squeezing phases by
noticing that for θ1 = 0, we have ∆(X̂3 − X̂4)

2 = e−2s, while if θ1 = π, then
∆(X̂3 − X̂4)

2 = e2s, and opposite for θ2 and ∆(Ŷ3 + Ŷ4)
2. We thus get that

if θ1 = θ2 = 0 then ε3,4 = 1 again corresponding to the quantum noise limit.
If, instead, the two states have θ1 = 0 and θ2 = π then ε3,4 = e−4s which is
always below unity and thus the two output modes are mutually entangled
whereas for θ1 = π and θ2 = 0 we have ε3,4 = e4s and the two outputs are not
entangled. Furthermore, for θ1 = 0 and θ2 = π it is possible to achieve EPR
entanglement by cranking the squeezing strength up to above s > 1

2
ln(2). It

is thus possible to create entangled states by mixing two squeezed states on
the simplest imaginable scatterer. We will see in the next chapter that this
also holds for for a more complicated system of scatterers.

2.5 Chapter Summary

In this chapter we introduced and reviewed some of the theoretical concepts
of multiple scattering and quantum optics which serve as the background of
the new results of the following chapters.

We began the chapter by revisiting classical optics where we found the
energy of the classical electrodynamics in terms of the vector potential. We
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further introduced the Green function as a means to investigate multiple
scattering at a microscopic level, which we will find useful in Chaps. 5 and 6.
Then we introduced the scattering matrix which in connection with random-
matrix theory is able to describe multiple scattering at a macroscopic level
which we will use in Chaps. 3 and 4.

We then turned our attention to quantum optics. We first carried out
the quantization of the electromagnetic field in an arbitrary dielectric en-
vironment which will be used throughout the thesis, but will become espe-
cially useful in Chap. 5. Then we introduced the photon-number correlation
function and the degree of continuous-variable entanglement as measures for
quantum interference and entanglement, respectively. Finally, we illustrated
the formalism and phenomena by analyzing the scattering of quantum optical
states off one of the simplest scatterers imaginable, the beam splitter.





3
Quantum Optics in Elastic Scattering

Waveguides

In this chapter, we use the scattering matrix theory described in the previous
chapter combined with results from random matrix theory. This let us inves-
tigate quantum interference (QI) induced by combining an arbitrary number
of independent quantum states in a random multiple scattering medium in
the mesoscopic regime. We identify the role of QI on the degree of photon
number correlations between two transmission paths through the medium
and the degree of continuous variable entanglement. Surprisingly QI of pho-
tons is found to survive after averaging over all configurations of disorder,
i.e. the induced quantum correlations have deterministic character despite
the underlying random multiple scattering processes. We furthermore dis-
cuss the feasibility of experimentally verifying our theoretical predictions.
The chapter is primarily built on Paper J2; J. R. Ott, et al., Phys. Rev.
Letters 105, 090501 [37], which is a generalization of the work in Ref. [38].

We begin in Sec. 3.1 by describing the calculation of light propagation
through a multiple scattering medium using the scattering matrix formalism.
Then in Sec. 3.2 we illustrate the existence of quantum interference and cre-
ation of continuous variable entanglement induced by multiple scattering in
a single realization of disorder. Finally, in Sec. 3.3 we show that interestingly,
some of the found quantum optical phenomena survive even after ensemble
averaging.

3.1 Discrete-Mode Theory of Multiple Scattering

Let us introduce the model for propagation of quantized light through a
linear, elastic, multiple scattering medium of length L and transport mean
free path ℓ, see Fig. 3.1. We apply the scattering matrix for the propagation
of light and use random matrix theory on the scattering elements as described
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L

ℓ
âi âα

α

β

Figure 3.1 (color online). Sketch of propagation through a disordered waveguide of
length L and transport mean free path ℓ. Quantized light is incident to the left and the
correlations between two output modes on the right are analyzed. The operators âi and
âα correspond to the annihilation operators of modes i and α, where Roman and Greek
subscripts denote input and output modes respectively. The correlations between the two
different output modes α and β are analyzed. Figure from Paper J2.

in Chap. 2. The approach describes effectively a quasi-1D model of an N -
mode waveguide, but is known also to accurately predict propagation in 3D
slab geometries [7]. We relate the photon annihilation operators âα (âi) of
output (input) modes α (i) by âα =

∑

i sαiâi, where the summation is over
all N possible input modes at each end of the waveguide and sαi denotes the
complex scattering matrix element. Experimentally, such a system could,
e.g., be realized in titania powder samples, see next Chap. 4, or disordered
photonic crystal waveguides [8, 39]. It is important to note that, as with the
beamsplitter in Sec. 2.4, in the quantum optical description it is necessary to
include all modes, even those with vacuum input, in order to obtain correct
physical results.

As described in Chap. 2 a measure of QI is the two-channel photon cor-
relation function

Cαβ =
〈n̂αn̂β〉 − 〈n̂α〉 〈n̂β〉

〈n̂α〉 〈n̂β〉
. (3.1.1)

The brackets denote quantum mechanical expectation values and n̂α = â†αâα
is the output photon number operator. The degree of entanglement is quan-
tified in terms of the quadrature variance product (QVP) [34]

εαβ = ∆(X̂α − X̂β)
2∆(Ŷα + Ŷβ)

2, (3.1.2)

where X̂α = 1√
2
(â†α+ âα) and Ŷα = i√

2
(â†α− âα) are the quadrature operators.

The QVP determines the ability to predict a measurement in mode β given
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i i i

j j j

α α α

β β β

(a) (b) (c)

Figure 3.2 A diagrammatic representation of three terms of the form

t∗αit
∗
βjtβktαl

〈

â†i â
†
jâkâl

〉

. Diagrams (a) and (b) involve only intensity transmission of

the input modes while (c) shows quantum interference between two input states. The
three diagrams are the only ones that survive ensemble averaging. Figure from Paper J2.

the result of a measurement on mode α, and for εαβ < 1 (> 1) the outcome
is predictable below (above) the quantum noise limit. Thus, εαβ < 1 implies
that the quantum state of the two output modes α and β is unseparable, i.e.
entangled [34].

Since we consider transmission we only obtain transmission scattering
matrix elements, tαi, in our calculations. Eqs. (3.1.1) and (3.1.2) can conve-
niently be evaluated diagrammatically, by representing the propagator tαiâi
by an arrow connecting input mode i to output mode α. Since the scattering
matrix is unitary, t∗αiâ

†
i represents the time-reversed path. E.g. considering

two input modes, evaluating Eq. (3.1.1) yields 24 different terms of the form

t∗αit
∗
βjtβktαl

〈

â†i â
†
j âkâl

〉

. Three typical diagrams are shown in Fig. 3.2. As

an example, the contribution from diagram (a) is |tαi|2|tβi|2 〈: n̂2
i :〉, where

〈: · :〉 denotes normal ordering. The diagrams can be classified into intensity
and interference diagrams. The former corresponds to incoherent addition of
the intensities associated with the different propagation paths through the
medium, as it is the case for the diagrams (a) and (b). The latter gives rise
to QI between the input states and diagram (c) is such an example. We note
that all additional diagrams not shown in Fig. 3.2 are interference diagrams
and only the three shown diagrams survive ensemble averaging.

3.2 Single Realization of Disorder

For diffusive transport the intensity transmission coefficients are exponen-
tially distributed while the phase is uniformly distributed [40], i.e. the system
can be simulated exactly. To be specific, we choose a waveguide of N = 102
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so that the average single channel transmission is τ = g/N2 = 1/300 1, where
g is the normalized average conductance. We keep output mode α fixed while
varying output mode β in a 10 by 10 grid to represent spatial wavevectors in
the transverse plane (kx, ky).

Similar to the discussion of the BS in Sec. 2.4, we start out by evaluating
the two-channel photon correlation function between the two output modes,
α and β, using Fock states |ni〉 as input. By illuminating only a single input
channel with a two-photon Fock state |2〉 we get that Cαβ = −1/2 for all
modes α and β, independent of the realization of disorder. For single photons
incident in two different input modes |1, 1〉 the spatial photon correlations
fluctuate between -1 and 0, see Fig. 3.3 (a). This is a manifestation of QI in
a speckle pattern as observed in Ref. [41].

Next, we evaluate εαβ for two quadrature-squeezed input states |ζi〉 =
exp[1

2
ζ∗i â

2 − 1
2
ζi(â

†)2] |0〉, where ζi = sie
iθi contains the squeezing amplitude,

si, and phase, θi, [11]. We investigate two orthogonally oriented squeezed

1For diffusive transport the average single channel transmission is g ≈ N/(1 +L/ℓ) [7]
and s = L/ℓ ≈ 2 [23] giving an average amplitude transmission of τ = 1/300 for N = 102.
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Figure 3.3 (color online). (a) The 2-photon correlation Cαβ for two single-photon Fock
input states, |1, 1〉, showing large fluctuations due to quantum interference. (b) The de-
gree of entanglement log10(εαβ) for the two quadrature squeezed input states described
in the text, where the gray-scale corresponds to non-entangled states (log10(εαβ) ≥ 0)
while the colored areas with crosses display the entangled states (log

10
(εαβ) < 0). (a)

and (b) are obtained with the same realization of disorder for diffusive transport, where
the phase is uniformly distributed and the intensity transmission coefficients obey the
distribution P (|tαi|2) = exp(−|tαi|2/|tαi|2) with |tαi|2 = τ the average single-channel
transmission [40]. Figure from Paper J2.
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beams, i.e. θ1 = 0 and θ2 = π and choose both incident squeezed beams to
have si = 0.15 corresponding to experimentally obtainable parameters [42].
For the squeezed states incident in two different arbitrary modes we evalu-
ate εαβ between the two different output modes α and β. This is shown in
Fig. 3.3 (b), which visualizes that pairwise entanglement (εαβ < 1) can be in-
duced by multiple scattering. By changing the squeezing phases of the input
states the modes that display entanglement change. From knowledge of the
transmission matrix one could thus specify the modes between which the en-
tanglement should occur by changing the phases of the squeezed beams. This
could potentially be achieved with the recent scheme to measure the complex
transmission matrix for light propagation through a disordered medium [43].
The inherent ability of a multiple scattering medium to mix many modes
shows the scalability of the approach of potential use in quantum informa-
tion processing.

3.3 Ensemble Averaged Phenomena

Let us next consider the effects of QI after ensemble averaging. The averaged
amplitude transmission coefficients are given by [16]

t∗αitαj = τδij , (3.3.1a)

t∗αit
∗
βjtβktαl = τ 2 (C1δilδjk + C2δikδjl) , (3.3.1b)

with C1 and C2 the short and long-range correlation functions respectively,
and the bar denotes ensemble averaging. After the ensemble averaging only
loop-type diagrams survive, i.e. only those shown in Fig. 3.2. The values
of diagrams (a) and (b) are proportional to C1 + C2 and C1 respectively,
while diagram (c) is proportional to C2. This can be intuitively understood
since C1 expresses the intensity fluctuations in a single speckle spot, while C2

is related to the intensity correlations between two speckles as explained in
section 2.2. Therefore, since diagram (a) corresponds to light incident in the
same mode, i, passing through the medium exiting in two different modes,
α and β. The term thus contributes to both the single speckle fluctuation,
C1, and the two speckle correlation, C2. Diagram (b) on the other hand only
involves intensity propagation from one incident mode to another and thus
only the single speckle fluctuations is of importance. At last, diagram (c)
displays the only QI term that survives ensemble averaging. From the values
of C2 and the normalized average conductance g, we define the transitions
from the quasi-ballistic to the weakly disordered regime (C2 = 0) and from
the weakly disordered to the localized regime (g = 1). The mesoscopic
regime is defined as the regime in which two speckle spots are correlated
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after ensemble averaging (C2 > 0). The values of C1 and C2 depend on the
number of modes N and the degree of disorder, which is contained in s = L/ℓ
and g−1. 2

We define the ensemble-averaged two-channel correlation function as the
ensemble average of the nominator and denominator separately, i.e.

Cαβ =
〈n̂αn̂β〉 − 〈n̂α〉 〈n̂β〉

〈n̂α〉 〈n̂β〉
. (3.3.2)

Notice how this differs from the definition of the classical multiple scattering
correlation function Eq. (2.2.13). With the current definition the classical
states trivially give Cαβ = 0, making a clear distinction between classical
and quantum effects. By this definition the ensemble average gives

Cαβ =

(C1 + C2)





(

∑

i

〈n̂i〉
)2

+
∑

i

(∆n̂2
i − 〈n̂i〉)





C1

(

∑

i

〈n̂i〉
)2

+ C2

(

∑

i

〈n̂i〉2 + 2
∑

i,j>i

|
〈

â†i âj

〉

|2
)

− 1, (3.3.3)

while the ensemble averaged QVP is

εαβ =1 + 4τ
∑

i

∆â†i âi + 4τ 2



C1

(

∑

i

∆â†i âi

)2

+ C2

∑

i,j

∆â†i âj∆â
†
j âi



 .

(3.3.4)

In Fig. 3.4, Cαβ and log10(εαβ) are plotted versus s. For Fock input
states the s dependence of Cαβ is a direct measure of QI since disregarding
the QI terms implies that Cαβ only depends on the total number of input
photons. First, consider having two photons incident in only one mode, |2〉,
then Cαβ = −1

2
independent of s. With the photons in two different input

modes, |1, 1〉, the correlations on the contrary depend on s. Only at the tran-
sition to the mesoscopic regime (C2 = 0) we have Cαβ = −1

2
independent of

wether the light is incident in one or two modes. This value corresponds to
the correlation between two equally probable output modes for two classical

2The values of C1 and C2 are independent of N on the transition between the quasi-
ballistic and the mesoscopic regimes, s ≈ 2, and tend toward the same value far into
the localized regime, g−1 ≪ 1 [23]. The values of C1 and C2 has qualitatively the same
behaviors versus disorder in the various regimes for different N . The calculation of g, C1,
and C2 is discussed in Refs. [16] and [23] and references therein.
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Figure 3.4 (color online). The ensemble averaged 2-channel photon correlations, Cαβ

and the degree of entanglement log
10
(εαβ) versus s = L/ℓ for N = 50. Solid blue curves

show Cαβ for Fock input states with a total of two photons and dashed red curves are
for three photons. The difference in Cαβ between having one and more input states
is due to quantum interference. The green dash-dotted line shows log

10
(εαβ) for the two

quadrature squeezed input states described in the text. The vertical line at s = 2 indicates
the crossover from the quasi-ballistic to the mesoscopic regime (C2 = 0) and the one at
s ≈ 40 shows the transition to the localized regime (g = 1). The symbols ◦, ×, and
∗ on the abscissa correspond to the experimental structures studied in Refs. [41], [42],
and [39], as discussed further in the main text. Figure from Paper J2.

non-interacting particles. This is due to two simple reasons: (i) the ensem-
ble averaging makes all output modes equally possible and (ii) transport is
diffusive and thus all interference effects are washed out. As disorder is in-
creased, Cαβ increases signifying that the probability that the two photons
arrive at two different positions increases although remaining anti-correlated
(Cαβ < 0). The increased correlations saturate in the localized regime since
C2 tends towards C1 [23]. The variations in Cαβ can be attributed to QI
amongst the input channels, which causes the photons to anti-bunch. The
anti-bunching of photons originates from the correlations between different
modes induced in the mesoscopic, and especially the localized, regime. In-
vestigating three photon Fock states shows that having more incident modes
increases the effects of QI. For |1, 1, 1〉, Cαβ tends towards zero in the local-
ized regime signifying that the output modes become uncorrelated. If the
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number of input modes is increased further the output modes will become
correlated (Cαβ > 0) in the localized regime. This means that detection of
a photon in one mode on average increases the probability of the detection
of a photon in another mode, which is in striking contrast to the behavior
of diffusive transport of Fock states. Having single-photon states in n input
modes and letting n go to infinity makes Cαβ approach unity far into the
localized regime, which is the value obtained for thermal light. The variation
of εαβ with s is plotted as the green curve in Fig. 3.4 for the same quadrature-
squeezed inputs as for the single realization of Fig. 3.3. In the mesoscopic
regime both C1 and C2 are positive and thus εαβ ≥ 1. The value of εαβ
approaches unity in the localized regime since the transmission decreases so
that contributions from vacuum fluctuations dominate. Continuous variable
entanglement in the transmission is therefore on average predicted to vanish
after ensemble averaging.

Finally, we address the experimental feasibility of the proposal. In Fig.
3.4 we indicate the position of three existing multiple scattering structures
from the literature, where the number of modes N has been scaled to match
the value used in the calculations. Ref. [41] concerns transmission through
two scattering surfaces, which mimics a multiple scattering medium with
s = 2. This corresponds to the diffusive limit where QI will be present in the
speckle pattern but not survive ensemble averaging. In Ref. [42] a titania
powder is used with sample length L = 20µm and transport mean free path
ℓ ≈ 0.9µm, which corresponds to the mesoscopic regime of s > 2. Such
sample support a large number of modes (N > 103) and thus g ≫ 1, which
means that this type of sample is in the weakly disordered regime where QI
effects are modest, cf. Fig. 3.4. This illustrates the importance of using
multiple scattering samples supporting only few modes in order to observe
QI. A disordered multimode photonic crystal waveguide is exactly such a
system and for N ≈ 5 together with the typical experimental parameters of
ℓ ≈ 20µm and L = 100µm [39] gives rise to sizeable QI effects that will be
observable in an experiment, cf. Fig. 3.4.

3.4 Chapter Summary

In this chapter we investigated the impact of interfering multiple quantum
optical states transmitted through a random multiple scattering medium in
the mesoscopic regime.

First we analyzed quantized light propagation through a single realization
of a multiple scattering medium. We predicted that it was possible to induce
continuous variable entanglement between different directions by interfering
squeezed light beams on a multiple scattering medium. Like in the case of the
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simple beam splitter of Chap. 2 the degree of entanglement could be varied by
changing the squeezing phase of the squeezed beams. Interestingly, this shows
a possible way to create directed entanglement simply by interfering beams
of squeezed light on a scattering medium. We further found that mixing
of photon states from different directions on the multiple-scattering medium
showed large fluctuations in the photon correlations between different output
directions. These fluctuations are not present when only a single direction is
illuminated, since they are caused by quantum interference.

Next, we analyzed the average effects of quantum optical multiple scat-
tering. We theoretically predicted that surprisingly parts of the quantum in-
terference of light survives multiple scattering. By calculating the 2-channel
photon correlation function in the case of Fock input states, we showed that
the difference between one and several input modes for a fixed number of
total photons is a direct measure of quantum interference. We predicted 2-
channel photon anti-bunching in the mesoscopic regime that increases with
the degree of disorder. Then, we found that continuous-variable entangle-
ment induced by multiple scattering of squeezed light that was predicted to
show up in single realizations of disorder, vanishes after ensemble averaging.

Finally, the experimental feasibility of the proposal was investigated based
on existing multiple-scattering samples from the literature, and we found that
multimode disordered photonic crystal waveguides are promising candidates
for an experimental demonstration of quantum interference. In the following
chapter we will analyze a multiple scattering experiment of a quantum state
of light.





4
Experimental Realization of Elastic

Quantum Optical Multiple Scattering

In this chapter the theoretical analysis of the experimental study of the quan-
tum properties of multiple scattered quantized light in Ref. [42] is presented.
We start out with Sec. 4.1 where the specific experiment is introduced. Then
in Sec. 4.2 the theoretical description as presented in the last chapters is
modified slightly in order to describe a way to experimentally measure the
quantum optical properties of light after multiple scattering. The chapter
is mainly based on Paper J1 which is a longer presentation of the experi-
mental results of Ref. [42]. The theoretical description in this chapter has
furthermore led to the erratum Ref. [44].

4.1 Experiment

In the following the experiment performed by Smolka et al. [42] is briefly
presented. First, the purpose of the original experiment is stated and then
the experimental setup is sketched. The experimental details can be found
in Ref. [42] and Paper J1.

The purpose of Ref. [42] was to experimentally verify the theoretical pre-
diction that the quantum nature of light persists even after the light has
propagated through a multiple scattering medium. This prediction was first
presented by Lodahl et al. in Ref. [38] which deals with quantum states
incident from only one direction and is thus a special case of the work de-
scribed in the previous chapter and Paper J2. As described, after propagation
through the multiple scattering medium the quantum nature of the light is
predicted to be observable in the photon number correlations between two
distinct output directions. In the special case of only one incident light beam,
the ensemble averaged spatial correlations between two output directions was
furthermore found in Ref. [38] to be related to the photon statistics of the
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Figure 4.1 Illustration of multiple scattering leading to spatial quantum correlations.
The nonclassical light source that is used in the experiment is created by overlapping
a squeezed vacuum light beam (SQZ) and a coherent light beam (C) on a beam split-
ter with two input ports, 1 and 2, respectively. The relative phase, ∆φ, between C and
SQZ can be tuned continuously. The resultant light beam in direction a is incident onto
a medium with randomly distributed scatterers. Light is split into a multitude of different
trajectories and the number of photons exiting the medium in a specific direction, b, can
be correlated with the number of photons in another direction, b′, to a degree dependent
on the quantum state of the illuminating light source. In the diffusive regime the spatial
quantum correlation function can be determined from total transmission quantum noise
measurements. A similar experimental scheme is applied for reflection measurements.
(Figure from Paper J1.)

ensemble averaged total transmitted or reflected light. The experiment thus
aims to indirectly measure the spatial photon correlation function through
measurement of the photon fluctuations of the total transmitted or reflected
light.

A schematic illustration of the experimental setup is displayed in Fig. 4.1.
A bright squeezed state of light is created by overlapping a coherent state
and a squeezed vacuum state on a beam splitter. By adjusting the rela-
tive phase between the squeezed vacuum and the coherent state the photon
statistics of the bright squeezed state can be tuned continuously between
sub-Poissonian and super-Poissonian corresponding to the purely quantum
or classical regime [11]. The resultant bright squeezed state is then directed
upon a multiple scattering medium, and the total transmitted or reflected
light is collected. Notice that according to the previous chapter this setup ac-
tually also creates a multitude of mutually entangled output directions. The
photon fluctuations associated with the total transmitted or reflected light
are then recorded by measuring the time-dependent photo-current of the de-
tectors. The original theoretical analysis, like in the previous chapter, was
carried out using a discrete mode description and thus does not describe time
dependent measurements. We thus need to introduce a continuous mode de-
scription to fully describe the experiment. This will lead to slightly different
results than the discrete mode theory.
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4.2 Continuous-Mode Theory of Multiple Scattering

In this section, we introduce a continuous-mode quantum theory that is di-
rectly applicable to the quantum noise measurements of Ref. [42].

In the experiment, the measurement is not time-independent as was im-
plicitly assumed in the previous chapter. Instead it is necessary to consider
the excitation of an infinite range of modes even when the light beam is made
up from contributions of modes whose wavevectors all point in the same di-
rection [11]. We thus define a time-dependent unidirectional annihilation
operator as

âa(t) =

∫

dλ p(λ)âa,λ(0)e
−iωa,λt (4.2.1)

where p(λ) is the continuous distribution of modes detected in the direction
a and λ labels the polarizations and wavevectors pointing in the direction
a. That is, we integrate over a subset of modes all pointing in the same
direction, which we denote a. While the equal-time commutation relation
for the usual annihilation operators are [âa,λ(t); â

†
a′,λ′(t)] = δ{a,λ},{a′,λ′} the

new operators will have the unequal time commutation relation

[âa(t); â
†
a′(t

′)] = δa,a′

∫

dλ|p(λ)|2e−iωa,λ(t−t′). (4.2.2)

By assuming a uniform distribution p(λ) corresponding to equal probability
of detecting any of the modes in the specific direction, we get that the time
dependent annihilation and creation operators obey the following commuta-
tion relation

[âa(t), â
†
a′(t

′)] = δa,a′ δ(t− t′). (4.2.3)

We will use this notation for the operators âa(t) and â†a(t) only in the cur-
rent chapter. Furthermore, we use a different notation than in the previous
chapters in that b’s refer to output directions while a’s to the input directions.

In Chaps. 2 and 3 we described that a randomly scattering medium pro-
vides N spatially distinct optical input directions that are connected to N
output directions via multiple scattering of light. The spatial output direc-
tion b is related to all input directions a′ through

âb(t) =
∑

a′

sa′bâa′(t), (4.2.4)

where sa′b is the complex electric-field scattering coefficient corresponding to
either a reflection (ra′b) or transmission (ta′b) channel. Eq. (4.2.4) allows us to
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relate the quantum properties of the multiple scattered light to the quantum
state of the incident light source. The corresponding intensity transmission
coefficient is given by Ta′b ≡ |ta′b|2 and likewise the intensity reflection co-
efficient is Ra′b = |ra′b|2. The mean photon flux of direction a is given by
〈n̂a(t)〉 =

〈

â†a(t)âa(t)
〉

while the variance in the photon fluctuations is given

as ∆n2
a(t) = 〈n̂2

a(t)〉−〈n̂a(t)〉2. In the following we focus on multiple scatter-
ing processes where the light beam is incident onto the medium through a
single direction, a. Thus, the average incident photon flux for all other input
directions equals zero. Using Eq. (4.2.4) together with the continuous-mode
commutator relation, Eq. (4.2.3), the mean photon flux of the total transmit-
ted light can be obtained by summing over all transmitted output directions,
i.e. 〈n̂T (t)〉 =

∑

b Tab
〈

â†a(t)âa(t)
〉

. In our theory the intensity transmission
coefficients are random variables corresponding to a single realization of dis-
order. Therefore, we can only predict ensemble-averaged properties of the
transport of light. For example, the total transmitted photon flux is given as

〈n̂T (t)〉 =Tba 〈n̂a(t)〉 , (4.2.5)

where the bar denotes the ensemble average over all configurations of disor-
der [6]. A similar result can be found for the total reflection, i.e. 〈n̂R(t)〉 =
Rba 〈n̂a(t)〉. In order to determine another important property of light,
namely the fluctuations of the total transmitted multiply scattered light,
we need to evaluate the second moment of the photon number operator. Us-
ing Eqs. (4.2.4) and (4.2.3) and the fact that only direction a is illuminated,
this is given by

〈n̂T (t)n̂T (t+ τ)〉 =
∑

b,b′

〈n̂b(t)n̂b′(t+ τ)〉

= TbaTb′a 〈n̂a(t)n̂a(t+ τ)〉+ Tba(1− Tb′a) 〈n̂a(t)〉 δ(τ). (4.2.6)

The non-vanishing contributions to the sum in Eq. (4.2.6) for different output
directions b and b′ stem from the fact that different spatial parts of the volume
speckle patterns are quantum correlated.

We define the continuous-mode spatial quantum correlation function

CQ
bb′(τ) =

〈n̂b(t)n̂b′(t + τ)〉
〈n̂b(t)〉 × 〈n̂b′(t+ τ)〉

(4.2.7)

describing the normalized ensemble-averaged strength of the temporal pho-
ton correlations between two output directions, b and b′, of the multiple
scattering medium. The normalization is with respect to the product of the



4.2 Continuous-Mode Theory of Multiple Scattering 41

ensemble-averaged mean photon flux in both directions. Notice that this en-
semble averaged correlation function is defined differently from the previous
chapters and is more alike the classical multiple scattering correlation func-
tion of Eq. (2.2.13), Sec. 2.2.2. In the experiment of concern here, we study
a statistically stationary light source whose statistical fluctuations and mean
photon flux do not change in time. The spatial quantum correlation function,
therefore, only depends on the time difference τ [12] and can be expressed by
the photon statistics of the incident light beam using Eqs. (4.2.5) and (4.2.6),
i.e.

CQ
bb′(τ) =

〈n̂(t)n̂(t + τ)〉 − 〈n̂(t)〉 δ(τ)
〈n̂(t)〉 〈n̂(t)〉 CC

bb′ ,

=
Γa(τ)− 〈n̂a(t)〉 δ(τ) + 〈n̂a(t)〉2

〈n̂a(t)〉2
CC

bb′ . (4.2.8)

Here, CC
bb′ = TabTab′/(Tab ×Tab′) is similar to the well known classical speckle

correlation function introduced in Sec. 2.2, induced by classical multiple scat-
tering [6, 18, 20] and Γa(τ) = 〈n̂a(t)n̂a(t+ τ)〉−〈n̂a(t)〉 〈n̂a(t+ τ)〉 represents
the autocorrelation function of the incoming light. Notice that the ensemble
averaged correlation function, Eq. (4.2.7), factorizes into a quantum mechan-
ical part and a classical part, as in Eq. (4.2.8), only if light is incident from
only one direction. If light were incident from more than one direction as
described in the previous chapter the correlation function would not separate
except for the case of coherent input states, i.e. incident classical light.

Let us carry on by defining an ensemble-averaged autocorrelation function
for the total transmitted (and similarly for reflected) light as

ΓT (τ) =〈n̂T (t)n̂T (t+ τ)〉 − 〈n̂T (t)〉 〈n̂T (t+ τ)〉,
=T

2
[Γa(τ)− 〈n̂a(t)〉 δ(τ)] + T 〈n̂a(t)〉 δ(τ), (4.2.9)

where we utilized TabTab′ = Tab
2
which holds for a multimode sample in

the diffusive regime [6]. The Eq. (4.2.9) shows that after averaging over all
configurations of disorder the total transmitted photon fluctuations can be
directly related to the quantum optical properties of the light source even
in the diffusive regime despite the fact that in that regime any classical
correlation would vanish.

In the experiment the photon fluctuations are studied by recording the
total transmitted and reflected light with a photo diode whose photo current
is linearly converted into a voltage. The photo voltage is split into a DC com-
ponent that is proportional to the mean photon flux and an AC component
that contains information about the photon fluctuations. Computing the
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Fourier spectrum of the measured AC photo voltage allows us to study the
temporal photon fluctuations in quantum noise measurements. The spectral
density function at frequency ω is defined as the Fourier transformation of
the auto-correlation function [12]

S(ω) =
1

2π

∫ ∞

−∞
dτ Γ(τ)eiωτ . (4.2.10)

The variance of the temporal photon fluctuations is thus related to the
noise spectrum through the inverse transform of Eq. (4.2.10), i.e. ∆n̂2(t) =
∫∞
−∞ dωS(ω). The spectral density function is studied within a frequency
region ω± = ωs ± δω/2 so that we obtain the frequency-dependent photon
variance

〈

∆n2(ωs, δω)
〉

=

∫ ω+

ω−

dω S(ω) (4.2.11)

that is proportional to the experimentally measured noise power. We note
that the total collection and detection efficiency of a photo-diode is non-
unity in any experiments and the measured transmission is T → ηTT , with
0 ≤ ηT ≤ 1. The total transmitted photon fluctuations, 〈∆n2

T (ωs, δω)〉,
can be related to the spectral density function of the incident light source
integrated over the measured frequency range by substituting Eq. (4.2.9) into
Eqs. (4.2.10) and (4.2.11), i.e.

〈∆n2
T (ωs, δω)〉 =

∫ ω+

ω−

dω

[

η2T
2
(

Sa(ω)−
〈n̂a(t)〉
2π

)

+ ηT
〈n̂a(t)〉
2π

]

,

=η2T
2
(

〈

∆n2
a(ωs, δω)

〉

− 〈n̂a(t)〉
δω

2π

)

+ ηT 〈n̂a(t)〉
δω

2π
.

(4.2.12)

Evaluating the right hand side for a coherent state yields 〈∆n2
T (ωs, δω)〉C =

ηT 〈n̂a(t)〉C δω
2π
, where the subscript C denotes that the expectation value is

with only coherent light as input state. At this point we introduce the Fano
factor

F (ω, δω) ≡ 〈∆n2(ω, δω)〉
〈∆n2(ω, δω)〉C

, (4.2.13)

that gauges the ratio between the photon number variance of an unknown
quantum state, 〈∆n2(ωs, δω)〉, and of a coherent state, 〈∆n2(ωs, δω)〉C having
the same mean photon number. Importantly, the Fano factor can be directly
measured without determining the proportionality factor between the noise
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power recorded with the electrical spectrum analyzer and the photon number
variance. In the experiment the optical state is created by overlapping a
squeezed-vacuum state with a bright-coherent state, cf. Fig. 4.1. Since the
resultant bright-squeezed state has a large coherent amplitude, the average
number of photons is almost equal to the average number of photons in the
coherent state and Eq. (4.2.12) can be rewritten as

FT (ωs, δω) =
η2TT

2 (〈∆n2
a(ωs, δω)〉 − 〈n̂a(t)〉 δω

2π

)

+ ηTT 〈n̂a(t)〉 δω
2π

ηTT 〈n̂a(t)〉 δω
=2π

{

1− ηTT [1− Fa(ωs, δω)]
}

. (4.2.14)

A similar expression holds for the total reflected multiple scattered light
which results in FR(ωs, δω) = 2π

{

1− ηRR [1− Fa(ωs, δω)]
}

with ηR being
the corresponding reflection collection efficiency. We emphasize the impor-
tance of the last expressions, Eq.(4.2.14). In Ref. [45] it was predicted that
any nonclassical features in the electric field quadrature amplitudes vanish
in the multiple scattering process after ensemble averaging. In contrast,
Eq. (4.2.14) shows that for a quantum state with nonclassical photon fluctu-
ations also the ensemble-averaged transmitted and reflected photon fluctua-
tions exhibit nonclassical photon fluctuations after multiple scattering.

Analogue to the frequency-dependent photon fluctuations, Eq. (4.2.11),
we can introduce the frequency-dependent spatial quantum correlation func-
tion which is the quantity extracted in the experiment. It is defined as the
Fourier transformation of Eq. (4.2.8) integrated over the frequency interval
ω± = ωs ± δω/2,

CQ
bb′(ωs, δω) =

∫ ω+

ω−

dω
S(ω)− 〈n̂a(t)〉

2π
+ 〈n̂a(t)〉2 δ(ω)

〈n̂a(t)〉2
CC

bb′,

=
[Fa(ωs, δω)− 1] δω

〈n̂a(t)〉
CC

bb′ , (4.2.15)

utilizing 〈n̂a(t)〉 ≈ 〈n̂a(t)〉C = 2πδω−1 〈∆n̂2
a(ωs, δω)〉C . This result should be

compared with the discrete mode analysis of Ref. [38]. In a discrete mode

analysis one obtain CQ
bb′ − 1 = (Fa − 1)/ 〈n̂a〉CC

bb′ , i.e. having an extra minus
one on the left hand side. This minus one term actually do appear in the
first line of Eq. (4.2.15) as the 〈n̂a(t)〉2 δ(ω) in the nominator.

From the last expression it can be seen that different output directions
b and b′ are positively correlated, i.e. the photons show spatial bunching

(CQ
bb′(ωs, δω) ≥ 1) when the light source exhibits classical photon fluctuations,

(Fa(ωs, δω) > 1). Using a light source that exhibits non-classical photon
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fluctuations (Fa(ωs, δω) < 1), we enter the purely quantum optical regime
of multiple scattering where the photons between two different directions

are spatially anti-correlated (CQ
bb′(ωs, δω) < 1). Alternatively, the spatial

quantum correlation function can be expressed in terms of the ensemble-
averaged total transmitted (reflected) Fano factor by substituting Eq. (4.2.14)
into Eq. (4.2.15), leading to the expression

CQ
bb′(ωs, δω) =

[

FT/R(ωs, δω)− 1
]

δω
〈

n̂T/R(t)
〉

CC
bb′. (4.2.16)

Thus, in the diffusive regime (CC
bb′ = 1) the spatial quantum correlation func-

tion can be extracted by recording two quantities i) the Fano factor and ii)
the photon flux. The Fano factor is found by recording the noise power as de-
scribed in Eq. (4.2.13). The photon flux is found through 〈n̂a(t)〉 = P/(~ω0)
by measuring the power of the light and knowing the frequency of the light.
Further details on the measurement techniques and the experimental setup
can be found in Paper J1 or Ref. [42].

These were exactly the quantities measured by the experiment presented
in Ref. [42] and with these the correlations are calculated in Paper J1 also
shown in Fig. 4.2. This figure shows the correlation function calculated
using the measured photon fluctuations of the transmitted light, versus the
measured photon fluctuations of the incident light and neatly illustrate the
linear behavior as predicted. If one were to compare the measured correlation
function in Fig. 4.2 to that of Fig. 3 in Ref. [42] one should notice three
things. First, in Ref. [42] the ordinate axis shows that the measured quantity
is Cbb′ − 1, as explained this is only true for the discrete mode analysis.
Second, there is a five order of magnitude difference between the two! The
difference is caused by the use of photon numbers in a certain measurement
time as opposed to photon flux in Ref. [42]. Third, in Ref. [42] the normalized
correlation function has the unit Hz−1, this is due to the previous use of a
unit less number of photons as compared to the photon flux.

The experimental results shown in Fig. 4.2 illustrate that, unlike classi-
cal multiple scattering, it is possible to deterministically alter the intensity
correlations by changing the photon statistics of the incident beam. Specif-
ically, in the diffusive regime where classically the intensity of two different
output directions are uncorrelated, we are able to continuously change the
correlations from positive to negative by changing the photon statistics of
the incident beam.
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Figure 4.2 Measured spatial quantum correlation function depending on the incident
Fano factor for different sample thicknesses (triangles: 6 µm, circles: 20 µm). The spatial
quantum correlation function has been measured in transmission (filled symbols) and re-
flection (empty symbols), respectively. The solid gray line displays the theoretical predic-

tion while the dashed gray line represents the quantum limit of CQ
bb′(ωs, δω) = 0. (Figure

from Paper J1).

4.3 Chapter Summary

In this chapter we derived the theoretical framework for the analysis of a
quantum optical multiple scattering experiment. The experiment considered
the propagation of squeezed light incident in a single direction upon a mul-
tiple scattering medium. The purpose of the experiment was to verify the
prediction that spatial quantum correlations survive multiple scattering even
after ensemble averaging.

In order to describe the measurement procedure, it was necessary to in-
troduce the time-dependence of the operators. By doing this, it was possible
to relate the noise power spectrum of the total transmitted or reflected light
to the photon statistics of the incident quantum state. This was further re-
lated to the average spatial photon correlations. The derivation showed a
discrepancy with the discrete-mode theory which was not taken into account
in Ref. [42]. The experiment showed that, indeed as predicted by theory, the
quantum nature of light persisted after multiple scattering and even survived
after ensemble averaging and showed excellent agreement between the theory
derived here and the experiment. This made it possible to deterministically
alter the average intensity correlations by changing the photon statistics of
the incident beam. Thereby it was possible to achieve both positively and
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negatively correlated output intensities even in the diffusive regime, where
classically output directions are uncorrelated.

An interesting next step will be to study experimentally the quantum
interference of two or more independent quantum states in a multiple scat-
tering medium as was described in Chapter 3. Another step would be to
include light-matter interaction in the multiple scattering formalism in or-
der to be able to describe phenomena such as quantum optical scattering on
quantum dots in dielectrics or the fluorescence spectrum of a driven cloud of
cold atoms. This is the topic of the next part of the thesis.



Part II

Quantum Optical Inelastic

Scattering





5
Quantum Scattering of Light on Dipoles

While the previous part of the thesis dealt with elastic scattering the present
part will include interaction with dipoles upon which the light is scattered.
This will be done using some of the concepts introduced in Chap. 2 such as
quantization and Green functions. The results in this and the following chap-
ter are unpublished and thus more calculations and details are included for
transparency. The work was partially carried out at the group of Prof. Robin
Kaiser at Institut Non Lineaire de Nice, Centre National de la Recherche Sci-
entifique in France. The group of Robin Kaiser is conducting experimental
cold atom physics and the collaboration has the aim to predict cooperative
effects in cold atom systems.

In this chapter we will derive an exciting new formalism to investigate
light-matter interaction. The formalism, carried out in the Heisenberg pic-
ture, focus on the propagation of the quantum optical operators enabling a
scattering perspective. This is in contrast to the often used master equa-
tion approach which work in the Schrödinger picture and often focus on the
atomic operators. The formalism is derived such that it is capable to deal
with dipole scattering in any dielectric environment. The results presented in
the present chapter can thus describe scattering of light on clouds of atoms,
artificial atoms, i.e. quantum dots in engineered dielectric environments, and
nitrogen vacancies in diamonds. In the next chapter one of the many appli-
cations of the formalism is presented by deriving analytic expressions of the
fluorescence spectrum of a driven cloud of N atoms.

The chapter is ordered as follows. In Sec. 5.1 the Hamiltonian due to the
quantum mechanical description of interaction between light and dipoles is
discussed and certain simplified versions are introduced. Then, in Sec. 5.2,
the evolution of the field operators as functions of the dipole operators is
found for the different interaction Hamiltonians and the significance of the
introduced simplifications is investigated. At last, in Sec. 5.3, the Heisenberg
equations of motion of the dipoles are derived for a two-level model. These
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will be used in the following chapter for describing a driven cloud of cold
atoms.

5.1 Light-Matter Interaction in Arbitrary Dielectric Structures

First let us look at the origin of the interaction Hamiltonian. We will now
write up the Hamiltonian including the interaction between light and matter,
specifically dipoles in an inhomogeneous dielectric environment. Similar to
the quantization in Chap. 2 we will take the classical expression for the energy
and add hats to the canonical variables. From classical electrodynamics of
charged particles in fields we know that the canonical momentum of the m’th
particle, pm, differs from its kinetic momentum, km, and that they are related
through pm(t) = km(t) + eA(qm, t), where qm is the canonical position of
the m’th charge, see e.g. Ref. [46]. In the canonical dynamical variables the
potential energy of the charged particle, Epot = eU(qm, t), is thus unaltered
by the field while the kinetic energy is Ekin = 1

2me
[pm(t)− eA(qm, t)]

2, where
me is the mass of the charge.

We now write the total Hamiltonian of the field and atoms by introduc-
ing hats on the canonical operators and assuming their usual commutation
relations, giving

H =
1

2

∫

dr

[

ε0ε(r)Ê
2(r, t) +

1

µ0
B̂2(r, t)

]

+
∑

m

[

eU(q̂m, t) +
p̂2
m(t)

2me

]

(5.1.1)

− e

2me

∑

m

[

p̂m(t) · Â(q̂m, t) + Â(q̂m, t) · p̂m(t)− eÂ2(q̂m, t)
]

,

where the three lines respectively represent the free field, HR, free charges,
HA, and interaction, HI, Hamiltonians. The Hamiltonian of the free radiation
field is the same as we discussed in Chap. 2, i.e. with the mode expansion in
the generalized Coulomb gauge it is given by Eq. (2.3.8). The Hamiltonian
for the free charges depends on the specific model of the charges and we will
leave that model arbitrary for the moment. Similar to the field it can be
written as an expansion in terms of its eigenstates and eigenenergies. The
last term in Eq. (5.1.1) deals with the interaction between light and matter
through the charges.

The Hamiltonian, Eq. (5.1.1), thus governs the dynamics of the elec-
tromagnetic field interacting with dipoles embedded in a dielectric material
treated macroscopically through ε(r) which is assumed local in time and
space. It is thus able to treat the dynamics of light-matter interaction in
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systems such as quantum dots in photonic crystals, nitrogen vacancy centers
in diamond, and clouds of atoms alike.

We will spend the next section on simplifying the interaction term before
we write up the equations of motion for the field and solve them in terms of
the dipole operators.

5.1.1 Interaction Hamiltonian

We will now discuss the interaction Hamiltonian for a while in order to try
to slightly demystify it. We will introduce the dipole approximation and
show two typical simplifications made in the literature; a linearization and a
multipolar expansion. This will be useful for deriving dynamic equations for
the field operators in the Heisenberg picture and solve these in terms of the
atomic operators in Sec. 5.2. Furthermore, it will make it possible to derive
the fluorescence spectrum of a cloud of atoms in the next chapter.

First of all, we notice that Â(q̂m, t) depends on the dipole position opera-
tor, q̂m, and thus does not in general commute with the momentum operator,
p̂m. Often the dipoles such as atoms or molecules are much smaller than the
wavelength of the electric field and thus the vector potential does not vary
much over their size. It is then valid to replace the position operator, q̂m(t),
with its classical averaged value, i.e. Â(q̂m, t) ≈ Â(Rm, t) with 〈q̂m〉 = Rm.
This is known as the dipole approximation after which the vector potential
and the momentum operator do commute. We further assume that the aver-
aged positions Rm are constant, thereby describing stationary dipoles. This
leads us to the minimum-coupling interaction Hamiltonian

Hmin
I = −

∑

m

[

˙̂µm(t) · Â(Rm, t)−
e2

2me
Â2(Rm, t)

]

, (5.1.2)

where we have defined the dipole moment operator µ̂m(t) = eq̂m(t) such
that p̂m(t) = me

˙̂µm(t). The dipole approximation is usually quite good
when dealing with atoms, but has recently been shown to be inadequate
when dealing with large quantum dots close to metallic interfaces [47]. The
assumption of stationary dipoles perfectly describes solid-state systems. Fur-
thermore, in atomic systems, which we consider in the next chapter, laser
cooling can eliminate Doppler effects such that the stationary description is
valid [12].

Usually Hmin
I is simplified before carrying out calculations. There are two

simplifications which are often used. In one of them, the Â2(Rm, t) term is
considered much smaller than the ˙̂µm(t)·Â(Rm, t) term and the Hamiltonian
is simplified by linearizing it in the field operator giving the so-called p ·A
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Hamiltonian

HpA
I = −

∑

m

˙̂µm(t) · Â(Rm, t). (5.1.3)

Another way of simplifying the minimal-coupling Hamiltonian is to invoke

a unitary transformation Û = exp
[

− i
~
q̂m · Â(Rm, t)

]

giving the multipolar

or Power–Zienau–Woolley Hamiltonian [48, 49]. Neglecting all terms except
the dominant one gives the electric-dipole Hamiltonian

HEd
I = −

∑

m

µ̂m(t) · Ê(Rm, t), (5.1.4)

which is known as the electric-dipole approximation.
There has been some controversy on which of the Hamiltonians would give

the correct physics, see eg. [12]. The controversy seems to have settled with
the preferred use of the electric-dipole Hamiltonian since it not only allows
coupling to transverse modes. In the present chapter we will investigate
the properties of both the full minimal-coupling Hamiltonian, Eq. (5.1.2),
and the electric-dipole Hamiltonian, Eq. (5.1.4), to pinpoint the differences
between the two.

5.2 Field Operator Evolution

We will now find the exact evolution of the field operators in the Heisenberg
picture in terms of the dipole operators without assuming any particular
model for the dipoles. In Sec. 5.3 we will choose to investigate the two-level
model for the atoms, which we will use in Chap. 6 to describe a cloud of
atoms. We thus write the total Hamiltonian H = HR + HA + HI with the
noninteracting field Hamiltonian written as, recall Eq. (2.3.8),

HR =
∑

λ

~ωλ

[

â†λ(t)âλ(t) +
1

2

]

. (5.2.1)

For the interaction Hamiltonian, HI, we will compare the minimal coupling
interaction, Eq. (5.1.2), with the electric-dipole interaction, Eq. (5.1.4).

5.2.1 Field Evolution with the Electric-Dipole Hamiltonian

We will now use the electric-dipole Hamiltonian, Eq. (5.1.4), to derive the
evolution of the field operators in the Heisenberg picture. This is a general-
ization of the results of Ref. [50], where a harmonic oscillator model is used
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for the dipoles. Later on in Sec. 5.3.1 we will use the results derived here to
find the dynamic equations for a two-level model for the dipoles.

As in Chap. 2.4, we write the electric-field operator as an expansion in
the generalized transverse modes, see Eq. (2.3.10),

Ê(r, t) = i
∑

λ

√

~ωλ

2ε0

[

âλ(t)fλ(r)− â†λ(t)f
∗
λ(r)

]

, (5.2.2)

where the time-evolution of the creation and annihilation operators is no
longer harmonic. Using the equal-time commutation relation for the mode
creation and annihilation operators, [âλ(t); â

†
λ′(t)] = δλ,λ′, we get

[âλ(t);HR] = ~ωλâλ(t), (5.2.3a)

[âλ(t);HEd
I ] = i

√

~ωλ

2ε0

∑

m

f∗λ(Rm) · µ̂m(t), (5.2.3b)

and we can then write the Heisenberg equations of motion

˙̂aλ(t) = −iωλâλ(t) +

√

ωλ

2~ε0

∑

m

f∗λ(Rm) · µ̂m(t), (5.2.4a)

˙̂a†λ(t) = iωλâ
†
λ(t) +

√

ωλ

2~ε0

∑

m

fλ(Rm) · µ̂m(t). (5.2.4b)

We now introduce the Laplace transform

L{g(t)} (ω) = g(ω) =

∫ ∞

0

dt eiωtg(t), (5.2.5)

where ω contains an infinitesimal positive imaginary part which ensures that
the transform is well defined. Using this we get

âλ(ω) =
iâλ(0)

ω − ωλ
+

i

ω − ωλ

√

ωλ

2~ε0

∑

m

f∗λ(Rm) · µ̂m(ω), (5.2.6a)

â†λ(ω) =
iâ†λ(0)

ω + ωλ
+

i

ω + ωλ

√

ωλ

2~ε0

∑

m

fλ(Rm) · µ̂m(ω), (5.2.6b)

with the notation âλ(0) = âλ(t = 0) has been used for brevity. Notice that
due to the one-sidedness of the Laplace transform [âλ(ω)]

† 6= â†λ(ω). By
inserting Eqs. (5.2.6) into the positive- and negative-frequency components
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of the electric field, we get

Ê(+)(r, ω) = −
∑

λ

√

~ωλ

2ε0

âλ(0)

ω − ωλ
fλ(r)

− 1

2ε0

∑

mλ

ωλfλ(r)⊗ f∗λ(Rm)

ω − ωλ
· µ̂m(ω) (5.2.7a)

Ê(−)(r, ω) =
∑

λ

√

~ωλ

2ε0

â†λ(0)

ω + ωλ
fλ(r)

+
1

2ε0

∑

mλ

ωλf
∗
λ(r)⊗ fλ(Rm)

ω + ωλ
· µ̂m(ω). (5.2.7b)

We thus see that, very similar to the classical Green function approach of
point scattering in Sec. 2.2.1, the field consists of a free field and a scattered
field component. This is even more apparent when we write the total field,
Ê(r, ω) = Ê(+)(r, ω) + Ê(−)(r, ω), giving

Ê(r, ω) = Ê(0)(r, ω)− µ0ω
2
∑

m

K(r,Rm, ω) · µ̂m(ω). (5.2.8)

Here, Ê(0)(r, ω) = Ê
(+)
(0) (r, ω) + Ê

(−)
(0) (r, ω) is the free-field component, c−2

0 =

µ0ε0, and the kernel K(r, r′, ω) is defined by

K(r, r′, ω) = c20
∑

λ

ω2
λ

ω2

fλ(r)⊗ f∗λ(r
′)

ω2 − ω2
λ

(5.2.9a)

= GT(r, r′, ω)− c20
ε(r)ω2

[δT
ǫ
(r′, r)]† (5.2.9b)

= G+(r, r′, ω)− c20
ε(r)ω2

δ(r− r′)I. (5.2.9c)

The dyadic kernel K(r, r′, ω) is thus related to the retarded Green function
G+(r, r′, ω) or the retarded transverse Green function GT(r, r′, ω) also found
in classical theory of point scatterers [51]. The obvious and intuitive phys-
ical significance of Eq. (5.2.8) is that the field Ê(r, ω) is given by the field
in absence of atoms, Ê0(r, ω), plus the light emitted by the atoms at Rm

and arriving at r. The difference between classical scattering on points and
quantum scattering on dipoles is though that the two interact. We will see
in Chap. 6 that the quantum treatment gives rise to nonlinear phenomena
which for example can be seen in the spectrum. Notice that up until now the
derivation is exact since we have not made use of any approximations besides
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the electric-dipole approximation. An often used approximation is to remove
terms with phases which rotate with much higher frequencies than those of
the phenomena of interest. This is known as the rotating-wave approxima-
tion (RWA). It is sometimes used at the initial Hamiltonian, but this would
not lead to a kernel related to the classical Green function that we found
above in Eq. (5.2.8). To obtain the expression Eq. (5.2.9a) for the kernel
K(r, r′, ω), we rewrote the scattering term of Ê(−)(r, ω) in Eq. (5.2.7b), see
App. B.1 for details.

The expression, Eq. (5.2.8), has previously been found for the specific
model in which the dipoles are treated as quantum harmonic oscillators [50].
It should be noted that with our new treatment, the current expression is
independent of the chosen model for the dipoles. Our formalism can thus
describe the light-matter interaction of cold atoms in vacuum, quantum dots
in photonic crystals, and nitrogen vacancy centers in diamond alike. In the
latter two cases atom-phonon interaction could also be taken into account in
the present formalism by including these in the atomic Hamiltonian.

The evolution of the field operators can now be found by an inverse
Laplace transform. Let us do so.

First of all, the free field positive- and negative-frequency components,
Ê

(±)
(0) (r, ω), become

Ê
(+)
(0) (r, t) = i

∑

λ

√

~ωλ

2ε0
âλ(0)e

−iωλtfλ(r), (5.2.10a)

Ê
(−)
(0) (r, t) = −i

∑

λ

√

~ωλ

2ε0
â†λ(0)e

iωλtf∗λ(r). (5.2.10b)

This describe the harmonic time-evolution of the eigenmodes in the dielectric
structure in the absence of dipoles as we found in Sec. 2.3.2, Eqs. (2.3.11). It
should be noted that since we work in the Heisenberg picture the initial oper-
ators are considered known quantities and thus Eqs. (5.2.10) are in principle
known if we can calculate the classical field modes.

Using the convolution theorem, L−1 {f(ω)g(ω)} =
∫ t

0
dτf(τ)g(t− τ), for

the Laplace transform defined in Eq. (5.2.5), the inverse Laplace transform of

the second part of Ê(±)(r, ω), corresponding to the scattering part, Ê
(±)
Scat(r, t),

is given by

Ê
(±)
Scat(r, t) = ± i

2ε0

∑

m

∑

λ

ωλfλ(r)⊗ f∗λ(Rm) ·
∫ t

0

dτ µ̂m(τ)e
∓iωλ(t−τ).

(5.2.11)
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The expression has an intuitive physical structure which is most easily seen
by rearranging the expression a bit in order to write the integrand as

Ê
(±)
Scat(r, t) = ± i

2ε0

∑

m

∑

λ

ωλfλ(r)e
∓iωλt ⊗

∫ t

0

dτ f∗λ(Rm)e
±iωλτ · µ̂m(τ).

(5.2.12)

The terms f∗λ(Rm)e
±iωλτ and fλ(r)e

∓iωλt corresponds to the noninteracting
harmonic field evolution at the position of the dipole at Rm at time τ and
at position r at time t respectively. By reading Eq. (5.2.12) from right to
left we have that the evolution of the field at position r at time t is given by
the dynamics of the dipoles µ̂m(τ) at previous times τ . The field then evolve
harmonically from the dipole positions, Rm, at the previous time τ to the
point r at the present time t.

The found expressions for the field are exact, but depend on the time-
evolution of dipole operators, µ̂m(t). The evolution of the dipole operators in
turn depend on the evolution of the field and therefore the found field evolu-
tion is in fact an implicit equation. The scattered field is thus not explicitly
known, but governed by the evolution of µ̂m(t) which we will investigate in
Sec. 5.3.1. But let us just make a fruitful comparison with the field evolution
with the minimal-coupling Hamiltonian.

5.2.2 Field Evolution with the Minimal-Coupling Hamiltonian

We will now in a similar fashion as above find the field operator for the
full minimal-coupling Hamiltonian. We will find that the coupling between
light and atoms will be different than for the electric-dipole coupling and
furthermore we will identify the effect of linearizing the Hamiltonian with
respect to the vector potential.

Using the generalized transverse mode expansion of the vector potential
we get the commutation relation

[âλ(t); Â(r, t)] =

√

~

2ε0ωλ

fλ(r). (5.2.13)

This gives us

[âλ(t);Hmin
I ] = −

√

~

2ε0ωλ

∑

m

f∗λ(Rm) ·
[

˙̂µm(t)−
e2

me
Â(Rm, t)

]

, (5.2.14)

where the last term in the square brackets is due to the nonlinear term
in the Hamiltonian, Â2. The square bracket equals e

me
times the kinetic
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momentum operator which is Hermitian and thus we will write k̂m(t) for
brevity, but remember that it involves the Hilbert spaces of both the field
and the dipoles.

With this we get

˙̂aλ(t) = −iωλâλ(t) +
i√

2ε0~ωλ

∑

m

f∗λ(Rm) ·
[

e

me
k̂m(t)

]

, (5.2.15a)

˙̂a†λ(t) = iωλâ
†
λ(t)−

i√
2ε0~ωλ

∑

m

fλ(Rm) ·
[

e

me
k̂m(t)

]

, (5.2.15b)

which, using the Laplace transform and insertion in the electric field positive
and negative frequency mode expansion, gives

Ê(+)(r, ω) = Ê
(+)
(0) (r, ω)−

i

2ε0

∑

m

∑

λ

fλ(r)⊗ f∗λ(Rm)

ω − ωλ

·
[

e

me

k̂m(ω)

]

,

(5.2.16a)

Ê(−)(r, ω) = Ê
(−)
(0) (r, ω)−

i

2ε0

∑

m

∑

λ

f∗λ(r)⊗ fλ(Rm)

ω + ωλ
·
[

e

me
k̂m(ω)

]

.

(5.2.16b)

The total electric-field operator is then given by

Ê(r, ω) = Ê(0)(r, ω)− iωµ0

∑

m

GT(r,Rm, ω) · L
{

˙̂µm(t)
}

(ω)

+
e2µ0

me

∑

m

GT(r,Rm, ω) · [iωÂ(Rm, ω)], (5.2.17)

where we have explicitly written scattering terms due to the linear and
quadratic nonlinear parts of the interaction Hamiltonian in the first and the
second line, respectively. Let us describe the two different scattering terms
separately.

First, let us neglect the term in the second line, i.e. corresponding to
having linearized the Hamiltonian. The form of the electric field operator
resembles that found in the previous section, Eq. (5.2.8), but there is a subtle
difference. The dipole couples only to the generalized transverse modes of the
electric field through the transverse Green function GT(r, r′, ω) independent
of the model for the dipoles. This is know from classical electromagnetic
propagation not to be true and is thus a strong argument against the use of
the linearized minimal-coupling Hamiltonian, since it does not reduce to the
classical counterpart. Further arguments and discussions on the dispute on
which type of interaction Hamiltonian to use can be found in Ref. [52].
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Next, let us neglect the first scattering term of Eq. (5.2.17) and take a
look at the equation with only the scattering term from the nonlinear part of
the Hamiltonian. This corresponds to a far off-resonant illumination of the
dipoles. With this term, the equation is seen to be an implicit equation in the
field, which becomes most apparent by noticing that iωÂ(Rm, ω) ∼ Ê(r, ω).
Furthermore, we see that the scattering is the same as for classical point
scattering using Green functions shown in Sec. 2.2.1. Linearizing the Hamil-
tonian thus corresponds to neglecting non-resonant elastic scattering on the
dipoles and thus also corresponds to neglecting the scattering renormaliza-
tion of the Green function. Since the decay rate and Lamb shift depend on
the imaginary and real parts of the Green function the renormalization thus
have implications on the on-resonant dipole dynamics.

In conclusion, the linearized minimal-coupling Hamiltonian does not re-
duce to the classical propagation of the field and it thus does not seem
to describe the evolution of the field correctly. The full minimal-coupling
Hamiltonian would be preferred for the calculations since it is exact, but the
implicitness of the field evolution in Eq. (5.2.17) complicate further calcula-
tions. Since we are interested in the inelastic scattering we thus settle with
the electric-dipole Hamiltonian for the further calculations of the dipole dy-
namics under the two-level model since it give the correct coupling to both
longitudinal and transverse modes.

5.3 Dipole Operator Evolution

In the present section we will investigate the evolution of the operators gov-
erning the dipoles. We will introduce the two-level model for the previous
unspecified internal dynamics of the dipoles and derive the equations of mo-
tion using the electric-dipole Hamiltonian. This will enable us to derive the
fluorescence spectrum of a cloud of atoms in the next chapter.

5.3.1 Two-Level Dipole Equations of Motion

Let us look at the dynamics of dipoles under the assumption that they can
be described by only two energy levels. Such models are much used in the
literature due to the simplicity and ability to give qualitatively as well as
quantitatively good results [12]. We will go into the details of the derivation
of the equations of motion for the dipole operators since it is the simplest
model containing saturation effects. The resulting equations of motion will
be solved in the next chapter for a dilute cloud of atoms as an example of
the use of the formalism derived in this chapter.
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In the two-level model, the dipole moment operator, µ̂m(t), can be ex-
panded as

µ̂m(t) = µmb̂m(t) + µ∗
mb̂

†
m(t) (5.3.1)

where µm = 〈gm |µ̂m| em〉 is the diagonal element of the projection of the
m’th dipole onto its eigenstates and b̂m = |gm〉 〈em| and b̂†m = |em〉 〈gm|
are the excited-state annihilation and creation operators with |em〉 and |gm〉
being the excited and ground states of the m’th atom respectively. Note that
the dipole moment operator µ̂m(t) is Hermitian, µ̂m(t) = µ̂†

m(t). Thereby
the interaction Hamiltonian becomes

HI = −
∑

m

[

µmb̂m(t) + µ∗
mb̂

†
m(t)

]

· Ê(Rm, t). (5.3.2)

Furthermore, the free-atom Hamiltonian is given by [12]

HA =
∑

m

~ωm

[

σ̂m(t) +
1

2

]

(5.3.3)

where σ̂m = 1
2
(|em〉 〈em| − |gm〉 〈gm|) is the atomic occupation operator and

~ωm is the energy difference of the excited and ground states of the m’th
dipole. The operators have the equal-time commutation relations

[b̂m(t); σ̂m′(t)] = b̂m(t)δmm′ , (5.3.4a)

[b̂m(t); b̂
†
m′(t)] = −2σ̂m(t)δmm′ , (5.3.4b)

such that

[σ̂m(t);HA] = 0, (5.3.5a)

[σ̂m(t);HEd
I ] =

[

µmb̂m(t)− µ∗
mb̂

†
m(t)

]

· Ê(Rm, t), (5.3.5b)

and

[b̂m(t);HA] = ~ωmb̂m(t), (5.3.6a)

[b̂m(t);HEd
I ] = 2σ̂m(t)µ

∗
m · Ê(Rm, t). (5.3.6b)

We thus get the exact Heisenberg equations of motion

˙̂
bm(t) = −iωmb̂m(t)− 2

i

~
σ̂m(t)µ

∗
m · Ê(Rm, t), (5.3.7a)

˙̂σm(t) =
i

~
b̂†m(t)µ

∗
m · Ê(Rm, t) + h.c., (5.3.7b)

with h.c. denoting Hermitian conjugation. As we can see, the evolution of
the dipoles depends on the field at the position of the dipole. While the fields
in turn depend on the evolution of the dipoles as were found in Sec. 5.2.1.
This give our indirect dipole-dipole coupling mediated by the radiative field.
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5.3.2 The First Approximations

Up until now the derivation has been exact, but we are about to make the
first approximations. After carrying out any approximations the field and
dipole operators will in general not necessarily commute. We thus reorder
the operators such that the electric-field operators are normally ordered. This
we do because we shortly assume that the field is in a coherent state and in-
tegrate out the initial field operators by taking the expectation value with
respect to the Hilbert space of the field. When doing this, it is important
that the positive-frequency electric field operators is the first that ”meet”
the expectation values at the right since the coherent state is a eigenstate of
the positive-frequency electric field operator. Similar the negative-frequency
operators need to be on the left side. As we found in Sec. 5.2 the positive-
and negative-frequency field components can be written as a free-field con-
tribution plus a scattering contribution and we thus write

˙̂
bm(t) = −iωmb̂m(t)− 2

i

~
σ̂m(t)µ

∗
m · Ê(+)

(0) (Rm, t)− 2
i

~
µ∗

m · Ê(−)
(0) (Rm, t)σ̂m(t)

− 2
i

~
σ̂m(t)µ

∗
m · Ê(+)

Scat(Rm, t)− 2
i

~
µ∗

m · Ê(−)
Scat(Rm, t)σ̂m(t),

(5.3.8a)

˙̂σm(t) =
i

~
b̂†m(t)µ

∗
m · Ê(+)

(0) (Rm, t) +
i

~
µ∗

m · Ê(−)
(0) (Rm, t)b̂

†
m(t)

+
i

~
b̂†m(t)µ

∗
m · Ê(+)

Scat(Rm, t) +
i

~
µ∗

m · Ê(−)
Scat(Rm, t)b̂

†
m(t) + h.c.

(5.3.8b)

We will perform two approximations, the Born–Markov approximation (BMA)
and the RWA. The order at which the approximations are carried out is im-
portant for the physics of the system. We will do the BMA first followed by
the RWA since this will give us that the interaction between the dipoles is
governed by the Green function of the electric field while the reverse would
not.

The scattered field for the electric-dipole Hamiltonian was found to be,
see Eq. (5.2.11),

Ê
(±)
Scat(r, t) = ± i

2ε0

∑

m

∑

λ

ωλfλ(r)⊗ f∗λ(Rm) ·
∫ t

0

dτ µ̂m(τ)e
∓iωλ(t−τ). (5.3.9)

We are about to perform the BMA which is well known in the theory of
light-matter interaction, see eg. [12] or any other textbook on the subject.
It is a way of performing a no-memory approximation, known as a Markov
approximation, but doing it in a consistent way in which only first-order
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interactions are taken into account, corresponding to a first-order Born ap-
proximation. The assumption of no memory allows us to simplify the time
integral in Eq. (5.3.9). Specifically we write
∫ t

0

dτ µ̂m(τ)e
∓iωλ(t−τ) =

∫ t

0

dτ
[

µmb̂m(τ) + h.c
]

e∓iωλ(t−τ)

=

∫ t

0

dτ
[

µmb̂mr(τ)e
−iωmτ + h.c.

]

e∓iωλ(t−τ)

≈
∫ t

0

dτ
[

µmb̂mr(t)e
−iωmτ + h.c.

]

e∓iωλ(t−τ)

=

∫ t

0

dτ
[

µmb̂m(t)e
iωm(t−τ) + h.c.

]

e∓iωλ(t−τ), (5.3.10)

where in the second line we introduce the dipole annihilation operator rotat-
ing in the frame of reference of a non-interacting dipole, b̂mr(t) = b̂m(t)e

iωmt.
In the transition from the second to the third line we notice that the scat-
tering field is itself a first-order interaction term and thus we find the time-
evolution of the rotating operator, b̂mr(t − τ), to zeroth-order in the inter-
action. Because we have moved to a rotating frame we see that the time-
derivative of b̂mr(t) is indeed proportional to the interaction and thus to
zeroth-order we have b̂mr(t − τ) ≈ b̂mr(t). Notice that, in case we had per-
formed the no-memory approximation without going to the rotating frame we
would have thrown away terms even of zeroth order in an uncontrolled way.
The BMA is thus more controlled than a simple no-memory approximation.

An important question is of course the validity of the approximation.
Since it is a first-order approximation of the interaction between the light and
matter it is not valid in cases where any of the field modes of the underlying
dielectric material are in resonance with the dipoles such as quantum dots in
especially designed resonant nano-cavities. The BMA in connection with the
two-level model has however predicted phenomena such as the single-dipole
Mollow spectrum [53], experimentally verified for hot atoms in Ref. [54] and
quantum dots in micro-pillars in Ref. [55] or photon anti-bunching of light
emission from single atom proposed and demonstrated in Ref. [56]. In the
next chapter we will investigate the fluorescence spectrum of a dilute cloud of
cold atoms. We will do this in the dilute cloud limit in which the interaction
between the atoms is weak and thus consistent with the BMA.

Let us continue the derivation of the equations of motion within the BMA
and RWA. By the change of variables τ ′ = t−τ we have that in the long-time
limit

i

∫ t

0

dτei(ωm∓ωλ)τ
′ ≈ i

∫ ∞

0

dτei(ωm∓ωλ)τ
′

= − 1

ωm ∓ ωλ
(5.3.11)
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such that the scattered electric field can be written as

Ê
(±)
Scat(Rm, t) ≈ ∓ 1

2ε0

∑

n

b̂n(t)
∑

λ

ωλfλ(Rm)⊗ f∗λ(Rn) · µn

ωn ∓ ωλ

∓ 1

2ε0

∑

n

b̂†n(t)
∑

λ

ωλfλ(Rm)⊗ f∗λ(Rn) · µ∗
n

−ωn ∓ ωλ

=
∑

n

b̂n(t)U
(±)
mn · µ∗

n +
∑

n

b̂†n(t)V
(±)
mn · µ∗

n, (5.3.12)

where, for convenience, we have defined U
(±)
mn and V

(±)
mn , which are related

through [U
(±)
mn ]∗ = V

(∓)
mn , see App. B.2, and to the kernel of the electric field

K(r, r′, ω), Eq. (5.2.9), through U
(+)
mn +U

(−)
mn = −µ0ω

2
nK(Rm,Rn, ωn).

We are now able to calculate the scattering field terms for b̂m(t) and σ̂m(t)
in Eqs. (5.3.8), see App. B.2. To do this we use the equal-time relations
b̂†m(t)b̂m(t) = σ̂m + 1

2
, b̂†m(t)σ̂m(t) = −1

2
b̂†m(t) and b̂m(t)σ̂m(t) = 1

2
b̂m(t) and

their Hermitian conjugates. Furthermore, we use the RWA giving

˙̂
bm(t) = (−βm − iωm + iγm)b̂m(t)− 2

i

~
σ̂m(t)µ

∗
m · Ê(+)

(0) (Rm, t)

+ 2i
∑

n 6=m

σ̂m(t)b̂n(t)
µ0ω

2
n

~
µ∗

m ·K(Rm,Rn, ωn) · µn, (5.3.13a)

˙̂σm(t) = −2βm

[

σ̂m(t) +
1

2

]

+

[

i

~
b̂†m(t)µ

∗
m · Ê(+)

(0) (Rm, t) + h.c.

]

− i
∑

n 6=m

b̂†m(t)b̂n(t)
µ0ω

2
n

~
µ∗

m ·K(Rm,Rn, ωn) · µn

+ i
∑

n 6=m

b̂†n(t)b̂m(t)

[

µ0ω
2
n

~
µ∗

m ·K(Rm,Rn, ωn) · µn

]∗
.

(5.3.13b)

Here, the decay rate, βm, and Lamb shift, γm, have been identified as

βm = −µ0ω
2
m

~
Im {µ∗

m ·K(Rm,Rm, ωm) · µm} , (5.3.14a)

γm =
1

~
Re
{

µ∗
m ·
[

U(+)
mm(t)−U(−)

mm(t)
]

· µm

}

. (5.3.14b)

With the most cumbersome calculations done, it is about time for some
physics.

We will start by discussing the parts of the equations that are only gov-
erned by local operators, i.e. the diagonal terms. First of all, we notice that
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βm is proportional to the imaginary part of the kernel K(Rm,Rm, ωm) which
is equal to the imaginary part of the retarded Green function, see Eq. (5.2.9).
The decay rate of the dipole is thus proportional to the density of optical
states projected onto the direction of the dipole moment as we would also
expect, e.g. from Fermi’s Golden Rule. By changing the density of states it
is thus possible to change the decay dynamics. This has been experimentally
observed eg. for quantum dots in photonic crystals [57, 58]. Furthermore, we
see that the Lamb shift is related to the real part of the kernel K(Rm,Rm, ω).
Interestingly, the real part of K(r, r′, ω) is known to diverge as r and r′ ap-
proach each other. This gives the well-known property that the Lamb shift
seems to be infinite. This divergence is though sometimes attributed to lack
of inclusion of relativistic effects, see eg. Ref. [12], which would indeed avoid
the infinity. From our treatment it is though seen that the divergence could
instead be removed by including a finite size of the dipole, e.g. using the
regularization procedure of the theory of point scattering, see Ref. [51]. In
free space it is well known that such regularization only changes the real part
of the Green function and not the imaginary part. It is thus clear that the
dynamics of the dipole depends strongly on the possibility of coupling to the
surrounding photonic environment.

Next, let us take a look at the coupling of the m’th atom to the field
and the other atoms in Eq. (5.3.13). The light couples to the dipole m
by its initial field operators. The coupling of the free field to b̂m depends
on the excitation σ̂m of the dipole. The coupling to σ̂m on the other hand
depends on both b̂m and b̂†m. This coupling can be understood by noticing

that Ê
(+)
(0) is a composition of photon annihilation operators and thus the

term b̂†m(t)µ
∗
m · Ê(+)

(0) (Rm, t) corresponds to the annihilation of a photon and
excitation of the dipole and vice versa for its hermitian conjugate. At last,
the coupling amongst the dipoles is seen to occur through the radiation field
via the kernel K(Rm,Rn, ωn). This kernel is equal to the retarded Green
function for Rm 6= Rn and thus the scattering among the dipoles occurs
through the same propagator as is found by classical point scattering. It
should be noticed that if we had used the RWA at any point before this we
would not obtain that the interaction was mediated by the usual classical
field Green function, but instead some less physical kernel.

In the next chapter we will investigate the fluorescence spectrum of a
driven cloud of cold atoms and we will thus simplify the Eqs. (5.3.13) by
assuming identical atoms in vacuum. Furthermore, we will assume a homo-
geneous coherent driving field such that

Ê
(+)
(0) (Rm, t) |ψin〉 =

1

2
E0e

ik0·Rm−iω0t |ψin〉 , (5.3.15)



64 Quantum Scattering of Light on Dipoles

where E0 is the electric field amplitude, k0 is the wave-vector of the in-
coming field and ω0 its frequency. It is at this point that we use that
the equations of motion are normal ordered with respect to the field op-
erators. We now use this to define the electric field fluctuation operator

δÊ
(±)
(0) (r, t) = Ê

(±)
(0) (r, t)−

〈

Ê
(±)
(0) (r, t)

〉

. We further define the Rabi frequency

ΩR =
|µ·E0|

~β
, the propagator

Gmn = −µ0ω
2
a

β~
µ∗

m ·K(Rm,Rn, ωa) · µne
−ik0·(Rm−Rn), (5.3.16)

and the detuning ∆ = ω0−ωa+γ
β

all normalized with respect to β which in
vacuum is

β =
2

3

µ0µ
2
aω

3
a

4π~c
, (5.3.17)

where µs is the magnitude of the dipole moments, µm. Notice that β is half
the so-called Einstein A-coefficient or spontaneous-decay rate. Finally, we
define the atomic annihilation operator rotating in the frame of the applied
field

b̂mr′(t) = b̂m(t)e
−ik0·Rm+iω0t. (5.3.18)

Notice that this is not the same rotating frame as in Eq. (5.3.10) hence the
subscript r′ instead of r. With this we get the set of coupled nonlinear
differential equations for the atomic operators

1

β
˙̂
bmr′(t) = −(1− i∆)b̂mr′(t)− iΩRσ̂m(t) + F̂ (+)

m (t)

− 2i
∑

n 6=m

σ̂m(t)b̂nr′(t)Gmn, (5.3.19a)

1

β
˙̂σm(t) = −2

[

σ̂m(t) +
1

2

]

+
i

2
ΩRb̂

†
mr′(t)−

i

2
ΩRb̂mr′(t) + F̂ (z)

m (t)

+ i
∑

n 6=m

b̂†mr′(t)b̂nr′(t)Gmn − i
∑

n 6=m

b̂†nr′(t)b̂mr′(t)G
∗
mn,

(5.3.19b)

where F̂
(+)
m (t) and F̂

(z)
m (t) are Langevin noise terms containing combinations

of atomic operators and electric field fluctuation operators. These noise terms
were suggested by K. Mølmer during the defence of this thesis. They are
shown in a future publication not to contribute to the cases studied in the
next chapter, but should in general be included.
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This is the main result of this section. In the next chapter we will solve
this set of equations to find the fluorescent spectrum of a cloud of atoms.
We will omit the subscript r′ for brevity, but remember that we are rotating
with the frame of the driving field. Furthermore we will use the normalized
time t′ = tβ and the normalized energies ω/β.

5.4 Chapter Summary

In this chapter we introduce inelastic scattering by considering light scattered
off point-dipoles embedded in an arbitrary dielectric structure. The quantum
mechanical description of the interaction between the light and the dipoles
through the minimal-coupling and electric-dipole interaction Hamiltonians
was stated and briefly discussed.

Using these the Heisenberg equations of motion for the electric field
were derived and exact relations between the electric field and dipole op-
erators were found. These relations of the field evolution upon scatter-
ing on dipoles showed similarities with classical point scattering and both
interaction Hamiltonians gave rise to a free-field evolution and a scatter-
ing contribution while the latter included different physics. The scattered
field using electric-dipole interaction Hamiltonian consisted of the propaga-
tion from the different dipoles through a dyadic kernel which, except for a
delta-function contribution, was equal to the full Green function known from
classical light propagation. On the other hand, the scattered field in the
minimal-coupling Hamiltonian had two contributions, one consisted of the
propagation of light emitted from the dipole through the transverse Green
function. The other term is the elastic scattering of the light on the dipoles.
The minimal-coupling Hamiltonian is often linearized in the literature. We
found that this corresponds to to neglecting the elastic-scattering compo-
nent. The elastic-scattering component of the minimal-couping Hamiltonian
would complicate further calculations and thus, since the focus of the chap-
ter is on inelastic scattering, we chose to use the electric-dipole interaction
Hamiltonian.

We then turned our attention to the evolution of the dipoles by using
a two-level model. With this model we found the Heisenberg equations of
motion of the dipole operators. In deriving the equations of motion we used
the Born–Markov approximation and the rotating-wave approximation. By
postponing the use of the rotating-wave approximation to the very end, we
found that the interaction amongst the dipoles is governed by the Green
function known from classical light propagation. Furthermore, we found
that the decay rate of the dipoles is proportional to the imaginary part of
the Green function, while the Lamb shift is related to the real part of the
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Green function. The equations of motion will be used in the next chapter to
explore a driven cloud of cold atoms.

The treatment of the chapter is a generalization to the nonlinear regime
of the work of Ref. [50] considering scattering of quantized light on harmonic
atoms.



6
Fluorescence Spectrum of a Dilute

Cloud of Atoms

In this chapter, we explore the steady-state properties of two-level atoms.
We find the fluorescence spectrum of a cloud of cold atoms in a dilute limit
for which we predict collective phenomena in the spectrum that depend on
the angle of detection.

We begin the chapter in Sec. 6.1 by reviewing the driven single atom where
we find the steady-state population and fluorescence spectrum. The spectrum
is divided into the elastic and inelastic parts, where the inelastic part reveals
the well-known Mollow triplet. We do this in order to be able to distinguish
single-atom properties from N -atom properties. Next, in Sec. 6.2, we revisit
the Heisenberg equations of motions for N coupled two-level atoms, which we
found in the previous chapter. After this, in Sec. 6.3 we find the impact on
the atomic population of having more than one atom. Then, in Sec. 6.4 we
derive the fluorescence spectrum of a dilute cloud of cold atoms which have
similarities with the single-atom spectrum, but with distinct differences, some
of which are attributed to collective atomic effects. Finally, we summarize
the findings of the chapter in Sec. 6.5.

6.1 The Single Two-Level Atom

Let us have a look at the properties of a single atom in vacuum modeled
as having only a ground and an excited state, |g〉 and |e〉, with an energy
difference ~ωa. Similar to Refs. [12, 53, 59] we conduct the calculations in
the Heisenberg picture. While these references only consider a single atom
we will expand the method to N atoms later on, but at this point we perform
the calculations for a single atom. The atom is assumed driven by a coherent
laser field of frequency ω0 and wave vector k0. As described in Sec. 5.3.1 of
the previous chapter, the atom is characterized by the population inversion
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operator σ̂(t) = 1
2
(|e〉 〈e| − |g〉 〈g|) and the lowering operator in the frame

rotating with the field

b̂(t) = |g〉 〈e| exp(iω0t− ik0 ·R), (6.1.1)

along with its hermitian conjugate, where R is the position of the atom. For
such a system the equations of motion are, see Eq. (5.3.19),

˙̂
b(t) = −(1− i∆)b̂(t)− iΩRσ̂(t), (6.1.2a)

˙̂σ(t) = −2

[

σ̂(t) +
1

2

]

+
i

2
ΩRb̂

†(t)− i

2
ΩRb̂(t), (6.1.2b)

which are normalized with respect to the free-space decay rate

β =
2

3

µ0|µ|2ω3
a

4π~c
, (6.1.3)

where µ is the dipole moment of the atom. The parameters of the atomic
evolution are the normalized Rabi frequency ΩR and detuning ∆.

By defining the vector x̂(t) = [b̂†(t), b̂(t), σ̂(t)] we then get

˙̂x(t) = −Mx̂(t)− e3, (6.1.4)

where we have defined the vector e3 = [0, 0, 1] and the matrix

M =





1 + i∆ 0 −iΩR

0 1− i∆ iΩR

− iΩR

2
iΩR

2
2



 . (6.1.5)

With this it is easy to find the dynamics of the system.

6.1.1 Steady-State Population of a Single Atom

First, let us calculate the steady-state population of the atom. The popula-

tion is given by
〈

b̂†(t)b̂(t)
〉

= 〈σ̂(t)〉+ 1
2
. By defining x(t) = 〈x̂(t)〉 we have

that

x(∞) = 〈x̂〉ss = −M−1e3 (6.1.6)

where 〈:〉ss denote the steady state expectation value such that eg. 〈σ̂〉ss =
e3 · x(∞) = −e3 ·M−1e3. Thereby the steady-state atomic population is

〈

b̂†b̂
〉

ss
=

Ω2
R

2(2 + 2∆2 + Ω2
R)

=
Ω̃2

R

2(1 + Ω̃2
R)
, (6.1.7)
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where we have defined the effective Rabi frequency Ω̃2
R =

Ω2
R

2(1+∆2)
, sometimes

known as the saturation parameter. This quantity describes that as the
driving field is detuned from the atomic transition, i.e. for large ∆2, the
atom will not be affected as much by the intensity of the driving field, i.e.
Ω2

R. We notice that the population only depends on this effective intensity of
the incident field, Ω̃2

R, and as we increase this the population increases, but
saturates at a maximum of 1

2
. This is shown in the upper plot of Fig. 6.1.

Notice that the dependence of the population, Eq. 6.1.7, is symmetric in the
detuning, ∆.
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Figure 6.1 (Top) The single atom population versus effective Rabi frequency, Ω̃R =
√

Ω2

R
/2(1 + ∆2). (Bottom) The elastic spectrum of a single atom versus effective Rabi

frequency.

6.1.2 Fluorescence Spectrum of a Single Atom

Next, we find the steady-state fluorescence spectrum which is defined as, eg.
see Ref. [12],

S(r, ω′) = Re

{

lim
t→∞

∫ ∞

0

dτeiω
′τ
〈

Ê(−)(r, t) · Ê(+)(r, t+ τ)
〉

}

, (6.1.8)
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where r is the position of the detector. We know from Sec. 5.2.1 of the last
chapter that the field operators may be written as a free field plus a scattering
field. In the far field and using the RWA we have [11]

Ê
(+)
Scat(r, t) = −k

2
0|µ| sin θr̂d
4πǫ0r

b̂
(

t− r

c

)

e−iω0(t− r
c)+ik0·Re−ikd·R, (6.1.9)

where θ is the angle between the dipole moment and the vector from the
atom to the detector, kd = k0r̂d, and r̂d being the unit vector pointing from
the atom to the detector. For simplicity we will assume that we can filter out
the free field, eg. by measuring in a direction away from the incident light,
and will omit the r/c time contribution in the operator since we are taking
the long-time limit anyway. We then get

S(r, ω) = S0Re

{

lim
t→∞

∫ ∞

0

dτeiωτ
〈

b̂†(t)b̂(t+ τ)
〉

}

, (6.1.10)

where we have defined the frequency centered around the frequency of the
driving field ω = ω′ − ω0 and the prefactor of the spectrum

S0 =

(

k20|µ| sin θ
4πǫ0r

)2

. (6.1.11)

In order to calculate the spectrum we thus need to find the Laplace trans-

form of
〈

b̂†(t)e2 · x̂(t + τ)
〉

with respect to τ , where e2 = [0, 1, 0], and sub-

sequently take the long-time limit of time t. Proceeding with the Laplace
transform with respect to τ of x̂(t+ τ), Eq. (6.1.4), we get

x̂(ω) = (M− iωI)−1

[

x̂(t)− i

ω
e3

]

, (6.1.12)

where I is the unit matrix. From the equal-time operator relations b̂†(t)b̂†(t) =
0, b̂†(t)b̂(t) = σ̂(t) + 1

2
, and b̂†(t)σ̂(t) = −1

2
b̂†(t) we have that

b̂†(t)

[

x̂(t)− i

ω
e3

]

=

(

U− i

ω
V

)

x̂(t) +
1

2
e2, (6.1.13)

with the matrices

U =





0 0 0
0 0 1
−1

2
0 0



 , V =





0 0 0
0 0 0
1 0 0



 . (6.1.14)
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With this we get that

〈

b̂†(t)e2 · x̂(ω)
〉

ss
= e2 · (M− iωI)−1

[(

i

ω
V −U

)

M−1e3 +
1

2
e2

]

.

(6.1.15)

Using the small positive imaginary part of ω in the definition of the Laplace
transform we recognize that ω−1 = P (ω−1) − iπδ(ω), and from physical
considerations we identify the delta function contribution as the elastic part
of the spectrum. That is, the elastic spectrum is given by

Sel(r, ω)

S0
= πe2 ·M−1VM−1e3δ(ω)

=
πΩ̃2

R

2
(

1 + Ω̃2
R

)2 δ(ω) =
πδ(ω)

1 + Ω̃2
R

〈

b̂†b̂
〉

ss
, (6.1.16)

where the subscript el indicates the elastic part of the spectrum and we have
identified the steady-state population, Eq. (6.1.7). The elastic spectrum is
shown in the lower plot of Fig. 6.1 versus Ω̃R. As we increase the effective
intensity, Ω̃2

R, the magnitude of the elastically scattered spectrum increases
until Ω̃2

R = 1 after which the scattering decreases. This is because as we
increase the intensity the population increases and thus the light will in-
creasingly interact with the atoms and thus scatter inelastically. This brings
us to the inelastic spectrum which is given by

Sin(r, ω)

S0

= Re

{

e2 · (M− iω)−1

[(

i

ω
V −U

)

M−1e3 +
1

2
e2

]}

= Re

{

iωΩ2
R − 2(2− iω) [∆2 + (1− iω)2]

2iω(2− iω) [∆2 + (1− iω)2] + 2iω(1− iω)Ω2
R

}

〈

b̂†b̂
〉

ss

2
.

(6.1.17)

By partial-fraction decomposition this can be written as a sum of three
Lorentzian terms. These correspond to three spectral components, the center
and the two sidebands of the well-known Mollow triplet [53]. Physically, the
three components are caused by the hybridization of the combined atomic
and the electromagnetic field states which occur when the atom is driven
sufficiently strong.

The general decomposed expression of Eq. (6.1.17) is rather long and will
not be stated here. In the case of zero detuning, ∆ = 0, the sidebands occur

when ΩR > 1
2
and are located at the frequencies ±

√

Ω2
R − 1

4
symmetrically
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Figure 6.2 The single-atom inelastic spectrum, Sin, versus Rabi frequency, ΩR, for zero
detuning, ∆ = 0.
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Figure 6.3 The single-atom inelastic spectrum, Sin, versus detuning, ∆, for a Rabi fre-
quency of ΩR = 10.
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around the central peak. In the general case there are three things that
should be noted. Although difficult to see from Eq. (6.1.17) i) the single atom
spectrum is symmetric around the central peak for all values of detuning ∆
and Rabi frequency ΩR, ii) the position of the two sidebands depends on
ΩR and ∆, and iii) the magnitude of all three peaks decreases when |∆|
is increased independent of the sign of ∆. These features can be seen in
Figs. 6.2 and 6.3. Here, Fig. 6.2 shows the inelastic spectrum versus Rabi
frequency, ΩR, for zero detuning, ∆ = 0, illustrating the splitting into the
three peaks. In Fig. 6.3 the spectrum versus the detuning, ∆, for a Rabi
frequency of ΩR = 10 is shown. As the driving field is detuned from the
atomic transition, the strength of the spectral peaks decrease symmetrically.
With this we will end the discussion of the single-atom fluorescence spectrum
while we are about to investigate a cloud of atoms. We should though keep
the single-atom properties in mind in order to compare with those of the
atomic cloud.

6.2 The Dilute Atomic Cloud

We now turn our attention to the cloud of N identical atoms. In this section
we will describe the equations of motion that we will use to find the steady-
state population in Sec. 6.3 and the fluorescence spectrum in Sec. 6.4.

The equations of motion for the N two-level atoms was found in the
previous chapter, Eq. (5.3.19), to be

˙̂
bm(t) = −(1− i∆)b̂m(t)− iΩRσ̂m(t)− 2i

∑

n 6=m

σ̂m(t)b̂n(t)Gmn, (6.2.1a)

˙̂σm(t) = −2

[

σ̂m(t) +
1

2

]

+
i

2
ΩRb̂

†
m(t)−

i

2
ΩRb̂m(t)

+ i
∑

n 6=m

b̂†m(t)b̂n(t)Gmn − i
∑

n 6=m

b̂†n(t)b̂m(t)G
∗
mn, (6.2.1b)

where, like in the single atom case, ΩR is the Rabi frequency, ∆ is the
detuning, and we have neglected the Langevin terms. Furthermore, when
more than one atom is present, the atoms will couple by a dipole-dipole
interaction via the electric field through Gmn. We found in the previous
chapter that this inter-atomic coupling is proportional to the Green function
known from classical scattering of electromagnetic waves. As we learned in
Sec. 2.2.1 of Chap. 2 the Green function describes the probability amplitude
of propagation from one point to another and Gmn is thus related to the
probability of light emitted at one atom to arrive at the other. The Green
function for light propagation in vacuum can be found analytically, see eg.
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Ref. [51], such that if we assume that the dipoles are randomly oriented, we
have, see App. C.1,

Gmn =
eikaRmn

kaRmn

e−ik0·Rmn (6.2.2)

where ka =
ωa

c
, Rmn = |Rmn| = |Rm−Rn| is the length between them’th and

the n’th atom, and k0 is the wave vector of the driving field. The assumption
of randomly oriented dipoles corresponds to using the far field part of the
Green function which is justified below.

It is of course not feasible to exactly solve the dynamics of the atoms
under general conditions, since an experiment considering clouds of atoms
often contains large numbers of atoms, eg. the number of atoms is N ∼
107 − 109 in Ref. [60]. Previous investigations have thus considered limiting
cases such as assuming extremely dilute clouds, Gmn = 0, [61], linearizing
the atomic operator equations by assuming weakly driven atoms, i.e. σ̂m =
−1

2
, [60, 62, 63], or having only few atoms, N ∼ 2 − 5, [64, 65, 66, 67]. In

the following we will do a combination which go beyond the three in that
we will look at a dilute cloud, where interactions small, but not zero as
Ref. [61] take them. Thereby we are able to observe changes in the spectrum
similar to those for two atoms of Refs. [64, 66] while keeping the cooperative
interference effects that exist in large clouds as considered in Refs. [61, 63].
We thus assume that the atoms are far apart, justifying the use of the far
field Green function, and only take terms to first order in Gmn into account
corresponding to a single-scattering approximation.

Using the same approach as in the previous section we write up the equa-
tions of motion in matrix form

˙̂xm(t) = −Mx̂m(t)− e3 −
∑

n 6=m

(

iQGmn − iQ̃G∗
mn

)

ŷmn(t), (6.2.3a)

˙̂ymn(t) = −Aŷmn(t)−Bx̂m(t)− B̃x̂n(t) +O(Gmn), (6.2.3b)

where x̂m(t) like for the single atom case is a vector containing the three
operators of the m’th atom, while ŷmn(t) is a vector which contains the 9
combinations of the operator products of the m’th and n’th atomic operators
with m 6= n, e.g. the first component of ŷmn(t) is b̂

†
m(t)b̂n(t). The equation

for ŷmn(t) is to zeroth order in the interaction Gmn according to our single
scattering approximation since solving for ŷmn and insertion in the equation
for x̂m gives to x̂m(t) to first order. By writing the products of the different
operators as a new operator we include inter-atomic coherences. The matrix
M governs the evolution of the atom due to the driving and is the same
as in the single atom case. Similar to M for x̂m(t), the matrix A govern
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the evolution of ŷmn(t) due to the driving. The matrices Q and Q̃ couple
x̂m(t) to ŷmn(t) due to the dipole interaction while B and B̃ couple ŷmn(t)
to x̂m(t) and x̂n(t). In case the field was not isotropic the matrices M and A

would depend on the specific atoms, i.e. M → Mm and A → Amn. In case
the atoms were fluorescent nanospheres embedded in a random dielectric
structure, such as in the experiment of Ref. [68], all the matrices would
depend on the emission properties of the specific emitter. The matrices are
written out in App. C.5.

We will use the coupled set of equations to find the same steady-state
population and fluorescence spectrum of the cloud of atoms as we did for the
single atom. We begin with the steady-state population.

6.3 Steady-State Population of a Cloud of N Atoms

Similar to the procedure of the single atom we now determine the steady-state
population. We write the derivation in some detail since the calculations will
give us some insight in the validity of the single-scattering approximation.
We define the expectation values of xm(t) = 〈x̂m(t)〉 and ymn(t) = 〈ŷmn(t)〉
and use the term “local” for the atom m. In steady state we get

0 = −Mxm(∞)− e3

+
(

iQGm − iQ̃G∗
m

)

A−1Bxm(∞)

+
∑

n 6=m

(

iQGmn − iQ̃G∗
mn

)

A−1B̃xn(∞), (6.3.1)

where

Gm =
∑

n 6=m

Gmn (6.3.2)

has been defined. The quantity Gm concerns the total probability amplitude
of light emitted from any of the other atoms to arrive at the atom m and
vice versa for the complex conjugate. We see that the local properties of
the atom are given by two contributions, a single-atom contribution (the
first line) and a correction term due to the change in the electromagnetic
environment caused by the presence of all the other atoms (the second line).
Furthermore, the local properties of the atom depend on the properties of all
the other atoms coupled through the electromagnetic field (the third line).

Now, let us write Eq. (6.3.1) as a 3N × 3N matrix equation. We do
this by defining the block-diagonal matrices M(N) and Λ and the block-
off-diagonal block matrix Π. The block-matrix elements of M(N) are the
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single-atom matrices M while the block elements of the matrices Λ and Π

are the diagonal and off-diagonal interaction corrections respectively, i.e.

{M(N)}mn = Mδmn, (6.3.3a)

{Λ}mn =
(

iQGm − iQ̃G∗
m

)

A−1Bδmn, (6.3.3b)

{Π}mn =
(

iQGmn − iQ̃G∗
mn

)

A−1B̃(1− δmn). (6.3.3c)

Furthermore, we write the length-3N vectors X(∞) and C having the el-
ements {X(∞)}m = xm(∞) and {C}m = e3. With this we can write
Eq. (6.3.1) as

X(∞) = −
[

M(N) −Λ−Π
]−1

C. (6.3.4)

We will now make use of the fact that we are dealing with a dilute cloud
such that the scattering is weak, and we only aim to find the population to

first order in the scattering. We do this by writing
[

M(N) −Λ−Π
]−1

as a
geometric series and taking only the first term into account, i.e.

[M(N) −Λ−Π]−1 = {I− [M(N)]−1(Λ+Π)}−1[M(N)]−1

=
∑

n

{[M(N)]−1(Λ+Π)}n[M(N)]−1

≈ {I+ [M(N)]−1(Λ+Π)}[M(N)]−1. (6.3.5)

This is actually equivalent to making the first order Born-approximation
and is thus consistent with the use of the Born–Markov approximation as
explained in Sec. 5.3.1 of the previous chapter. This is e.g. opposed to the
treatments of the fluorescence spectrum of two atoms in Refs. [64, 66] where,
under the same approximations as here (the BMA and RWA), it is assumed
valid to take all orders of the inter-atomic scattering into account. The
beauty of our formulation of the approximation as a cut-off in the geometric
series, is that we directly obtain a criterion of its validity, i.e.

||Λ+Π|| ≪ ||M(N)||, (6.3.6)

where || : || is the matrix infinity norm. We will go further into the details
of this validity criterion shortly, but let us first complete the calculations of
the steady-state population.

We notice that, since all the block vector elements of [M(N)]−1C are equal,
we get

{

Π[M(N)]−1C
}

m
=
(

iQGm − iQ̃G∗
m

)

A−1B̃M−1e3. (6.3.7)
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We thus have that the steady-state operators of them’th atom can be written
as a zeroth- and a first-order contribution, i.e. xm(∞) ≈ x

(0)
m (∞) + x

(1)
m (∞),

with

x(0)
m (∞) = −M−1e3, (6.3.8a)

x(1)
m (∞) = −M−1

(

iQGm − iQ̃G∗
m

)

A−1(B+ B̃)M−1e3. (6.3.8b)

That is, the steady-state population is given by a zeroth-order term which
equals the single-atom population found in the previous section

〈

b̂†mb̂m

〉(0)

ss
=

Ω̃2
R

2(1 + Ω̃2
R)
, (6.3.9)

plus the first-order correction given by

〈

b̂†mb̂m

〉(1)

ss
= −(Im {Gm}+ Re {Gm}∆)Ω̃2

R

(1 + ∆2)
(

1 + Ω̃2
R

)3 . (6.3.10)

First, as would be expected when including interactions, the population de-
pends on the actual position of the atom. This occurs throughGm, Eq (6.3.2),
and thus the correction to the specific atom depends on the probability for
light from the other atoms to actually arrive at this atom. Second, different
from the single-atom case, the correction term does depend on the sign of
the detuning, ∆. Specifically, the term concerning the real part of Gm is
asymmetric in ∆ and gives rise to a a shift in value of the detuning at which
maximal population is obtained. This is consistent with Gm being related
to the change in the photonic environment due to the appearance of all the
other atoms and the real part of Gm thus gives the corresponding change in
the Lamb shift. The imaginary part of Gm then corresponds to the change
in the decay rate and thus changes the width of the excitation peak.

In Figs. 6.4 and 6.5 we treat Gm as a parameter to show these behaviors.
The effect of Re {Gm} is shown in Fig. 6.4 for Gm purely real-valued in
the range Gm ∈ [−1

2
; 1
2
] while the effect of the imaginary part is shown

in Fig. 6.5 with Gm purely imaginary in the range Gm ∈ [− i
2
; i
2
]. Both

plots are with ΩR = 1 and as the Rabi frequency increases the effect of the
interaction decreases (not shown). As we will see, these used values of Gm

are exaggerated and the validity of the approximation for these values is
questionable, but we use these values for the purpose of illustration. Before
we move on to derive the fluorescence spectrum, we investigate realistic values
of Gm by ensemble averaging with respect to position and use this to discuss
the range of validity of the single-scattering approximation.
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Figure 6.4 The population versus detuning, ∆, for various real values of Gm in the range
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6.3.1 Ensemble-Averaged Interaction

In an actual experiment the position of the individual atoms is most often
random and unknown and thus only the averaged properties can be pre-
dicted. We therefore determine the value of Gmn averaged with respect to
the positions of the m’th and n’th atoms. With the expression for Gmn,
Eq. (6.2.2), the ensemble average over the atomic positions can be written
as

Gmn =

∫

drn(r)

∫

dr′n(r′)
ei[ka|r−r′|−k0·(r−r′)]

ka|r− r′| , (6.3.11)

where n(r) is the distribution of atomic positions and since m 6= n in Gmn

the positions r and r′ are uncorrelated. We will assume that the cloud has
Gaussian shape with thickness ρ̃, i.e.

n(r) =
1

√

(2πρ̃2)3
exp

(

− r2

2ρ̃2

)

. (6.3.12)

The assumption of a Gaussian shaped cloud corresponds to the use of har-
monic potentials in the magnetic traps that often hold the atomic cloud.
Furthermore, assuming this particular distribution makes it possible to split
the multidimensional integrals in the average into two independent ones. In
this way we get, see App. C.1.2,

Gmn =
1

(2ρ)2

[

e−4ρ2Erfi(2ρ) + i
(

1− e−4ρ2
)]

, (6.3.13)

where ρ = kaρ̃ is the cloud size normalized with the atomic wavenumber and
Erfi(x) is the imaginary error function which is related to the usual error
function, Erf(x), through Erfi(x) = −iErf(ix). For large clouds (ρ > 5) this
further simplifies to

Gmn ≈ 1

(2ρ)2

[

1

2
√
πρ

+ i

]

. (6.3.14)

For a cloud of thickness ρ = 5000 and with N = 108 atoms [60] we have
that Gm = NGmn ≈ 10−4 + i and thus for large clouds Gmn is almost purely
imaginary. By comparison, the values of Fig. 6.4 are thus exaggerated, but
still serve as a nice illustration of the real part of the interaction.

We now introduce the off-resonance optical thickness b(∆) = b0/(1+∆2),
with b0 = 3N/ρ2 being the on-resonance optical thickness for a Gaussian
shaped cloud, see eg. Ref. [63]. The off-resonance optical thickness is a
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measure of how dense the atomic cloud is for the driving field. That is, if
the driving field is detuned from the atomic transition, it will experience less
scattering and the cloud is effectively less dense. With this we obtain that,
for large ρ and N , the average correction to the population of one of the
atoms, Eq. (6.3.10), is

〈

b̂†mb̂m

〉(1)

ss
= − b(∆)Ω̃2

R

12
(

1 + Ω̃2
R

)3 , (6.3.15)

by using that Gm = NGmn ≈ i b0
12
. This correction to the population due to

the interaction with the other atoms increases as the effective thickness of
the cloud, b(∆), increases. Furthermore, when the effective intensity, Ω̃2

R, is
increased, the effect of the correction decreases. This can be understood by
noticing that the effect on them’th atom due to the dipole-dipole interaction,
Gmn terms in Eq. (6.2.1), will become relatively smaller than the effect of
the driving field, ΩR.

We will now asses the range of validity of our single scattering approxima-
tion. The validity criterion for the single-scattering approximation given by
Eq. (6.3.6), can be written into a form where the parameters of the driving
field, ΩR and ∆, and those of the atomic cloud, Gmn and N , are separated,
see App. C.4. There are three criteria depending on the relative magnitude
of ΩR and ∆, see Eqs. (C.4.7) to (C.4.9), and they can be written as

∑

m |
∑

n 6=mGmn|
N

≪







2ΩR, 2
√
1 + ∆2 < ΩR

2
√
1 + ∆2 + ΩR, 2 < ΩR < 2

√
1 + ∆2

2(1 +
√
1 + ∆2), ΩR < 2

. (6.3.16)

In order to get an analytical expression so that we can get a physical intuition
of this we further use |∑n 6=mGmn| ≤

∑

n 6=m |Gmn|, giving

∑

m

∑

n 6=m |Gmn|
N

≪







2ΩR, 2
√
1 + ∆2 < ΩR

2
√
1 + ∆2 + ΩR, 2 < ΩR < 2

√
1 + ∆2

2(1 +
√
1 + ∆2), ΩR < 2

. (6.3.17)

The average of |Gmn| is |Gmn| = (
√
πρ) such that, assuming that there are

much more than one atom, N ≫ 1, we get the averaged validity criterieon

N − 1√
πρ

=

√

Nb0
3π

≪







2ΩR, 2
√
1 + ∆2 < ΩR

2
√
1 + ∆2 + ΩR, 2 < ΩR < 2

√
1 + ∆2

2(1 +
√
1 + ∆2), ΩR < 2

. (6.3.18)
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This signifies that the correction to the atomic population, Eq. (6.3.10), is
valid when the optical thickness times the number of atoms is much smaller
than the intensity and/or the detuning. The validity estimate seem quite
difficult to obtain with realistic experimental values since values such as
N = 108 and ρ = 5000 [60] gives b0 ≈ 10 and thus

√

Nb0/3π ≈ 104, which
are orders of magnitude larger larger than the paramters of the driving field
in most experimental situations. The values used in Figs. 6.4 and 6.5 thus
correspond to a regime where our approximation does not seem to be valid.
Thus, either the inter-atomic interaction are not negligible in usual atom ex-
periments or the restriction |

∑

n 6=mGmn| ≤
∑

n 6=m |Gmn| is too crude. Using
|∑n 6=mGmn| ≤

∑

n 6=m |Gmn| to calculate the validity criterion is certainly
giving a high estimate of

∑

m |
∑

n 6=mGmn| since it neglect all phase contri-
butions for the scattered light, i.e. neglect interferences.

We note that the validity criterion for the single-scattering approxima-
tion when deriving the fluorescence spectrum is the same as the above,
see App. C.4. In the following we will obey the strict validity criterion,
Eq. (6.3.18), for plotting.

6.4 Fluorescence Spectrum of a Cloud of N Atoms

We now determine the fluorescence spectrum of a dilute cloud of atoms. Since
we are dealing with more than one atom, the scattered field is a sum over
the contributions from all the atoms and we thus get the spectrum to be

S(r, ω)

S0

=
∑

m,n

Re

{

lim
t→∞

∫ ∞

0

dτeiωτ
〈

b̂†m(t+ τ)b̂n(t)
〉

ei(k0−kd)·(Rm−Rn)

}

,

(6.4.1)

where k0 is the wave vector of the driving field, kd = k0r̂d and r̂d is the unit
vector directed from the center of the cloud towards the detector. We will
find that the spectrum depends on the angle between k0 and kd which we
will dub the detection angle θd and write S(θd, ω) instead of S(r, ω). For
simplicity, we have again assumed that we can filter out the free field and
have omitted the r/c delay-time contribution in the operator since we are
taking the long time limit. We will split the spectrum up in two parts: a
sum over the same atomic indices, let us call it the local part, and a double
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sum over different atomic indices, which we call the interference part, i.e.

Sloc(θd, ω)

S0
=
∑

m

Re

{

lim
t→∞

∫ ∞

0

dτeiωτ
〈

b̂†m(t+ τ)b̂m(t)
〉

}

, (6.4.2a)

Sint(θd, ω)

S0
=
∑

m,n 6=m

Re

{

lim
t→∞

∫ ∞

0

dτeiωτ
〈

b̂†m(t+ τ)b̂n(t)
〉

eiδk·Rmn

}

,

(6.4.2b)

where δk = k0 − kd and Rmn = Rm −Rn. The local part of the spectrum
is a sum over intensity contributions from the different atoms, while the
interference part is the interference amongst field amplitude contributions
emitted from the N different atoms. Like with the atomic population for N
atoms in Sec. 6.3 we will write the local and interference parts of the spectrum
as a zeroth-order term and a first-order correction, i.e. Sloc ≈ S

(0)
loc + S

(1)
loc

and Sint ≈ S
(0)
int + S

(1)
int . In the following we will first investigate the elastic

spectrum, where reasonably simple analytic expressions can be obtained, and
then look into the effects of the inter-atomic interaction on the inelastic part
of the spectrum. Details of the calculations can be found in App. C.2.

6.4.1 Elastic Spectrum

We now show the effect of atomic interactions on the elastic spectrum by in-
vestigating the zeroth- and first-order terms separately. The different parts
of the elastic spectrum contain similar types of interaction terms as the in-
elastic spectrum and can thus give us some insight in the more complicated
inelastic spectrum.

Zeroth-order elastic spectrum

Let us begin with the ensemble-averaged zeroth-order terms of the elastic
spectrum. These correspond to the very dilute limit used in Ref. [61] which
consider spatial photon correlations from a driven atomic cloud. The average
contribution to the zeroth-order spectrum from the local part is given by N
times the elastic spectrum of a single atom, i.e.

S
(0)
loc,el(θd, ω)

NS0
=

πΩ̃2
R

2
(

1 + Ω̃2
R

)2 δ(ω) =
πδ(ω)

1 + Ω̃2
R

〈

b̂†b̂
〉(0)

ss
, (6.4.3)

where
〈

b̂†b̂
〉(0)

ss
is the single-atom population, Eq. (6.1.7). This corresponds

to the intensity of the driving field being isotropically scattered on the atoms.
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The interference part is on the other hand given by

S
(0)
int,el(θd, ω)

NS0
=(N − 1)f 2(δk)

πδ(ω)

1 + Ω̃2
R

〈

b̂†b̂
〉(0)

ss
. (6.4.4)

Here, the function f(δk) is the ensemble average of e−iδk·Rm which for our
Gaussian cloud we find in App. C.3, Eq. (C.3.13), to be

f(δk) = exp

[

−ρ2 sin2

(

θd
2

)]

. (6.4.5)

At first sight Eq. (6.4.4) might look as if it is a cooperative phenomenon
since it has a term which is N times larger than the single-atom case. This
again would seem strange since it is the spectral contribution from non-
interacting atoms which are expected to be mutually incoherent. The coher-
ence amongst the atoms is of course irrelevant when dealing with the elastic
spectrum, since this has to do with the coherence of the driving field and not
the atomic coherences. The factor of N thus derives from the interferences
of the elastically scattered driving field. The function f(δk) is the scattering
amplitude of Rayleigh–Gans scattering [69]. The regime of Rayleigh–Gans
scattering corresponds to weak scattering off a scatterer which is larger than
the wavelength of the scattered light. We are considering point scatterers,
which of course are not larger than the wavelength of the light. In our case
it is thus not the individual scatterers, but the averaged properties which is
considered. Thus, on average, the atomic cloud is considered a single weakly
scattering object by the light of size ρ. This is also known from ensemble-
averaged elastic scattering of light on classical point scatterers [69].

Rayleigh–Gans scattering gives rise to strong forward-directed scattering,
with a shape which is increasingly narrow as the size of the cloud increases.
Specifically, we have that the contribution from Eq. (6.4.4) becomes impor-
tant when f(δk) > N−1. For large clouds this corresponds to an effect only
for small θd such that we can write f(δk) > N−1 with Eq. (6.4.5), as

exp

[

−
(

ρθd
2

)2
]

> N−1, (6.4.6)

which corresponds to ρ|θd| < 2
√

ln(N). Thus, N = 108 and ρ = 5000 give
|θd| < 10−3, i.e. very close to the direct forward direction. We should re-
member that our analysis is not valid in the exact forward direction since
we excluded the free driving field from the spectrum Eq. (6.4.1). It is never-
theless in principle possible to get arbitrarily close to the forward direction.
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Therefore, we will keep all directions in our discussions while considering the
problem of filtering out the free field as a challenge for the experimentalists.

In summary, the zeroth-order elastic spectrum shows a strong forward-
directed contribution due to interference. Based on considerations concerning
elastic scattering this was found to be not very surprising, but it will prove
interesting now that we will include effects of the inter atomic dipole-dipole
interaction.

First-order correction to the elastic spectrum

The first-order correction to the local spectrum is, Eq. (C.2.17b),

S
(1)
loc,el(θd, ω)

NS0
=πδ(ω)

1− Ω̃2
R

1 + Ω̃2
R

〈

b̂†mb̂m

〉(1)

ss
, (6.4.7)

where we have inserted the averaged correction to the steady-state popu-
lation found in Eq. (6.3.10). The correction changes sign as Ω̃2

R goes from
Ω̃2

R < 1 to Ω̃2
R > 1. As we found for the single-atom case the value Ω̃R = 1

correspond to the transition from elastic to inelastic scattering due to satu-
ration of the atomic population. The effect of the inter atomic interaction
is thus the least as scattering changes from being primarily elastic to being
increasingly inelastic. This is also found in the interference part of the elastic
spectrum which is a bit more complicated than the other terms. It is given
by, Eq. (C.2.17b),

S
(1)
int,el(θd, ω)

NS0

=

− (N − 1)(N − 2)f(δk)
π [Im {g(δk, 0)}+ Re {g(δk, 0)}∆] Ω̃2

R

(

1− Ω̃2
R

)

2 (1 + ∆2)
(

1 + Ω̃2
R

)4 δ(ω)

− (N − 1)
π [Im {g(δk, δk)}+ Re {g(δk, δk)}∆] Ω̃2

R

(

1− Ω̃2
R

)

2 (1 + ∆2)
(

1 + Ω̃2
R

)4 δ(ω).

(6.4.8)

Here we have defined the a function

g(k,k′) = G(k,k′) +G(−k,−k′), (6.4.9)

where G(k,k′) is the ensemble average of eik·Rme−ik′·RnGmn. Remember
that Gmn is the inter atomic interaction through the electric field and thus
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eik·Rme−ik′·RnGmn corresponds to the interference of the incident light with
the inter atomic radiation. The function G(k,k′) can be calculated to be,
see Eq. (C.3.11),

G(k,k′) =− 1

d(2ρ)2
e−[b2+(1−d)2]ρ2Erfi[(1− d)ρ]

+
1

d(2ρ)2
e−[b2+(1+d)2]ρ2Erfi[(1 + d)ρ]

+ i
1

d(2ρ)2
e−[b2+(1−d)2]ρ2

(

1− e−4dρ2
)

, (6.4.10)

with b = |k− k′|/2ka, d = |2k0 − k− k′|/2ka.
In the direct forward direction, θ = 0, the difference δk = 0 such that

G(0, 0) = Gmn and f(0) = 1. Thereby we get

S
(1)
int,el(0, ω)

NS0

= (N − 1)πδ(ω)
1− Ω̃2

R

1 + Ω̃2
R

〈

b̂†mb̂m

〉(1)

ss
. (6.4.11)

That is, the interaction between the different atoms is enhanced due to the
Rayleigh–Gans interference and thereby enhancing the interaction by a factor
of N − 1 in the forward direction! We identify this as a cooperative effect
since it is an enhancement of the interaction which depend on the number
of atoms. Interestingly, this cooperative effect is also visible in the inelastic
spectrum as we will now see.

6.4.2 Inelastic Spectrum

Even though the finding of the cooperative effect is indeed intriguing such
effects in the elastic spectrum can equally well be found in a linearized theory
for weakly-driven atoms in the harmonic limit [62] even though it would not
include the found saturation effects. Here we will show cooperative effects
in the inelastic spectrum. These effects could not have been found in a
linearized treatment since such cannot explain the inelastic scattering which
is only present in models with saturation effects. Here in the main text we
will not show any lengthy expressions since they do not give further insight.
Instead, we show the inelastic spectrum and discuss the physical properties.
The details of the calculations can be found in App. C.2 and are summarized
in Eqs. (C.2.16) and (C.2.18).

First, the local zeroth-order inelastic spectrum is simply given by N
times the single-atom spectrum and thus gives the usual Mollow triplet. The
zeroth-order interference part should on the other hand be strictly zero since
the noninteracting atoms are not mutually coherent. We indeed find that this
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contribution vanish, which is a nontrivial check on our calculations so far.
The first-order correction to the inelastic spectrum has similar ensemble-
averaged contributions as arising in the elastic spectrum. Specifically the
interference part of the spectrum has a similar strong forward-directed con-
tribution. This is shown in Fig. 6.6 where the average inelastic fluorescence
spectrum per atom is plotted as a function of ρθd for a cloud of size ρ = 5000
and N = 25000 atoms driven by a field which is detuned by ∆ = 5 at a Rabi
frequency of ΩR = 10. We use the product ρθd since we found, Eq. (6.4.6),
that the spectra become more forward peaked as the size of the cloud, ρ,
increase. Three things should be noticed in from Fig. 6.6. First, for |ρθ| > 2
the spectrum look like the normal single atom Mollow triplet. Second, as
we go closer to the exact forward direction we see that the spectrum devi-
ates from the usual single-atom spectrum. This is caused by the cooperative
enhancement of the interaction due to the interference from Rayleigh–Gans
scattering. Lastly, we see that as the interaction become important the spec-
trum become asymmetric, see inset. Such behavior was also found in Ref. [66]
for the fluorescence spectrum of two atoms where it was also identified as a
cooperative effect.
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Figure 6.6 The average inelastic fluorescence spectrum per atom as a function of nor-
malized detection angle, ρθd, for N = 25000 and ρ = 5000 such that N/ρ = 5. The
detuning is ∆ = 5 and the Rabi frequency is ΩR = 10. The inset show the asymmetric
spectrum at the exact forward direction.
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6.5 Chapter Summary

In this chapter we examined the steady-state properties of driven two-level
atoms. We first considered a single two-level atom. We found that non
negligible steady-state exited-atom population influences the properties of
the elastic fluorescence spectrum. As the population increased the interac-
tion between the driving field and the atom increased. This gave rise to an
inelastic spectrum which showed the three-peaked spectrum known as the
Mollow triplet. This spectrum is symmetric around the frequency of the
driving field independent of the detuning and Rabi frequency.

We then considered a cloud of atoms using the Heisenberg equations of
motion for N two-level atoms derived in the previous chapter. By assuming
the cloud of atoms to be dilute, we found a simple analytical expression for the
first-order correction to the atomic population. From this we identified that
the interaction amongst the atoms gives rise to a change in the resonance
frequency and an alteration of the decay properties through the real and
imaginary parts of the dipole-dipole interaction respectively. Through the
analysis, a criterion for the importance of taking atomic interactions into
account naturally appeared. Although our criterion for the validity of the
first-order scattering is sufficient, but not necessary, we have indications that
the interactions should be considered in many atomic experiments.

After this we found the elastic spectrum of the atoms. This showed sign of
Rayleigh–Gans scattering even without interaction due to the interference of
the elastically scattered light. This interference was further found to increase
the interaction between the atoms showing a cooperative enhancement of the
interaction in the exact forward direction. The analysis included the effects
of saturation which cannot be taken into account in the usual linearized
treatment.

Finally, the inelastic spectrum was calculated, for which an analytic but
not simple expression was found. The inelastic spectrum showed the same
cooperative effect of the enhanced dipole-dipole interaction in the forward
direction. This gives rise to asymmetric spectra which could otherwise not
occur in the single-atom case. The asymmetries in the inelastic spectra are
a clear indication that interactions amongst the atoms takes place. We thus
suggest experimentalist to look for cooperativity in the forward direction
where it show angle dependence of the inelastic fluorescence spectrum.
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Summary and Outlook

In this thesis we have quantum mechanically investigated multiple scattering
of light. The investigation was split into two parts; one concerning elastic
multiple scattering while the other concerned inelastic scattering.

7.1 Part I

First, in Chap. 2 we introduced some background theory in order to pre-
pare the reader for following chapters. Initially, the classical theory of elastic
multiple scattering was discussed in order to get an intuitive feeling for the
subject. There, the intensity transmission correlation function was intro-
duced as a measure of the averaged intensity correlations for waves passing
through a multiple scattering medium. After this the quantization of the
electromagnetic field was reviewed and it was found that the mode of the
quantized electromagnetic field is the same as the classical electromagnetic
field. Then, two quantities were introduced, the photon correlation function
and the degree of quadrature entanglement. These quantities were finally
illustrated by one of the simplest scatterers imaginable, the beam splitter.
While the beam splitter is a very common element in most optical setups, and
its classical optical functionality is well understood, in a quantum context
the response remain intriguing. With this it was shown, using the photon
correlation function, that quantum interference already occurs in the simple
interference scheme of a beam splitter. Furthermore, interfering two squeezed
beams on the beam splitter illustrated the possibility of inducing quadrature
entanglement between the two quantum states of the output ports, through
scattering.

Next, in Chap. 3, effects of interfering quantum states of light on a mul-
tiple scattering medium was explored. Using the finding of the previous
chapter that the quantum optical modes are the same as the classical for
elastic scattering, allowed us to relate the quantum optical propagation to
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the classical. This made it possible to investigate the possibility of inducing
quantum entanglement by multiple scattering and the strength of quantum
interference after multiple scattering. Specifically two settings were explored;
the propagation through a single realization of a scattering medium and the
ensemble-averaged transport properties of the quantum states after being
multiply scattered. In the investigation of the single realization of a scatter-
ing medium, it was found that entanglement between two output modes can
be induced by interfering two squeezed beams. This induced entanglement
is directly analogous to interfering two squeezed beams on a beam splitter.
Furthermore, it was found that quantum interference between two or more
input beams gave rise to large fluctuations in the photon correlations be-
tween different outputs after multiple scattering. Interestingly, this effect of
quantum interference, which is sometimes thought to be feeble, even survived
ensemble averaging. This might seem surprising since a multiple scattering
process could naively be considered a randomization of the phase and thus
eliminating all interference effects. The survival of the interference is due to
the constructive interference of certain propagation paths through the scat-
tering medium. The effect of quantum interference was found to have an
increasing effect on the correlations between different output directions as
the amount of scattering increased, while saturating in the localized regime.
Lastly, it was found that the induced quadrature entanglement would not
survive ensemble averaging.

Then, in Chap. 4, the theoretical treatment of a quantum optical mul-
tiple scattering experiment was derived. The experiment aims to measure
the existence of photon correlations between two output modes of a multiple
scattering medium illuminated by a quantum optical state. In order to de-
scribe the experimental scheme, the formalism of Chap. 3 was modified by
introducing a continuous-mode theory with time-dependent operators. Us-
ing this, the photon correlation function between two different output modes
was related to the photon statistics of the total transmitted and reflected
light, which was then related to the power noise spectrum measured in the
experiment. It was found that, unlike classical elastic multiple scattering, it
was possible to deterministically and continuously alter the average inten-
sity correlations by changing the photon statistics of the incident light beam.
Thereby it was possible to achieve both positive and negative correlations
between two output modes even in the diffusive regime, where output modes
are uncorrelated in the case of classical scattering.

As possible theoretical continuations of the work presented in the first
part, it could be interesting to consider the inclusion of the time depen-
dence of the operators in the case of interference between multiple beams.
This has been considered in Ref. [70] for the interference of two entangled
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single-photon states, and it was found that the quantum interference prop-
erties depended on the typical time it takes to propagate through a random
medium. Furthermore, it could be exciting to investigate the properties of
the reflected light in more details. In classical wave scattering, strong neg-
ative correlations are found in this direction [19], which could result in the
possibility to on average create entangled states by multiple scattering. An-
other similar exploration would be to investigate the higher order-moments
of the degree of entanglement to see how probable it is to find entangled
states.

It would also be interesting to try to observe the quantum interference
predicted in Chap. 3. In order to do that, it would be preferable to use a
disordered waveguide which only supports a few modes, since this make it
easier to reach the strong scattering regime where the signs of the quantum
interference are strongest. Here, a disordered photonic crystal waveguide
seems an optimal candidate since it would makes it possible to tune the
scattering mean free path by changing the wavelength of the light source
due to the dispersive properties of the medium. Another suggestion would
be to develop a multi-mode beam splitter, where the mutual entanglement
between output ports could be chosen by changing the squeezing parameters
of the input beams.

7.2 Part II

In the second part of the thesis, inelastic effects were included in the scat-
tering processes. This was done in Chap. 5, where the inelastic scatter-
ing was introduced by quantum mechanically treating scattering of light on
point dipoles embedded in an arbitrary dielectric structure. The interac-
tion was described using two different interaction Hamiltonians, known as
the electric-dipole and the minimal-coupling Hamiltonians. Using these, a
formalism was derived in the Heisenberg picture focusing on the evolution
of the electric field operators rather than the dipole operators. We found
exact relations between the electric field and the dipole operators for both
types of interaction Hamiltonians, while keeping the model of the dipoles
arbitrary. The differences between using the two Hamiltonians could then
be compared. This comparison showed that the linearization of the field in
the minimal-coupling interaction Hamiltonian, which is sometimes used in
the literature, leads to that light scattered from the dipole couple only to the
transverse modes of the field. The electric-dipole interaction Hamiltonian
on the other hand coupled the scattered light to both the longitudinal and
transverse modes of the field. Lastly, an example of the use of the formalism
is presented by deriving the equations of motion of N two-level dipoles.
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Finally, in Chap. 6 we investigated the steady-state properties of two-
level atoms. We began by reviewing the single-atom fluorescence which gave
rise to the well-known three-peaked inelastic spectrum known as the Mollow
triplet. Then we demonstrated the possibilities of the formalism of Chap. 5
by using the derived equations of motion for N two-level dipoles to cal-
culate the fluorescence spectrum of a cloud of N two-level atoms. These
equations of motion contain a coupling term, the dipole-dipole coupling, be-
tween the different atoms which is mediated by the electric field. Using the
physical intuition from elastic scattering we simplified the calculations for
dilute clouds. With such simplification we derived analytical expressions for
the steady-state atomic population and fluorescence spectrum. The inves-
tigation of the atomic population gave simple intuitive explanations of the
effect of the interaction as a change in the photonic environment. The flu-
orescence spectrum consists of an elastic and an inelastic part. Due to the
interaction amongst the atoms the elastic part of the spectrum contains a
cooperative effect which we identified as being caused by interference effects
of a Rayleigh–Gans type of scattering. Such interference effects were further-
more found to result in cooperative contributions to the inelastic spectrum
as well.

Future possibilities of theoretical explorations of the topics considered
in this part could be to investigate coupling of quantum dots in photonic
environments, e.g. for quantum information protocols. Furthermore, it could
be interesting to use the hydrogen model for the dipoles since it is exactly
solvable even when the dipole is considered having a finite size. This could
make it possible to investigate theoretically the size effects of quantum dots
in photonic environments as was done experimentally in Ref. [47].

As a suggestion for the experimentalists it would be very interesting to
see the cooperative effects in the inelastic spectrum, which is most visible in
a forward detection scheme. In hot atomic vapors the atomic coherences is
probably absent, so for observation of the cooperative effects predicted here,
we need clouds that are both dilute and cold.
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A.1 Quadrature entanglement

The difference X̂3 − X̂4 can be written as
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so that
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If we assume initially uncorrelated beams we have ∆ ˆ̃X1
ˆ̃X2 = 0 while
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and similar
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with ˆ̃Y1 =
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For coherent states then ∆ ˆ̃X1 = |α+|2/2 = ∆ ˆ̃Y2 and ∆ ˆ̃X2 = |α−|2/2 =

∆ ˆ̃Y1 such that, since |α±|2 = 1± 2
√
RT cos(φ±), we get
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For a squeezed state with squeezing parameter si and squeezing phase θi
we have

〈âi〉 = 0, (A.1.9a)
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where φi is defined from α2
i = |αi|2eiφi . For a symmetric, phase-less BS,
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B.1 Green function reordering

I will use the asterisk ∗ for complex conjugation and the dagger † for hermi-
tian conjugation, i.e. complex conjugation and a transpose. Thus, in space
coordinates the state |gλ〉 is the vector function 〈r |gλ〉 = gλ(r) while the bra
is g†

λ(r). With this notation we have that an inner product of two states |gλ〉
and |gµ〉 will be written such that
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This distinction makes it possible for us to write the outer product gλ(r)⊗
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Let us considering the eigenvalue problem
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where ǫ(r) is real and non-zero which, if we choose proper boundary condi-
tions such that the operator is self-adjoint, has the orthogonality relation
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and the eigenvalues (ωλ/c)
2 are real and positive. With this we define another

basis set of complex functions {fλ(r)} given by fλ(r) = gλ(r)/
√

ǫ(r) which is
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We now want to know if we can somehow write the tensor
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where p and q are complex valued functions of ω and ωλ. In order to do so,
let us make a basis set of real valued vector functions hλ(r). Since both |fλ〉
and |hλ〉 are complete and normalized sets of eigenvectors there is a unitary
transformation between the two sets given by
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which, if p(ω, ωλ) = P (ω, ω2
λ) is a function of ω2

λ, can be written as
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In our case the eigenfrequencies ωλ are real-valued and nonnegative. The
spectrum is consequently nonnegative. We need a unique label for that. As
far as the labeling is concerned, either one uses ω2

λ, or one uses ωλ, but then
one should choose all ωλ’s positive or all of them negative to keep the labeling
unique. But ωλ is not just a label, it is also the energy of a photon in that
mode. That energy is positive for passive systems therefore the physical
choice for the labeling is by the nonnegative ωλ.

We are thus able to rewrite the sum

T(r, r′) =
∑

λ

p(ω, ωλ)f
∗
λ(r)⊗ fλ(r

′)

=
∑

ν

p(ω, ων)hν(r)⊗ hν(r
′)

=
∑

µ

p(ω, ωµ)fµ(r)⊗ f∗µ(r
′). (B.1.12)

The indices λ, ν, and µ are simply labellings for the sums over the same
amount of eigenfrequencies and thus we have that

T(r, r′) =
∑

λ

p(ω, ωλ)fλ(r)⊗ f∗λ(r
′). (B.1.13)

Notice that it is the sums that are equal while in general f∗λ(r) ⊗ fλ(r
′) 6=

fλ(r)⊗ f∗λ(r
′).
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B.2 Details in two-level atom equations of motion derivation

In Sec. 5.3.1 of Chap. 5 we find, Eq. (5.3.12), that we can write the scattered
electric field as

Ê
(±)
Scat(Rm, t) =

∑

n

b̂n(t)U
(±)
mn · µ∗

n +
∑

n

b̂†n(t)V
(±)
mn · µ∗

n, (B.2.1)

where we have defined

U(±)
mn = ∓ 1

2ǫ0

∑

λ

ωλfλ(Rm)⊗ f∗λ(Rn)

ωn ∓ ωλ
, (B.2.2)

V(±)
mn = ∓ 1

2ǫ0

∑

λ

ωλfλ(Rm)⊗ f∗λ(Rn)

−ωn ∓ ωλ
. (B.2.3)

Using App. B.1, these are related through

[U(±)
mn ]

∗ = ∓ 1

2ǫ0

∑

λ

ωλf
∗
λ(rm)⊗ fλ(Rn)

ωn ∓ ωλ
= ± 1

2ǫ0

∑

λ

ωλfλ(rm)⊗ f∗λ(Rn)

−ωn ± ωλ

= V(∓)
mn . (B.2.4)

Furthermore, they are related to the kernel of the electric field K(r, r′, ω),

Eq. (5.2.9), through U
(+)
mn +U

(−)
mn = −µ0ω

2
nK(Rm,Rn, ωn).

We are now able to calculate the scattering field term for the equation
of motion for b̂m(t), Eq. (5.3.8a). To do this we use the equal-time operator
relations b̂†m(t)σ̂m(t) = −1

2
b̂†m(t) and b̂m(t)σ̂m(t) =

1
2
b̂m(t) and their Hermitian

conjugates, giving

− 2
i

~

[

σ̂m(t)µ
∗
m · Ê(+)

Scat(Rm, t) + µ∗
m · Ê(−)

Scat(Rm, t)σ̂m(t)
]

=
i

~
b̂m(t)µ

∗
m ·
[

U(+)
mm(t)−U(−)

mm(t)
]

· µm

− i

~
b̂†m(t)µ

∗
m ·
[

V(+)
mm(t)−V(−)

mm(t)
]

· µ∗
m

− 2
i

~

∑

n 6=m

σ̂m(t)b̂n(t)µ
∗
m ·
[

U(+)
mn(t) +U(−)

mn(t)
]

· µn

− 2
i

~

∑

n 6=m

b̂†n(t)σ̂m(t)µ
∗
m ·
[

V(+)
mn(t) +V(−)

mn(t)
]

· µ∗
n

≈ i

~
b̂m(t)µ

∗
m ·
[

U(+)
mm(t)−U(−)

mm(t)
]

· µm

− 2
i

~

∑

n 6=m

σ̂m(t)b̂n(t)µ
∗
m ·
[

U(+)
mn(t) +U(−)

mn(t)
]

· µn. (B.2.5)
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where in the last equality we have performed the RWA by noticing that
b̂m and b̂†m rotate at frequencies 2ωn apart. It should be noticed that the
matrices with superscript (−) would not be there if we had used the RWA
at any earlier point and would therefore not give a dipole-dipole coupling
through the kernel of the classical field.

For the scattering field term for σ̂m(t) in Eq. (5.3.8b) we get

i

~

[

b̂†m(t)µ
∗
m · Ê(+)

Scat(Rm, t) + µ∗
m · Ê(−)

Scat(Rm, t)b̂
†
m(t)

−b̂m(t)µm · Ê(+)
Scat(Rm, t)− µm · Ê(−)

Scat(Rm, t)b̂m(t)
]

=
i

~
b̂†m(t)b̂m(t)

[

µ∗
m ·U(+)

mm · µm − µm ·V(−)
mm · µ∗

m

]

+
i

~
b̂m(t)b̂

†
m(t)

[

µ∗
m ·U(−)

mm · µm − µm ·V(+)
mm · µ∗

m

]

+
i

~

∑

n 6=m

b̂†m(t)b̂n(t)µ
∗
m ·
[

U(+)
mn +U(−)

mn

]

· µn

+
i

~

∑

n 6=m

b̂†m(t)b̂
†
n(t)µ

∗
m ·
[

V(+)
mn +V(−)

mn

]

· µ∗
n

− i

~

∑

n 6=m

b̂m(t)b̂n(t)µm ·
[

U(+)
mn +U(−)

mn

]

· µn

− i

~

∑

n 6=m

b̂†n(t)b̂m(t)µm ·
[

V(+)
mn +V(−)

mn

]

· µ∗
n. (B.2.6)

At this point it is relevant to point out that

U(−)
mm =

1

2ǫ0

∑

λ

ωλfλ(Rm)⊗ f∗λ(Rm)

ωm + ωλ

=
1

2ǫ0

∑

λ

ωλfλ(Rm)⊗ f∗λ(Rm)

[

P

(

1

ωm + ωλ

)

− iπδ(ωm + ωλ)

]

(B.2.7)

where the P stands for principal value and the infinitely small positive imag-
inary part from the Laplace transform has been used. Since both ωm and

ωλ are positive we get Im
{

µ∗
m ·U(−)

mm · µm

}

= 0. This along with the RWA
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gives

i

~

[

b̂†m(t)µ
∗
m · Ê(+)

Scat(Rm, t) + µ∗
m · Ê(−)

Scat(Rm, t)b̂
†
m(t)

−b̂m(t)µm · Ê(+)
Scat(Rm, t)− µm · Ê(−)

Scat(Rm, t)b̂m(t)
]

≈ i

~
b̂†m(t)b̂m(t)

[

µ∗
m ·U(+)

mm · µm − c.c.
]

+
i

~

∑

n 6=m

b̂†m(t)b̂n(t)µ
∗
m ·
[

U(+)
mn +U(−)

mn

]

· µn

− i

~

∑

n 6=m

b̂†n(t)b̂m(t)µm ·
[

V(+)
mn +V(−)

mn

]

· µ∗
n. (B.2.8)

Therefore we have

− 2
i

~

[

σ̂m(t)µ
∗
m · Ê(+)

Scat(Rm, t) + µ∗
m · Ê(−)

Scat(Rm, t)σ̂m(t)
]

=
i

~
b̂m(t)µ

∗
m ·
[

U(+)
mm(t)−U(−)

mm(t)
]

· µm

+ 2i
∑

n 6=m

σ̂m(t)b̂n(t)
µ0ω

2
n

~
µ∗

m ·K(Rm,Rn, ωn) · µn (B.2.9)

and

i

~

[

b̂†m(t)µ
∗
m · Ê(+)

Scat(Rm, t) + µ∗
m · Ê(−)

Scat(Rm, t)b̂
†
m(t)

−b̂m(t)µm · Ê(+)
Scat(Rm, t)− µm · Ê(−)

Scat(Rm, t)b̂m(t)
]

= 2b̂†m(t)b̂m(t)
µ0ω

2
m

~
Im {µ∗

m ·K(Rm,Rm, ωm) · µm}

− i
∑

n 6=m

b̂†m(t)b̂n(t)
µ0ω

2
n

~
µ∗

m ·K(Rm,Rn, ωn) · µn

+ i
∑

n 6=m

b̂†n(t)b̂m(t)

[

µ0ω
2
n

~
µ∗

m ·K(Rm,Rn, ωn) · µn

]∗
.

(B.2.10)

We identify the decay rate as

β =
µ0ω

2
n

~
Im {µ∗

m ·K(Rm,Rm, ωm) · µm} (B.2.11)

and furthermore we see that

µ∗
m ·
[

U(+)
mm(t)−U(−)

mm(t)
]

· µm = iβ + γ (B.2.12)



B.2 Details in two-level atom equations of motion derivation 101

where γm is the Lamb shift given by

γ =
1

~
Re
{

µ∗
m ·
[

U(+)
mm(t)−U(−)

mm(t)
]

· µm

}

. (B.2.13)





C
Details for Chapter 6

C.1 Relation between the Green function and the coupling coefficient

The coupling amongst the atoms occurs through the electric field by the
coefficients Gmn which are related to the classical Green function through

Gmn = −µ0ω
2
a

~β
µ∗

m ·K(Rmn, ωa) · µne
−ik0·Rmn , (C.1.1)

where µ0 is the vacuum permeability, ωa is the atomic transition frequency,
~ is the Planck constant, and β is the atomic decay rate or half the Einstein
A-coefficient. Finally, µm is the dipole vector which for ∆m = 0 transitions
is real and in the same direction as the incident field having wave vector k0

while for ∆m = ±1 transitions µm is complex and transverse to the incident
light [12], Rmn = Rm −Rn, and the kernel is

K(r, ω) = c20
∑

k

(ωk

ω

)2 eik·r

ω2 − ω2
k

(I− k̂⊗ k̂)

= G+(r, ω)− c20
ω
δ(r)I. (C.1.2)

Here, the dyadic G+(r, ω) being the retarded Green function governing the
classical propagation of the field, I is the identity matrix, and k̂ is the unit
vector in the direction of k. The retarded Green function is in vacuum given
by [51]

G+(r, ω) = −e
ik+r

4πr
[P (ikr)I+Q(ikr)r̂⊗ r̂] +

c20
ω2
δ(r)I, (C.1.3)

where r = |r|, k = |k| = ω/c0, and k+ contain an infinitesimal imaginary
part. The functions P (z) and Q(z) are defined as

P (z) = 1− 1

z
+

1

z2
, Q(z) = −1 +

3

z
− 3

z2
. (C.1.4)
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In our case n 6= m and we get

Gmn =
3

2

eik
+
a Rmn

kaRmn

[

P (ikaRmn) +Q(ikaRmn) cos
2 θmn

]

e−ik0·Rmn

=
3

2

eik
+
a Rmn

kaRmn

[

1− cos2 θmn

]

e−ik0·Rmn

+
3i

2

eik
+
a Rmn

(kaRmn)2
[

1− 3 cos2 θmn

]

e−ik0·Rmn

− 3

2

eik
+
a Rmn

(kaRmn)3
[

1− 3 cos2 θmn

]

e−ik0·Rmn, (C.1.5)

where θmn is the angle between µ and Rmn.

C.1.1 Scalar approximation

If the dipoles are randomly oriented then one often integrates over the angle
θmn in Eq. (C.1.5) such that

〈Gmn〉θmn
=
3

2

eikaRmn

kaRmn

[

P (ikaRmn) +
Q(ikaRmn)

3

]

e−ik0·Rmn

=
eikaRmn

kaRmn
e−ik0·Rmn. (C.1.6)

We will omit the angle averaging brackets.

C.1.2 The ensemble averaged coupling coefficient

We now perform an ensemble average over the position of the atoms, i.e.

Gmn =

∫

drn(r)

∫

dr′n(r′)
ei[ka|r−r′|−k0·(r−r′)]

ka|r− r′| . (C.1.7)

Assuming a Gaussian cloud such that

n(r) =
1

√

(2πρ̃2)3
exp

(

− r2

2ρ̃2

)

, (C.1.8)

then making the change of variables x = ka(r− r′) and y = ka(r+ r′) gives

n(r)n(r′) = n[(x+ y)/(2ka)]n[(y − x)/(2ka)]

=
k6a

(2πρ2)3
exp

(

− x2

4ρ2

)

exp

(

− y2

4ρ2

)

, (C.1.9)
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with ρ = kaρ̃ being the size of the cloud normalized with the atomic wavenum-
ber. The integrals thus separate into two independent integrals Gmn = IaIb
with

Ia =
J(x,y)k6a
(2πρ̃2)3

∫

dye
− y2

4ρ2 =
1

π3/2(2ρ)3
(C.1.10a)

Ib =

∫

dxe
− x2

4ρ2
eix

x
e−iax cos(θ) (C.1.10b)

where J(x,y) = 1
8k6a

is the Jacobian determinant of the variable transfor-

mation and a = k0/ka. Notice that a = ω0/ωa ≈ 1 even for a very large
detuning and we will thus take a = 1 for simplicity. The integral Ib is then
given by

Ib =

∫

dxe
− x2

4ρ2
eix

x
e−ix cos(θ)

=4π

∫ ∞

0

dx exp

[

−
(

x

2ρ

)2

+ ix

]

sin(x)

=2iπ3/2ρ
(

1− e−4ρ2
)

+ 2e−4ρ2π3/2ρErfi(2ρ) (C.1.11)

and thus

Gmn =
1

(2ρ)2

[

e−4ρ2Erfi(2ρ) + i
(

1− e−4ρ2
)]

ρ≫1→ 1

(2ρ)2

[

1

2
√
πρ

+ i

]

. (C.1.12)



106 Details for Chapter 6

C.2 Derivation details of the N-atom fluorescence spectrum

The definition of the fluorescence spectrum of a cloud of two-level atoms is
given by

S(r, ω′)

S0
=
∑

m,n

Re

{

lim
t→∞

∫ ∞

0

dτeiωτ
〈

b̂†m(t+ τ)b̂n(t)
〉

ei(k0−kd)·(Rm−Rn)

}

,

(C.2.1)

where kd is now in the direction from the center of the cloud to the detector.
For simplicity, we have assumed that we can filter out the free field and have
omitted the r/c time contribution in the operator since we are taking the
long time limit. We will split the spectrum up into two parts, i.e.

Sloc(r, ω
′)

S0

=
∑

m

Re

{

lim
t→∞

∫ ∞

0

dτeiωτ
〈

b̂†m(t + τ)b̂m(t)
〉

}

, (C.2.2a)

Sint(r, ω
′)

S0
=
∑

m,n 6=m

Re

{

lim
t→∞

∫ ∞

0

dτeiωτ
〈

b̂†m(t+ τ)b̂n(t)
〉

eiδk·Rmn

}

,

(C.2.2b)

where δk = k0 − kd and Rmn = Rm −Rn.

In order to calculate the spectrum we need the Laplace transform of
〈

b̂†m(t)b̂n(t+ τ)
〉

with respect to τ . We do this in the same way as the

calculation of the single atom fluorescence spectrum in Sec. 6.1 by finding
the Laplace transform of x̂(t + τ). This give a similar expression as in the
calculation of the atomic population in Sec. 6.3

0 = − (M− iωI) x̂m(ω)−
i

ω
e3 + x̂m(t)

+
(

iQGm − iQ̃G∗
m

)

(A− iωI)−1
Bx̂m(ω)

+
∑

n 6=m

(

iQGmn − iQ̃G∗
mn

)

(A− iωI)−1 [
Bix̂n(ω)− ŷmn(t)

]

. (C.2.3)

Consistent with the single scattering approximation we omit the terms ŷmn(t)

since, in the evaluation of
〈

b̂†m(t)b̂n(t+ τ)
〉

, this term concern three atom

correlations. Now, we write Eq. (C.2.3) as a 3N × 3N matrix equation. We
define the frequency dependent counterparts of the matrices M(N), Λ and Π
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as

{M(N)(ω)}mn = (M− iωI)δmn, (C.2.4a)

{Λ(ω)}mn =
(

iQGm − iQ̃G∗
m

)

(A− iωI)−1Bδmn, (C.2.4b)

{Π(ω)}mn =
(

iQGmn − iQ̃G∗
mn

)

(A− iωI)−1B̃(1− δmn). (C.2.4c)

With these and to first order in the interaction we obtain

X̂(ω) ≈ −[M(N)(ω)]−1

[

i

ω
C− X̂(t)

]

− [M(N)(ω)]−1(Λ(ω) +Π(ω))[M(N)(ω)]−1

[

i

ω
C− X̂(t)

]

.

The validity of these first order solutions are given by

||Λ(ω) +Π(ω)|| ≪ ||M(N)(ω)||, (C.2.5)

which is further investigated in App. C.4. In order to calculate the spectrum
we need to know

〈

b̂†mX̂(ω)
〉

ss
= −[M(N)(ω)]−1

[

i

ω

〈

b̂†mC
〉

ss
−
〈

b̂†mX̂
〉

ss

]

− [M(N)(ω)]−1 [Λ(ω) +Π(ω)] [M(N)(ω)]−1

[

i

ω

〈

b̂†mC
〉

ss
−
〈

b̂†mX̂
〉

ss

]

.

The steady-state expectation values of
〈

b̂†m(t)C
〉

and
〈

b̂†m(t)X̂(t)
〉

are

related to the steady-state expectation values xm(∞) and ymn(∞) through
{〈

b̂†m(t)C
〉

ss

}

n
= Vxm(∞), (C.2.6a)

{〈

b̂†m(t)X̂(t)
〉

ss

}

n
= Pymn(∞)(1− δmn) +

[

Uxm(∞) +
e2

2

]

δmn, (C.2.6b)

where P is a sparse 9 × 3 matrix, written out in App. C.5, that single out
elements in ymn while the e1 = [1, 0, 0]T term arrive due to a contraction of
for products of two operators of the same atom similar to the single atom
calculations, see Eq. (6.1.13). Using the above notation the fluorescence
spectra can be written as

Sloc(r, ω
′)

S0
=
∑

m

Re
{

e2 ·
{〈

b̂†m(t)X̂(ω)
〉

ss

}

m

}

, (C.2.7a)

Sint(r, ω
′)

S0

=
∑

m,n 6=m

Re
{

e2 ·
{〈

b̂†m(t)X̂(ω)
〉

ss

}

n
eiδk·Rmn

}

. (C.2.7b)
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We can write
〈

b̂†m(t)X̂(ω)
〉

ss
as a zeroth and a first order term

〈

b̂†m(t)X̂(ω)
〉

ss
≈
〈

b̂†m(t)X̂(ω)
〉(0)

ss
+
〈

b̂†m(t)X̂(ω)
〉(1)

ss
. (C.2.8a)

The elements of the zeroth order term

{

〈

b̂†m(t)X̂(ω)
〉(0)

ss

}

m

= −(M− iωI)−1

[(

i

ω
V −U

)

x(0)
m (∞) +

e2

2

]

,

(C.2.9a)
{

〈

b̂†m(t)X̂(ω)
〉(0)

ss

}

n

= −(M− iωI)−1

[

i

ω
Vx(0)

m (∞) +Py(0)
mn(∞)

]

(C.2.9b)

and for the first order term

{

〈

b̂†m(t)X̂(ω)
〉(1)

ss

}

m

=− (M− iωI)−1

(

i

ω
V −U

)

x(1)
m (∞)

− ǫm(ω)

[(

i

ω
V −U

)

x(0)
m (∞) +

e2

2

]

(C.2.10a)

{

〈

b̂†m(t)X̂(ω)
〉(1)

ss

}

n

=− (M− iωI)−1

[

i

ω
Vx(1)

m (∞) +Py(1)
mn(∞)

]

− ǫn(ω)

[

i

ω
Vx(0)

m (∞) +Py(0)
mn(∞)

]

. (C.2.10b)

For brevity we have defined the matrix

ǫm(ω) = (M− iωI)−1
(

iQGm − iQ̃G∗
m

)

(A− iωI)−1(B+ B̃)(M− iωI)−1.

(C.2.11)

The steady-state operators of the m’th atom can be written as xm(∞) ≈
x
(0)
m (∞) + x

(1)
m (∞) with

x(0)
m (∞) = −M−1e3, (C.2.12a)

x(1)
m (∞) = −ǫm(0)e3, (C.2.12b)

and similar we can write ymn(∞) ≈ y
(0)
mn(∞) + y

(1)
mn(∞) with

y(0)
mn(∞) = A−1(B+ B̃)M−1e3, (C.2.13a)

y(1)
mn(∞) = A−1Bǫm(0)e3 +A−1B̃ǫn(0)e3. (C.2.13b)
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For consistency we write the elements of
〈

b̂†m(t)X̂(ω)
〉

ss
using only the

matrices defined for the equations of motion. The elements of the zeroth
order term are thus

{

〈

b̂†m(t)X̂(ω)
〉(0)

ss

}

m

= (M− iωI)−1

[(

i

ω
V −U

)

M−1e3 +
e2

2

]

,

(C.2.14a)
{

〈

b̂†m(t)X̂(ω)
〉(0)

ss

}

n

= (M− iωI)−1

[

i

ω
V +PA−1(B+ B̃)

]

M−1e3

(C.2.14b)

and for the first order term
{

〈

b̂†m(t)X̂(ω)
〉(1)

ss

}

m

=(M− iωI)−1

(

i

ω
V −U

)

ǫm(0)e3

+ ǫm(ω)

[(

i

ω
V −U

)

M−1e3 +
e2

2

]

(C.2.15a)

{

〈

b̂†m(t)X̂(ω)
〉(1)

ss

}

n

=(M− iωI)−1

[

i

ω
V +PA−1B

]

ǫm(0)e3

− (M+ iωI)−1PA−1B̃ǫn(0)e3

+ ǫn(ω)

[

i

ω
V +PA−1(B+ B̃)

]

M−1e3. (C.2.15b)

C.2.1 Local spectrum

We now write the local spectrum as a zeroth order contribution and a first
order correction, i.e. Sloc(r, ω

′) ≈ S
(0)
loc (r, ω

′) + S
(1)
loc (r, ω

′), with

S
(0)
loc (r, ω

′)

S0

=
∑

m

Re
{

e2 ·
{〈

b̂†m(t)X̂
(0)(ω)

〉

ss

}

m

}

= NRe

{

e2 · (M− iωI)−1

[(

i

ω
V −U

)

M−1e3 +
e2

2

]}

, (C.2.16a)

S
(1)
loc (r, ω

′)

S0
=
∑

m

Re
{

e2 ·
{〈

b̂†m(t)X̂
(1)(ω)

〉

ss

}

m

}

= Re

{

e2 · (M− iωI)−1

(

i

ω
V −U

)

∑

m

ǫm(0)e3

}

+ Re

{

e2 ·
∑

m

ǫm(ω)

[(

i

ω
V −U

)

M−1e3 +
e2

2

]

}

. (C.2.16b)
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Elastic local spectrum

The elastic part of the local spectrum is given by the delta function from the
1
ω
term, i.e.

S
(0)
loc,el(r, ω

′)

S0
= πNRe

{

e2 ·M−1VM−1e3
}

δ(ω) =
πNΩ̃2

R

2
(

1 + Ω̃2
R

)2 δ(ω),

(C.2.17a)

S
(1)
loc,el(r, ω

′)

S0
= πRe

{

e2 ·
[

M−1V
∑

m

ǫm(0) +
∑

m

ǫm(0)VM−1

]

e3

}

δ(ω)

= −
π (Im {

∑

mGm}+ Re {
∑

mGm}∆) Ω̃2
R

(

1− Ω̃2
R

)

(1 + ∆)
(

1 + Ω̃2
R

)4 . (C.2.17b)

C.2.2 Interference spectrum

Likewise, the interference spectrum is written as a zeroth order contribution
and a first order correction, i.e. Sint(r, ω

′) ≈ S
(0)
int (r, ω

′) + S
(1)
int (r, ω

′), with

S
(0)
int (r, ω

′)

S0

=
∑

m,n 6=m

Re
{

e2 ·
{〈

b̂†m(t)X̂
(0)(ω)

〉

ss

}

n
eiδk·Rmn

}

= Re

{

∑

m,n 6=m

eiδk·Rmne2 · (M− iωI)−1

[

i

ω
V +PA−1(B+ B̃)

]

M−1e3

}

(C.2.18a)

S
(1)
int (r, ω

′)

S0
=
∑

m,n 6=m

Re
{

e2 ·
{〈

b̂†m(t)X̂
(1)(ω)

〉

ss

}

n
eiδk·Rmn

}

= Re

{

e2 · (M− iωI)−1

[

i

ω
V +PA−1B

]

∑

m,n 6=m

eiδk·Rmnǫm(0)e3

}

+ Re

{

e2 · (M− iωI)−1PA−1B̃
∑

m,n 6=m

eiδk·Rmnǫn(0)e3

}

+ Re

{

e2 ·
∑

m,n 6=m

eiδk·Rmnǫn(ω)

[

i

ω
V +PA−1(B+ B̃)

]

M−1e3

}

.

(C.2.18b)
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Elastic interference spectrum

The elastic part of the interference spectrum is again given by the delta
function from the 1

ω
term, i.e.

S
(0)
int,el(r, ω

′)

S0
=πRe

{

∑

m,n 6=m

eiδk·Rmne2 ·M−1VM−1e3

}

δ(ω)

=
∑

m,n 6=m

eiδk·Rmn
πΩ̃2

R

2
(

1 + Ω̃2
R

)2 δ(ω), (C.2.19a)

S
(1)
int,el(r, ω

′)

S0
=πRe

{

e2 ·M−1V
∑

m,n 6=m

eiδk·Rmnǫm(0)e3

}

δ(ω)

+ πRe

{

e2 ·
∑

m,n 6=m

eiδk·Rmnǫn(0)VM−1e3

}

δ(ω)

=−
πIm

{

∑

m,n 6=m e
iδk·RmnGm

}

Ω̃2
R

(

1− Ω̃2
R

)

2 (1 + ∆2)
(

1 + Ω̃2
R

)4 δ(ω)

−
πRe

{

∑

m,n 6=m e
iδk·RmnGm

}

∆Ω̃2
R

(

1− Ω̃2
R

)

2 (1 + ∆2)
(

1 + Ω̃2
R

)4 δ(ω)

−
πIm

{

∑

m,n 6=m e
iδk·RmnGn

}

Ω̃2
R

(

1− Ω̃2
R

)

2 (1 + ∆2)
(

1 + Ω̃2
R

)4 δ(ω)

−
πRe

{

∑

m,n 6=m e
iδk·RmnGn

}

∆Ω̃2
R

(

1− Ω̃2
R

)

2 (1 + ∆2)
(

1 + Ω̃2
R

)4 δ(ω).

(C.2.19b)
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C.3 Ensemble averages for the spectrum

In order to calculate the first order correction to the ”local” part of the
fluorescence spectrum we need to average the following sums

N
∑

m

N
∑

n 6=m

Gmn,
N
∑

m

N
∑

n 6=m

G∗
mn (C.3.1)

and for the ”interference” part we need

N
∑

m

N
∑

n 6=m

N
∑

n′ 6=m

eiδk·RmnGmn′ ,

N
∑

m

N
∑

n 6=m

N
∑

n′ 6=m

eiδk·RmnG∗
mn′ , (C.3.2a)

N
∑

m

N
∑

n 6=m

N
∑

n′ 6=n

eiδk·RmnGnn′,

N
∑

m

N
∑

n 6=m

N
∑

n′ 6=n

eiδk·RmnG∗
nn′. (C.3.2b)

Here Rmn = Rm−Rn, with the Rm being the position of the m’th atom, and
δk = k−k0, where k0 is the wave vector of the incident light and k = k0r̂d is
the wave vector of the detected light in the far field with magnitude k0 = |k0|
and r̂d is the normalized direction from the center of the cloud to the detector.
By noticing that

N
∑

m

N
∑

n 6=m

N
∑

n′ 6=m

eiδk·RmnGmn′

=
N
∑

m

N
∑

n′ 6=m

n′ 6=n

eiδk·RmGmn′

N
∑

n 6=m

e−iδk·Rn +
N
∑

m

N
∑

n 6=m

eiδk·RmnGmn, (C.3.3)

then by defining the averaged functions

f(k) =

∫

drn(r)e−ik·r (C.3.4)

and

G(k,k′) =

∫

dr

∫

dr′n(r)n(r′)eik·re−ik′·r′ e
ika|r−r′|

ka|r− r′|e
−ik0·(r−r′)eik·re−ik′·r′

(C.3.5)
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we can write the ensemble averages of the sums Eq. (C.3.1) as

N
∑

m

N
∑

n 6=m

Gmn = N(N − 1)G(0, 0), (C.3.6a)

N
∑

m

N
∑

n 6=m

G∗
mn = N(N − 1)G∗(0, 0), (C.3.6b)

while the averages of the sums in Eqs. (C.3.2) can be written as

N
∑

m

N
∑

n 6=m

N
∑

n′ 6=m

eiδk·RmnGmn′ = N(N − 1)(N − 2)f(δk)G(δk, 0)

+N(N − 1)G(δk, δk), (C.3.7a)

N
∑

m

N
∑

n 6=m

N
∑

n′ 6=m

eiδk·RmnG∗
mn′ = N(N − 1)(N − 2)f(δk)G∗(−δk, 0)

+N(N − 1)G∗(−δk,−δk), (C.3.7b)

N
∑

m

N
∑

n 6=m

N
∑

n′ 6=n

eiδk·RmnGnn′ = N(N − 1)(N − 2)f(−δk)G(−δk, 0)

+N(N − 1)G(−δk,−δk), (C.3.7c)

N
∑

m

N
∑

n 6=m

N
∑

n′ 6=n

eiδk·RmnG∗
nn′ = N(N − 1)(N − 2)f(−δk)G∗(δk, 0)

+N(N − 1)G∗(δk, δk). (C.3.7d)

We thus need to calculate f(δk), G(0, 0), G(δk, 0), G(−δk, 0), G(δk, δk),
G(−δk,−δk), and their complex conjugates.

C.3.1 The ensemble average

Let us evaluate the function

G(k,k′) =

∫

dr

∫

dr′n(r)n(r′)eik·re−ik′·r′ e
ika|r−r′|

ka|r− r′|e
−ik0·(r−r′)eik·re−ik′·r′.

(C.3.8)

With a Gaussian cloud and the integrand transformation x = ka(r− r′) and
y = ka(r + r′) such that r = (y − x)/2ka and r′ = (y + x)/2ka we get
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GN(k,k
′) = Ia(k− k′)Ib(k+ k′) where

Ia(k− k′) =
J(x,y)k6a
(2πρ̃2)3

∫

dye
− y2

4ρ2
+i

(k−k
′)

2ka
·y

=
1

π3/2(2ρ)3
exp[−(ρb)2] (C.3.9a)

Ib(k) =

∫

dxe
− x2

4ρ2
eix

x
e−idx cos(θ). (C.3.9b)

Here b = |k−k′|/2ka, d = |2k0−k−k′|/2ka, and here we use θ as the angle
between 2k0 − k− k′ and x.

The integral Ib is given by

Ib(k) =

∫

dxe
− x2

4ρ2
eix

x
e−idx cos(θ)

=
4π

d

∫ ∞

0

dx exp

[

−
(

x

2ρ

)2

+ ix

]

sin(dx)

=− 2π3/2ρ

d
e−(1−d)2ρ2Erfi[(1− d)ρ]

+
2π3/2ρ

d
e−(1+d)2ρ2Erfi[(1 + d)ρ]

+
2iπ3/2ρ

d
e−(1−d)2ρ2

(

1− e−4dρ2
)

(C.3.10)

such that

G(k,k′) =− 1

d(2ρ)2
e−[b2+(1−d)2]ρ2Erfi[(1− d)ρ]

+
1

d(2ρ)2
e−[b2+(1+d)2]ρ2Erfi[(1 + d)ρ]

+ i
1

d(2ρ)2
e−[b2+(1−d)2]ρ2

(

1− e−4dρ2
)

, (C.3.11)

which for b = 0 and d = 1 reduce to the previous found expression for
GN(0, 0).

In a similar way we get that

f(k) =

∫

drn(r)e−ik·r = exp

[

−
(

ρ|k|
2ka

)2
]

. (C.3.12)

We thus have

f(δk) = exp

[

−ρ2
∣

∣

∣

∣

sin

(

θd
2

)
∣

∣

∣

∣

2
]

, (C.3.13)
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where we have used that |δk|2 = 2k20(1−cos θd) = 4k20 sin
2(θd/2) and k0/ka ≈

1.
For G(k,k′) and δk = k0 − kd we have that the coefficients b and d of

Eq. (C.3.11) are given by

G(k,k′), b = |k− k′|/2ka, d = |2k0 − k− k′|/2ka

G(0, 0), b = 0, d = 1 (C.3.14a)

G(δk, 0), b =

∣

∣

∣

∣

sin

(

θd
2

)
∣

∣

∣

∣

, d = | cos(θd/2)| (C.3.14b)

G(−δk, 0), b =

∣

∣

∣

∣

sin

(

θd
2

)
∣

∣

∣

∣

, d =

√

1 + 3 sin2

(

θd
2

)

(C.3.14c)

G(δk, δk), b = 0, d = 1 (C.3.14d)

G(−δk,−δk), b = 0, d =

√

1 + 8 sin2

(

θd
2

)

(C.3.14e)

where θd is the detection angle between the propagation direction of the
incoming driving field and the detection direction.
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C.4 Validity of the single-scattering approximation

The validity of the single-scattering approximation will now be investigated.
It occurs in two different forms in the calculation of the atomic population
and the fluorescence spectrum. We shortly find that if the criterion for the
population calculations are obeyed then the criterion for the spectrum is as
well. The singlesscattering approximation validity for the calculation of the
spectrum is given by

||Λ(ω) +Π(ω)|| ≪ ||M(N)(ω)||, (C.4.1)

with the N by N block diagonal matrices

{M(N)(ω)}mn = (M− iωI)δmn, (C.4.2a)

{Λ(ω)}mn =
(

iQGm − iQ̃G∗
m

)

(A− iωI)−1Bδmn, (C.4.2b)

{Π(ω)}mn =
(

iQGmn − iQ̃G∗
mn

)

(A− iωI)−1B̃(1− δmn). (C.4.2c)

The criterion for the population calculations is given by ω = 0. The norm
|| · · · || denotes the infinity norm and thus ||Λ(ω) + Π(ω)|| = ||Λ(ω)|| and
since M(N) is block diagonal with identical elements in the different blocks we
also have ||M(N)(ω)|| = N ||M− iωI||. Thus, the validity criterion becomes

∑

m

||
(

iQGm − iQ̃G∗
m

)

(A− iωI)−1B|| ≪ N ||M− iωI||. (C.4.3)

At this point both sides of the inequality depend on both cloud type (size
and number of atoms) and driving field (detuning and Rabi frequency). Let
us make a new estimate that separates the cloud and the field parameters.
We have that

||
(

iQGm − iQ̃G∗
m

)

(A− iωI)−1B||

≤ |Gm|||Q(A− iωI)−1B||+ |G∗
m|||Q̃(A− iωI)−1B||
= 4|Gm|||(A− iωI)−1||, (C.4.4)

since |Gm| = |G∗
m|, ||B|| = ||B̃|| = 1, and ||Q|| = ||Q̃|| = 2. In order to get

further physical intuition on the range of validity we note that from numerical
investigations 4||(A − iωI)−1|| < 1 and furthermore ||M − iωI|| is minimal
for ω = 0. This signifies that if the validity criterion for ω = 0 is obeyed,
i.e. the criterion used in calculating the population, then the criterion for
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the spectrum is also obeyed. At last,
∑

m |Gm| <
∑

m

∑

n 6=m |Gmn| and thus
we get the inequality

∑

m

∑

n 6=m |Gmn|
N

≪ ||M|| (C.4.5)

and this also respects Eq. (C.4.3). Here, the left hand side only depends on
cloud properties such as size and number of atoms while the right hand side
only depends on the driving properties Rabi frequency and detuning. The
matrix norm is

||M|| =







2ΩR, 2
√
1 + ∆2 < ΩR

2
√
1 + ∆2 + ΩR, 2 < ΩR < 2

√
1 + ∆2

2(1 +
√
1 + ∆2), ΩR < 2

. (C.4.6)

The significance of this is that the perturbative treatment is only valid if
the dipole-dipole interaction is much smaller than the interaction with the
driving field. That is, the analysis is valid when we pump it hard or if we
are far detuned. For large intensity we thus have the condition

∑

m

∑

n 6=m |Gmn|
N

≪ 2ΩR (C.4.7)

while for large detuning and intensity below ΩR < 2 the condition is

∑

m

∑

n 6=m |Gmn|
N

≪ 2(1 +
√
1 + ∆2) (C.4.8)

and at last for the intermediate region we have

∑

m

∑

n 6=m |Gmn|
N

≪ 2
√
1 + ∆2 + ΩR. (C.4.9)

The ensemble average of |Gmn| assuming a Gaussian cloud with normalized
thickness ρ, like in App. C.1, is

|Gmn| =
1√
πρ
. (C.4.10)
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C.5 The N-atom matrices

Here we state the matrices used for calculating the steady-state population
and fluorescence spectra of a cloud of N atoms.

C.5.1 Single-atom matrices

The vectors and matrices connected to the single-atom evolution, x̂m(t), M,
U, and V, are

x̂m(t) =





b̂†m(t)

b̂m(t)
σ̂m(t)



 , M =





1 + i∆ 0 −iΩR

0 1− i∆ iΩR

− iΩR

2
iΩR

2
2



 , (C.5.1)

V =





0 0 0
0 0 0
1 0 0



 , U =





0 0 0
0 0 1
−1

2
0 0



 . (C.5.2)

C.5.2 Two-atom coupling matrices

The vectors and matrices connected to the coupling amongst atoms, ŷmn(t),
A = Adiag +AΩR

, B, B̃, Q, Q̃, and P, are given by

ŷmn(t) =































b̂†m(t)b̂n(t)

b̂†n(t)b̂m(t)

b̂†m(t)b̂
†
n(t)

b̂m(t)b̂n(t)

b̂†m(t)σ̂n(t)

b̂†n(t)σ̂m(t)

σ̂n(t)b̂m(t)

σ̂m(t)b̂n(t)
σ̂m(t)σ̂n(t)































, Adiag = diag





























2
2

2(1 + i∆)
2(1− i∆)
3 + i∆
3 + i∆
3− i∆
3− i∆

4





























, (C.5.3)

AΩR
= iΩR





























0 0 0 0 1 0 0 −1 0
0 0 0 0 0 1 −1 0 0
0 0 0 0 −1 −1 0 0 0
0 0 0 0 0 0 1 1 0
1
2

0 −1
2

0 0 0 0 0 −1
0 1

2
−1

2
0 0 0 0 0 −1

0 −1
2

0 1
2

0 0 0 0 1
−1

2
0 0 1

2
0 0 0 0 1

0 0 0 0 −1
2

−1
2

1
2

1
2

0





























, (C.5.4)
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B =





























0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1





























, B̃ =





























0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 0 0
0 1 0
0 0 1





























, (C.5.5)

Q =





0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0
−1 0 0 0 0 0 0 0 0



 , (C.5.6)

Q̃ =





0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0



 , (C.5.7)

P =





0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0



 . (C.5.8)
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