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Equation-Free Detection and Continuation of a Hopf Bifurcation Point in a
Particle Model of Pedestrian Flow∗

Olivier Corradi†, Poul G. Hjorth†, and Jens Starke†

Abstract. Using an equation-free analysis approach we identify a Hopf bifurcation point and perform a two-
parameter continuation of the Hopf point for the macroscopic dynamical behavior of an interacting
particle model. Due to the nature of systems with a moderate number of particles and noise, the
quality of the available numerical information requires the use of very robust numerical algorithms
for each of the building blocks of the equation-free methodology. As an example, we consider a
particle model of a crowd of pedestrians where particles interact through pairwise “social forces.”
The pedestrians move along a corridor where they are constrained by the walls of the corridor, and
two crowds are aiming, from opposite directions, to pass through a narrowing doorway perpendicular
to the corridor. We focus our investigation on the collective behavior of the model. As the width of
the doorway is increased, we observe an onset of oscillations of the net pedestrian flux through the
doorway, described by a Hopf bifurcation. An equation-free continuation of the Hopf point in the
two parameters, door width and ratio of the pedestrian velocities of the two crowds, is performed.

Key words. particle models, agent-based model, equation-free analysis, numerical bifurcation analysis, Hopf
bifurcation, two-parameter continuation, collective behavior, self-organization, pattern formation,
pedestrian dynamics
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1. Introduction. The collective macroscopic behavior of systems consisting of many sub-
systems has been the focus of a large number of investigations. Prominent examples are
the emergence of coherent light in lasers and pattern formation in fluid dynamics, chem-
istry, and biology [15], [14], [38]. In many cases, it is possible to derive analytically, e.g.,
via a center-manifold reduction, the macroscopic dynamics resulting from the microscopically
defined systems and to further analyze this macroscopic dynamics in terms of, e.g., its bifur-
cation structure, in order to gain insight into the macroscopic behavior and its dependence on
certain parameters. For other cases, such a derivation of an explicit macroscopic dynamical
description is not yet known, or, due to, e.g., a discrete structure like in a particle model with
a fairly large but for continuum approximations not sufficiently large number of particles [41],
this might not even be possible. Such a situation is considered here in some detail, with the
aim of obtaining insight into the macroscopic behavior of particle models with a finite number
of particles for which no macroscopic dynamical equations are known.

Nevertheless, we consider a situation where we believe that a description in terms of macro-
scopic dynamics is meaningful, as suggested by numerical experiments. For this situation, the
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1008 O. CORRADI, P. G. HJORTH, AND J. STARKE

equation-free, or coarse analysis, approach [43] provides a framework in which to perform, e.g.,
numerical bifurcation analysis for macroscopic dynamics which is not explicitly known but can
be accessed via suitably chosen short microscopic model evaluations (for further details see,
e.g., [43], [12], [9], [25], [26], [27]). Such a multiscale approach requires well-separated spatial
and temporal scales between the macroscopic observables and the microscopic processes, re-
spectively. In the system considered here, this means the individual particle motion evolves
on a much faster time scale than the evolution of the macroscopic observables investigated,
where averaged quantities like the center of mass have been chosen.

Even though the methods we use and develop are applicable to many different particle
models, we specifically consider a model for describing pedestrian flow through a corridor with
a bottleneck. The example of pedestrian models has drawn attention due to its relevance in
emergency escape routes and other panic situations in huge crowds (see, e.g., [18]). It should
be remarked that these models are quite close to physical particle models but in addition
contain an overlap to social sciences where they can be regarded as relevant to quantify the
social science [17].

Collective macroscopic behavior in a crowd of pedestrians moving along a hallway can
be reproduced by simple dynamical models of a collection of mass points moving in a two-
dimensional domain under the influence of mutual interactions (particle-particle interactions
or “social forces”) as well as “constraint forces” from the walls. The self-organized emergence
of structure, i.e., the pattern formation or the macroscopic behavior of pedestrian models,
was already reported in [21] and subsequently in [18], [17], [19], [20], [24], [31], [39]. Recently
the investigation of pedestrian models has also drawn the attention of the mathematical
community; see, e.g., [3], [32], [2], [5], [6]. In the following we will focus on the emergence of
oscillatory patterns in microscopic particle models for pedestrian flow as in [21]. Nevertheless,
a more rigorous numerical analysis, with a deeper understanding of how the macroscopic
behavior depends on certain parameters, has been missing so far for the oscillatory phenomena.
This is what we aim to contribute with the present paper.

In the context of pedestrian modeling, the particle-particle “forces” are termed “social
forces,” as they model the social behavior of each pedestrian as this pedestrian moves along
in a crowd of other pedestrians. Note that these are not forces in the physical sense but a
cause for each pedestrian to adapt its own movements based on psychological interactions.
Each pedestrian aims to move in a specific direction, so there is a force term attracting the
pedestrian to a distant point (target). Each pedestrian has a “private space” and consequently
moves to avoid too close proximity to other pedestrians. As long as this “private space” is
not threatened, each pedestrian is indifferent to the configuration of the other pedestrians. In
other words, our model does not include enochlophobic or agoraphobic behavior.

Observations [18], [11] suggest that the behavior of a real crowd strongly depends on
the density of the crowd as well as on the constraints imposed, e.g., by walls or doorways.
Also in the swarm dynamics investigated in [23], density plays a decisive role for a phase
transition between ordered and disordered states. For low pedestrian densities, the single
particle behavior dominates, altered only by well-separated particle interactions. For high
pedestrian densities, the behavior of the system becomes strongly correlated, and under certain
conditions one can observe an onset of collective modes: oscillations in net flux, and formation
of lanes. For large enough densities, it is interesting to model, and attempt to quantify, theD
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CONTINUATION OF A HOPF POINT FOR A PARTICLE MODEL 1009

transition between various macroscopic behaviors due to changes of system parameters. In
particular we find in this work that for two counterstreaming populations simultaneously
passing through a doorway from opposite directions, widening or narrowing the width of
the doorway can trigger or terminate oscillations of particle flux, so that the two opposing
populations take turns in letting one direction dominate in the doorway. We find the transition
from the “jammed” state to the “oscillatory” state to be characterized by a Hopf bifurcation
(see, e.g., [33], [16]).

In section 2 we define and discuss our pedestrian model and in more detail the functional
form [35], [1], [42] of the “forces” employed. These finite range forces are more realistic than
those suggested in [21]. Section 3 describes the types of self-organized macroscopic behavior
observed in real crowds and simulations, as well as defines our macroscopic observables. In
section 4 we investigate the domains of qualitatively different macroscopic behavior. We iden-
tify a Hopf bifurcation point numerically by varying the door width w. Next, we investigate
a two-parameter space spanned by the width w of the doorway and a relative “pressure” pa-
rameter rv0 measuring the ratio of the pedestrian velocities v0 of the two pedestrian crowds.
A value rv0 = 1 describes two similarly energetic crowds, while rv0 > 1 or rv0 < 1 models the
case where one crowd is more energetic than the other.

These parameter regions are characterized by either a stationary or an oscillatory behavior
and are separated by a line of Hopf bifurcation points. First, we detect the Hopf bifurcation
point for rv0 = 1 by an equation-free analysis of the system by varying the door width w.
Second, we perform an equation-free two-parameter continuation of the Hopf bifurcation point
by varying both the door width w and the relative pressure parameter rv0 .

2. A particle model for pedestrian behavior. As mentioned in the introduction, we model
the pedestrians as interacting mass points and describe their change of positions with coupled
differential equations. In choosing the analytical form of the force terms governing the dynam-
ics of each individual pedestrian, we attempt to compromise between realism and numerical
efficiency. A slightly different version of the model suggested by Helbing and Molnár [21] has
been used, where the angle of sight has been omitted, the pedestrian-pedestrian as well as
the pedestrian-wall interaction has been changed to be of finite range, and the pedestrian-
pedestrian interaction has been made isotropic instead of anisotropic. The omission of the
angle of sight and the use of the isotropic pedestrian-pedestrian interaction are simplifications
in order to study the macroscopic phenomena in a minimalist model, whereas finite range
forces make the model more realistic.

Here, the undisturbed motion of a single pedestrian i is a motion that accelerates until its
velocity vi(t) = ‖ẋi(t)‖ reaches a fixed cruising velocity v0. This can be obtained by subjecting
each pedestrian to the velocity dependent “target force”

(1) F
(0)
i =

1

τ
(v0e0i − ẋi(t))

containing a desired direction of motion e0. This desired direction of motion e0 = e0(t,x(t))
will in general depend on time t and the current position x(t) of the pedestrian. In the
pedestrian problem considered here, the choice of the desired direction of motion is as follows:
Before the pedestrian has passed through the door, the centerpoint of the doorway is theD
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Figure 1. The magnitude ‖fij‖ of the pedestrian-pedestrian interaction force as a function of the particle

distance ‖rij‖. The force is repelling, rising sharply as the separation becomes small, but also vanishes when
the separation exceeds a value σ. In the simulations, we have used Vij = 15, σ = 1. See Table 1.

target. After the pedestrian has passed the door, the target shifts to a point at the end of the
hallway which would cause an undisturbed pedestrian to move parallel to the corridor walls.

Next is the “social” or “territorial” force fij between two individual pedestrians i and j.
Along the vector rij connecting two pedestrians, we take this similarly as in [42] to be a C1

repelling force of finite range σ (i.e., pedestrians with a distance larger than σ away from each
other do not interact):

(2) fij =

{
−Vij

[
tan

(
π
2

(‖rij‖
σ − 1

))
− π

2

( ‖rij‖
σ − 1

)]
rij

‖rij‖ , ‖rij‖ ≤ σ,

0, ‖rij‖ > σ,

where the interaction strength is Vij ∈ R and ‖ · ‖ is the Euclidean norm (Figure 1). The
used finite range interactions are more realistic compared to those used in [21] because real
pedestrians typically ignore other pedestrians sufficiently far away in their choice of walking
direction. Note that in order to take into account the separating nature of walls, this force is
set to zero if the wall containing the door separates two pedestrians.

In addition to this, we surround the walls and the doorway with a repelling potential that
pushes pedestrians away from the nearest point of a wall B with a force fi,B that depends on
the distance between pedestrians and this point. This force is chosen as (2) but weaker, i.e.,
with a smaller prefactor Ui,B but with a larger characteristic distance R than the pedestrian-
pedestrian interaction, i.e., with R > σ.

The motion of each pedestrian i is then computed as the dynamics of a point mass particle
in response to the prescribed sum of all “forces” (as in Figure 2) with the equation

(3) ẍi = F0
i +

∑
j

fij +
∑
B

fi,B,

where x = (x, y), x being the coordinate along the corridor in an orthonormal coordinate
system with the origin at the center of the door (see Figure 3). To solve this equation ofD
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CONTINUATION OF A HOPF POINT FOR A PARTICLE MODEL 1011

ẍi

e0i

fij

fik
fi,B

fi,B′

j

k

Figure 2. The behavioral “forces” between a pedestrian and nearby walls, as well as other pedestrians, the
pedestrian’s attraction towards a target location, and the resulting acceleration force ẍi.

�
x

�y

Figure 3. Crowd of pedestrians crowding in front of and passing through a bottleneck doorway. The radii
of the circles are proportional to the magnitude of pedestrian velocities. See Table 1 for parameter values.

motion numerically, we rewrite it in the usual manner as a first order system with the state
variables (x,v) with v = ẋ. To also model real pedestrian behavior in blocking situations
where pedestrians try to step aside to escape pedestrian-pedestrian blocking, a noise term ni

is added to the velocity vector v. This resulting equation of Langevin type is then solved
numerically by an Euler method with step size Δt where the noise term is scaled with

√
Δt

(see, e.g., [22]). Throughout the paper, we used a step size Δt = 0.001.

The noise term ni has two components n
‖
i and n⊥

i , parallel and perpendicular (respectively)

to the desired motion vector ei. Hereby, n
‖
i is normally distributed with mean zero and

standard deviation s‖ = 0.00158, and n⊥
i is normally distributed with mean 0.00632 and

standard deviation s⊥ = 0.0632. This mimics the tendency of particles to move to the right in
case of a frontal collision. Introducing e⊥i as the vector orthogonal to the direction of motion
with the right-hand rule, the noise term is expressed as

ni = n
‖
i ei + n⊥

i e
⊥
i = n

‖
i ei + n⊥

i

(
0 −1
1 0

)
ei.

The numerical simulations have been carried out using the parameters defined in Table
1. Note that we interpret the distance and time units as meters and seconds, respectively,
because these are fairly natural length and time scales of the problem we are interested in. In
order that the simulation does not run out of pedestrians as they reach the end of the hallway,
we use periodic boundary conditions in x and reinject the pedestrians who stream out at the
end with some y value at a new and random value of y at the opposite end of the corridor.
This is necessary, as to be able to observe a meaningful system behavior, the object of interestD
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1012 O. CORRADI, P. G. HJORTH, AND J. STARKE

Table 1
Parameter values of the pedestrian model used for the simulations and numerical analysis.

Total number of pedestrians 200

Pedestrian terminal velocity v0 = 1.5 ms−1

Acceleration relaxation time τ = 0.22 s

Pedestrian-pedestrian interaction strength Vij = 15 m2s−2

Pedestrian-pedestrian length scale σ = 1 m

Pedestrian-wall interaction strength Ui,w = 10 m2s−2

Pedestrian-wall length scale R = 2 m

Corridor width Cw = 5 m

Corridor length Cl = 45 m

has to be an element of the ω-limit set which describes the asymptotic behavior (see, e.g.,
[13]).

The focus of this study is to investigate the emergence of oscillatory patterns arising
when two species are passing a narrow door in opposite directions. Later, in section 4, we
will investigate systems where particle species on each side of the door have different values
for v0. This is described by the parameter rv0 in the model. This parameter describes a
nonequal energy in the two particle populations, initially located on each side of the partition.
Modeling two different pedestrian species α and β, each aiming to get through the doorway
from opposite sides and towards the far end of the corridor, a variation in rv0 would make
one population of pedestrians more vigorous in pushing its way through the other population.
Specifically, we define rv0 as

(4) rv0 = v0α/v
0
β,

i.e., as the ratio of terminal velocities between the two species α and β used in the equations
of motion (3) with (1) and (2).

3. Observation of collective dynamics. Collective behavior, involving many individuals,
can be observed both in real crowds [18], [11] and in computer simulations [21].

In the considered model, the individual, or microscopic, particles move according to very
simple laws, being attracted to a distant point and repelled locally by other particles and by
walls. We are working under the assumption that the boundary conditions have no influence
on the macroscopic dynamics we are interested in. The validity of these assumptions is checked
later in this section. The geometry of the considered model is simple, being characterized by
only one parameter, the dimensionless width w of the doorway.

For certain values of the door width w we observe macroscopic oscillations which are
shown in Figure 4. In order to quantify the observation of temporal changes in the number of
particles passing the doorway, we introduce a variable being a measure for the overall position
of a group of particles of a specific species. More specifically, we use a weighted center of massD
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CONTINUATION OF A HOPF POINT FOR A PARTICLE MODEL 1013

t = 36s

t = 28s

t = 24s

t = 17s

t = 9s

t = 3s

t = 1s

Figure 4. Snapshots from the oscillatory particle flow through the doorway. The arrows indicate the sign of
the variable ṁ, the overall center of mass velocity. Notice in the final frame the phenomenon of the formation
of a single lane of pedestrians emerging through the door, consistent with the observation as in [21]. The radii
of the circles are proportional to the magnitude of pedestrian velocities. See Table 1 for parameter values.

variable m, such that, e.g., for the species α,

mα =

∑
i∈α

κ(xi)xi∑
i∈α

κ(xi)
,

where we consider only the longitudinal component xi (i.e., the component in the walking
direction) using a coordinate system with the origin located in the center of the door. Note that
mα can remain constant even if particles are moving; two particles displacing simultaneously
in opposite directions gives no change in mα. Dividing by the sum of weights keeps the
measured quantity in the original unit.

The weight function κ(xi) is introduced to focus mainly on the particles that are positioned
around the door. This permits us to separate the dynamics of the interactions at the door from
the dynamics of particles traveling towards or away from it, and in particular discontinuously
entering or leaving the corridor at the ends. By placing the origin of the coordinate system
at the center of the door, the orthogonal distance of a particle i to the door is then denotedD
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1014 O. CORRADI, P. G. HJORTH, AND J. STARKE

with |xi|. The weight function has the following characteristics:

(5) κ(xi) =

⎧⎪⎨
⎪⎩
1 for |xi| ≤ d,

g(xi) for d ≤ |xi| ≤ b,

0 for |xi| ≥ b,

where d defines the size of the neighborhood around the door with maximal weighting and ±b
bound the area taken into account. In our case, the bound b is chosen as the corridor bound
Cl/2.

A cubic spline g(xi), i.e., a third order polynomial, is then used to strictly monotonously
connect the two constant parts of the weight function. C2 continuity of κ(x) is ensured by
imposing continuity of the first and second derivatives at the connection points, which is
visualized in Figure 5.

−20 −15 −10 −5 0 5 10 15 20
0

0.5

1

κ(xi)

xi

d−d

Figure 5. A weight function κ(xi), constructed from a cubic spline connecting two constant functions, is
used to exclude the contribution of particles far away from the door. In our simulations the value d = 4 with
bound b = Cl/2 = 22.5 is used.

Finally, as a compromise between the clarity of the macroscopic result and the smoothness
of the macroscopic quantities in phase space introduced later, the center of mass of the entire
population is computed as an average over the two species α and β:

(6) m =
1

2
(mα +mβ) .

The difference of mα and mβ would amplify what is going on macroscopically but would be
worse in terms of the smoothness of the trajectory. The used mean between mα and mβ

has a weaker but still clear signal of what is macroscopically going on and shows smoother
trajectories.

We also wish to investigate temporal changes of m. The dynamics of the system are then
explored as they unfold in the two-dimensional phase space with variables (m, ṁ). In the
simulations, ṁ is computed numerically using central differences (m(t+ Δt

2 )−m(t− Δt
2 ))/Δt

with Δt = 0.1s. The change of the macroscopic dynamics is described with (m, ṁ), as shown
in Figure 6. This makes sense because in a study of a one-dimensional oscillation in the
x-direction of our coordinate system it is natural to introduce these two variables. This is
also the easiest choice we could think of that represents the behavior in a transparent way.
To have a periodic solution, i.e., a closed orbit in phase space, one needs a minimum of two
dimensions. This dynamical system evolves according to a set of equations

(7)
d

dt

(
m
ṁ

)
= F

((
m
ṁ

)
;w, rv0

)
,

D
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CONTINUATION OF A HOPF POINT FOR A PARTICLE MODEL 1015

where the function F on the right-hand side depends on the parameters w and rv0 , and is not
explicitly known. First, we concentrate on the effect of the door width parameter w.

The range of the parameter w for the door width can be set in the simulations to any
value between w = 0 (fully closed) and w = Cw = 5 (fully open). For small values of the door
width, the door is effectively blocking. Small oscillations in the particle flux, set up by the
initial conditions, quickly dampen to zero, as shown in Figure 6(a). To sustain an oscillation
of particle flux, as seen in Figure 6(c), larger values of w are needed. Between these values,
a later-identified supercritical Hopf bifurcation marks the transition from a stable fixed point
to an unstable fixed point surrounded by a stable limit cycle.
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Figure 6. Depiction of the three types of qualitative behavior in phase space in the neighborhood of the
onset of the observed oscillatory behavior. Each column shows a trajectory in the phase space (m, ṁ) as well
as m(t) over time t for a certain door width w. The red circle in the phase space marks the initial condition.
Observe the different qualitative behavior showing the presence of a bifurcation. The corresponding bifurcation
point will be investigated in section 4.1. In (a), before the bifurcation point, the phase space trajectory moves
in towards the stable stationary point, and the time series for m is a decaying oscillation. At w = 0.58, just
after the Hopf bifurcation, in (b) the stationary point is now unstable and is surrounded by a stable limit cycle.
Finally, in (c) we show at w = 0.65 behavior spiraling away from the unstable fixed point towards the stable
limit cycle.

An obvious concern with the described system setup yielding periodic solutions is that the
periodic boundary conditions could influence the dynamics and become a cause of observed
collective phenomena. In particular we must ensure that there are no resonant effects of
particle reinjection. The time scale (i.e., the period) associated with collective oscillatory
modes (see section 4) is about 40 seconds, as seen in, e.g., Figure 6. The mean travel time
〈Θ〉α̃ of particles from a group α̃ is several minutes, as seen in Figure 7. Here, α̃ represents
only those particles that have completed a travel cycle in the observation time. The mean of
the travel times is computed only for those pedestrians who traveled a full cycle during theD
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1016 O. CORRADI, P. G. HJORTH, AND J. STARKE

observed time. There is no simple integer ratio of the two and the ratio changes continuously
through a range of values, so that one can assume that the oscillatory behavior results from
a self-organizing effect and is not due to an influence from the periodic boundary conditions.
In addition to this, the collision avoidance and mixing through the doorway crowd spreads
the distribution of travel times and hence further suppresses potential resonant effects.

0.57 0.58 0.59 0.6 0.61 0.62 0.63
0

50

100

150

200

250

300

Tm, 〈Θ〉α̃

w

Figure 7. The period Tm (lower curve in blue) of the macroscopic variable m is compared to 〈Θ〉α̃, the
mean of all travel times of each of the two particle groups α̃ (two upper curves in red). There is no simple
integer ratio of the two and the ratio changes continuously through a range of values, so that one can assume
that the oscillatory behavior results from a self-organizing effect and is not due to an influence from the periodic
boundary conditions.

4. Numerical analysis using equation-free methods. In this section we investigate nu-
merically in some detail the low-dimensional description of coarse scale features of the particle
dynamics. This includes the rigorous exploration of parameter dependence on the macroscopic
behavior, including the detection of bifurcation points, as well as the identification of its type
and its two-parameter continuation. For this we apply and further develop methods of nu-
merical bifurcation analysis, such that it is possible to obtain the necessary information in
the framework of an equation-free analysis for a particle system with a medium number of
particles, where fluctuations and discrete size effects cover a substantial part of the observed
quantities. We are in particular interested in investigating what influence the value of the
door width w has on the macroscopic particle dynamics. Subsequently, we also investigate
the influence of the relative velocity rv0 .

For a first examination of the qualitative change of the macroscopic dynamic behavior and
a later verification of our equation-free analysis, a brute force analysis is performed. In this,
a forward and backward sweep (increasing and decreasing the door width w) is done, each
sweep using the end state of the previous simulation as the new initial state when incrementing
(respectively, decrementing) the door width w by small steps Δw. For each simulation, we
examine the asymptotic behavior numerically by plotting the extrema (minimum and maxi-
mum) of m for the orbit of the final 30s of a 400s long simulation run, giving an indication of
the size of the ω-limit set.D
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CONTINUATION OF A HOPF POINT FOR A PARTICLE MODEL 1017

Figure 8 shows both the forward sweep, from low to high w (blue circles), and the backward
sweep, from high to low w (red crosses). For small values of w the stationary “blocked” state
is observed, while for values w over a certain threshold, the system shows on the macroscopic
level an oscillatory behavior. The growth of the amplitude as a function of the parameter w is
not inconsistent with the square root dependence on w characteristic of a supercritical Hopf
bifurcation.

For some system setups, with other parameters for the reaction time τ or other functions
for the interaction potentials, we have observed in this type of backward and forward brute-
force sweep small separations between the stable stationary solution and the smallest value of
the diameter of the stable limit cycle. Such separations could indicate that in a small region
of parameter space, the actual bifurcation might be a subcritical Hopf bifurcation, signaling
the presence of hysteresis. We concentrate here on system characteristics where this effect is
negligible and the observed qualitative effects are in good agreement with a supercritical Hopf
bifurcation.

0.5 0.55 0.6 0.65 0.7
−1.5

−1

−0.5

0

0.5

1

1.5

 

 

Forward
Backward

w

m

Figure 8. As an initial study, the qualitative change of the macroscopic dynamic behavior as a function
of the door width w is investigated by forward and backward sweeps, each using the end state of the previous
simulation as the new initial state when incrementing (respectively, decrementing) w by small steps Δw = 0.01.
For the limit cycle states, the values of the extrema (minimum and maximum) of the orbit of the last 30s
of a 400s long simulation run are displayed. The plot shows that after the bifurcation the amplitude grows
in a manner not inconsistent with the square root amplitude dependence characteristic of a supercritical Hopf
bifurcation.

In the following, we further detect and identify the Hopf bifurcation point in the macro-
scopic variables (m, ṁ) by using the door width w as parameter. After that, we perform an
equation-free continuation of a fixed point including the detection of a Hopf bifurcation point
and a subsequent two-parameter continuation of this Hopf bifurcation point using the relative
velocity rv0 of the two species as the second parameter.

4.1. Numerical detection of the Hopf bifurcation point. In order to further examine
the bifurcation we proceed to explore on a macroscopic scale the qualitative behavior aroundD
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1018 O. CORRADI, P. G. HJORTH, AND J. STARKE

a stationary point first by a fit of a linearized equation of motion to the observed data and
second by using Poincaré sections. The main difficulty here is for the equation-free approach
to detect the necessary information, both noisy and influenced by finite size effects, from
our microscopic particle simulation. This is also the reason why we have chosen to use two
different approaches which allow us to cross-check the results.

To perform this analysis, the system is at each value of w identically initialized by using
a reference microscopic state, carefully chosen to be located close to the supposed stationary
point. The microscopic initialization state is extracted from a reference simulation with a door
small enough to force the system to oscillate down to the stable stationary point. See also
section 4.2 for details about initializations of microscopic configurations. The macroscopic
behavior with observables (m, ṁ) is then investigated for different values of the door width w
as the parameter.

Linearizing (7) around a stationary point, one will obtain a linear dynamical system in
two dimensions of the form ẋ = Ax, where we denote the eigenvalues of A as λd = a± ib. The
extraction of the real part of the eigenvalues is done by fitting the macroscopic time series
m(t) to the formal solution

ϕ(t) = c1e
at cos(bt) + c2e

at sin(bt) + c3.

Since c1 = ϕ(0)−c3, there are four parameters that must be estimated. A trust region method
is used to perform the data fitting by employing the lsqnonlin command from MATLAB [34].

An estimator T̂ for the period of the oscillation is found by Fourier analysis, giving an
estimator of 	(λd) =

2π
T̂

that can be used as the initial guess in order to accelerate convergence
of the parameter estimation. For values of w smaller than the bifurcation value, where the
stationary point is stable, the phase space trajectory will spiral into the stationary point and
thus remain in the neighborhood where the linearization is valid. On the other side of the
bifurcation, the trajectory is repelled away from the stationary point and thus away from the
region where the linearization is valid. Care has therefore been taken only to fit the solution to
the time series within a close neighborhood of the stationary point. A nonlinear least-square
fit is then performed using a trust region method by employing the lsqnonlin command from
the Optimization Toolbox in MATLAB [34] in order to estimate the four parameters, thus
extracting the eigenvalues a± ib.

Because the simulations before the stability change do not feature oscillations permitting
a clear estimation of the period of the signal, the constraint b ∈ [2π36 ,

2π
30 ] is used on the

imaginary part which we obtained by Fourier analysis. This technique permits an observation
of a clear transition from negative to positive real parts of the eigenvalues λd with increasing
door width w. A summary of the results is displayed in Figure 9. This development of a
numerical procedure being robust in detecting the stability information from the time series is
necessary due to the fairly noisy nature of the microscopic model. The numerical investigation
also shows that the imaginary part of the pair of complex conjugate eigenvalues is different
from zero so that we can conclude that we indeed have a Hopf bifurcation.

To further verify the investigations of the change of stability in the presence of noise
and discrete size effects, a second method is used, based on Poincaré sections. In order to
obtain the maximum number of data points from a short trajectory, two half-lines are used
as Poincaré sections. These are m ≥ 0 and m ≤ 0 at ṁ = 0. Assuming that the linearizationD
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Figure 9. Numerical evidence of a Hopf bifurcation using two different methods. Left: As the bifurcation
parameter w increases, the real part �(λd) of the eigenvalues λd (of the linearization of the equation of motion
(7) for the macroscopic state variables m and ṁ) crosses from negative values to positive values. At the same
time the imaginary part of the pair of conjugate complex eigenvalues is different from zero (not shown). The
linearized equation of motion was obtained by fitting a solution to the differential equation to the data from the
microscopic particle simulation. As an alternative method, Poincaré sections with eigenvalues λp of linearized
Poincaré maps are investigated. For the Poincaré map Ps, linearized at the stationary point, the change of
the eigenvalue λs

p with increasing w from values smaller than one to values larger than one indicates a loss of
stability of this stationary point. Furthermore, the linearized Poincaré map Po, linearized at a point with ṁ = 0
on the periodic orbit, is investigated. The values of λo

p are smaller than one for values larger than those where
the loss of stability of the stationary point is observed, indicating the existence of a stable periodic orbit. Right:
The Poincaré sections (m ≤ 0 and m ≥ 0) in phase space and the solutions interpolated between the discrete
values of k are shown for w = 0.55. These solutions are used subsequently to estimate the eigenvalues λs

p of the
linearized Poincaré map Ps.

is identical for both half-lines, the (eigen)value λp of the linearized Poincaré map of the type
mk+1 = λpmk is the same for both maps P+

s and P−
s around the stationary point. By fitting

each sequence m+
k and m−

k to the solutions

m+
k = (λp)

km+
0 ,

m−
k = (λp)

km−
0 ,

the common eigenvalue can be determined. To distinguish between Poincaré maps near the
stationary point and near the orbit, we use λs

p and λo
p, respectively.

To obtain stability information of the fixed point under investigation, points (m±
k , 0) on

the limit cycle are excluded when estimating the eigenvalue λp of the Poincaré map. The plot
in Figure 9 shows a transition from a stable to an unstable stationary point at a critical value
of the door width w0, close to the one obtained with the approach based on the linearization
of the differential equation and fitting the solution to data. For parameters larger than w0,
additional Poincaré sections (additional to the Poincaré sections in the neighborhood of the
stationary state) show the presence of a stable periodic orbit. The corresponding Poincaré
section is called Po. Linearizing Po around the intersection point m̄o of the orbit with the line
ṁ = 0 results in mo

k+1 − m̄o
0 = λo

p(m
o
k − m̄o

0) with the solution

(mo
k − m̄o) = (λo

p)
k(mo

0 − m̄o).D
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1020 O. CORRADI, P. G. HJORTH, AND J. STARKE

Taken together, the transition from a stable stationary point to an unstable one, sur-
rounded by a stable limit cycle with monotonically increasing amplitude for values larger
than w0, is strongly indicative of a supercritical Hopf bifurcation.

4.2. Equation-free continuation and lifting near a stationary point. To supplement and
complete the information about the macroscopic system behavior and its dependence on a pa-
rameter, the aim is to perform a numerical bifurcation analysis for the macroscopic properties.
Since no explicitly given equations are available for a description of the chosen macroscopic
variables m and ṁ, we apply an equation-free approach [26], in which the necessary informa-
tion is obtained by carefully selected short simulation bursts of the underlying microscopic
particle model. For the continuation of a stationary point of the macroscopic dynamics of
(7) we use a predictor-corrector approach (see, for example, [7], [8], [4]), but in contrast to
standard applications, the right-hand side F is unknown in the considered situation.

Information about F can be obtained by switching between the macroscopic level, where
no equations are available, and the microscopic level, where our model is given [26]. A typical
choice for the predictor would be a constant or a linear predictor, and a Newton method for
the corrector. For the investigation of stable objects in phase space it is even possible to
replace the Newton method with a simple direct simulation of the microscopic model. The
essential information from the right-hand side of (7), like the Jacobian ∂F

∂x with x = (m, ṁ) for
the Newton method as the corrector, is obtained by numerical evaluation of the microscopic
model. To obtain this information at predicted points in a neighborhood of the stationary
point, it is necessary to switch between the macroscopic level and the microscopic level [26].
The change from the microscopic level to the macroscopic level is called restriction R, and
the change from the macroscopic description to the microscopic particle model is called lifting
L; see Figure 10 for illustrations. In systems like the present, where the available numerical
information for computing a Jacobian is very noisy, it is favorable to use another corrector.
In the present paper we use the false position method [40] to numerically determine zeros of
the right-hand side of (7). The false position method is more robust and can even deal with
functions with discontinuities. To be able to also continue along fold bifurcation points, a
pseudoarclength predictor-corrector method can be used [7], [8], [4].

The restriction R is the unique map S �→ (m, ṁ) taking a microscopic state S to a
macroscopic state (m, ṁ) by means of the defining equation (6) form and its time derivative ṁ.
The lifting L is not unique, as it describes a map from a small number of macroscopic variables
to a microscopic model with many degrees of freedom. Therefore, the applicability of this
approach requires the system property that the system converges quickly to a low-dimensional
behavior which is typically satisfied for all systems showing pattern formation. This includes
the need to lift to a “physically meaningful” or “natural” state which is in a close neighborhood
of the macroscopic state under investigation. The neighborhood should be such that the
process of converging back to the low-dimensional manifold occurs on a time scale much
smaller than the dynamical processes on the macroscopic level. Microscopic configurations
far away from this low-dimensional manifold would not represent the macroscopic behavior of
interest. Detailed knowledge about the application problem considered has to be used to be
able to construct a good and effective lifting operator.
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CONTINUATION OF A HOPF POINT FOR A PARTICLE MODEL 1021

Figure 10. Sketch of the equation-free approach. Information from microscopic simulations is transferred to
the macroscopic description utilized for a continuation procedure. For the macroscopic description we compute
the macroscopic variables (m, ṁ) from the microscopic information (restriction R). In the reverse procedure
(lifting L), a microscopic state corresponding to a given value (m, ṁ) is computed. For the systems under
consideration, many possible microscopic configurations exist for a given macroscopic state, but those different
microscopic configurations all typically converge quickly to the same macroscopic behavior. This behavior is
checked in Figure 13. The lower part of the figure sketches the numerical continuation procedure of a stationary
state depending on the parameter μ employing a pseudoarclength predictor-corrector method: A secant prediction
using the points A and B results in the predicted point C. With C as the initialization for the corrector, the
point D is obtained.

4.2.1. Construction of a lifting operator. To be able to perform an equation-free con-
tinuation of the macroscopic variables, we require a lifting operator L which constructs, for
the chosen particle model, a microscopic system configuration close to the point under inves-
tigation on the low-dimensional manifold in state space. Being close to this low-dimensional
manifold, well characterized by the macroscopic variables (m, ṁ), results in a rapid conver-
gence back to this manifold. This ensures then that in very good approximation, the analysis
operates on the low-dimensional manifold of interest.

Obtaining a microscopic configuration close to a stationary point can be done by letting
the system settle to the ω-limit set of a stable stationary state. In order to prepare for the
lifting, a collection of numerical experiments with steady state situations is computed for
values of rv0 > 1. It is assumed that the unstable stationary states are microscopically similar
to the stable stationary states, and thus the same lifting L is used.

By investigating the particle distribution of the microscopic structure of the ω-limit set,
it is observed that to a very good approximation, the number of particles positioned in small
bins of size Δx = 0.2 depends linearly on the particles’ distance to the door. This is shown in
Figure 11. The slope and intercept describing the linear distribution are linearly dependent
on the relative velocity rv0 . Furthermore, it has been checked that those parameters are
independent of the door width w.

To construct the microscopic configuration of a stationary state for the lifting operator L,
particles are placed according to the distribution found. As explained and shown in FigureD
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Figure 11. In states near the equilibrium, the number of particles at distance |x| from the door decreases
linearly with |x|. For this linear function (the best line fit to the distribution of particle numbers within bins
of size Δx, bottom left) the slope and the intercept (bottom center and right) are found to depend nearly
monotonically on the parameter rv0 . In the lifting procedure, a microscopic configuration of a stationary state
is then constructed by placing particles according to such a distribution in the x-direction and equidistantly
distributed in the y-direction.

11, the slope and intercept of the distribution depend on the relative velocity rv0 but are in-
dependent from the door width w. In this construction, particles are equidistantly distributed
in each layer. The distance between the vertical layers is chosen to have the value 0.39, which
minimizes a microscopic distance measure γ between a simulated reference state S1 and this
lifted microscopic state S2 (see Figure 11). Setting the velocities of all particles to zero ensures
ṁ = 0.

Initializing a nonstationary state located in the neighborhood of a stationary state is
achieved by creating a small lane of particles having just passed the door. For a lane of
l particles, the distributions are used to construct two crowds with N/2 − l and N/2 + l
particles, where N is the total number of particles. The microscopic state with the lane is
then constructed by converting l particles on the relevant side to the opposite species. The
particles to be converted are selected as the particles in the l first layers in the center of the
corridor. This lifting is by nature restricted to discrete values ofm obtained by constructing all
possible lane lengths on each side. By giving all particles zero velocity, we restrict ourselves to
lifting to states having ṁ = 0. This simple choice of the lifting procedure is sufficient because
our object of interest is a closed curve in phase space which we investigate closer by Poincaré
sections, following the macroscopic dynamics for a full period; the result is independent of the
starting point on the curve.

The microscopic distance measure used in the construction of the lifting procedure is

(8) γ(S1, S2) = ‖d1 − d2‖,D
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CONTINUATION OF A HOPF POINT FOR A PARTICLE MODEL 1023

where the Euclidean norm is used for the difference between two discretized density profiles
d1 and d2, each profile being a vector of densities evaluated at discrete positions from a grid
size of 0.2 × 0.2 m2 over the corridor. See Figure 12 for a density profile. In order to obtain
a smooth density profile, the density d(x, y) at a specific grid point is computed by summing
up the contribution of each particle i, weighted by the κ(·) function introduced in (5). This
results in

d(x, y) =
∑
i

κ(xi)K
(√

(xi − x)2 + (yi − y)2
)
,

where the function K(·) weights points higher the closer they are to the grid point. K(·) is
chosen as the Epanechnikov kernel function [10] shown in Figure 12

K(u) =

{(
1− (uh)

2
)
, |uh | < 1,

0, |uh | ≥ 1.

The steepness of K(u) is controlled by the bandwidth parameter h.
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Figure 12. Two-dimensional density profile of a stationary state computed with a bandwidth h = 0.4 and
a grid size 0.2. The densities range from 0 to 13.4 particles/m2. The kernel density function K(u) is used to
obtain smooth estimates of the density of the particles.

As mentioned earlier, the usability of a lifting operator L depends on how close the state
of the microscopic system can be initialized to the low-dimensional manifold determining the
observed macroscopic behavior in the high-dimensional state space. If the lifted microscopic
state converges quickly to the low-dimensional manifold of interest, one can discard without
a big numerical error the first part of the trajectory before the relevant macroscopic behavior
is observed. Therefore we test this rapid convergence behavior for the states obtained by the
introduced lifting operator L. For this, the γ measure defined in (8) is used to assess how
quickly a lifted stationary state L0 converges towards the microscopic reference stationary
state S0 by examining how quickly the quantity γ(L0(t), S0) decreases to the noise level
compared to the other variables in phase space (Figure 13). Recall that by construction, the
macroscopic variable m is the mean of the density profile in the x-direction. Consequently,
computing m can be seen as a projection of the density profile obtained from a microscopic
state onto a point m, yielding a significant reduction of the number of variables. In addition
to the lifted states we also tested the rapid convergence of perturbed microscopic states in
general. In order to assess whether the (m, ṁ) variable is representative for the microscopic
system, this microscopic state is perturbed by a high-dimensional random vector with mean
0 and variance 0.1. The rapid convergence of the perturbed microscopic states to the low-
dimensional manifold in Figure 13 provides good justification for the choice of the macroscopic
variables and the equation-free approach. Furthermore, it can be observed that there is noD
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Figure 13. The lifting L is evaluated by measuring the distance γ of the resulting microscopic state L to
the microscopic reference state. Left: One reference simulation, compared to four others having their initial
conditions perturbed by randomly adjusting velocities and positions of each particle. Compared to the other time
scales in the system, a rapid convergence to the reference state is observed. The evolution from the lifted state
to the low-dimensional manifold is depicted as a dashed red line. Observe that there is no relevant change of
(m,ṁ) in the process of convergence. This is a further demonstration of the validity of the approach developed
here. Right: Plot of the distance γ over time showing the convergence of the perturbed simulations to the
low-dimensional manifold.

relevant change of (m, ṁ) in the convergence from the lifted state to the low-dimensional
manifold. This is a further demonstration of the validity of the approach developed here.

4.2.2. Equation-free investigation of the stationary state. To be able to investigate
the parameter-dependent qualitative changes of the macroscopic behavior of the considered
particle model, we first perform an equation-free continuation of the stationary state of (7),

(9) F (m, ṁ;w, rv0) = (0, 0),

with the macroscopic variable center of mass m, its derivative ṁ, and parameters door width
w and relative velocity rv0 defined in (4). As (7) is not explicitly known and the numerical
information about F obtained from the described equation-free approach is rather noisy, we
consider a state to be stationary if (9) is satisfied within a certain tolerance. Stationary
states in that respect are considered to be stable if they fulfill an adapted Lyapunov stability
criterion for a neighborhood U of fixed size defined by the noise level. This means that a
stationary state in the above sense is called stable if solution curves initialized in U remain
in U for all (computed) times. It should be remarked that the expressions about stationarity
and stability are used in the described sense also in the following without mentioning it each
time.

As the right-hand side F expresses the time derivative of the vector (m, ṁ) resulting in
the vector (ṁ, m̈), evaluation of F amounts to a differentiation of our macroscopic variable
m. As we explained after (6), we use central derivatives to obtain a more robust computation
of the derivative. Using the parameter Δt = 0.1 we observed for the numerically computed ṁ
a very smooth looking curve. The computation of the second time derivative to obtain m̈ was
also done with central derivatives and resulted, as expected, in a much noisier time series.D
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uk uk+1 uk+2

uk

g(u)

Figure 14. Sketch of the false position method to determine the zero of a function g(u). Each iteration is
obtained by connecting a line between a negative value point (uk, g(uk)) and a positive value point (uk, g(uk)),
where g(uk) < 0 and g(uk) > 0. The zero of this line is then used as one of the points in the next iteration,
together with the point of the previous iteration that has the opposite sign. This iteration is continued until
‖uk+1 − uk+1‖ is smaller than a predefined tolerance utol.

For the results presented in the following, even for this noisy second derivative obtained
by Δt = 0.1 our suggested algorithms gave consistent results, but we also checked other
parameters up to Δt = 1.5 naturally resulting in much smoother curves (since this effectively
averages over some time interval). These, however, gave rise to the same bifurcation diagrams
as those being presented in the following.

The equation-free continuation of the stationary point is based on a predictor-corrector
method with a constant predictor and a false position method as the corrector. A constant
predictor is used when incrementing the door width, meaning that the microscopic state for
the previous door width is used as the initialization for the next one. In order to correct,
we need to find, in a very robust manner (because of the noise in the system), the zero of a
function g(·), in this case being g(w) = F2 = m̈, as F1 = ṁ is zero by construction of the
lifting. To this end we use the false position method [40]. This method is extremely robust
and assumes very few properties of the function g. For the following we assume a single sign
change of g. Starting with two points u0 and u0 such that g(u0) < 0 and g(u0) > 0, the false
position method (see Figure 14) proceeds by producing a nested sequence of intervals [uk, uk]
that all contain a sign change of g, i.e., g(uk) < 0, g(uk) > 0 and ‖uk+1 − uk+1‖ < ‖uk − uk‖
for all k. The method is terminated when the interval size reaches a certain tolerance value
utol (in this case utol = 0.05 is chosen) or if the lifting resolution is insufficient to shrink the
interval further. At iteration number k, the value

(10) uk+1 =
g(uk)uk − g(uk)uk

g(uk)− g(uk)

is computed, being the root of the line through (uk, g(uk)) and (uk, g(uk)). If g(uk) and
g(uk+1) are equal, then uk+1 is set to uk+1 and uk+1 to uk; otherwise, uk+1 is set to uk and
uk+1 to uk+1. Iterating, the sequence uk will approach the zero or the sign change of g(u). To
obtain g(m) = m̈, F is measured 0.4s after the initialization, in order to ensure convergence
to the low-dimensional manifold while staying as close as possible to the initialization point.D
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Starting the continuation at door width w = 0.4 with a step size of Δw = 0.02, we observe
that the stationary point is located in a neighborhood of zero defined by the noise level which
does not vary with w; see Figure 15.

0.4 0.45 0.5 0.55 0.6
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

 

 

w

m

Figure 15. Continuation of the stationary point at rv0 = 1 with a constant predictor, using a false position
method as the corrector. The lifting L was done as described in section 4.2.1. The filled circles correspond to
stable stationary points and the open circles to unstable stationary points.

Stationarity is investigated for each door width w by checking whether (9) is satisfied
within a certain tolerance. Because of the lifting to states with ṁ = 0, it is sufficient to
investigate g(m) = m̈, measured 0.4s after the microscopic initialization in order to ensure
convergence to the low-dimensional manifold. The tolerance used is 0.05.

Along the continuation of the stationary point, stability is examined by the adapted
Lyapunov stability criterion described above. If the system state remains in the neighborhood
U of the investigated stationary point, this point is considered stable in the above sense.
The adapted Lyapunov stability is checked during a 50s long simulation. If the system state
remains, at all times, in the region U defined by the distance 0.05 for m and 0.1 for ṁ to the
stationary point of the macroscopic dynamics (7), then the system is considered stable.

If the above values are inappropriately chosen, wrong results could be obtained. Therefore,
our findings were verified by the examination of a representative selection of simulations. The
tolerance ranges were chosen finding estimates for the noise level from a number of simulations.

Combining the continuation of the stationary point together with the findings in section 4.1
gives us a Hopf point for rv0 = 1 which is used in the following section for the two-parameter
continuation.

4.3. Two-parameter continuation of the Hopf point. Having found a bifurcation point,
here a Hopf point, by continuation of a stationary state with respect to one parameter, a
natural question is how the location of this bifurcation depends on a second parameter. The
parameters used for the investigation of the qualitative changes of the macroscopic behavior
are the door width w and the relative velocity rv0 . As a result, one obtains regions in this
two-parameter plane with solutions of the same qualitative behavior. Here, a region of stable
fixed points is separated by a line of Hopf points from a region characterized by oscillatory
behaviors. In the equation-free framework, a two-parameter continuation is difficult, as all
the available macroscopic system information typically is very noisy. This has been madeD
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CONTINUATION OF A HOPF POINT FOR A PARTICLE MODEL 1027

possible only by the development and combination of robust numerical algorithms tailored to
the equation-free analysis.

Starting with the Hopf point, found by the fixed point continuation for rv0 = 1 described
in section 4.2.2, a two-parameter pseudoarclength continuation is then performed. Following
the procedure of a pseudoarclength continuation we apply a linear predictor using the secant
of the two last points and subsequently a false position method as the corrector, where we
search in a direction perpendicular to the predicted direction. This results in a line search in
a subspace of the two-dimensional plane (w, rv0) (Figure 16), locating the change of stability
of the stationary state. This line, having the direction vector v, can be parametrized as uv,
with parameter u ∈ R.

As explained in section 4.2.1, the lifted state is by construction located in a small neigh-
borhood of the stationary point. This ensures that F in (7) remains small, thus being in good
approximation of the stationarity condition, so that the line search can be reduced to the
detection of a stability change.

Because all derivative information is unknown or very noisy, the previously used false
position method [40] is also applied here to find the stability change by searching for a sign
change of a specifically constructed stability function g. This function g is defined as a sign
function indicating stability by the previously described adapted Lyapunov stability criterion
(see section 4.2.2). When the system is stable, the value −1 is assigned to the function g
(marked with blue in Figure 16), and 1 otherwise (marked in red). During a line search, a
Hopf point is detected if a sign change of g is detected between two points of distance less than
0.05 in the (w, rv0)-plane. This restriction to binary values is done to make the procedure
more robust.

We expect this line, obtained by the equation-free continuation, to represent Hopf bifur-
cation points. In principle, we cannot rule out that bifurcations of higher co-dimension occur
along this line, but the determined stability change ensures that we are always following a
bifurcation point.

To verify the numerical results obtained by the equation-free approach, direct simulations
are used for three values of rv0 , as seen in Figure 16(a). Furthermore, the macroscopic variable
m is plotted against w for the stationary states of those direct simulations (Figure 16(b)).
Each point is measured 0.4s after the initialization in order to ensure convergence to the
low-dimensional manifold.

The comparison of the period Tm of the macroscopic variable m to 〈Θ〉α̃, the mean of all
travel times of each of the two particle groups α̃, is also made for values rv0 > 1. Here, α̃
represents those particles of one species that completed a travel cycle in the observation time.
This travel time is measured only for cases where a stable orbit is present. The comparison is
shown in Figure 17. As result, the argument from section 3 and Figure 7 is extended to other
values of the relative velocity rv0 : There is no simple integer ratio of the two times, so it can
be assumed that the oscillatory behavior results from a self-organizing effect and is not due
to an influence from the periodic boundary conditions.

For larger relative velocities rv0 , the initial change of position of the bifurcation point to
smaller values of the door width w than for rv0 = 1 is due to the simple reason that the more
energetic particles are able to push through and initiate oscillations at a door width smaller
than when the two populations were of equal average energy.D
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Figure 16. (a) Bifurcation diagram obtained by an equation-free two-parameter continuation of a Hopf
bifurcation point. The curve of Hopf bifurcation points separates regions of two different qualitative behaviors
in the macroscopic properties of the particle system. The thin dashed lines (see also the magnified area) show
the search directions for the false position method as the corrector. This direction is chosen perpendicular to
the predicted direction, in order to obtain a pseudoarclength method. The points marked are the predicted ones
and those used as intermediate points for the corrector which were checked for their stability properties and
colored accordingly. As a result one obtains on the left side of the line of Hopf bifurcation points stable fixed
points (in blue) and on the right unstable fixed points (in red). On the right of this separating line of Hopf
points we have an oscillatory region where the existence of stable limit cycles was tested by Poincaré sections as
described in section 4.1. The three horizontal dotted lines show stability results of direct simulations to verify
the equation-free continuation. (b) For the three values of rv0 tested with the direct simulations of (a), the
macroscopic variable m is plotted against w for the stationary states. Filled circles represent stable states and
open circles unstable states.

As the velocity ratio rv0 increases further, the periodic orbit shifts in m, resulting in
periodic bursts of one species only for values of w close to the bifurcation point. The different
onset of oscillations for each species periodically passing the door is seen in Figure 17.

5. Conclusions and outlook. The methods introduced in the present paper have per-
mitted us to perform equation-free numerical bifurcation analysis for a particle model and
could help the future development of more rigorous methods to optimize building geometry
for better crowd control.

We have described a class of particle systems with an intermediate number of particles.
The particles interact mutually and with the geometry of the surroundings. We focus on a
situation where two species of particles compete for passage through a doorway, aiming in
opposite directions. We have studied the time evolution of macroscopic, or coarse-grained,
variables (m, ṁ) as the system undergoes a transition from the doorway being effectively
blocking, to the doorway being large enough to permit an oscillating flux, and eventually
a transition to a nearly free-flow regime. The aim has been to examine and to develop
numerically robust methods for this, as well as to model pedestrian crowds. This work extends
previous modeling efforts (see, e.g., [21]) by employing more realistic finite range interactionsD
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Figure 17. As in Figure 7, the period Tm (lower curve in blue) of the macroscopic variable m is compared
to 〈Θ〉α̃, the mean of all travel times of each of the two particle groups α̃ (two upper curves in red). The two
graphs show for different relative velocities rv0 that there is no simple integer ratio of the two and the ratio
changes continuously through a range of values, so that one can assume that the oscillatory behavior results
from a self-organizing effect and is not due to an influence from the periodic boundary conditions. The curves
start after the Hopf bifurcation point or after the respective crowd starts traveling. Left: rv0 = 1.1. Right:
relative velocity rv0 = 1.2. The difference in the onset of the two red lines illustrates a region in which only
species of one kind are periodically bursting through.

among the particles and adds an equation-free numerical analysis of these systems to the
literature.

The principal findings are the following: (1) We can reproduce and quantify previous re-
sults on simulations of pedestrian behavior. (2) We can classify regions in a two-dimensional
phase space of macroscopic variables and characterize the transition between them as a super-
critical Hopf bifurcation. (3) We can continue the Hopf bifurcation point in a two-parameter
space for the door width and the relative velocity of the two pedestrian species as parameters.
(4) In addition to this, we demonstrate a two-parameter continuation in an equation-free set-
ting which gives rise to a number of technical challenges. To achieve this, we employ a novel
combination of a number of robust numerical algorithms.

The nontrivial challenges which were encountered are the following: By their nature, finite
size particle systems behave noisily. As a consequence, the equation-free procedure, going
back and forth between high-dimensional and low-dimensional descriptions, is difficult, and
the extraction of meaningful information requires careful and robust numerical algorithms.
In addition to this, the finite size models have boundary conditions which may interfere with
the observed macroscopic phenomena, and care must be taken to avoid or control this, in
particular when we make one species more agile, i.e., change the relative velocity of the two
pedestrian species.

The particle models we have investigated for describing pedestrian flow through a narrow
doorway have similarities with fluid dynamics phenomena reported in [28], [29] of oscillations
in the flow of water forced vertically by gravity through a vertical bottleneck. The analogy
arises if one crowd is interpreted as the water in the bottle and the other crowd as the inflowing
air. Consistent with the phenomena we observe in the present paper, these investigators found
that by gradually increasing the diameter of the opening for an upside-down bottle, states ofD
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1030 O. CORRADI, P. G. HJORTH, AND J. STARKE

no flow, oscillatory flow, and counterflow were observed. Observations of the fluid behavior
for more complicated situations like the shape and geometry of the area which is met by the
outflowing fluid [37], as well as the coupling of several fluid systems of this type [30], may in
turn inspire future work for pedestrian flows.

For discrete particle models, an obvious goal for further investigations is to understand
and possibly optimize emergency exits and other crowd constraining constructs, like subway
stations or stadium entries and exits. This important topic is also addressed in [18].

Quantitative experiments with actual pedestrians are not abundant in the literature (see,
however, the recent work [36] and the references therein), but nevertheless they are very much
needed in order to tune and validate the interacting particle model of crowds. In particular, the
onset of lane formation for certain densities and certain ratios of crowd agility represents both
an important qualitative change in the pedestrian flow and a challenge to further modeling.

For very high values of rv0 , situations where there is a steady flow of species through the
door, the possibility of another bifurcation changing from the oscillatory to a steady state is
opened.

Even further opening of the doorway, exceeding the range of the door width investigated
in the present paper, makes the macroscopic behaviors approach those corresponding to no
doorway. A typical macroscopic pattern is seen in Figure 18. The two counterstreaming
populations segregate into “lanes” containing a few particles in the cross-corridor direction
and many particles along the corridor. To be able to distinguish situations with multiple lanes
from a single lane requires additional macroscopic variables, which implies further challenges
for the numerical analysis. The analysis of this regime could be of interest for further research.

−8 −6 −4 −2 0 2 4 6 8

−2

−1

0

1

2

Figure 18. Structural change at very large door widths, showing formation of lanes. The radii of the circles
are proportional to pedestrian velocity.
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