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Summary

The refrigeration system in a supermarket is an important part of the business
for the supermarkets, both in terms of the possibility it provides and because of
the associated cost of operating the system. It provides the possibility of selling
chilled and frozen food but on the other hand the operation of the refrigeration
system is associated with a signi�cant cost. Cost e�cient operation of the
refrigeration system is therefore very important for the supermarkets. To ensure
that the systems are operated cost e�cient a performance assessment scheme is
required. In addition, there exists a need for algorithms that ensures or improves
the performance of the system.

A supermarket refrigeration system is usually a complex and distributed con-
trol system, and it can therefore be di�cult to assess the performance without
a formal method. The main interest for a supermarket, with respect to the re-
frigeration system, is to optimise the total cost of ownership, (TCO). However,
directly measuring TCO provides some challenges. It can therefore be bene�cial
to divide TCO into performance criteria, which can be quanti�ed and measured.
For supermarket refrigeration systems the performance criteria can be divided
into three categories: quality-, energy- and reliability-related criteria. Hence,
it is important to operate the refrigeration system such that it ensures good
quality of the stored goods as energy e�cient as possible without compromising
the reliability of the system.

A performance function that quanti�es and measure the criteria has been
developed in this project. The quality is measured by the control errors in the
system because there is a connection between the quality of the stored goods and
the ability of the refrigeration system to provide the required temperature. A
deviation from the controller set-point corresponds to a temperature deviation,
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which will eventually harm the stored goods. The energy e�ciency is measured
by the coe�cient of performance, COP , which basically is the delivered cooling
power divided by the consumed electrical power of the system. The reliability
criteria is measure by the switch frequency of the compressors in the refrigeration
system. The reason is that excessive compressor switching will wear down the
compressors too fast and thereby decrease the reliability of the system due to a
higher demand for maintenance. The proposed performance function provides
a method for assessing the operational performance at a plan-wide level and is
therefore providing a tool for improving the plant-wide performance.

The performance function has been used in di�erent setups to improve the
performance of the refrigeration system. Static and the dynamic performance
of the refrigeration system has been addressed in the project. The proposed
methods for improvement relies on a minimum of detailed knowledge about the
refrigeration system. In addition, since a refrigeration system often operates in
steady state an active system monitoring setup has been proposed, to enable
improvement of the dynamic performance.



Dansk Resumé

Kølesystemet i et supermarked er en vigtig del af forretningen for supermarkedet,
både på grund af de muligheden systemet tilføjer, og de omkostninger der er
forbundet med driften af systemet. Kølesystemet giver mulighed for at sælge
både køle og fryse varer, men på den anden side er driften af anlægget forbun-
dent med en betydelig omkostning. Omkostningse�ektiv drift af køleanlægget er
derfor meget vigtig for supermarkederne. For at kunne sikre en omkostningsef-
fektiv drift anlægget, er der derfor behov for en evalueringsmetode. Ud over
det er der behov for algoritmer og metoder til at sikre og forbedre driften af
systemet.

Et køleanlæg i et supermarked er normalt et komplekst og distribueret reg-
uleringssystem, og det kan derfor være vanskeligt at vurdere den samlede drift-
skvalitet uden en formel metode. Hovedinteressen for et supermarked, med
hensyn til kølesystem, er at optimere de samlede ejeromkostninger for systemet.
En direkte måling af de samlede ejeromkostninger er for forbundet med en del
udfordringer. Det kan derfor være en fordel at opdele de samlede ejeromkost-
ninger i driftskriterier som kan kvanti�ceres og måles. Disse driftskriterier kan
for et supermarked kølesystem opdeles i tre kategorier: Kvalitets-, energi- og
pålidelighedsrelaterede kriterier. Med andre ord er det altså vigtig at sikre føde-
varekvaliteten så energie�ektivt som muligt uden at kompromittere systemets
pålidelighed.

I projektet er der udviklet en driftskvalitetsfunktion, som kan kvanti�cere og
måle kriterierne. Reguleringsfejlene i systemet er brugt til at måle fødevarek-
valiteten, fordi der en sammenhæng mellem reguleringsfejlene og den fødevarek-
valitet som kølesystemet kan levere. Hvis regulatorerne afviger fra referencen
svarer det til at temperaturen afviger fra det ønskede, og det vil i sidste ende
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forringe fødevarekvaliteten betydeligt. Energie�ektiviteten er målt ved at bruge
coe�cient of performance, COP , som basalt set er de�neret som den leverede
kølee�ekt divideret med den elektriske e�ekt som systemet har optaget. Sys-
temets pålidelighed er målt ved skifte-frekvensen for kompressorerne i anlægget.
Begrundelse er at overdrevet skift af kompressorerne tilstand mellem tændt og
slukke, medfører forhøjet slid og vil derfor nedsætte systemets pålidelighed på
grund af forhøjet behov for vedligehold. Driftskvalitetsfunktion kan bruges som
en metode til at evaluere driftskvaliteten på system niveau, og kan derfor bruges
som værktøj til at forbedre driftskvaliteten og dermed minimere de samlede
ejeromkostninger.

Driftskvalitetsfunktionen har været bruget i forskellige sammenhæng til at
forbedre driftskvaliteten af køleanlægget. Både statisk og dynamisk driftskvalitet
er blevet behandlet i projektet. Metoderne der er blevet foreslået til forbedring
af driftskvaliteten afhænger kun af et minimum af detaljeret viden om kølesys-
temet. For at kunne forbedre den dynamiske driftskvalitet er der blevet fores-
lået en aktiv systemovervågningstilgang, da et kølesystem for det meste af tiden
be�nder sig i ligevægtstilstand.



Preface

This thesis was prepared at DTU Electrical Engineering, Automation and Con-
trol Group, at the Technical University of Denmark as a partial ful�llment of
the requirements for acquiring the Ph.D. degree in engineering. The project
was funded by Danfoss A/S, Refrigeration & Air Conditioning, The Agency for
Science Technology and Innovation and The Technical University of Denmark.

The thesis deals with performance assessment and operational optimisation
of supermarket refrigeration systems. The main focus is to provide a plant-wide
performance assessment technique for a refrigeration system and using it for
optimisation of the operation of the plant.

The project was supervised by Associated Professor Henrik Niemann, DTU
Electrical Engineering and Roozbeh Izadi-Zamanabadi, Danfoss A/S, Refrigera-
tion & Air Conditioning. In addition, the project has been co-supervised by Pro-
fessor Mogens Blanke, DTU Electrical Engineering and Morten Juel Skovrup,
IPU, has been assigned to the project as third-party supervisor. Part of the re-
search was conducted at Laboratoire d'Automatique, Université Libre de Brux-
elles with Professor Michel Kinnaert acting as supervisor.

The thesis consist of a summary report an a collection of six papers written
in the period 2008-2012

Kongens Lyngby, June 2012
Torben Green



vi



Papers included in the

thesis

[A] Torben Green, Roozbeh Izadi-Zamanabadi and Henrik Niemann. On the
choice of performance assessment criteria and their impact on the overall
system performance � The refrigeration system case study. Published
in Proceedings of the Conference on Control and Fault-Tolerant Systems
(SysTol'10), pp. 624 − 629, Nice 2010. IEEE. Digital Object Identi�er
(doi): 10.1109/SYSTOL.2010.5676067

[B] Torben Green, Henrik Niemann and Roozbeh Izadi-Zamanabadi. Per-
formance improvement clari�cation for refrigeration system using active
system monitoring. Published in Proceedings of the 18th IFAC World
Congress pp. 2845− 2850, Milan 2011. Available at ifac-paperonline.net

[C] Torben Green, Roozbeh Izadi-Zamanabadi and Henrik Niemann. Design
of Excitation Signal for Active System Monitoring in a Performance As-
sessment Setup. Published in Proceedings of the 9th European Workshop
on Advanced Control and Diagnosis, Budapest 2011.

[D] Torben Green, Michel Kinnart, Roozbeh Razavi-Far, Roozbeh Izadi-Zamanabadi
and Henrik Niemann. Optimising performance in steady state for a su-
permarket refrigeration system. Accepted for presentation at the 20th
Mediterranean Conference on Control and Automation, Barcelona 2012

[E] Torben Green, Roozbeh Razavi-Far, Roozbeh Izadi-Zamanabadi and Hen-
rik Niemann. Plant-wide performance optimisation � The refrigeration
system case. Accepted for presentation at the 2012 IEEE Multi-Conference
on Systems and Control, Dubrovnik 2012.

http://www.ifac-papersonline.net/Detailed/48415.html


viii

[F] Torben Green, Roozbeh Izadi-Zamanabadi, Roozbeh Razavi-Far and Hen-
rik Niemann. Plant-wide Dynamic and Static Optimisation of Supermar-
ket Refrigeration Systems, Submitted to the International Journal of Re-
frigeration



Acknowledgements

In the beginning of 2008 I was working as an engineer for Danfoss in a research
and development department when I was presented with the great opportunity
of pursuing an industrial Ph.D. degree (ErhvervsPhD). I accepted the challenge
that I was faced with and began the pursuit of the Ph.D. degree. This pursuit
has been made possible by a number of people to whom I owe thanks.

I consider myself proud and lucky to have been presented the challenge by my
boss Peter Eriksen and my former colleague at Danfoss Dr. Claus Thybo.
The process of formulating the project idea was made signi�cantly easier by the
insightful contributions from Dr. Lars Finn Sloth Larsen.

The project has been supervised by four competent pro�les that throughout
the project has pushed me further than I ever expected. Working together with
my academic mentor Associated Professor Henrik Niemann has been very
inspiring and productive. Precise and valuable criticism has been provided by
my co-supervisor ProfessorMogens Blanke. Dr.Morten Juel Skovrup has
with his insightful contribution helped to widened my refrigeration knowledge.
My company supervisor Dr. Roozbeh Izadi-Zamanabadi has skillfully taught
me how to work in the �eld between academia and industry and provided me
with guidance and ideas. To all four: Thanks for the support.

I would also sincerely like to thank Professor Michel Kinnaert for my
short, but nevertheless very productive and e�ective research visit at Laboratoire
d'Automatique, Université Libre de Bruxelles.

My Family has throughout these years provided me with continues support,



x

and showed me that they believed in me. For that I would like to gratefully
thank them all.

Last but de�nitely not least important, I would like to express a heartfelt
thanks to my wife, Lotte Ellemann Green, for her immense and persistent
support, which has provided me with the strength to pursue the goal.



xi

[This page intentionally left blank]



xii



Contents

Summary i

Dansk Resumé iii

Preface v

Papers included in the thesis vii

Acknowledgements ix

1 Introduction 1

1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 The Supermarket Refrigeration System 9

2.1 System description . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Simulation model . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Research Contributions 15

3.1 Performance assessment . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.1 Measuring of performance criteria . . . . . . . . . . . . . 17
3.1.2 Performance assessment of a refrigeration systems . . . . 17
3.1.3 The performance function . . . . . . . . . . . . . . . . . . 18

3.2 Performance improvement . . . . . . . . . . . . . . . . . . . . . . 22
3.2.1 Dynamic performance improvement . . . . . . . . . . . . 23
3.2.2 Improving Steady State Performance . . . . . . . . . . . . 34



xiv CONTENTS

4 Conclusion 39

4.1 Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A On the choice of performance assessment criteria and their im-

pact on the overall system performance � The refrigeration sys-

tem case study 43

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.2 Performance assessment in general . . . . . . . . . . . . . . . . . 45

A.2.1 Performance measures . . . . . . . . . . . . . . . . . . . . 45
A.2.2 Performance assessment within refrigeration systems . . . 46

A.3 Controller structure for a Supermarket refrigeration system . . . 47
A.3.1 Modelling the refrigeration system . . . . . . . . . . . . . 47
A.3.2 Controller setup . . . . . . . . . . . . . . . . . . . . . . . 48

A.4 Compressor capacity gap problem . . . . . . . . . . . . . . . . . . 49
A.5 Performance indicators . . . . . . . . . . . . . . . . . . . . . . . . 50
A.6 Scenarios for the compressor capacity gap problem . . . . . . . . 52

A.6.1 Scenario one . . . . . . . . . . . . . . . . . . . . . . . . . 52
A.6.2 Scenario two . . . . . . . . . . . . . . . . . . . . . . . . . 54
A.6.3 Scenario three . . . . . . . . . . . . . . . . . . . . . . . . 55

A.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

B Performance improvement clari�cation for refrigeration system

using active system monitoring 59

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
B.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . 61
B.3 New Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

B.3.1 Performance indicators . . . . . . . . . . . . . . . . . . . . 62
B.3.2 Active performance assessment . . . . . . . . . . . . . . . 64
B.3.3 Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

B.4 Supermarket refrigeration setup . . . . . . . . . . . . . . . . . . . 66
B.5 Illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . 67
B.6 Test scenarios for the active performance assessment . . . . . . . 70
B.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

C Design of Excitation Signal for Active System Monitoring in a

Performance Assessment Setup 75

C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
C.2 New Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
C.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 78
C.4 Design considerations . . . . . . . . . . . . . . . . . . . . . . . . 80
C.5 Excitation signal design approach . . . . . . . . . . . . . . . . . . 80
C.6 Test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
C.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



CONTENTS xv

D Optimising performance in steady state for a supermarket re-

frigeration system 89

D.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
D.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . 91

D.2.1 Performance function . . . . . . . . . . . . . . . . . . . . 93
D.2.2 Normalisation . . . . . . . . . . . . . . . . . . . . . . . . . 93
D.2.3 Optimisation formulation . . . . . . . . . . . . . . . . . . 95

D.3 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
D.3.1 Modelling the refrigeration system . . . . . . . . . . . . . 96
D.3.2 Controller setup . . . . . . . . . . . . . . . . . . . . . . . 98

D.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . 98
D.5 Set-point optimisation . . . . . . . . . . . . . . . . . . . . . . . . 99

D.5.1 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . 102
D.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

E Plant-wide performance optimisation � The refrigeration sys-

tem case 105

E.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
E.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . 107
E.3 Design of the excitation signals . . . . . . . . . . . . . . . . . . . 111

E.3.1 Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
E.3.2 Magnitude . . . . . . . . . . . . . . . . . . . . . . . . . . 112

E.4 Invasive Weed Optimsation (IWO) . . . . . . . . . . . . . . . . . 113
E.4.1 IWO Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 113

E.5 Simulation setup and Results . . . . . . . . . . . . . . . . . . . . 115
E.5.1 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . 115
E.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

E.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

F Plant-wide Dynamic and Static Optimisation of Supermarket

Refrigeration Systems 121

F.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
F.2 System description . . . . . . . . . . . . . . . . . . . . . . . . . . 125

F.2.1 Model of the simpli�ed refrigeration system . . . . . . . . 125
F.2.2 Controller structure . . . . . . . . . . . . . . . . . . . . . 126
F.2.3 Performance function . . . . . . . . . . . . . . . . . . . . 127
F.2.4 Normalisation . . . . . . . . . . . . . . . . . . . . . . . . . 128

F.3 Optimisation formulation . . . . . . . . . . . . . . . . . . . . . . 129
F.4 Static performance Optimisation . . . . . . . . . . . . . . . . . . 130

F.4.1 Simulation setup and Results . . . . . . . . . . . . . . . . 131
F.4.2 Set-point optimisation . . . . . . . . . . . . . . . . . . . . 134
F.4.3 Choosing strategy of the optimal set-point . . . . . . . . . 135
F.4.4 Generalisation of the method . . . . . . . . . . . . . . . . 136

F.5 Dynamic Performance Optimisation . . . . . . . . . . . . . . . . 137



xvi CONTENTS

F.5.1 Design of Excitation Signal . . . . . . . . . . . . . . . . . 138
F.5.2 Invasive Weed Optimisation (IWO) . . . . . . . . . . . . . 141
F.5.3 Simulation setup and Results . . . . . . . . . . . . . . . . 142
F.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

F.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145



Chapter 1

Introduction

This thesis is written as a summary report and a collection of papers. Each of the
papers are placed in the back of the thesis. They have all been reformatted and
represents individual pieces of work. The summary part of the thesis is divided
into 4 chapters. This chapter gives a basic introduction to the project and
chapter 2 provides a description of the main application used in the project, i.e.
the supermarket refrigeration system. In chapter 3 a description of the research
contributions and a concentrate of the results of the project is presented. In
addition the chapter gives an presentation of the state of the art within the
di�erent research areas.

This chapter is organised as follows. The problem formulation is presented
in 1.1 and is used an guideline throughout the chapter. In section 1.2 the
background for the project is presented and section 1.3 provides a description
of the motivation for the project.

1.1 Problem Formulation

The overall goal can be formulates as trying to �nd the answer to the following
question: How can su�cient refrigeration be provided with as low cost as pos-
sible? Pursuing an answer for that question provides many di�erent solution
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paths. The general solution path that has been chosen in this research project
is to provide more cost optimal performance of the refrigeration plant by pro-
viding better control. However, to pursue that solution path the problem has
been reduced to answering the following thee governing questions:

1. Is is possible to establish performance measures for control systems of a
supermarket refrigeration system?

2. Furthermore, is it possible to develop methods or algorithms to monitor the
systems and analyse its performance by means of the established measures?

3. In addition is it possible to develop methods that can accommodate for a
detected performance degradation of the system?

Question 3 is interpreted in the following two ways. The �rst interpretation
is that the methods should detect a performance degradation and then accom-
modate for that degradation. The second interpretation is that the system is
assumed not to be operating optimal and the method should therefore try to
improve the performance. The second interpretation has been the predominant
one use in the project.

Fig. 1.1 illustrates the general solution path that has been pursued in an
e�ort to provide an answer to the governing questions. The operational perfor-

Figure 1.1: Block diagram of system-wide performance assessment and optimi-
sation
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mance, J , of the entire plant is provided by the performance assesment block,
based on the control error, e, the control output, u, the output from the sub-
system, y, and the contributions from the other subsystem in the entire system,
Γ. The task of the optimiser is then to improve the performance, which can
be done by manipulating the reference signal, y

′

ref or by applying an excitation
signal, η, and adjusting the controller parameters, φ.

1.2 Background

Demand for energy e�ciency and lower cost level has been some of the reasons
for the rising attention that optimal operation of the refrigeration systems in
supermarkets has been given over the past years. The refrigeration system has
a lot of costs associated. They are the initial invenestment and the costs of op-
eration. The operational costs for refrigeration plants are, maintenance, energy
and additional costs. Additional costs are for example the cost of damaged food
and reduces sales due to maintenance. The energy cost of a typical refrigeration
plant in a supermarket accounts for 40% to 60% of the total electrical energy
consumption in a supermarket, see [10]. Thus, the incentive to have a refriger-
ation plant that is energy e�cient, reliable and does not require maintenance
often, exists. This is also the reason why it is important to provide answer to
the governing questions 1 and 2.

Questions 1 and 2 of the governing questions for the project, might seem
trivial to answer, however they pose some problems in real life applications
which will be explained hereafter. Plant-wide performance assessment for any
industrial complex system requires that an appropriate set of performance crite-
ria has been de�ned. For a refrigeration system in a supermarket these criteria
include the food quality of the stored goods, and the ability to suppress external
disturbances, the energy e�ciency and the reliability of the plant. The main
objective of a supermarket refrigeration plant including the control system, is
of course to ensure that the goods are stored at the correct temperature, and
at the same time ensuring cost optimal operation of the plant. This can only
be achieved if the refrigeration system including the control system is designed
properly. The design of a refrigeration system can be split into two main tasks,
which are: designing the layout of the refrigeration system and the second task
is to design the controller structure and the control system. As it can be seen on
Fig. 1.2 a refrigeration system for a supermarket is equipped with many com-
ponents that require control. In addition all of these components are spatially
distributed across the supermarket which calls for a decentralised controller
setup with many di�erent control loops. Thus, the evaluation of the plant wide
performance is not a trivial task. The distributed control setup provides an
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Figure 1.2: Picture of a supermarket refrigeration system including the con-
troller hardware

immediate challenge with respect to developing the methods and algorithms to
measure and evaluate the performance of the entire refrigeration plant.

The performance assessment problem is of high interest because it is neces-
sary to be able to de�ne and measure the performance when the overall objective
of the control system is to provide optimal performance of the operation of the
plant. Hence, minimising total cost of ownership requires an ability to assess
the dynamic and static performance of the plant on di�erent time scales. There-
fore, answers to question 1 and 2 is required to be able to provide solutions that
enable a positive response to question 3 from the hypothesis.

Providing a positive response to question 3 from the hypothesis is another
important reason for initiating the research project. Moreover, optimising the
performance of the operation is not a trivial task. For example, optimising
the performance by manually adjusting the parameters in all the controllers to
obtain the optimal performance is almost an impossible task. Hence, tuning the
control system to provide optimal performance is almost never achieved, simply
because the task is too overwhelming to complete manually. Thus, enabling the
supermarkets to achieve optimal operation of their refrigeration plants has also
been an important reason for initiating the research project.

In the design process for the controller products, Danfoss has given extra
attention to ease of use of the product. Thus, the idea of developing algorithms
that can assist the supermarkets to achieve optimal operation of the refrigeration
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system has also been a driving factor for the research project.

1.3 Motivation

The interest in the performance assessment problem, originates from the strate-
gic aim of Danfoss to provide, the best energy e�cient and most sustainable
solutions, to all the di�erent markets that Danfoss operates within. This can
basically be interpreted as a driving factor for providing positive responses to
questions 1 through 3 in the hypothesis.

Refrigeration is one of the business areas in which Danfoss aims to ful�ll its
strategic aim, especially within the food retail segment. The main products that
Danfoss produces for the refrigeration industry within the food retail segment
are controllers. Thus, the aim is to provide the market with controllers that
will ensure optimal operation for a given refrigeration plant. In the past local
optimization of individual subsystems was in focus. However, since the control
system consists of many di�erent subsystems, plant-wide optimisation is prefer-
able. Optimisation of the plant-wide performance is of course only possible,
with a prede�ned notion of optimal operation at a plant-wide level.

Even tough total cost of ownership is the main optimisation target, measur-
ing total cost of ownership in a suitable fashion can be infeasible. To provide
a feasible measurement, that is suitable for optimising the control system, phe-
nomenon on di�erent time scales has to be taken into account. Food quality,
component life time and maintenance all impact the total cost of ownership,
nevertheless they are di�cult to evaluate. Thus, besides a de�nition of the
plant-wide performance a su�cient measurement of such a performance is re-
quired. Moreover, even with a de�nition and a measurement of optimal opera-
tion, setting up the control system to ensure plant-wide optimal operation is not
trivial. Thus, the project has been motivated by the fact that such challenge
exists. The challenge is to assess the performance of the refrigeration plant and
secondly how to ensure that the operation is optimal under all conditions.

Providing a positive response to the third governing question poses some
problems. Designing control solutions that provides optimal and robust opera-
tion requires knowledge about the underlying system. Moreover, having deeper
knowledge about individual subsystems enables design of dedicated controllers,
which will provide the best performance with respect to both operational opti-
mality and robustness. However, dedicated controller design will lead to lack of
generality of the control solution. Thus, if general usability of the control solu-
tion is preferable the design solution cannot depend on system speci�c knowl-
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edge. This is exactly the situation when designing control solutions for the
refrigeration systems in the food retail segment. The problem of designing con-
trol solutions that is optimal with respect to operational performance is di�cult
due to the information that the design is allowed to depend on.

In the food retail segment Danfoss only provides the components for the con-
trol system. The design of the control system and of the physical layout of the
refrigeration system is done by contractors, which are hired by the supermarket.
The setup of the control system is not done by control engineers or by Danfoss
personnel it is done by the contractor who is commissioning the plant. There-
fore, any design of performance assessment and optimisation cannot depend on
detailed knowledge about the refrigeration plant. Furthermore, it is the aim of
Danfoss to provide controllers that are easy to use and thereby decreases the
commissioning cost of the control system. This should, of course be taken into
account when designing the algorithms for performance assessment.

In an e�ort to provide the reader with an example of the performance issues
appearing in a real supermarket system a short description of the capacity gap
problem is presented here. For details see the paper A. The capacity gap problem
arises because the compressors are discretely controlled and therefore only have
the possibility of being switched on or o�. Thus, the switching behaviour of the
compressor rack is dependent on the operation point since some operation points
will required less switching than others. An example of the system swiching
operation point can be seen on Fig. 1.3. To improve the performance of the

Figure 1.3: Pressure and running compressor capacity, including the transition
in operation point due to the closing of the supermarket
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refrigeration plant phenomenon like switching should be taken into account when
evaluating the performance.
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Chapter 2

The Supermarket

Refrigeration System

The supermarket refrigeration system is chosen as case study for a number of rea-
sons. The main reason is that controls solutions for the food retail segment and
especially supermarkets are an important business area for Danfoss. Secondly,
the application poses interesting problems with respect to performance assess-
ment and optimisation of the operational performance. The chapter is divided
into two sections where 2.1 describes the supermarket refrigeration systems in
an e�ort to provide the reader with insight about the application targeted in
this thesis. Section 2.2 provides a description of the simulation model that has
been used to test the solution ideas on.

2.1 System description

The supermarket refrigeration system is based on the vapour compression cycle
which utilises the thermodynamic properties of a certain refrigerant to absorb
heat by evaporating at one pressure level and then, after compressing the re-
frigerant gas, rejecting the heat to the surroundings while condensing the gas.
Basically the process requires four main components which are: an evaporator
and a condenser, an expansion device and a compressor. These component are
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all used in the supermarket system as well. However, there is not only one of
each to those components.

Fig. 2.1 shows a schematic drawing of a typical implementation of a refrig-
eration system for a supermarket. All the previously mentioned components
are used, however instead of one evaporator there is a number of evaporators
spread across di�erent display cases. In addition, the system is able to provide
refrigeration at two di�erent temperature levels because of the use of two dif-
ferent compressor racks. That is, one compressor rack for the chilled display
cases and another for the frozen display cases. The compressor racks are both
controlled to maintain a certain pressure on the suction side of the compressors,
which is corresponding to the desired evaporation temperature for either the
frozen or the chilled display cases. The evaporation temperature determines

Figure 2.1: Schematic drawing of a supermarket refrigeration system with dis-
play cases for both chilled and frozen food

the temperatures that can be achieved within the corresponding display cases.
The air temperature within the di�erent display cases are controlled by a lo-
cal temperature controller. The air temperature is controlled by manipulating
the inlet valve and thereby the refrigerant �ow through the evaporator. If the
temperature is too high the controller will increase the opening of the valve and
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thereby increase the refrigerant �ow through the evaporator. This will lead to
an increase in heat transfer from the air to the refrigerant and thereby also a
decrease in the temperature of the air.

The number of compressors in each of the racks and the number of display
cases shown in Fig. 2.1 are chosen to show that there are more than one com-
pressor and one display case. For example in a real life supermarket system the
number of display cases is usually higher than three. The size of the system is
of course dependent on the size of the supermarket.

2.2 Simulation model

The model that is presented in this section has been used throughout the project.
The model is a modi�ed version of the model presented in the paper [28]. The
model illustrates a simpli�ed version of a supermarket refrigeration system, more
detailed modelling techniques for refrigeration systems can be found in [18]. The
system includes a compressor rack, a condenser unit, two display cases including
expansion valves and a suction manifold. Even though the model only portrays
a simpli�ed system, the relevant performance related phenomenon are captured
by the model. Fig. 2.2 show a schematic of what is included in the model.
The model consists of two chilled display cases, which both are temperature
controlled using a PI controller to continuously manipulate the inlet valve to the
evaporator, and thereby controlling the refrigerant �ow through the evaporator.
The compressor rack consists of two compressors and the individual sizes of the
compressors are chosen based on a compressor rack from a real supermarket.

The air temperature within a display case is described by (2.1) and the load
experienced as an heat transfer from the surrounding air of the display case is
described by (2.2). The temperature of the stored goods is described by (2.3)
and the temperature of the evaporator wall is described by (2.4). The mass of
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Figure 2.2: Schematic of the modelled supermarket system

refrigerant within the evaporator in a display case is described by (2.5).

dTair,i

dt
=
Q̇goods−air,i(·) + Q̇load,i(·)− Q̇air−wall,i(·)

MairCp,air,i
(2.1)

Q̇load,i = UAamb · (Tamb − Tair,i) (2.2)

dTgoods,i

dt
= − Q̇goods−air,i(·)

Mgoods,i Cp,goods,i
(2.3)

dTwall,i

dt
=
Q̇air−wall,i(·)− Q̇e,i(·)

Mwall,iCp,wall,i
(2.4)

dMr,i

dt
= ODi · α ·

√
Pc − Psuc −

Q̇e
∆hlg

(2.5)

The notation in (2.1) through (2.5) will be described hereafter. The air tem-
perature of the ith display case is denoted by Tair,i and the heat transfer rate
from the goods to the air is denoted by is denoted by Q̇goods−air,i and the heat
transfer from the air inside the display case to the evaporator wall is denoted by
Q̇air−wall,i. Detailed description of the terms, Q̇goods−air,i and Q̇air−wall,i can be
found in [28], which are all refrigerant dependent functions and other variable,
hence the notation (·). The heat load experienced by the display case based on
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heat transfer to the surrounding air is denoted by Q̇load,i. The temperatures
of the stored goods and the evaporator wall is denoted by Tgoods,i and Twall,i,
respectively. Mass and heat capacity is denoted by M and Cp and the corre-
sponding medium is then denoted by the subscript. The opening degree of the
ith inlet valve is denoted by ODi and α denotes the cross sectional area of the
valve. The suction pressure and the condensing pressure is denoted by Psuc and
Pc, respectively. The heat transfer rate caused by evaporation is denoted by
Q̇e. The enthalpy di�erence across the two-phase region of the evaporator, i.e.
where the refrigeration is a mixture of liquid in gas, is denoted by ∆hlg. To
simplify the model it is assumed that the majority of the heat transfer is done
in the two phase region of the evaporator and the heat transfer in the single
phase region of the evaporator is therefore neglected.

The pressure on the low pressure side of the refrigeration system, i.e. the
suction pressure, is assumed to be the same across all the display cases and the
suction manifold. Thus, the dynamics of the suction pressure is describe by
(2.6).

dPsuc

dt
=
ṁin−suc(·)− ṁcomp

Vsuc ∇ρsuc(Psuc)
(2.6)

The volume of the suction manifold and the pressure derivative of the density
is denoted by Vsuc and ∇ρsuc, respectively. The mass �ow rate into the suction
manifold is denoted by, ṁin−suc and is described by:

ṁin−suc(Mr,i, Twall,i, Psuc) =

N∑
i=1

Q̇e,i(·)
∆hlg(Psuc)

(2.7)

The mass �ow rate that is exiting the suction manifold and continuing into the
compressor rack is denoted by, ṁcomp and described by the following:

ṁcomp = Cap · 1

100
· ηvol · V̇sl · ρsuc (2.8)

The combined volumetric e�ciency of the compressor rack is denoted by, ηvol,
and the swept volume rate of the is denoted by, V̇sl. Hence, the compressor rack
is model as a single compressor, with a su�cient size, which can be controlled
in steps corresponding to mimic the behaviour of a compressor rack. Transient
behaviour of ṁcomp is neglected and thus (2.8) is only depended on the suction
pressure through the density, ρsuc. The running compressor capacity in the rack
is denoted by Cap and is described by:

Cap =

i=N∑
i=1

δiCapi (2.9)
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The discrete variable, (2.9), δi ∈ {0, 1} determines whether a compressors is or
o�. In (2.9)

∑N
i=1 = 100% and in the implementation of the model used in

this project N = 2, Cap1 = 45%, and Cap2 = 55%. As mentioned before the
layout of the compressor rack in this model is based on a real supermarket which
has the same compressor layout. The model describes a simpli�ed refrigeration
system and formal validation of the model has therefore not been attempted.
The parameters in the model have been tuned to resemble the behaviour of
small size supermarket refrigeration system. Hence, some the results based on
the model might only apply for smaller refrigeration systems.

In an attempt to reduce excessive switching a hysteresis band is applied
around each possible combination of compressors in the rack. This particular
compressor rack will have four possible states which are: the compressors are
not running, compressor one is running, compressor two is running and both
the compressors are running. Hence the compressor rack can only deliver 0, 45,
55 or 100 percent compressor capacity. In table 2.1 a detailed description of
the compressor layout is presented. Each line in the table describes a certain
step in the compressor rack. The % column describes the capacity provided by
the compressor rack at the corresponding step and the columns Min and Max
describes the hysteresis for the step. The two last columns, Shift up and Shift
down, describes which steps should be chosen if the requested capacity exceeds
either the Max or Min capacity of the current step. The model of the condenser

Name % Min Max Shift up Shift down
step_o� 0 0 40 step_1 step_o�
step_1 45 30 50 step_2 step_o�
step_2 55 40 80 step_3 step_1
step_3 100 70 100 step_3 step_2

Table 2.1: Compressor rack de�nition

unit contains no dynamics, the model simply de�nes a static condensing pressure
and a static sub-cooling which implies the assumption that the condensing unit
is su�ciently dimension and well controlled.



Chapter 3

Research Contributions

The aim of this chapter is to highlight the novel contributions and present some
selected results generated throughout this project. The work presented in the
thesis touches upon many di�erent research disciplines from automation and
control through fault detection and diagnosis, performance assessment, perfor-
mance monitoring, optimisation of dynamic systems to refrigeration. Hence,
the contributions should be considered as intra-disciplinary contributions. The
broad scope of the research has to some extend limited the depth of the research
within the speci�c areas.

The main contributions of the project are within the following areas:

• Performance assessment

• Performance improvement

This chapter will elaborate on each of the contributions listed above in sep-
arate sections. These sections will also contain the state-of-the-art and related
works for each contribution. In addition, the main methods and techniques that
has been used throughout the project will be described.

The chapter is divided into two sections where section 3.1 presents the meth-
ods and ideas that has been used within the area of performance assessment.
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The methods and ideas related to the contributions in the area of performance
optimisation are described in section 3.2.

3.1 Performance assessment

The main dissemination has been done in the papers A and D however B,
C, E and F mainly present di�erent applications of performance assessment
contribution. State of the art related to the area is mentioned throughout this
section.

Performance assessment of control systems covers a broad range of problems
and applications. The focus of this work has been to assess the performance
of a complex dynamic system, which is comprissed of a number of subsystems,
from a plant-wide or global perspective. Performance assessment of automated
system has been given a considerable amount of attention in the literature, in
particular, within the literature related to the process industry. Suboptimal
performance can often increase the total cost of ownership for a process plant
signi�cantly and thereby decrease pro�tability of the plant. Directly measuring
the total cost of ownership for any given plant is usually not a feasible tac-
tic, and therefore the problem is often tackled by assessing some performance
criteria. The relevant choice of these criteria is, of course, dependent on the
speci�c application. However, they can usually be grouped into three di�erent
categories, which are:

Quality-related performance criteria: Criteria related to the quality of the
process often relates directly to variables that can be measured directly.
The task of many low-level controllers are actually to ensure that the
process is delivering the desired quality. Food quality and desired temper-
ature comfort are examples of quality-related performance criteria within
the �eld of control of refrigeration system. In the papers [8] and [28] tem-
perature is used, at a regulatory level, as a quality related criteria for
desired temperature comfort and food quality, respectively. The quality
of a process is often among the most critical performance criteria, which
explains why it is usually controlled by a dedicated controller at the reg-
ulatory level.

Energy-related performance criteria: The task of high level controllers in
the control hierarchy often deals with less critical control tasks with respect
to the process. Hence, performance criteria related to energy consumption
are usually taken care of by high level controllers. An example of the use
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of an energy based criterion can be seen in [32], where it is used for optimal
control of a wireless communication channel.

Reliability-based performance criteria: The use of reliability related per-
formance criteria are still not common in the process industry and neither
in the refrigeration systems. However, in [12] reliability is connected to
the fault-tolerance of software systems. Reliability is also considered with
respect to fault tolerant control systems in [50] and [51].

3.1.1 Measuring of performance criteria

The ability to optimise any given process based on performance assessment, de-
pends on the ability to quantify and there by measure the performance criteria
and having access to manipulate relevant control inputs and parameters. Ren-
dering a criteria measurable might include dividing the criteria into sub-criteria.
As mentioned before the total cost of ownership can for example be divided into
quality-, energy- and reliability-related criteria. Albeit, these sub-criteria still
need to be measurable in a feasible way. References [41], [17] and [36] pro-
vide overview on di�erent approaches toward performance measurements in the
process industry. The quality of the output of a process, is an important per-
formance criteria within the process industry, which explains the popularity of
the the minimum variance benchmark within the �eld.

The benchmark approach toward measuring a performance criteria is typi-
cally used to compare the quality of a controller against a certain reference or
benchmark for the given system. These approaches are often model based, see
for example the model predictive case in [46] and the more general approaches
to model based performance assessment can be found in [36], [17], [16] and [41].

3.1.2 Performance assessment of a refrigeration systems

Quality, energy and reliability is basically also the three main criteria that is
considered when evaluating the performance of a refrigeration system. When
if comes to refrigeration systems like the one described in chapter 2 the main
concern is of course the food safety or in other words the temperature quality.
Hence, the refrigeration systems ability to ensure the correct temperature is
used as a quality measurement of the system. The temperature quality is closely
related to the total cost of ownership because low quality temperature control
will eventually destroy the stored food. Hence, the value of the stored food will
have to be depreciated to zero.
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The focus on performance assessment within the refrigeration community is
usually on the e�eciency of the vapour-comression cycle. In addition, dynamic
behaviours are usually obmitted in a performance assessment analysis. The
paper [42] presents a method for describing the performance of plant under
some static assumptions and by comparing measurements with a theoritical
calculated reference.

Energy e�ciency of the refrigeration plant is another common interest with
respect to performance assessment, because the energy consumption is at con-
siderable level for a refrigeration system. Within the refrigeration industry the
common way of assessing the e�ciency is done by evaluating the coe�cient of
performance, COP , which is given by (3.1).

COP =
Q̇cool[w]

Wref [w]
, (3.1)

The COP is de�ned as the ratio between the cooling power delivered,Q̇cool and
the total electrical power, Wref consumed by refrigeration system. COP is used
as a performance measure in [3], [29], [26], [49] and [47]. A di�erent approach
to performance assessment of a refrigeration system is presented in [28] and [8]
where compressor switching is considered in the evaluation of the performance.

3.1.3 The performance function

A method for performance assessment on a supermarket refrigeration system is
presented as one of the contributions regarding performance assessment in the
project. In this subsection the assessment approach will be described and the
novelty will be outlined.

The focus of the performance assessment has been to provide a plant-wide
performance assessment technique. Relying on a plant-wide perspective in con-
trast to a more local perspective with respect to performance assessment has
some advantages. The local perspective provides the possibility of using perfor-
mance measures that is targeting a speci�c performance issue locally. However,
even though the local perspective does provide detailed insight to the perfor-
mance of the local subsystem, the impact on the plant-wide performance might
be insigni�cant and thereby unimportant with respect to the plant-wide perfor-
mance.

Manual evaluation of the performance of the operation of a supermarket
refrigeration system is a non-trivial task. The systems are, as mentioned in
chapter 1, complex and distributed which renders it di�cult to get an overview
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of the entire system. Hence, an algorithm for plant-wide evaluation of the
performance is preferred.

Total cost of ownership has been divided into the three di�erent performance
criteria categories, quality-, energy- and reliability-related criteria. The quality-
related criterion is chosen to be the food quality and the energy-related criterion
chosen to be the cooling e�ciency and as the reliability-related criterion compo-
nent degradation is chosen. After choosing the criteria it has to be considered
how the criteria can be measured on a refrigeration system. In this project, the
criteria has been measured as follows: To represent the food quality the control
errors from the controllers for each of the display cases and the compressor rack
has been used. If the control errors are very high the ability of the system to
provide su�cient refrigeration will not exist, which eventually will harm the food
quality and thereby increase the cost of operating the system. Cooling e�ciency
of the plant is represented by a COP . Component degradation is represented
by a switch frequency of the compressors in the system. Super�uous degrada-
tion of components will decrease the reliability of the system because it will
increase the risk of component failure. One of the most crucial components in
a refrigeration system is the compressor and the degradation of the compressor
is increased by excessive switching.

Combining the measurements of the three criteria yields the performance
function (3.2).

J(t) =

K∑
k=1

||e(k)||2Q +

L∑
l=1

|| 1

COP (l)
||2R +

M∑
m=1

||fsw(m)||2S (3.2)

The performance function is a sum of quadratic forms. Hence, the notation is
given by (3.2).

||e||2Q = eTQe (3.3)

In (3.2) K is the number of controllers, L is the number of suction groups and
M is the number of compressors. The inverse of COP is used in the function to
ensure that all the terms have the property that minimisation will be optimal.

Normalisation of each of the terms in the performance function is important
to ensure scalability and re-usability of the performance function. It should be
possible to employ the performance function on di�erent refrigeration systems
of di�erent size and dimension. This scalability can be achieved through nor-
malisation of the performance function into unitless terms. The performance
function will then be established for any given supermarket by the appropriate
choice of the weights. The appropriate weights will then have to account for
the local regulations with respect to food quality. Moreover, the weights will
have to be chosen with respect to the local energy prices and the cost of re-



20 Research Contributions

placing compressors. As mentioned before this all requires that the terms are
normalised to begin with. The normalisation procedure is explained hereafter.

By using the knowledge that temperature in the display case has a lower and
an upper limit and that the reference is chosen as the mean value of the two
limit, normalisation is achieved. Normalisation of the suction pressure error is
reached using the same technique. The error vector, e, can by applying then
normalisation then be described by (3.4).

e =
2

(Tmax,i−Tmin,i)
· (Tref,i − Tair,i)

2
(Psuc,max−Psuc,min) · (Psucref − Psuc)

(3.4)

The inverted COP term does not require any normalisation because the COP
is unitless by de�nition. However, the switch frequency term does require nor-
malisation. Dividing the measured switch frequency by the maximum allowable
switch frequency provides a normalisation of the switch frequency term. All
the terms, e, 1

COP and fsw are, after normalisation, in the range {0, 1}. The
weights, Q, R and S in (3.2) associated with the error term, the inverted COP
term and the switch frequency term will thus represent the cost, respectively.
The choice of the weights Q, R and S will have to re�ect the impact on the cost
of operation from the corresponding term in the performance function. Hence,
the choice of Q will be based on the price of signi�cant temperature error in the
display case. The weight, Q will therefore be depended on the price of the stored
goods. The purpose of Q is to model that if the temperature in the display case
exceeds are certain limit the stored good will be destroyed and good will have to
be discarded. In addition, the supermarket could be faced with a �ne from the
authorities, if the failure is detected by the authorities. The energy price will
have to be used as a base for choosing the weight R for the inverted COP term.
The importance of the inverted COP is directly coupled to the energy price.
The weight on the switch frequency term, S, is based on the price of replacing
and maintaining a compressor. The cost associated with the maintenance and
potential replacement of a compressors contains a signi�cant amount of hidden
cost. The imitated cost of maintenance and replacement of a compressors does
for example not include the cost of down time of the refrigeration system due to
the maintenance or replacement. These issues provide the performance function
with signi�cant freedom for manipulation based on intuition.

3.1.3.1 Characteristics of the performance function

The presented performance function is equipped with notable properties. The
performance function is solely based on measurements and does not require
detailed knowledge of the particular refrigeration system. The output of the
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performance function can not be considered as an absolute value even if the
output can be interpreted as a cost of operation. Thus, comparing random
supermarkets should be done while considering the di�erences of the systems.
The performance function can easily be adapted to include other measurements
without compromising any of the methods presented in this research project.
The output of the performance function can be used for optimisation purposes as
described in the papers B, C, D, E and F. However, another important potential
application of the performance function is to use the output as a presentation
of the performance for the end user of the refrigeration system.

Moreover, the idea of including the switch frequency in the performance
function can be justi�ed by the plots in Fig. 3.1, where the performance function
is plotted for data from a real supermarket. The plots covers a time period
where the supermarket closed which creates a change in operation point for the
system. The blue plot is the proposed performance function whereas the red
plot is omitting the contribution from the switch term, which corresponds to
traditional approaches toward performance evaluation for a refrigeration system,
i.e. only using the control errors and the COP to evaluate the system. It can
be veri�ed from the plots that di�erent conclusion can be made depending on
which performance measurement is used. The blue curve indicates that the
performance of the system is degraded when the operation point is changed
which is in contrast to what is indicated by the red curve. Thus, including the
switch term contributes to a more meaningful notion of performance.

Figure 3.1: Performance index for a real supermarket system, including the
transition in operation point due to the closing of the supermarket
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3.2 Performance improvement

The section presents the contributions related to performance improvement.
Dissemination of the contributions has mainly been done in the papers B, C, D,
E and F. State of the art will be presented along with the relevant contributions.

As mentioned in Problem formulation one of the initiating problems for
the project can be formulated as: How can su�cient refrigeration be provided
with as low cost as possible? First of all, without any well de�ned notion of
the performance of the refrigeration plant almost any solution can claim to
improve the performance towards an optimum. Therefore, section 3.1 presents
a performance assessment approach. However, even with a prede�ned notion
about performance a solution can be reach by many di�erent methods. The
focus in this project has been to deal with performance issues that can be tackled
by the control system. Hence, for example suboptimal operational performance
due to a choice of an ine�ective compressor has not been considered in this
project. In other words, the refrigeration system is accepted as it is and the
task is then to control the system to provide the best operational performance
under the given circumstances.

Improving the performance of a system can be approach as an optimisation
problem, since the ultimate goal is to provide optimal operation. However,
techniques for optimisation through control often requires a dynamic model
of the system, as in for example [7], [30]. Moreover, due to the information
level existing at the time when the controllers are designed for a supermarket
refrigeration system, the aim has been to avoid model-based solution method for
performance. The contributions related to performance improvement has been
targeting both static and dynamic performance issues. Improving the dynamical
performance of the system has been targeted in the papers B, C E and F. The
static performance has addressed in D and F.

Performance improvement or optimisation techniques are normally gradient
based and therefore utilises the derivative of the performance function. The
problems with these methods are that the gradient of the performance function
might not be available and providing an analytical derived gradient might be
infeasible. In addition, numerically calculating the derivative of the performance
function is problematic due to noise and non-smoothness. Thus, the methods
for performance improvement presented in this section can all be considered as
derivative-free methods.
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3.2.1 Dynamic performance improvement

Improving the dynamic performance of a supermarket refrigeration system by
changing controller parameters creates the need for active performance monitor-
ing. The reason is that even though the refrigeration system is exhibits dynamic
behaviour a signi�cant amount of the time, the majority of the time the system
will be in a steady state like operation. Hence, changing a controller parameter
will not a�ect the control error and thereby not a�ect the performance function.
Therefore to be able to optimise the dynamic behaviour of the controllers the
system needs to be excited. The idea of exciting a system originates from the
�eld of active fault diagnosis, see for example [33, 34, 39]. The setup for active
system monitoring used in this project is described by Fig. 3.2. The closed loop

Figure 3.2: The general active system monitoring setup

under investigation for a potential performance improvement is shown in Fig.
3.2, where K denotes the controller and G denotes the system. The controller
output is denoted by u and the measured output from the system is denoted by
y and the reference is denoted by yref . The parameter change of the controller
is denoted by ∆ξ. The contributions to the performance function, from the
other sub-systems, is denoted by Γ and the excitation signal is denoted by ηΣ.
The novel idea is then to monitor the global performance function to evaluate
current parameter setting of the controller.

3.2.1.1 Improvement clari�cation

The active system monitoring scheme has been used to clarify if the global
performance could be improved by changing the controller parameters of a con-
troller in a curtain closed loop. The setup used for this purpose can be seen in
Fig. 3.3. The di�erence between Fig. 3.2 and 3.3 is that the excitation signal
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Figure 3.3: The active system monitoring setup for performance improvement
clari�cation

has been moved and that a detector has been added. The excitation signal can
in theory be placed where ever it is convenient. The placement of the excitation
signal should however be taken into account when designing the signal. The idea
behind the setup shown on Fig. 3.3 is to excite the closed loop and then change
the controller parameters while measuring the global performance. A statistical
change detector is then applied to the performance measuring to ensure that a
signi�cant change in performance has occurred. The reason for using a statisti-
cal change detector is to ensure that the amplitude of the excitation signal can
be kept at a reasonable level and to limit the impact of noise. The task of the
detector is basically to decide between the two which are formulated as follows:

H0 : J̄0 + w[n] (3.5)

H1 : J̄1 + w[n] (3.6)

In (3.5) and (3.6), w[n] denotes the noise contributions and J̄0 denotes the initial
mean value of the performance function and the estimated mean value after a
change is denoted by J̄1. The hypothesis test will only detect a change in the
mean values, and therefore to decide if the performance has been improved or
degraded further analysis is required. Evaluating whether the performance has
been improved or degraded is done by checking if J̄0 > J̄1 or if J̄0 < J̄1. The
performance has been improved if J̄0 > J̄1 is true and if J̄0 < J̄1 is true the
performance has been degrade by the parameter change in the controller. The
entire procedure of performance improvement clari�cation can be formulated in
the following steps:

1. Excite the closed loop under investigation to ensure active dynamic be-
haviour of the controller.

2. Apply a parameter change to the controller.
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3. Detect whether a signi�cant performance change has occurred.

4. If a change has occurred, then determine whether the performance has
improved or degraded.

The statistical change detector that has been used is a generalised likelihood
ratio test (GLRT), see [24]. The GLRT has been chosen because it can detected
unknown mean changes which is in contrast to the cumulative sum,(CUSUM),
which does require knowledge about the expected change in mean value, see
[4] or [5]. Moreover, the GLRT does also provide an estimate of the mean
values, which is needed to determine whether the performance has improved or
degraded when a change has been detected. The GLRT basically decides H1 if
the likelihood ratio, LG, exceeds the prede�ned threshold, γ in (3.7).

LG(J) =
p(J ; J̄1,H1)

p(J ; J̄0,H0)
> γ (3.7)

The probability density function in (3.7) is denoted by p(·) and described by
(3.8).

p(J ; J̄i,Hi) =
1

2πσ2
exp

[
− 1

2σ2

N−1∑
n=0

(J(n)− J̄i)2

]
(3.8)

In (3.8) i ∈ {0, 1} and the window size and variance is denoted by N and σ2,
respectively. To achieving the theoretical optimal performance of the GLRT,
with respect to time to detect and probability of false alarms, the noise contri-
butions, w[n], in (3.5) and (3.6) has to be white Gaussian noise. The ful�lment
of this requirement has not been addressed in this project. The reason is that
time to detect is not critical in the setup and therefore the threshold can be
chosen conservatively with only probability of false alarms in mind. Missing an
alarm is not hazardous for the system and the notion of �ring a false alarms can
not be interpreted in the traditional way. Not detecting an alarm that should
have been detected will only provide the conclusion that the parameter change
did not have any e�ect on the global performance and therefore the parameter
change can not be justi�ed. When considering the problem of �ring of false
alarms it should be considered that the parameter change is imposed by algo-
rithm and it is therefore known when to expect a change. Hence, the detector
will only be active when a change is expected. The main issues when choosing
the threshold is actually the probability of making the wrong decision based on
an alarm is more relevant in this application of the GLRT, since it implies that
a parameter change that deteriorates the performance can be interpreted as a
performance improvement.

The contribution related to performance improvement clari�cation is utilis-
ing ideas from active fault diagnosis to clarify that whether a certain parameter
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change in a controller changes the plant-wide performance signi�cantly. Instead
of using a traditional residual generator the plant-wide performance measure
has been used as input to the GLRT. In addition, the GLRT has been extend
to become a double sided test.

Justi�cation for the active performance monitoring scheme can be seen on
Fig. 3.4, which shows a test of the performance improvement clari�cation setup.
In the �rst part of the simulation external excitation is not applied to the sys-
tem and therefore the change in controller parameters does not in�uence the
plant-wide performance function. However, at 41000 seconds the excitation of

Figure 3.4: Change in the performance function, ∆J = J − J̄0, likelihood ra-
tio, LG(J). Simulation without and with excitation of the system. Controller
parameters changed at 20000, 30000 and 50000 seconds. Excitation started at
41000 seconds

the closed loop system is initiated, which can be veri�ed from plot of the air
temperature in the display case, see Fig. 3.5. After the excitation has been ini-
tiated the same change of controller parameters is applied and is now a�ecting
the plant-wide performance.

3.2.1.2 Searching the parameter space

Another approach towards improving the dynamic performance has been pro-
posed in this project. The idea is to use a search technique which is derivative-
free and searches the parameter space to �nd the best solution. Algorithms with
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Figure 3.5: Air temperature in the display case when the parameters are
changed. Simulation without and with excitation of the system. Controller
parameter changed at 20000, 30000 and 50000 seconds. Excitation started at
41000 seconds

this properties has recently been used for optimisation in the literature as for
example, generic algorithm [11], particle swarm optimisation [25], ant colony op-
timisation [9], simulated annealing [37] and tabu search [38]. These algorithms
have shown high capability of searching for global minimum in di�erent engi-
neering applications [6, 45]. In this project, invasive weed optimisation, (IWO),
has been proposed as a method for searching the parameter space, which has
been introduces in [31]. The IWO algorithm is a bio-inspired numerical optimi-
sation algorithm. The algorithm basically tries to mimic the natural behaviour
of an invasive weed, when the weed is trying to colonising an area, and therefore
tries to �nd the best positions for the weed. The idea in this project has been
to utilise IWO to �nd the best parameters for the controllers with respect to
the plant-wide performance measurement.

The general idea behind the IWO algorithm is that invasive weeds invade a
�eld by means of dispersal and utilise the spaces left between the actual crop.
The invading weed takes advantage of the unused resources in the �eld and
develops into a �owering weed, which eventually will spread its seed and thereby
continue the invasion of the �eld. The principle of survival of the �ttest is the
applied and the and only the best weeds will manage to �ower and re-spread.
Since the �eld is has limited resources this procedure will continue until the some
maximum is reach. How this is translated into an optimisation algorithm will
be described hereafter. To explore a parameter space random parameter sets
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are selected. Each of these parameter sets are then tested and evaluated. These
two steps corresponds to randomly spreading the seeds of the weed and then
waiting for the �owering of the weed. The survival of the �ttest is also applied in
the algorithm which basically means that only the parameter sets that provides
good performance of the system will survive. Thus, the random selection of new
parameter sets will be in the neighbourhood of the parameters that provided
good performance in the last generation. The in the next generation are then
chosen with in a certain radius of the parameters sets that has proven good
enough to proceed. This of course corresponds to the weed spreading seeds.
The algorithm will decrease the radius that the parameters are spread within
in each generation. The task of the IWO algorithm has been to improve the
dynamic behaviour of the system and therefore excitation of the system is also
required when using the IWO algorithm. The method proposed for design of
the excitation signal will be presented in 3.2.1.3.

The contribution related using IWO for optimising the global performance
lies within the application of the algorithm. The IWO setup was tested on the
simulation model presented in 2.2. However, in contrast to what the general
idea behind the IWO algorithms is, an initial guess has been supplied as one of
the seed in the �rst generation. This provides the algorithm with a very good
staring point and the time that the system is operation suboptimal is reduced.
In addition, choosing the parameter space su�ciently small also helps the IWO
algorithm. With these changes to the IWO setup it is expected that it will be
feasible to utilise the algorithm on a real system.

The result of using the IWO algorithm to �nd the parameters for a PI
controller in a display can can be seen on Fig. 3.6 and 3.7. The two plots shows
how the worst and best values of the controller parameters evolves. In can be
veri�ed on Fig. 3.6 and 3.7 that both the worst and the best choice of parameter
converges. The parameter space is plotted on Fig. 3.8 from which the it can
bee seen that the initial guess is actually close to the �nal result.

3.2.1.3 Design of the excitation signal

Both contributions described in subsection 3.2.1.1 and 3.2.1.2 rely on that the
system dynamics are being excited. The gorverning idea is that the proposed
methods should be able to run on a supermarket refrigeration system in oper-
ation. Therefore, design of the excitation signal is of course important. The
combined excitation of the subsystem under investigation, ηΣ, shown on Fig.
3.2 can be described by (3.9).

ηΣ = ηext + ηw (3.9)
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Figure 3.6: Evolution of Ti. The red line plots the evolution of the worst choice
of Ti and the blue line plots the evolution of the best choice of Ti

Figure 3.7: Evolution of kc. The red line plots the evolution of the worst choice
of kc and the blue line plots the evolution of the best choice of kc
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Figure 3.8: Ti versus kc, The blue triangle indicates the end result for the
parameters, kc = −0.1877 and Ti = 60.6972.

In (3.9) the sum of all the excitation sources is denoted by ηΣ and ηext denotes
the externally applied excitation. The noise contribution, generated by noise
sources like the other subsystems in the refrigeration plant, is denoted by ηw.
The use of external excitation signal is only necessary when ηΣ = ηw becomes
insu�cient as excitation. When there is a need to inject external excitation
the task is then to design a signal, ηext, that ensures that ηΣ has the su�cient
impact in the closed loop under investigation. To generalise the abstraction
presented in (3.9), ηext should be considered as a set of signals, {η1, · · · , ηm}.

In the following design process is based on the facts listed hereafter:

1. The closed loop consists of a PI controller and a physical system, here a
display case, for which the dynamics are unknown.

2. The parameters of the PI controller are known.

3. The existing controller is stabilizing the closed loop.

In addition the design process relied on these assumptions:

1. The system can be described su�ciently using a �rst-order model plus
dead time (FOPDT).

2. The response time delay to an abrupt change in control action is known.
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The �rst assumption can be veri�ed by consulting [18, 43, 44] and the time delay
can be measured with su�cient accuracy on the system.

Two main properties has to be chosen for the excitation signal and they are
the frequency range and the amplitude. The frequency range is important to
ensure that relavant dynamics of the closed loop under investigation are being
excited. Secondly, the amplitude has to be chosen to ensure that the closed loop
is excited signi�cantly without compromising the operation of the closed loop
signi�cantly. Thus one of the problems is to design a set of signals, {η1, · · · , ηm},
which frequency range corresponds to the frequency range of closed loop system
under investigation. Since the dynamic of the controlled subsystem is unknown
in advance the design is not a trivial task. The knowledge with respect to
the controlled subsystem is limited to a structural level. In other words gain
and time constants are unknown. Thus, the design methods such as the ones
introduced in [33] and [40] cannot be directly applied since they rely on model
knowledge.

As mentioned before the aim is that the active performance monitoring setup
should run online on a supermarket refrigeration system and thus compromising
the operation signi�cantly is unacceptable. The impact of the system should
therefore be taken into account in the design phase of the excitation signal. In
addition the task of choosing the amplitude for the external excitation signal is
an online task, because the constraints related to the amplitude are dependent
on the operation point and the actual noise level.

For the design of the excitation signal a closed loop system, which is con-
sidered a subsystem in the supermarket will be considered. In the following a
display case is used as the considered closed loop. Hereafter, the notation will
be described.

The dynamics of the subsystem are described by a FOPDT process model:

Gk(s) =
kpke

−Tdk
s

τks+ 1
,

where Tdk denote the time delay and kpk and τk) denotes the gain and time
constant, respectively. The corresponding controller Ck(s) is a PI type, i.e.

Ck(s) = kc +
kc
Tis

.

The closed loop transfer function for the subsystem is then given by:

Hk(s) =
Ck(s)Gk(s)

1 + Ck(s)Gk(s)
.
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For a given subsystem the task is to �nd an appropriate set of excitation sig-
nals {η1(t), · · · , ηm(t)} and then use them to excite the subsystem and thereby
providing the opportunity to improve the dynamic performance of the sub-
system. The performance improvement is achieved by changing the controller
parameters {kck , Tik} so that the performance function J(t) is minimised, i.e.

minimise
kck ,Tik

J(t)

subject to yk(t) = (hk ∗ ζ)(t), ζ(t) =

m∑
i=1

ηi(t).
(3.10)

In (3.10) yk denotes the output of the kth system. '∗' represent the convolu-
tion and represent the time domain description of yk(s) = Hk(s)ζ(s), and the
excitation signal is denoted by ζ(t).

The problem providing a solotion to (3.10) is discussed in 3.2.1.1 and 3.2.1.2
to focus in this subsection is the design of the excitation signal.

Designing the excitation signal has been spilt into two di�erent tasks. The
two tasks are, determining the frequency range and secondly the amplitude of
the signal. The two task are teated separately. Thus, the choice of frequency
range will be described �rst.

The following abstraction is introduced:

ζ(t) =

m∑
i=1

ηi(t) =

m∑
i=1

η(ωit) (3.11)

In (3.11) ζ is a sum of identical functions which are operating with di�erent
frequencies ωi. The candidate function is chosen to be a sinusoid as follow:

ηi(t) = Ai sin(ωit). (3.12)

Utilising the fact that the controller parameters, i.e. kc and Ti, are known,
renders it possible to estimated the corresponding system parameters, i.e. τ
and kp, by assuming that the controller parameters have be designed for a
desired gain and phase margins. To get an idea about what frequency range the
excitation signal should lie within an estimation of the bandwidth for the closed
loop under investigation is required. The phase and gain margin requirements
has been used as a start point in order to provide a quali�ed guess on the system
bandwidth. Estimating the bandwidth is based on the method for controller
design presented in [19], which is a method that provides the parameters for
a PID controller and ensures that the gain and phase margin speci�cation are
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obeyed for a FOPDT process model. The procedure has been changed slightly
to �t the problem of estimating the bandwidth based on the knowledge of the
controller parameters instead of the system parameters.

The setup introduce in 3.2 has been simpli�ed to the diagram shown on Fig.
3.9 to ease the estimation of the bandwidth based on the alternated methods
from [19].

Figure 3.9: Block diagram of the simple closed loop

By manipulating the equations from [19] the time constant and the gain of
the system can be calculated by (3.13) and (3.14), respectively.

τ =

(
1

Ti
+

4 · ω2
p · L
π

− 2 · ωp

)−1

(3.13)

kp =
ωp · τ
Am · kc

(3.14)

The calculation of the phase crossover frequency is done using (3.15).

ωp =
Amφm + 1

2πAm(Am − 1)

(A2
m − 1) · L

(3.15)

The parameters estimated in (3.13) and (3.14) can used as the best guess to
compute the cuto� frequency, denoted ωc, for the closed loop. Since the method
relies on some assumption the parameters of the real system might deviate from
the estimated parameters by up to 100%. Thus, to ensure a su�cient excitation
of the system a set set of frequencies should be chosen. The set of frequencies
are chosen based on the strategy described by (3.17) and (3.16). The frequencies
are chosen by assigning ωc in the following way:

ωm+1
2

= ωc (3.16)

withm chosen to be an odd number and then spreading the di�erent frequencies
using (3.17).

ωi =
1

10
ωi+1 ∀i = 1, · · · ,m− 1 (3.17)

After choosing the frequency range the amplitude of the excitation signal
should be chosen. The procedure for that will be described in the following.
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The allowed range of a signal in the refrigeration industry is usually given
by the constraints on the acceptable set-point for that particular closed loop.
Therefore, by interpreting the PI controller as a sum of two terms, the P-term
and the I-term. The constraints on the amplitude of the excitation signal can
be described by (3.18) and (3.19). The accepted range of the set-point is given
by SPupper and SPlower.

SetPoint+ ||ζ||∞ < SPupper (3.18)

SetPoint− ||ζ||∞ > SPlower (3.19)

The function ζ is a bounded functions due to the de�nition in (3.11) and (3.12),
and therefore extrema exists. Assuming that the closed loop is has reached
steady state the contribution from the P-term in the PI controller is negligible
and the I-term is the only one utilised to maintain set-point tracking. The
following has been proposed as a method for choosing ||ζ||∞:

||ζ||∞ = α

∣∣∣∣∣ I-termk̂pk

∣∣∣∣∣ , (3.20)

In (3.21) α ∈ {0.01 · · · 0.25} and k̂pk is the estimated system gain. The choice
of α should by as high as possible considering that α is constraint by 3.18, and
3.19, which cannot by violated. Choosing α = 0.15 would be a typical choice.
The correct amplitude for ζ is ensured by de�ning the amplitudes of the signals
in (3.12) by (3.21).

Ai = α

∣∣∣∣∣ I-termmk̂pk

∣∣∣∣∣ ∀k ∈ {1, · · · ,m}. (3.21)

The design procedure for the excitation signal is not connected with the proce-
dure for improving or optimising the performance. Thus, the choice of improve-
ment or optimisation method can be handled after the design of the excitation
signal.

3.2.2 Improving Steady State Performance

This subsection deals with the contributions related to the improvement of the
steady state performance of a supermarket refrigeration is. The idea is pre-
sented in details in the papers D and F. Since refrigeration systems spends most
of their operational time in steady state it is valuable to ensure optimal static
performacne of the systems. Static and dynamic performance improvement rely
on di�erent parameters and therefore the di�erent and thus di�erent parameters
will be subject to change depending on the improvement goal. When improve-
ment of the static performance of the plant is in focus it is bene�cial to �nd
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the subsystem with the most signi�cant impact on the plant-wide performance.
Thereafter, it is of course important to �nd the variable in that subsystem that
address the condition for the operation, and they are typically the set-points.

To describe the improvement approach the performance function (3.2) has
been rewritten ad:

J(φ(t)) =

I=K+M+L∑
i=1

Ji(φ(t)), (3.22)

In (3.23) Ji(φ(t)) denotes the local performance function for the ith subsystem
which is dependent on the set φ(t) that can be de�ned as:

φ(t) =
{
Poref (t), Q̇airload(t)

}
, (3.23)

In (3.23) the controllable variable is Poref which denotes the suction pressure
reference for the compressor rack controller. The uncontrollable variable is the
heat loss the surroundings of the display cases in the sales area, which is denoted
by Q̇airload. Moreover, the heat is also considered to be the main disturbance
in the system.

Formulating the improvement of steady state performance as set-point opti-
misation can be done as follows:

min
Poref

J(φ(t)) ∀ Q̇airload (3.24)

The focus in is to �nd the suction pressure Poref (t) that minimises the plant
wide performance, J(φ(t)) independent of the heat loss/disturbance Q̇airload. To
gain more knowledge about the search space for the optimisation some simula-
tions has been carried out. The simulations are describe in the following:

Gaining knowledge of the search space is done by changing the suction pres-
sure reference in steps from 1.0 · 105 [Pa] to 2.5 · 105 [Pa] with a step size of
0.1 · 105[Pa] or the equivalent of changing the evaporation temperature approx-
imately 2◦C. In each of these steps the heat loss, Q̇airload, has been varied by
changing the ambient temperature of the display cases in steps from 18 [◦C] to
28 [◦C], with a step size of 0.5◦C. Since the dynamic behaviour is not in focus
only the steady state values of the data from the simulation has been used.

The results from the simulation can be seen on Fig. 3.10 where the inter-
polated line is added to the data from the simulation. The proposed idea is to
perform the sweep of the suction pressure at two di�erent load situations and
then compute interpolated lines and use them to adjust the suction pressure ref-
erence according to the load, Q̇airload. These interpolated lines should be placed
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Figure 3.10: Optimal interpolated line

in the wallies of the performance function as shown on 3.10. The interpolated
line can be calculated by:

Poref = Poref,a + (Poref,b − Poref,a) · Q̇airload − Q̇airload,a
Q̇airload,b − Q̇airload,a

(3.25)

Hence, the optimisation problem can then be solved choosing the suction pres-
sure reference Poref based on the a measurement of Q̇airload and the inter-
polated line which has been computed based on the two sweeps. The load,
Q̇airload, changes signi�cantly between opening and closing hours of the super-
market, which enables the possibility to generate the two sweeps. Extending
the algorithm to update the interpolation line when there has been change in
the load due to a seasonal change might be bene�cial.

Since the can be a more than one interpolated line a strategy for choosing the
right line to base the adjustment of Poref on is required. The proposed method
is to calculated the distance from the current operation point (Poref,current,

Q̇airload,current) to the interpolated lines.

The method is explained in the following:

Calculation of the distance di between the current operation point (Poref,current,

Q̇airload,current) and the ith interpolated lines Li : Poref = miQ̇airload +
bi, i ∈ {1, 2} is described by:
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di =
|Poref,current −miQ̇airload,current)− bi|√

m2
i + 1

(3.26)

The interpolated line, L∗, that will be used to choose the new suction pres-
sure reference, Poref , with is the one with the shortest distance to the current
operation point as described by (3.26).

L∗ = Li, such that: ∀j 6= i, di < dj (3.27)

If the distances are equal, i.e. di = dj the line that passes through the higher
suction pressures should be chosen.

The presented strategy is aim at small supermarket refrigeration systems
where the rack is comprised of two compressors. However for larger system
the compressor rack will be comprised of three or more compressors. Another,
con�guration of the compressor rack yield another surface of the performance
function because the possible combinations of compressors increases. This also
lead to an increase in the risk of having problems with excessive compressors
switching due to the increased resolution in the compressor rack. In addition,
in compressor rack with more that three compressors there is usually at least
one compressor that is frequency controlled which thereby almost eliminates
the switching problem. However, since the market for small and medium sized
supermarket refrigeration system is of a considerable size the method has been
generalised to a compressor rack comprised to three on-o� controlled compres-
sors.

The switch strategy for the compressors in the rack follows can by described
by (3.28), where the three compressors are denoted by CA, CB and CC , respec-
tively.

{CA}︸ ︷︷ ︸
Low

←→ {CA, CB}︸ ︷︷ ︸
Medium

←→ {CA, CB , CC}︸ ︷︷ ︸
High

(3.28)

Hence, a compressor is started to deal with the demand in the low capacity area
and when the demand increases the second compressor is switched on and for
higher demand all the compressors will be running.

There will therefore exist two capacity gaps for the compressor rack with
three compressors i.e. one in the capacity area between {CA} and {CA, CB}
and the other one between {CA, CB} and {CA, CB , CC}. Thus, as in the
two compressor case the performance will degrade in the capacity gaps which
corresponds to an increase in the performance function. However, in the case
of the three compressor rack there will exist three neighbouring interpolated
lines instead of two line as in the two compressor case. The three interpolated
lines can be calculated by using the same approach as for the two compressor
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case. Thus, the strategy presented in (3.26) and (3.27), for choosing the line
to base the choice of the suction pressure reference on can be adopted for the
three compressor case. The only di�erence is that three lines has to be taken
into account, i.e. i ∈ {1, 2, 3}.



Chapter 4

Conclusion

The research work, documented in this thesis, focuses on plant-wide performance
assessment, monitoring and optimisation. In this regards, the problem was
formulated by three governing questions.

The �rst two governing questions, which are:

• Is is possible to establish performance measures for control systems of a
supermarket refrigeration system?

• Furthermore, is it possible to develop methods or algorithms to monitor the
systems and analyse its performance by means of the established measures?

were addressed positively due to the contributions regarding performance as-
sessment in papers A and C. The plant-wide approach toward performance as-
sessment were shown to be a feasible solution to the assessment problem. This
approach ensured that the proposed performance improvement methods were
considered at plant level. This was been shown in the papers B, D, E and F in
which the performance assessment ideas were presented and utilised for perfor-
mance improvement and thereby enabling a positive response to the last of the
governing questions:
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• In addition is it possible to develop methods that can accommodate for a
detected performance degradation of the system?

The introduction of a plant-wide performance function for a supermarket
refrigeration system was one of the important contributions in this thesis. The
presented performance function covers quality-, energy-, and reliability-related
criteria. Instead of evaluating a single subsystem locally the proposed method
relied on assessing the plant-wide performance. In addition, the proposed per-
formance assessment method does not rely on a model of the system and can
therefore be applied to a real system relatively easy. The performance function
provides the possibility of assessing the performance of a particular supermarket
system over time and can therefore be used as tool for improving the perfor-
mance for that particular system. Theoretically, the performance function can
be used to compare two arbitrary supermarket refrigeration systems. However,
that requires that the weights are chosen very carefully, which implies that the
output of the performance function can then be interpreted as a cost of opera-
tion.

Performance improvement were addressed with di�erent approaches, and
ideas from di�erent research areas has been applied in new contexts. Active
performance monitoring was proposed to enable improvement of the plant-wide
dynamic performance of the supermarket refrigeration system. Investigation of
the properties of the output from the performance function has been used to
propose a method for improving the static performance of the plant.

The generalised likelihood ration test, (GLRT), was used to test whether
a parameter change, in a controller for a subsystem, creates a signi�cant im-
pact on the plant-wide performance. Searching for improvement of the dynamic
performance has only been possible due to the proposed active performance
monitoring setup, were an external excitation signal was applied to excite rele-
vant dynamics of each subsystem. Another approach to improving the dynamic
performance was to search the parameter space using the invasive weed opti-
misation, (IWO), algorithm with an initial guess for the parameters. A clear
bene�t of the IWO algorithm is that the method is derivative-free, and can
therefore be applied online without the need of a system model.

Improving the static performance of a refrigeration plant has been done by
analysing how to chose the set-point for the predominant control loop. The best
static performance is achieved if the suction pressure reference is chosen with re-
spect to the actual load on the refrigeration system. This result was achieved by
analysing data from a simulation model of a supermarket refrigeration system.
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4.1 Perspective

Ongoing research within the area is still needed to ensure that proposed per-
formance function covers the relevant phenomenon. The proposed plant-wide
performance assessment approach has been treated for a speci�c application and
it would therefore be recommendable to generalise the idea and thereby create
a general framework. A general framework would be easier to adapt for new
objectives for the refrigeration system, e.g. heat recovery or smart grid inter-
action. In addition, the problem of performance assessment for a distributed
control system which most of the time operates in steady state can be found
in many applications in the process industry. Hence. the approach would also
bene�cial in other application in process industry.

Furthermore, a framework description of the plant-wide performance ap-
proach could be used to choose the performance improvement methods based
on the properties of the framework. This could then ensure that the proposed
performance improvement methods provides a general solution to the problem.

The proposed performance assessment method and the performance im-
provement methods presented in this thesis rely on some assumption and prereq-
uisites that could be relaxed or investigated in future research. The assumptions
that could be relaxed will be discussed in the following:

Weights for the performance function: The use of the proposed perfor-
mance function requires a set of weights for each term. The underlying
assumption in this work has been that reasonable weights exist. How-
ever, formal guidelines and design methods has only been minor attention.
Thus, formal methods for choosing or designing weights remains an open
research topic that could be pursue in the future.

PI controller: The assessment setup and the proposed performance improve-
ment methods both assumes that the controllers in the subsystems are PI
based. Reevaluation of the methods for di�erent controller types could
therefore be interesting.

First order plus dead time: For the design of the excitation signal for the
active system monitoring setup it is assumed that the subsystem can be
modeled using a �rst order plus dead time model. Creating design methods
for the excitation signal that does not rely on this assumption could also
be an opportunity to pursue.
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Abstract: The aim of this paper is to illuminate the impact of the choice of
a system's performance criteria on the quality of the corresponding monitoring
system's assessment results. Special attention is given to the performance issues
that are caused by or can be solved by control actions. The compressor capacity
gap issue in the supermarket refrigeration systems is used as a case study to
elaborate on the problem through employment of both real life �eld data as well
as simulation data. A performance function that can capture the compressor
capacity gap problem is presented in the paper and used to evaluate both data
from the real supermarket system and the data generated by the simulation
model.

A.1 Introduction

The aim of many published scienti�c achievements has been to detect faults,
identify them and, if possible, to accommodate them to the extend that the
main functionality of the considered system is maintained and a minimum level
of acceptable performance is obtained. The dominating reason has been that
faults are the main causes for degradation of the system performance. Seen from
an industrial point of view, an equivalently interesting issue that has a signi�-
cant impact on the total system performance is the way di�erent subsystems are
devised to interact. Depending on the actual operating point, a combination of
subsystems may force the other subsystems to operate in a less optimal fashion,
which results in a decrease in the overall system performance. In this case no
actual faults/malfunctions have occurred. So, in practice, a degradation in the
overall system performance may not be caused by a fault but rather an inap-
propriate change in the operating conditions of the system. To accommodate
for such situations there is a need for methods to carry out monitoring (and
diagnosis) not only at the subsystem level but also at the system level. In this
regard, establishing measures by which the system performance can be assessed
becomes essential.

This paper contributes to this subject by providing an overall overview on
the used/proposed measures that are commonly used. Moreover, the paper un-
derscores the importance of the use of appropriate performance measures by
providing an example from the supermarket refrigeration systems that illus-
trates the impact of the chosen performance measures/functions on the ability
of detecting degradation of the overall system performance.

The paper starts with a general description of performance assessment in
section A.2. Section A.3 describes the controller structure for a supermarket
refrigeration system, and includes an introduction of a model of a refrigeration
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plant. In section A.4 the compressor capacity gap problem is introduced and
described. The developed performance indicators are described in section A.5.
Di�erent scenarios with compressor capacity gap problems are illustrated with
data from a real supermarket system and simulation in section A.6. A conclusion
is provided as the last section of the paper.

A.2 Performance assessment in general

Performance assessment is considered to be essential in the process industry �
Suboptimal performance can lead to a decrease in the quality of the products
or/and super�uous energy consumption. Generally speaking, the criteria that
are used to assess the performance of a system can be classi�ed into three
categories. These are:

Quality-related performance criteria Such criteria typically involve sys-
tem variables with direct relation to the product quality. Many low-level con-
trollers are actually based on this performance category. For example within
control of refrigeration systems temperature is used at the regulatory level as a
performance indicator of food quality and as a control parameter, see [8] and
[28].

Energy-related performance criteria are often used at a higher level of
the control hierarchy compared to the quality-based performance criteria which
is more often used at regulatory level in the control hierarchy.

Reliability-based performance criteria are seldom used in the process in-
dustry (or refrigeration systems). However, new ideas are emerging that connect
fault-tolerance to the total reliability of the system.

A.2.1 Performance measures

In the process industry several measures have been proposed/used to assess
the considered system's performance. An overview of the most commonly used
techniques Å½can be found in [41] and [17]. Both papers discuss the minimum
variance benchmark method and some of the extensions of the method. The
minimum variance benchmark is popular because many processes have some
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sort of quality performance criteria which are related to a low variance of the
process output. The notion of performance assessment in the control community
is usually focused on investigating the control performance in comparison with
some benchmark as described in [46] when dealing with model predictive control
(MPC), and in [36], [17], [16] and [41], when dealing with the more general cases.

A.2.2 Performance assessment within refrigeration systems

The most commonly used parameter in the supermarket is the temperature
in the display cases. However, when the task is to evaluate the plant-wide
performance it becomes more di�cult. Although the temperature is a good
performance index with respect to food safety, it is not a useful index with
respect to energy e�ciency. To evaluate a change of performance with respect
to certain changes in the plant the performance index has to be chosen correctly.

In the refrigeration community the focus is on the performance of the en-
tire plant. However, the main interest is usually the static performance of the
refrigeration plant meaning that dynamic issues are not considered. Paper [42]
presents a way of describing the performance of a refrigeration system using
static assumptions when calculating a theoretical reference and comparing it to
measurements.

A common performance indicator in the refrigeration industry is the coe�-
cient of performance, COP, which is de�ned as follows:

COP =
Qcool[w]

Wref [w]
, (A.1)

where Qcool denotes the heat removed from the cold reservoir and Wref denotes
the power consumed by the refrigerant system. In the papers [3], [29], [26]
[49] and [47] COP is used as a performance indicator. An alternative method
for performance assessment is presented in [28] where the number of compressor
switches over time is used as a performance measure. This performance measure
is interesting because switching of compressors is neither bene�cial with respect
to energy e�ciency nor with respect to compressor life time (reliability).

A.3 Controller structure for a Supermarket re-
frigeration system

The layout for a supermarket refrigeration system is shown in Fig. A.1. The



A.3 Controller structure for a Supermarket refrigeration system 47

Figure A.1: Simpli�ed supermarket refrigeration layout

compressor rack supplies the �ow in the system, and the control objective of the
compressor controller is to maintain a speci�ed suction pressure by switching
the compressors on or o�. The task of the condenser fans are to keep the
condensing temperature at the correct level, which is done by switching fans
on or o�. The main task of the display cases is to maintain the temperature
within the cabinet at a desired level. Ideally the capacities of the compressors
are chosen so that the common operation points of the refrigeration plant can be
handled with a �xed number of compressors running. In practice the compressor
rack does not �t the operation points exactly. Therefore, the compressors will
have to switch to satisfy the refrigeration load. Thus, the choice of compressors
is a compromise and is usually in favour of a certain operation point. The
result is that a refrigeration plant can experience higher switch frequency of
the compressors at operation point where the composition of the compressor
rack is not aligned with the cooling demand. This phenomenon is known as the
capacity gap problem.

A.3.1 Modelling the refrigeration system

To illustrate the capacity gap problem a slightly modi�ed version of the su-
permarket refrigeration system model from [28] has been adopted. The model
has been changed so that the injection valve can be controlled continuously
and thereby render a better model to illustrate the capacity gab problem. The
model features a refrigeration system with two display cases, a suction mani-
fold, a compressor rack and a condenser. The temperature in each of the display
cases is described by (A.2), where (A.3) describes heat �ow from the surround-
ings and into the display case. The other terms in (A.2) are described in detail
in [28]. The ambient temperature of the display case, Tamb, is assumed constant
since it corresponds to the indoor temperature of the supermarket. To enable
the possibility of a continuously controlled refrigerant �ow the mass �ow into
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the evaporator is modelled using (A.4).

dTair,i

dt
=
Q̇goods−air,i(·) + Q̇load,i(·)− Q̇air−wall,i(·)

MairCp,air,i
(A.2)

Q̇load,i = UAamb · (Tamb − Tair,i) (A.3)

dMr,i

dt
= ODi · α ·

√
Pc − Psuc −

Q̇e
∆hlg

(A.4)

dPsuc

dt
=
ṁin−suc(·)− ṁcomp

Vsuc ∇ρsuc(Psuc)
(A.5)

In (A.4) the opening degree of the expansion valve is denoted by OD, Pc denotes
the condensing pressure, Q̇e denotes the heat removed by evaporation and the
enthalpy di�erence across the two-phase region is denoted by ∆hlg. For details
about the modelling of Q̇e and ∆hlg see [28]. The suction pressure is the only
common state for all of the display cases, the suction manifold and the compres-
sor, and its dynamics can be described by (A.5). In (A.5) the refrigerant density
is denoted by ρsuc and ∇ρsuc denotes the pressure derivative of the refrigerant
density.

The mass �ow rate into the suction manifold, ṁin−suc is described by:

ṁin−suc(Mr,i, Twall,i, Psuc) =

N∑
i=1

Q̇e,i(·)
∆hlg(Psuc)

(A.6)

The temperature, Te, denotes the evaporation temperature. As explained in
[28] ∆hlg, ρsuc and ∇ρsuc are all refrigerant speci�c functions.

The compressor rack is described by the following equation:

ṁcomp = Cap · 1

100
· ηvol,i · V̇sl,i · ρsuc (A.7)

In (A.7) Cap denotes the running compressor capacity of the rack, the volumet-
ric e�ciency is denoted by ηvol, and the swept volume �ow rate is denoted by
V̇sl. The condenser model contains no dynamic, it only de�nes a static condens-
ing pressure and a static sub-cooling, which suggests an assumption that the
condenser is controlled well enough to keep a constant condensing pressure and
a constant sub-cooling.

A.3.2 Controller setup

The control setup is comprised of a temperature controller for each of the display
cases which manipulate the opening degree of the expansion valve, ODi, and a



A.4 Compressor capacity gap problem 49

suction pressure controller that manipulates the running compressor capacity.
The temperature controllers and the suction pressure controller are implemented
as PI controllers. However, to emulate a rack of compressors a discretization is
required. This is achieved by de�ning the compressor rack as being comprised
of two compressors. Generally the Cap in (A.7) has the following form:

Cap =

i=N∑
i=1

δiCapi (A.8)

with δi ∈ {0, 1} and
∑N
i=1 Capi = 100%. In our application N = 2, Cap1 = 45%

and Cap2 = 55%. To avoid excessive switching of the compressors a hysteresis
band is applied around each compressor step. The layout of the compressor
rack is based on a real supermarket system which has the same layout of the
compressor rack.

A.4 Compressor capacity gap problem

The compressor rack is comprised of n parallel-coupled compressors. Each of
the compressors can supply an individual amount of cooling capacity, wi, while
operating. Hence, the total cooling capacity of the compressor rack is given by:

Ψrck = W · uδ (A.9)

The cooling capacity generated by the compressor rack, Ψrck, is described as the
vector product in (A.9), where W is a row vector given as W = [w1, w2 . . . wn]
and uδ is a column vector given as uδ = [δ1, δ2 . . . δn]T , where δi ∈ {0, 1} denotes
the switch states of the compressors. Hence, Ψrck is quantised and can only
assume a number of values de�ned by the compressor sizes and the allowed
combinations of compressors which are depending on the chosen switch pattern.
Therefore to satisfy the required cooling capacity, Ψreq, the controller will have
to select the optimal compressor combination. Since Ψreq is not measurable the
controller will have to rely on other measurements as feedback. Assuming Ψ̃req

can be used as an indirect measure of Ψreq, the control law, for the compressor
rack with two compressors, can be described as follows:

Ψrck(n) =


ψ1 if Ψ̃req <

ψ2−ψ1−h
2

ψ2 if Ψ̃req >
ψ2−ψ1+h

2

else Ψrck(n− 1)

(A.10)

The possible compressor combinations are denoted as ψi, and h denotes the hys-
teresis threshold. The values of Ψrck are given by the set of possible compressor
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combinations S = {ψ1, ψ2 . . . ψp}, i.e. Ψrck ∈ S, hence the compressor capacity
gap problem will arise when Ψreq /∈ S. The use of an indirect measurement
does also generate part of the problem. The assumption of Ψ̃req being an indi-
rect measurement of Ψreq does not hold under all circumstances. The indirect
measurement can be described by (A.11),

Ψ̃req = Ψreq + ε (A.11)

where ε denotes the disturbances in the system. In refrigeration systems where
both ε ≥ h and Ψreq /∈ S the control law in (A.10) will be compromised. The
compressor capacity gap problem exits when the demanded cooling capacity
cannot be satis�ed by a single combination of the compressors. The problem is
then to decide when to switch to ensure optimal operation. If the refrigeration
system only has one display case the control problem becomes more simple
since the compressors then can be controlled based on the temperature in that
display case. However, when the system has more than one display case it will
not be feasible to base the control for the compressors on a single temperature
measurement. A common approach is to use the suction pressure as control
variable, because it is a common variable for all of the display cases, as shown
in Fig. A.1. Another argument for using the suction pressure is that it can
be used as an expression of the load on the refrigeration system. However, the
correlation between load and the suction pressure only holds in situations where
the controller for the compressor is in steady state. Hence, the controller will
not be able to maintain steady state when the actual load of the refrigeration
system is in a capacity gap. Thus, the common control approach is not suitable
in these situations because using the suction pressure as control variable will
generate excessive switching under these circumstances. The control problem
in a capacity gap therefore calls for another control strategy.

A.5 Performance indicators

For the supermarket refrigeration system the main performance criteria are food
quality and power consumption. In addition, component wear is an important
issue as it can reduce the component life time or increase the required service
for the component.

The food quality criteria can be addressed by the temperature error in the
display cases and supported by the error for the suction pressure. To address
the remaining performance criteria COP can be considered as a performance
indicator. However, neither the COP nor the temperature and pressure control
errors cover the reliability criteria which are needed to address the compressor
capacity gap problem. One way of capturing the problem arising from the
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quantisation in the compressor rack is to measure the switch frequency of the
combined compressor rack. The switch frequency will increase if the desired
compressor capacity lies within a capacity gap of the rack.

The switch frequency is not su�cient to describe the performance of the
refrigeration system. Thus, the control error for the temperature controller
will also be used as a performance indicator. To ensure a su�cient temperature
di�erence the controller error for the suction pressure is also used as performance
indicator.

To capture the performance problems for a refrigeration system the perfor-
mance index will have to be based on a number of performance indicators. The
performance criterion with respect to food quality is represented by the control
error for the temperature controllers. In addition, the food quality performance
is also represented in a more indirect way by the control error for the suction
pressure. To address the second performance criterion, which is power consump-
tion, COP is used. The COP is used as a performance indicator instead of the
power consumption because the COP is also considering the generated cooling
capacity. However, since the COP will increase when the relative cost is low it
is the inverse of the COP that will be used in the performance function. The
switch frequency is used to address the performance criteria of compressor wear.

The control errors are gathered in a vector, e, where the elements are de�ned
as follows:

e1 = Tref,1 − Tair,1 (A.12)

e2 = Tref,2 − Tair,2 (A.13)

e3 = Psucref − Psuc (A.14)

The COP and the switch frequency can not be considered as control errors, they
are however still included in the performance function.

J(t) =

N∑
i=1

||e(i)||2Q +

N∑
i=1

|| 1

COP (i)
||2R +

N∑
i=1

||fsw(i)||2S (A.15)

In (A.15) Q, R and S are the weights on the di�erent terms. Choosing the
weights is not a trivial task and it has to be done considering the importance of
each term in the speci�c application. In addition, it has to be considered what
the outcome of the performance function is used for. If the outcome of (A.15)
is used for supervisory control of the plant, it will be important to choose the
weights so that the �rst term in (A.15) is not given too much importance. The
reason is that the task of minimizing the control errors should not be the main
task of a supervisory controller, and in addition the task is already maintained
by local controllers. Thus, choosing the weights to favour the second and third
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term in (A.15) is recommendable. Choosing the ratio between the weights R
and S can also be a di�cult task which can only be based on knowledge of the
plant. Since neither COP nor the switch frequency are controlled elsewhere,
su�cient weights are necessary if a high COP and a low switch frequency are
desired.

A.6 Scenarios for the compressor capacity gap
problem

This section presents results that describe di�erent scenarios for the compressor
capacity gap problem. The purpose of this section is to illustrate the compressor
capacity gap problem. To justify the existence of the compressor capacity prob-
lem, the �rst scenario will be based on data from a real supermarket refrigeration
system. The following scenarios are based on simulation results.

A.6.1 Scenario one

The �rst scenario, which is based on �eld data from a supermarket system
in operation, shows how a di�erence in operation condition can change the
switching behaviour of the compressor rack. The data are captured around
closing time of the store and the reason for the change in operation point is
that night covers are placed on the display cases to reduce energy consumption
outside opening hours of the supermarket. The top plot of Fig. A.2 shows the
suction pressure with a blue curve and the reference with a dashed red curve.
The plot clearly shows that there is a signi�cant change in the operation point
for the compressor rack controller around 2600 minutes. The bottom plot of Fig.
A.2 shows the running compressor capacity of the entire compressor rack, and it
can be seen that the average capacity drops signi�cantly around 2600 minutes.
However, since the compressor rack is comprised of two compressors which are
representing 45 % and 55 % of the compressor rack's full capacity, respectively,
the change in operation point causes an increase in compressor switching.

To illustrate the compressor capacity gap more clearly the data from the
supermarket has been used to calculate the performance using (A.15) with small
modi�cations. The term in (A.15) which penalises the control error is only
comprised of the suction pressure control error due to lack of temperature data.
The lack of the temperature control errors is not considered an issue, since it
is a fair assumption that the temperature errors will be kept constant in this
scenario. Fig. A.3 shows two performance indices for the data from a real
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Figure A.2: Pressure and running compressor capacity, including the transition
in operation point due to the closing of the supermarket

Figure A.3: Performance index for a real supermarket system, including the
transition in operation point due to the closing of the supermarket
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supermarket. The blue curve is generated by using the performance function
(A.15) and the dashed red curve shows the results for the same performance
function but with omitting switch frequency term. The latter corresponds to
the traditional evaluation of the performance of a refrigeration plant. From Fig.
A.3 it can be seen that the dashed red curve experiences a small decrease around
the change of operation point. However, the blue curve increases signi�cantly
after the change of operation point. Hence, introducing the switch frequency
term in the performance index can change the conclusion regarding the overall
performance signi�cantly.

A.6.2 Scenario two

The purpose of the second scenario is to emulate the e�ect of applying night
covers to the display cases, as described using real data in A.6.1, by using the
simulation model. Thus, the UAamb is stepped for each of the display cases from
4000 [J/s·m] to 3500 [J/s·m], which corresponds to a reduction in the load. Hence,
a decrease in compressor capacity is expected which can be veri�ed in Fig. A.4
where the top plot shows the suction pressure and the bottom plot shows the
running compressor capacity. Although the negative step in UAamb corresponds

Figure A.4: Sunction pressure and compressor capacity with compressor capac-
ity gap problem, and step in UAamb at 13000 seconds

to a reduction in the load, it cannot be expected to change the outcome of the
cost function signi�cantly except from the change that can be achieved from a
change in switch frequency. Fig. A.5 shows the two cost functions, where the
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dashed red curve is the cost function without the switch frequency term, and
the blue curve is the cost function, where the switch frequency is included. As
expected there cannot be seen a signi�cant change on the dashed red curve after
the step in UAamb. However, a small increase in cost can be seen from the blue
curve which is due to an increase in switch frequency of the compressor rack.

Figure A.5: Cost function with capacity gap problem, and step in UAamb at
13000 seconds

A.6.3 Scenario three

In the third scenario the suction pressure reference is increased which should
give an increase in COP and lower the required running compressor capacity.
Hence, intuitively a decrease of the performance function is expected from the
simulation. However, because the change in set point for the suction pressure,
the system is forced into another operation point for the compressor rack con-
troller, which results in an increase in switch frequency of the compressors. Fig.
A.6 shows the simulation results from the third simulation. As expected the
running compressor capacity is reduced signi�cantly when the suction pressure
reference is changed from 2e5 [Pa] to 2.42e5 [Pa] which corresponds to a change
in evaporation temperature from 263.15K to 268.15K for the refrigerant R134a.
The COP of the system is increased when the suction pressure is increased and
the condensing pressure is kept constant. However, changing the operation point
of the compressor rack to a less fortunate operation point increases the switch
frequency. Fig. A.7 shows the two cost functions where the dashed red curve
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Figure A.6: Suction pressure and compressor capacity with compressor capacity
gap problem, and step in the suction pressure reference at 25000 seconds

Figure A.7: Cost functions with the capacity gap problem, and step in the
suction pressure reference at 25000 seconds
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shows the cost function, where the switch frequency term is omitted, and the
blue curve shows the cost function, where the frequency term is included. It can
be seen that the two curves will lead to two di�erent conclusions based on the
change of the suction pressure reference. The dashed red curve clearly implies
that raising the suction pressure reference will decrease the cost of the opera-
tion. The blue curve, on the other hand, implies that the cost of the operation
is indeed increased when the suction pressure reference is increased.

A.7 Conclusion

The main purpose of this paper was to highlight the importance of the choice
of appropriate performance measures as these have a profound impact on the
quality of corresponding monitoring system's assessment results. To elaborate
on this topic the compressor capacity gap problem from the supermarket re-
frigeration systems has been employed. It is shown, through the use of both
real-life �eld data as well as a simulation model, that choosing the appropriate
performance measures is essential in order to capture the potential performance
degradation. The paper introduced performance measures that covers quality,
energy and to some extend reliability. The quality measure was constructed
through the use of temperature deviations from the reference, and COP was
used as an indicator for energy consumption. The reliability measure was par-
tially covered by including the compressor switch frequency as a performance
indicator. The three performance indicators where used in a performance func-
tion to show the extend of the compressor capacity gap problem.
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Abstract: This paper addresses the problem of determining whether a re-
frigeration plant has the possibility of delivering a better performance of the
operation. The controllers are well-known but detailed knowledge about the un-
derlying dynamics of the refrigeration plant is not available. Thus, the question
is if it is possible to achieve a better performance by changing the controller
parameter. An approach to active system monitoring, based on active fault
diagnosis techniques, is employed in order to evaluate changes in the system
performance under operation.

Keywords: Performance assessment, Performance optimisation, Active system
monitoring, Refrigeration systems

B.1 Introduction

The operation quality of a supermarket refrigeration system is crucial to ensure
the pro�t of the supermarket because the system enables sale of refrigerated
goods and furthermore the running cost of the system is considerably high.
Thus, ensuring high operation quality of the refrigeration plant is important.
Achieving optimal performance requires performance measurement, assessment
and possibly adjustment of the control system. In addition, determining a pos-
sible improvement potential is required. [13] presents an adequate performance
function which captures the main features of the system. To utilise the results
for recon�guration of the controllers the improvement potential for the particu-
lar plant has to be evaluated. This paper describes a method that can be used
to determine the improvement potential that the control system will be able to
deliver, with respect to the operation quality.

The usual way to evaluate the operation performance of a given plant is to
compare the achieved performance against a predetermine benchmark. These
techniques require a model of the benchmark and are therefore hard to handle in
applications where the knowledge of the system under assessment is restricted.
This situation is exactly what the industry for supermarket systems are faced
with. The design of control software is usually done without exact knowledge
of the layout of the refrigeration plant.

Assessing performance based on a model of the system under assessment
has been done in a large number of publications. In, [16], [41], [22], [17] and
[36], the minimum variance benchmark is used to assess the performance and
even though the minimum variance benchmark is considered to be a data driven
method in the literature it does require a benchmark model. In [46] a model-
predictive control benchmark is introduced. Common for these publications are
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that they all assume that enough information about the system is present, at
the design phase for the assessment scheme, to derive a model.

This paper shows that the need of a model can be circumvented by utilising
the fact that full knowledge about the controller is given at the design phase
for the assessment scheme. In addition, the question that should be answered
is whether the performance can be improved by changing controller parameters
for a particular plant operating under a particular set of conditions. Answering
that question has much higher value than determining whether an achieved
performance is worse than some theoretical level.

In section B.2 the problem is formulated and described and the new approach
is described in B.3. The basic supermarket refrigeration system is described in
B.4. An illustrative example is presented in B.5 along with a description of
the model used for simulating the supermarket refrigeration system. Section
B.6 presents results from di�erent test scenarios and the paper ends with a
discussion in B.7.

B.2 Problem formulation

The main problem is to assess whether a certain closed loop subsystem has
the parameter freedom to improve the overall performance of the entire system.
Therefore, to address this problem a performance measure for the entire system
is needed along with a method for determining the parameter freedom. A re-
frigeration system for a supermarket will most of the time run in steady state,
hence not all parameter changes will be observable from the measurements or
the performance measure. Thus, to ensure that the parameter changes will a�ect
the behaviour of the measurements and thereby also the performance measure,
excitation of di�erent closed loop controlled subsystems is required.

A refrigeration system for a supermarket can be divided into a number of sub-
systems. The di�erent subsystems in�uence the operation of each other in both
positive and negative direction. Therefore, the evaluation of both a local and
global performance is important, because evaluation of the local performance is
not the same as evaluating the global performance. Changing the parameters in
the controller for a speci�c closed loop might deteriorate the local performance.
However, that does not necessarily imply that the global performance will also
deteriorate.

The evaluation of the performance should ideally be done using as little
knowledge about the system as possible. That is due to the fact that the struc-
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ture of the control system is usually designed without any speci�c knowledge
about the particular refrigeration system, i.e. detailed knowledge about the un-
derlying system dynamic is basically non-existent. However, full description of
all the utilised controllers are available. Therefore, basing the performance eval-
uation on the knowledge about the nominal controllers and omitting a reference
model of the refrigeration system would be the ideal solution.

B.3 New Setup

The aim is to assess whether it is possible to improve the overall system per-
formance. The approach to determine the improvement potential will be based
on the performance measure introduced in [13]. As mentioned earlier a refrig-
eration system is usually operating in steady state conditions and will therefore
not be a�ected by a change in a controller parameter unless the dynamics of
the system is excited. A simulation model will be used to select a probe signal
that can be used to evaluate the performance change created by a parameter
change in the controller. The probe signal has to be designed to generate enough
variations on the performance measures to enable an evaluation of a parameter
change, but without compromising the operation of the refrigeration plant.

A block diagram of the setup can be seen on �g. B.1, which illustrates
a closed loop under assessment plus the global performance measure and the
detector. The parameter change of the controller K is denoted by ∆ξ and η
denotes the excitation signal. The control input to the system is denoted by u
and J denotes the performance measure which is directly used as residual by
the detector to decide whether a given parameter change, ∆ξ, has changed the
overall performance measure. The input to the performance measure, from the
other subsystems, is denoted by Γ.

B.3.1 Performance indicators

The performance indicators are basically chosen to cover three performance
criteria which are food quality, energy e�ciency and actuator life time. The
indicator for food quality are the control errors, of the temperature controller
in the display cases and the suction pressure controller, which are gathered in a
vector described in (B.1).

e =
Tref,i − Tair,i

Psucref − Psuc
(B.1)
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Figure B.1: Active performance assessment setup

The coe�cient of performance, COP , which is described by (B.2), is used as an
indicator for energy e�ciency.

COP =
Qcool[w]

Wref [w]
, (B.2)

In (B.2) the delivered cooling capacity is denoted by Qcool and the electrical
energy supplied to the refrigeration plant is denoted byWref . The indicator with
respect to actuator life time is the switch frequency of the compressors in the
compressor rack, which is denoted by fsw. It is used as a simple indicator since
switching of compressors reduces the life time of the compressors. Combining
the three di�erent performance indicators in a single performance function yields

J(t) =

K∑
k=1

||e(k)||2Q +

L∑
l=1

|| 1

COP (l)
||2R +

M∑
m=1

||fsw(m)||2S (B.3)

where Q, R and S denotes the weights that determine the impact of each term
on the performance function. Since the COP is a number that will increase
with e�ciency the inverse is used to ensure that minimising the performance
function is still the target. The choice of weights has to be done with respect to
the application under investigation. The choice of weights will have a signi�cant
in�uence on which parameter changes can be detected using reasonable size
of both the excitation signal and the parameter changes. In other words, the
weights determine the de�nition of optimality for a particular system and should
therefore be chosen with care. Even though the weights are usually chosen based
on empirical knowledge they should not be considered as tuning parameters for
the detector.

||e||2Q = eTQe (B.4)
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B.3.2 Active performance assessment

To ensure an adequate result from the excitation of the system some consid-
erations have to be done to design the excitation signal η. Since the task of
the excitation signal is to excite the dynamics of the controller and the system
the frequency range of the signal has to be chosen with care. If the excitation
signal is too fast the e�ect will not be visible on the output because of the low
pass �ltering e�ect of the closed loop system. In contrast if the frequency is
chosen too slow it will not be possible to detect the change within reasonable
time. In addition, the impact on the operation of the system should be minimal
since the excitation is carried out under normal operation of the system. Hence,
the operation quality must not be compromised. In this paper a sinusoid signal
has been chosen, however any periodic signal with appropriate frequency and
amplitude properties can be used. The excitation signal is given by:

η = A · sin(ωt) (B.5)

The choice of the frequency, ω, for the excitation signal is important for the
method to work. It is worth mentioning that the frequency of the excitation
signal should lie within the bandwidth of the closed loop both before and after
the parameter change to ensure that the in�uence of the signal is not �ltered
away by the closed loop. However, since the bandwidth of the closed loop is
unknown a conservative choice of both the excitation signal frequency and the
size of the parameter change is recommended.

B.3.3 Detector

To ensure that a signi�cant change in the performance measure has occurred a
statistical change detector has been used. In addition, a statistical method is
applied to ensure that a decision can be made with con�dent and without the
need of unreasonable amplitude of the excitation signal η. The detector has to
decide between two hypothesis which can be formulated as,

H0 : J̄0 + w[n] (B.6)

H1 : J̄1 + w[n] (B.7)

where w[n] denotes a noise contribution and J̄0 and J̄1 denoted the initial mean
value of the performance function and the estimate of the unknown change in
mean of the performance function respectively. The outcome of this simple
hypothesis test will only be that a change has occurred. To evaluate whether
the performance has been improved or degraded a separate test will have to be
applied. The test will be to check if J0 > J1 or J0 < J1 is true. If J0 > J1
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is true the performance of the system has improved and an �ag will be set
to 1. In contrast if J0 < J1 true the performance has been degraded by the
parameter change and the alarm state will therefore be set to −1. When the
system dynamics is excited and a parameter in the controller has been changed
then the detector has to

a) detect whether a signi�cant change in the performance measure has been
created by the parameter change and

b) determine whether the performance has been improved or degraded.

To ful�ll the detection task stated above a statistical test method is needed due
to the presence of noise. A well known test that can cope with detecting an
unknown change in mean value is the generalised likelihood ratio test, (GLRT),
see [24]. Oppose to the cumulative sum, see [5], which requires knowledge about
the mean value after the change has occur, that knowledge is not required by
the GLRT. In addition, a bi-product of the GLRT is an estimate of the mean
values, which can be used to determine if an improvement or a degradation has
been detected. Basically the GLRT decides H1 if the likelihood ratio, LG, in
(B.8) crosses the threshold, γ.

LG(J) =
p(J ; J̄1,H1)

p(J ; J̄0,H0)
> γ (B.8)

In (B.8) p(·) denotes the probability density function. The probability density
function is given by:

p(J ; J̄i,Hi) =
1

2πσ2
exp

[
− 1

2σ2

N−1∑
n=0

(J(n)− J̄i)2

]
(B.9)

where i ∈ {0, 1} and N , σ2 denotes the window size and the variance, respec-
tively. To ensure the theoretical performance of the detector it is necessary to
assume that ω in (B.6) and (B.7) is white Gaussian noise to ful�ll the condi-
tions for the GLRT. The ful�lment of that condition has not been treated in
this paper. In addition, it is not considered to be an issue in this application of
the GLRT, since the performance of the detector is non-critical. The choice of
the threshold, γ, is usually a tradeo� between time to detect and probability of
false alarms when the detector is used in a normal fault detection application.
The threshold, γ, can be computed to �t a desired probability of false alarms
by utilisation of a right-tail function, for details see [24] chapter 6. However,
the use of the detector proposed in this paper requires another way of thinking
of the quality of the detector. In the proposed setup missing an alarm is not
hazardous and the notion of �ring a false should also be reconsidered. Missing
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an alarm is not an issues in this setup because it is known when the parameter
change in the controller happens. Hence the detector will only be active when
a change in the performance measure is expected. On the other hand �ring a
false alarm is not a problem because as mentioned before the detector will only
be active when a change is expected. Even though the normal tradeo� prob-
lem does not apply, it is of course still the target to chose γ so that the noise
level in the performance function cannot trigger an alarm. In addition, it will
still be desirable to chose a γ that enables the detector to �re an alarm within
reasonable time of the parameter change that the detector is trying to detect.
The threshold can be chosen relatively defensive with respect to the probability
of false alarms because time to detect is not critical. The probability of mak-
ing the wrong decision based on an alarm is more relevant in this application
of the GLRT, since it implies that a parameter change that deteriorates the
performance can be interpreted as a performance improvement.

B.4 Supermarket refrigeration setup

The supermarket refrigeration setup, which can be seen on �gure B.2, is com-
prised of a number of display cases, a compressore rack and a condensing unit.
The display cases are where the stored good are refrigerated and the condensing
unit is where the heat removed from the stored goods is emitted to the sur-
roundings. The compressors generates the �ow of refrigerant and the control
task for the compressore rack is to maintain a certain saturation temperature
for the refrigerant. The saturation temperature determins the cooling capacity
of the display cases. The temperature in each of the display cases is control by
the inlet valve. The condensing pressure is controlled by fans to ensure that
the heat can be transfered to the surroundings. The control of the saturation
temperature is achieved by switching the compressors on or o�. Hence, to avoid
excess switching of the compressors their sizes should ideally be chosen to match
the common load of the system with a �x number of compressors. However, the
compressors cannot be chosen to �t the load exactly in practice. Thus, the com-
pressors will have to switch on and of to accommodate the required refrigeration
load. The supermarket refrigeration can be abstracted as a number of subsys-

Figure B.2: Simpli�ed supermarket refrigeration layout

tems. The division into subsystems can be done as follows. Each display case
including its control comprises one subsystem. The compressor rack including
control is another subsystem and the condenser unit include the fans and the
control is the third subsystem.
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B.5 Illustrative example

To illustrate the performance assessment problem introduced in section B.2 a
model of a refrigeration system is needed. The model setup given in [13], which
is based on the model presented in [28], will be described shortly. In this model
a refrigeration system comprised of; two display cases with individual inlet valve
and temperature control, a compressor rack containing two compressors, and a
condensing unit which is assumed to be able to keep the condensing pressure
perfectly stable. The air temperature in the display cases can be described by
(B.10), where the heat �ow from the display case and to the surrounding air
can be expressed by (B.11). The refrigerant mass �ow rate into the ith display
case is model by (B.12), where OD, Pc, Psuc, Q̇e and ∆hlg denotes the opening
degree of the valve, the condensing pressure, the suction pressure, the heat
removed by the evaporator and the enthalpy di�erence across the two-phase
region, respectively. For details about the calculation of the unmentioned terms
see [28].

dTair,i

dt
=
Q̇goods−air,i(·) + Q̇load,i(·)− Q̇air−wall,i(·)

MairCp,air,i
(B.10)

Q̇load,i = UAamb · (Tamb − Tair,i) (B.11)

dMr,i

dt
= ODi · α ·

√
Pc − Psuc −

Q̇e
∆hlg

(B.12)

dPsuc

dt
=
ṁin−suc(·)− ṁcomp

Vsuc ∇ρsuc(Psuc)
(B.13)

The common state between the display cases, the suction manifold and the com-
pressors, is the suction pressure, Psuc,for which (B.13) describes the dynamics.
The refrigerant density and the pressure derivative of the refrigerant density is
denoted by ρsuc and ∇ρsuc, respectively in (B.13). The mass �ow rate into the
suction manifold, ṁin−suc is described by:

ṁin−suc(Mr,i, Twall,i, Psuc) =

N∑
i=1

Q̇e,i(·)
∆hlg(Psuc)

(B.14)

The mass �ow rate generated by the compressor rack is describe by

ṁcomp = Cap · 1

100
· ηvol,i · V̇sl,i · ρsuc, (B.15)

where Cap is the total running compressor capacity of the rack and ηvol and V̇sl
is the volumetric e�ciency and the swept volume �ow rate, respectively. No
dynamics of the condenser is modelled, it simply de�nes the high pressure as
being static. Hence, the condenser is assumed to be able to maintain a constant
pressure and a constant sub-cooling.
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The controllers for the display cases and the compressor rack are PI con-
trollers and can be described by the following equations,

OD(t) = kc,od · (Tref,i(t)− Tair,i(t)) +
1

Ti,od
·
∫ t

0

(Tref,i(τ)− Tair,i(τ))dτ (B.16)

Capreq(t) = kc,comp · (Psucref(t)− Psuc(t)) +
1

Ti,comp
·
∫ t

0

(Psucref(τ)− Psuc(τ))dτ

(B.17)
where kc,od, kc,comp and Ti,od, Ti,comp denotes the proportional gain and the in-
tegration time respectively. In (B.16) the desired temperature in the ith display
case is denoted by Tref,i and the measured air temperature is denoted by Tair.
The reference and the measured suction pressure is denoted by Psucref and Psuc

respectively. The requested compressor capacity is in (B.17) denoted by Capreq
which is used by the distributer algorithm to decide the compressor combination
by determining the values of δ ∈ {0, 1} in (B.18).

Cap =

i=N∑
i=1

δiCapi (B.18)

In (B.18) N is the number of compressors in the rack and Capi denotes the
capacity of the ith compressor.

After introducing the system model an illustrative example will be presented.
Passive detection methods relay on a change in the system that causes a change
in the residual.However, in the performance assessment case it is not guaranteed
that a change in a controller parameter will a�ect the performance indicators
since a refrigeration system usually operates in steady state. In addition, due to
a substantial amount of measurement noise the detectors have to be robust with
respect to the noise level. Without any excitation of the refrigeration system the
a�ect on the performance measure becomes undetectable, which is illustrated
by Fig. B.3, where the top plot is the cost function, the middle plot is the test
statistics and the bottom plot is the controller parameter kc,od for one of the
display case controllers. The same parameter change is carried out at 20000
and 50000 seconds and it is clear to see that the performance change is not
visible without excitation. Fig. B.4 is a plot of the temperature in the display
case for which the controller parameters are changed. The signal in the �gure
shows that the parameter change in the controller is visible only in the case
when the system is excited. To ensure that a parameter change is detectable
and can be distinguished from in�uences on the performance measurement, in
presence of signi�cant noise, excitation of the system will be required, as well
as employment of appropriate statistical detection methods.
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Figure B.3: Change in the performance function, ∆J = J − J̄0, likelihood ratio,
LG(J), and controller gain Kc,od. Simulation without and with excitation of
the system. Controller parameters changed at 20000, 30000 and 50000 seconds.
Excitation started at 41000 seconds
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Figure B.4: Air temperature in the display case when the parameters are
changed. Simulation without and with excitation of the system. Controller
parameter changed at 20000, 30000 and 50000 seconds. Excitation started at
41000 seconds
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B.6 Test scenarios for the active performance as-
sessment

In this section two di�erent scenarios will be shown to illustrate the use of
active performance assessment for supermarket refrigeration systems. In the �rst
scenario the parameters, kc,od and Ti,od, of one of the display case controllers has
been changed to improve the operation performance of that particular display
case. On Fig. B.5 it can be seen that the variations of the temperature declines
signi�cantly after the parameters have been changed in the controller. Since the
control error of the temperature controller in the display case are represented
in the performance measure a visible change can be expected. Fig. B.6 shows

Figure B.5: Air temperature from a display case when the parameters of the
controller is changed at 17000 seconds improve the performance.

change in the performance measure on the top plot, the middle plot shows the
likelihood ratio and the bottom plot is the �ag state. It is clear to see that a
change in mean value of the performance measure has occurred. In addition,
from the �ag state it is possible to verify that the change in performance is an
improvement because the �ag changes from 0 to 1, a degradation of performance
will result the �ag state going to −1.

In the second scenario the parameters are changed to degrade the perfor-
mance to illustrate that the detector can also handle deterioration of the per-
formance. On Fig. B.7 it can be seen that the temperature variation clearly
increases when the controller parameters are changed at 17000 seconds. Fig.
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Figure B.6: Change in the performance function, ∆J = J − J̄0, likelihood
ratio, LG(J), and the �ag when the controller parameters are changed at 17000
seconds to improve the system performance.

Figure B.7: Air temperature from a display case when the parameters of the
controller is changed at 17000 seconds to degrade the performance.
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B.8 shows the change in the performance on the top plot, the second plot is
the likelihood ratio and the bottom plot is the �ag state. It is clear to see that
a change in mean value of the performance measure has occurred. In addition
from the �ag state it is possible to verify that the change in performance is a
degradation of performance because the �ag changes from 0 to −1.

Figure B.8: Change in the performance function, ∆J = J − J̄0, likelihood
ratio, LG(J), and the �ag when the controller parameters are changed at 17000
seconds to degrade the system performance.

B.7 Discussion

The paper proposed an approach for active performance assessment, based on
active fault diagnosis techniques, in order to online optimize the overall sys-
tem performance under operation. The approach is appealing for industrial
applications where the knowledge about the underlying system dynamics is not
available. The approach was justi�ed by a illustrative example and the new
setup was tested on di�erent parameter changes of closed loop controlled sub-
system of a supermarket refrigeration system. The approach presented in the
paper governs the use a performance function introduced in [13] and the used
of a statistical test method for detection of a change in the performance in-
dex. The method solely based on measured signals and does not depend on
the existence of a model of the system under assessment. Future research will
focus on utilising the method for systematic optimisation of the performance of
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a supermarket refrigeration plant.
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Abstract: This paper investigates how the excitation signal should be chosen
for a active performance setup. The signal is used in a setup where the main
purpose is to detect whether a parameter change of the controller has changed
the global performance signi�cantly. The signal has to be able to excite the dy-
namics of the subsystem under investigation both before and after the parameter
change. The controller is well known, but there exists no detailed knowledge
about the dynamics of the subsystem.

Keywords: Performance assessment, Performance optimisation, Active system
monitoring, Refrigeration systems

C.1 Introduction

In the fault diagnosis literature active fault diagnosis schemes has been intro-
duced in the papers [33] and [39]. The governing idea in these papers is that a
probe signal is used to excite the system

In previous papers like [33], [39], [35], and [21] only rough guideline are given
about the design of the excitation signal.

The main problem is to assess whether a closed loop subsystem has the
parameter freedom to improve the overall performance of the entire system.
Hence, global performance measure is needed along with a method that can
explore the parameter freedom.

A refrigeration system for a supermarket will usually run in steady state.
Thus, the performance measurement will not be sensitive to all parameter
changes. Therefore, excitation of the di�erent closed loop controlled subsys-
tem will be required to ensure that the changes in the controller parameters can
be observed from the performance measure.

In this paper a design method for the excitation signal is presented. The idea
is to present a consistent way for choosing the frequency for excitation signals
for active fault diagnosis system, especially when the techniques are used in a
performance assessment.

In following section the active fault diagnosis setup used for performance
assessment will be described followed by a problem formulation. Thereafter the
problem of designing a excitation signal for the setup will be described. Section
C.5 explains the proposed design procedure. Simulation results using di�erent
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excitation signals will be presented and at the end of the paper a discussion is
presented.

C.2 New Setup

In this section the new setup for active system monitoring will be described. The
aim is to assess whether it is possible to improve the overall system performance.
The approach to determine the improvement potential will be based on the
performance measure introduced in [13] and is elaborately described in [15].
The performance measure is described by (C.1)

J(t) =

K∑
k=1

||e(k)||2Q +

L∑
l=1

|| 1

COP (l)
||2R +

M∑
m=1

||fsw(m)||2S (C.1)

The �rst term is representing the food quality by the control errors in K con-
trollers and the second term is a measure of the e�ciency of the plant using
the inverted coe�cient of performance, COP , where L denotes the number of
suction groups in the refrigeration plant. The last term is the switch frequency
of the compressors, where M denotes the number of compressors. The switch
frequency is included to avoid excessive wear on the compressors. However be-
fore the new setup is explained, a small introduction to the supermarket system
will be given.

The common setup for a supermarket refrigeration system can be seen on Fig.
C.1. The system in Fig. C.1 is comprised of a number of display cases, where in

Figure C.1: Simpli�ed supermarket refrigeration layout

the food is stored. These display cases are connected to a compressor rack which
changes the pressure of the refrigerant and thereby enables the condenser unit to
reject the heat to the surroundings. Each display case is �tted with a controller
that ensures the correct temperature inside the display case by controlling the
expansion valve and thereby the �ow of refrigerant into the evaporator of the
display case. The compressor rack is also �tted with a controller which ensures
that the refrigeration system is operation at a speci�c evaporation pressure.

As mentioned earlier a refrigeration system is usually operating in steady
state conditions and will therefore not be a�ected by a change in a controller
parameter unless the dynamics of the system is excited. A simulation model will
be used to select a probe signal that can be used to evaluate the performance
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change created by a parameter change in the controller. The probe signal has to
be designed to excite the closed loop under investigation su�ciently to enable
an evaluation of a parameter change, but without compromising the operation
of the refrigeration plant.

To test whether a closed loop system can a�ect the global performance mea-
sure, the controller parameters are changed during operation. The task of the
detector is to detect the change in the global performance and to decide if the
performance has improved or degraded. To ensure that an excitation signal
will impact the performance measurement even after a parameter change in the
controller the excitation signal has to be designed with respect to the expected
bandwidth of the closed loop.

Fig. C.2 shows a block diagram of the setup, which illustrates a closed loop
under assessment, plus the global performance measure and the detector. The
parameter change of the controller K is denoted by ∆ξ. The control input to
the system is denoted by u and J denotes the performance measure which is
directly used as residual by the detector to decide whether a given parameter
change, ∆ξ, has changed the overall performance measure. The input to the
performance measure, from the other subsystems, is denoted by Γ. The overall
excitation of the subsystem under investigation, ηΣ, can be abstracted by the
following formulation:

ηΣ = ηext + ηw (C.2)

where ηΣ is the sum of all the excitation sources and ηext denotes the exter-
nally applied excitation. The last term, ηw, denotes the excitation contribution
generated by noise sources like the other subsystems in the refrigeration plant.
In some situations the excitation created by the other subsystems will be su�-
cient i.e. ηΣ = ηw because applying ηext becomes unnecessary. Thus, the task
is to choose ηext so that ηΣ has the su�cient impact in the closed loop under
investigation.

C.3 Problem Formulation

Utilising active fault diagnosis methods requires design of dedicated excitation
signals. The excitation signal can be both deterministic and stochastic. If the
knowledge about the excitation frequency can be exploited as in [39] a periodic
signal would be preferable. If a periodic signal is chosen the frequency of the
excitation signal has to lie within the bandwidth of the closed loop system
under investigation. Choosing that signal is not a trivial problem because the
dynamics of the system under investigation is unknown. In addition, since the
scheme relies on changing the controller parameters, the bandwidth of the closed
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Figure C.2: Active performance assessment setup

loop will change over timer. Hence, it has to be ensured that the excitation signal
will be within the bandwidth of the closed loop all the time.

The main topic of this paper is design of the externally applied excitation
signal ηext which is used in the in the new setup for performance assessment.
The task of the signal is to excite the dynamics of the subsystem enough to
assess whether a certain parameter change will a�ect the global performance
measure. Since the aim is that the active performance assessment setup should
run online on a supermarket refrigeration system, compromising the operation
of the system will not be acceptable. Hence, the excitation signal cannot be
chosen without considering the impact on the operation of the plant. In an
industrial application, as the supermarket refrigeration system, their sometimes
exists switching phenomenon that can render an internal generated excitation.
When designing the external excitation signal the properties of the possible
internal excitation will have to be taken into account. In addition, choosing
the amplitude for the external excitation signal is an online task, because the
internal generated excitation is dependent on the operation point. That is, in
some situation it might not be necessary to apply external excitation. Fault
diagnosis without external excitation is normally called passive fault diagnosis.
However, in this case there is practically no distinction between active and
passive fault diagnosis because the classi�cation relies on an online decision.

Detailed model knowledge regarding the refrigeration plant cannot be used
in the design approach for the excitation signal because it cannot be expected
that there exist a su�cient model for the refrigeration plant. The knowledge
regarding the system under investigation is limited to a structural level. Meaning
that time constants and gain of the subsystems are unknown. This is in contrast
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with the assumptions required for the design methods introduced in [33] and
[39].

C.4 Design considerations

When utilising the proposed new setup for performance assessment it is impor-
tant to note that design of the excitation signal and design of the performance
function are two separate design problems and should be treated separately.
The design of the performance function should focus on expressing the relevant
performance criterion in the system. Hence, the performance function should be
designed with a global system perspective and with expressing the global system
performance as the goal. The design of the excitation signal should be done with
focus on the local closed loops under investigation. In addition, the design of
the excitation signal can actually, as is the case in the refrigeration example, be
constrained by restrictions on the system states. As argued earlier the decision
to apply an external excitation signal, and thereby utilise active fault diagnosis
techniques, has to be made online. This paper will focus on design issues for
the excitation signals. Knowledge about the bandwidth of the closed loop under
investigating cannot be assumed. Therefore, a reasonable estimate will be used
as basis for the design of the excitation signal.

C.5 Excitation signal design approach

The design of the excitation signal has been split into two di�erent tasks. The
�rst task is to determine what frequency range will be appropriate for the exci-
tation signal. The second task is determining the amplitude for the excitation
signal. The two tasks have to be treated with di�erent approaches. The focus in
this paper will be to solve the �rst task. Solving the �rst task requires knowledge
about the bandwidth of the closed loop under investigation and about the noise
that the closed loop is imposed with. However, the bandwidth of the closed loop
subsystems is not known in advance. Hence, the bandwidth of the closed loop
system has to be estimated based on accessible knowledge. The estimation of
the closed loop bandwidth shall be based on the following facts:

1. The closed loop consists of a PI controller and a physical system for which
the dynamics are unknown.

2. The parameters of the PI controller are known.
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3. The controller is stabilising the closed loop.

In addition, some assumptions are needed before we can utilise an alternated
version of the method presented in [19]. The assumptions are:

1. The system can be described su�ciently using a �rst-order model plus
time delay (FOPTD).

2. The closed loop is stable with the chosen PI parameters.

3. The time delay in the system is assumed to be known.

It is experimentally veri�ed that the system dynamics can be su�ciently
described by a FOPTD process model around an operating point. The non-
linearities and un-modelled dynamics have an insigni�cant impact on the closed
loop performance around the usual operating point. Since the PI controller is
stabilising the closed loop the system is a member of the set of systems that the
controller can stabilise. Independent on the chosen criteria any system that is
stabilised by this controller is hence a member of this set. In the following, we
utilise phase and gain margin requirements as start point in order to provide a
quali�ed guess on the system bandwidth. The original expectation is that the
system closed loop bandwidth does not vary signi�cantly with respect to the
system parameter variations. This will be investigated in the next section.

Assuming that the system is described by a FOPDT process model, [19]
proposes a method that provides the parameters for a PID controller, which
ful�ls a given set of speci�cations for gain and phase margin of the closed loop
system. The proposed tuning method has been used in a slightly alternated way
in this paper as described in the following: Knowing the parameters of the PI
controller combined with the assumption that the system time delay is known
the method in [19] is utilised to derive the remaining system parameters. This
is elaborated in the following:

Estimating the bandwidth based on the idea from [19] the setup introduced
in Fig C.2 need to be simpli�ed as shown on Fig. C.3. The system transfer

Figure C.3: Block diagram of the simple closed loop

function G(s), the controller K(s), and the corresponding closed loop transfer
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function H(s) are given as:

G(s) =
kp · e−sL

1 + sτ
, (C.3)

K(s) = kc +
kc
Tis

, (C.4)

H(s) =
KG

1 +KG
. (C.5)

After rewriting of the equations from [19] we can calculate the time constant,
τ , and the gain of the system, kP , using (C.6) and (C.7) respectively. The
crossover frequency is denoted by ωp and the time delay in the system G(s) is
denoted by L. The integration time and the controller gain is denoted by Ti
and kc respectively. The method also requires desired phase margin and gain
margin which is denoted by φm and Am respectively.

τ =

(
1

Ti
+

4 · ω2
p · L
π

− 2 · ωp

)−1

(C.6)

kp =
ωp · τ
Am · kc

(C.7)

The phase crossover frequency is calculated using (C.8)

ωp =
Amφm + 1

2πAm(Am − 1)

(A2
m − 1) · L

(C.8)

Using (C.6) through (C.8) the method has been tested with various values
of the time delay, the phase margin, the amplitude margin. The test has been
done to clarify the dependency of the estimated bandwidth with respect to these
parameters.

In the �rst scenario the time delay of the system has been varied to see how
sensitive the estimated bandwidth would be on variation of the time delay. The
controller parameters kc and Ti and the desire phase and gain margin are kept
the same for all the di�erent time delays. For each time delay a new estimate
of the parameters for the system, G(s), has been calculated and the thereafter
the closed loop transfer function has been calculated. The bode plot of the
closed loop transfer function can then be seen on Fig. C.4. Fig. C.4 shows
that there is a high dependency on the estimated closed loop bandwidth and
the di�erence in time delay. However, the time delay itself can be measured
with high precision by simply applying a small step to the system and then
measuring the time before a response can be seen on the output. Thus, even if
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Figure C.4: Bode plot of the closed loop with di�erent time delay

there is a signi�cant in�uence on the estimated closed bandwidth from the time
delay, it is not considered an issue.

In the second scenario the desired phase margin has been changed to see
the e�ect on the estimated closed loop bandwidth of the system. The controller
parameters kc and Ti are kept constant and the time delay is also chosen to
be the same. The desired gain margin is also kept at a constant value. For
each of the chosen values of the phase margin a new set of parameters has
been estimated for the system G(s). The closed loop transfer function has been
calculated and the bode plots can be seen on Fig. C.5

Fig. C.5 shows the bode plot for di�erent phase margins. It can be seen that
the choice of phase margin does have an in�uence on the estimated bandwidth
for the closed loop system. However, the di�erence in estimated bandwidth
due to di�erent choices of phase margin is negligible. In the third scenario the
desired gain margin has been changed to see the e�ect on the estimated closed
loop bandwidth of the system. The controller parameters kc and Ti are kept
constant and the time delay is also chosen to be the same. The desired phase
margin has been kept constant in this particular scenario.

The di�erence in closed loop bandwidth due to di�erent choice of gain margin
can be seen on Fig. C.6. The larges estimated bandwidth is approximately
three times larger than the smallest estimate. However, the smallest bandwidth
originates from the most defensive choice of gain margin.
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Figure C.5: Bode plot of the closed loop with di�erent choice for the phase
margin

Figure C.6: Bode plot for the closed loop with di�ent choice of the gain margin



C.6 Test results 85

The task is to design the excitation signal ηext, and based on the three
scenarios it can be seen that the proposed method can be used to estimate a
reasonable bandwidth for the closed loop under investigation. Now the question
is how this bandwidth estimate can be used to choose the frequency content
of the excitation signal. Since the task is to design a signal that can be used
in a active performance monitoring setup as the one proposed in the paper
[15]. Since the aim of the active performance monitoring setup is to optimise
the operation of the global performance the excitation signal has to be chosen
within the closed loop bandwidth. That is because that will ensure that the
excitation signal will still be visible on the performance measure. In addition
choosing the frequency around the −3dB for the closed loop will ensure that the
excitation of the closed loop is in the frequency range where the performance
has to be improved. The results of the bandwidth estimation is summaries in
table C.1, which suggests that a choice of 0.03 [rad/sec], as the frequency for
the excitation signal, is reasonable.

Min Max Min bandwidth Max bandwidth
L 6 54 0.0157 0.1297
φm 15 60 0.0252 0.0273
Am 2 4 0.0273 0.0615

Table C.1: Results of the estimated bandwidth

C.6 Test results

In this section some test results will be presented. The tests have been done
using the setup from [15], where the excitation signal has been applied and
after that a change in the controller parameters has been applied. The global
performance is then measured and a detector decides if a signi�cant change
has occurred on the global performance. If that is the case the state variable
output from the detector will go to zero or one. The state variable is discrete
and take the value 0 if no change is detected and 1 if the detected change is
a performance improvement and −1 if the detected performance change is a
degradation. The tests have been done on a simulation model of a supermarket
refrigeration system. The subsystem that has been under investigation is one if
the display cases. The excitation signal that is used is described in (C.9)

ηext = A · sin(ωt) (C.9)
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In the �rst test the combined knowledge gathered from examining the three
scenarios from section C.5 a frequency of 0.03 [rad/sec] has been chosen. Since
this frequency is chosen based on this novel design principle it is expected that
the active performance monitoring setup will work without any problems. The
results of the �rst test can be seen on Fig. C.7. Figure C.7 shows that the

Figure C.7: Testing the active performance setup using an excitation signal with
the frequency of 0.03 [rad/sec]

detector is working as expected with the designed frequency for the excitation
signal. The upper plot in Fig. C.7 shows the change in the performance measure
J and the second plot show the likelihood ratio which is the output of generalised
likelihood ration test. The bottom plot is the state variable. Fig. C.8 shows
the e�ect on the temperature in the display case. It is clear to see that there
is a change in the performance for the better. In addition, the in�uence of the
excitation signal is quite noticeable.

In the second test the same procedure as in the �rst test has been followed.
The only thing that has been changed is the frequency of the excitation signal.
In the second test the frequency of the excitation signal is 0.06[rad/sec]. The
result from the second test can be seen on Fig. C.9. The purpose of this second
test is to justify the importance of choosing the correct excitation signal. Since
the chosen signal is double the frequency of the �rst test the detector is unable
to detect any changes in the performance. The change becomes too small for
the detector setup. On Fig. C.10 the air temperature in the display case for
test two can be seen. It is clear that the system is of course still experiencing
a performance improvement since it is the same parameter change as in test
one. However, the important thing to notice is that by comparing Fig. C.8
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Figure C.8: Air temperature in the display case using an excitation signal with
the frequency of 0.03 [rad/sec]

Figure C.9: Testing the active performance setup using an excitation signal with
the frequency of 0.06 [rad/sec]
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Figure C.10: Air temperature in the display case using an excitation signal with
the frequency of 0.06 [rad/sec]

and Fig. C.10 it is clear to see that the impact of the parameter change is less
visible. Hence, the impact on the global performance measure will also be less
and therefore more di�cult to detect.

C.7 Discussion

A structured approach for choosing the frequency content for the excitation sig-
nal for the active system monitoring setup has been presented. The method
calculates the system parameters for a FOPTD based on the knowledge of the
parameters of the PI controller and the time delay of the system. The system
parameters are then used to give a quali�ed estimate of the closed loop band-
width. The knowledge of the bandwidth is then used to determine the frequency
of the excitation signal. The proposed method has been veri�ed by testing the
results on a simulation of a supermarket refrigeration system. It has been shown
that the method can be used to choose a reasonable signal for the excitation
frequency.
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Abstract: Using a supermarket refrigeration system as an illustrative exam-
ple, the paper postulates that by appropriately utilising knowledge of plant
operation, the plant wide performance can be optimised based on a small set of
variables. Focusing on steady state operations, the total system performance is
shown to predominantly be in�uenced by the suction pressure. Employing ap-
propriate performance function leads to conclusions on the choice of set-point for
the suction pressure that are contrary to the existing practice. Analysis of the
resulting data leads to a simple method for �nding optimal pressure set-point
for given load situations.

D.1 Introduction

In a competitive and global business environment plant-wide performance as-
sessment and optimisation in the process industry have increasingly become im-
portant issues as they have direct impact on the operational costs, energy and
environmental issues. Supermarket refrigeration systems are no exception: One
of the larger operational costs of a supermarket is the refrigeration plant. In a su-
permarket, the refrigeration system accounts for 40% to 60% of annual electrical
energy consumption, see [10]. Furthermore, there are substantial costs related
to component replacement and unscheduled maintenance. In many industrial
systems, it is customary to use over-dimensioned components that provide ex-
cess capacity in order to guarantee that the system functionality is provided
under all conditions, which are in particular caused by non-optimal operational
conditions. For instance, the compressor rack in supermarket systems is typi-
cally made of compressors that can provide up to 50% more capacity than the
supermarket system is actually designed for. Non optimal operation not only
a�ects the cooling e�ciency and food quality but also have direct impact on the
operational lifetime of the components. Proper optimisation tools/methods can
be used to optimise the performance of an operating system. It can also assist
the design engineering group to choose appropriate components of right dimen-
sions/capacities at much more suitable costs in future plants. An appropriate
performance function for plant-wide operation should include contributing terms
that describe the quality of products, system e�ciency, as well as the operating
lifetime of the subsystems. In section D.2.1, a performance function ful�lling
these requirements is proposed. Optimisation of refrigeration system has been
attempted in other papers such as [18] where multi variable control is used to
get at better performance of a vapour compression system. An energy optimal
control approach for refrigeration system is introduced in [23] and in [27] an
online steady state energy minimisation is presented, where the minimisation
is relying on a model of the refrigeration system. In this paper, we utilise an
appropriate performance function, introduced in [13], to assess the system per-
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formance. Since, supermarket refrigeration systems operate in steady state in
the majority of their operating time, as many other plants in process industry, it
is reasonable to separate the steady state condition from the transient one and
then explore the ways to asses and optimise the performance. By employing ap-
propriate performance function and choosing suction pressure as the dominating
variable it is shown that the suggested operating set-points for the suction pres-
sure di�er signi�cantly from the ones that can be obtained by using performance
function that is used in common practice. Furthermore, the knowledge based on
investigating the resulting performance under di�erent load conditions is used
to suggest a simple procedure for identifying the pressure set-point that leads
to optimal operation in steady state conditions. In section D.2 the problem is
de�ned and the performance function is introduced as well as the optimisation
problem. Thereafter, in section D.3 the simulation setup is presented and sim-
ulation results are presented in D.4. The method for set-point optimisation is
then described in D.5 and the paper ends with a conclusion.

D.2 Problem statement

The supermarket refrigeration system operates in steady state in the majority of
time and it is therefore of high importance to always use the optimal reference
for the controllers. The compressor control loop is one of the important con-
trol loops because of the relatively high energy consumption of the compressors.
The control task of the compressors is to maintain a desired suction pressure.
However, choosing a proper suction pressure reference, in refrigeration system,
is critical to provide a certain temperature level of refrigeration. To fully un-
derstand the problem an overview of a supermarket refrigeration system will
be introduced hereafter. In Fig. D.1, a simple diagram for a supermarket re-
frigeration system is presented. The compressors are connected in parallel with
display cases and the condenser unit. The controller structure for the refriger-
ation systems is implemented in a distributed setup where each of the display
cases has a controller that controls the temperature by manipulating the inlet
of refrigerant into the evaporator of the display case. To ensure a su�cient
temperature di�erence in all the display cases, a common evaporation temper-
ature is achieved by controlling the compressors, to deliver a common suction
pressure. The control of the compressor rack is discrete which means that the
compressors can only be switched on or o�. Excessive switching of the com-
pressors is not desirable because it creates super�uous energy consumption and
excessive wear on the compressors. The commonly used strategy is to choose
the suction pressure reference as high as possible. The reason for choosing that
strategy is that a higher suction pressure requires a lower compressor capacity.
However, that strategy does not take the switching phenomenon into account.
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Figure D.1: Simpli�ed supermarket refrigeration layout
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D.2.1 Performance function

The quality of the solution for optimal performance is highly dependent on
which performance criteria are included in the performance function. The rele-
vant performance criteria for supermarket refrigeration systems are food quality,
energy e�ciency and reliability. Monitoring of the food quality is achieved by
including the control errors of the temperature controllers and the suction pres-
sure controller in the monitoring setup. The energy e�ciency is monitored by
using the coe�cient of performance, COP, in the setup. The COP is de�ned as
the delivered cooling power delivered divided by the electrical power consumed.
The reliability of the plant is monitored by including the switch frequency of the
compressors in the setup. Excessive switching of the compressors will generate
excessive wear on the compressors and thereby increase the need for mainte-
nance and decrease the lifetime of the compressors. The combined e�ect on
the system is a lower operational reliability. Hence, minimisation of the switch
frequency is desirable.

To ensure that the operation of the plant is optimal with respect to all three
criteria the following performance function, which was introduced in [13], has
been used in this work:

J(t) =

K∑
k=1

||e(k)||2Q +

L∑
l=1

|| 1

COP (l)
||2R +

M∑
m=1

||fsw(m)||2S (D.1)

The performance function (D.1) is a sum of quadratic terms where the notation
is given by (D.2).

||e||2Q = eTQe (D.2)

The �rst term in (D.1) is the control errors of K controllers. The second term
is the inverted COP of L refrigeration cycles and the third term is the switch
frequency of M compressors.

D.2.2 Normalisation

Since the main objective is to be able to employ the performance function in
various supermarkets (with di�erent subsystems of di�erent sizes and dimen-
sions), the performance function should be made of the scalable terms that can
be easily adapted for a given supermarket. The scalability can be achieved
through normalization of the terms in the performance function. For any given
supermarket the corresponding performance function will then be established
through the choice of appropriate weights that re�ect the regional regulations



94 P a p e r D

on safety requirements as well as local operational expenses. In the following
the normalisation procedure will be explained.

The error term is normalised using the knowledge that the temperature in
a display case has a lower and an upper limit and the reference is chosen as
the mean value of the temperature limits. The same argument is applied for
the suction pressure error which also has an upper and a lower limit and the
reference is then chosen as the mean value of the two limits.

e =
2

(Tmax,i−Tmin,i)
· (Tref,i − Tair,i)

2
(Psuc,max−Psuc,min) · (Psucref − Psuc)

(D.3)

The switch frequency term is normalized by dividing the measured frequency
by the maximum allowable frequency of compressor switching in a compressor
rack. This frequency is given by the compressor manufacture

fsw =
fmeas
fmax

(D.4)

As mentioned before the 1
COP is unit less and does therefore not need any

normalisation. After normalisation each of the terms e, 1
COP and fsw will then

be in the range between 0 and 1 and the weights will therefore represent the
cost associated with each term. Each term in (D.1) contains a quadratic term
which includes the weight matrices Q, R and S. These weights represent the
costs, in terms of economic penalties or lost pro�ts, which are associated with
the performance of each subsystem.

Choosing Q, R and S will be done based on each of the terms impact on the
price of running the refrigeration plant.

The weight Q, which is for the control errors, is based on the price that is
associated with temperature requirements for the display cases in the supermar-
ket. If the temperature gets too high the stored goods will have to be destroyed.
In addition, if the failure is detected by the authorities the supermarket could
be faced with a �ne. The weight R, which is for the inverted COP , is based
on the energy price since the inverted COP is e�ectively an e�ciency of the
refrigeration cycle. The weight R, which is for the switch frequency of the com-
pressors, is based on the price of replacing and maintaining a compressor in
the refrigeration system. The cost of maintaining and replacing a compressor
contains many hidden costs, such as the price of the system being out of oper-
ation. Contributions like that renders signi�cant freedom for manipulating the
weight based on intuition. The simulation data presented in this paper is scaled.
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Thus, the absolute values of the performance function do not have any physical
interpretation.

D.2.3 Optimisation formulation

In this section an optimisation problem for the considered system will be de-
�ned. As previously mentioned the supermarket refrigeration systems operate
in steady state most of the time , i.e. at over 80% of the time. Therefore, it
makes sense to �rst focus on optimising the system performance in steady state
operation, henceforth denoted static performance optimisation. Depending on
whether the focus is on static performance optimisation or on optimising the
dynamic behaviour of the system, di�erent set of parameters will be subject to
optimisation. When the main objective is to optimise the static performance one
should look for which subsystems have the highest impact on the total perfor-
mance of the plant. For these systems the variables, which are used to address
the conditions and objectives for the operation, are typically the set-points.

The performance function in (D.1) can be written in a more abstract way
as:

J(φ(t)) =

I=K+M+L∑
i=1

Ji(φ(t)), (D.5)

where Ji(φ(t)) is the local performance function for the ith subsystem that is
dependent on the set φ(t) which is de�ned as:

φ(t) =
{
Poref (t), Q̇airload(t)

}
, (D.6)

where Poref , denotes the suction pressure reference for the compressor rack
controller which is a controllable variable, and the uncontrollable variable which
is the heat loss to the surroundings and the main disturbance in the supermarket,
is denoted by Q̇airload.

Set-point optimisation of the supermarket is de�ned as:

min
Poref

J(φ(t)) ∀ Q̇airload (D.7)

The optimisation problem is to focus on �nding the optimal value for Poref (t)

that minimises J(φ(t)) for any given disturbance, Q̇airload. To solve the optimi-
sation problem some primary simulations have been performed to get a deeper
knowledge about the search space. The simulations have been carried out as
follows:
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To get an overview of the optimisation space, a series of simulations has been
carried out. In the simulations, the suction pressure reference has been changed
in steps from 1.0 ·105 [Pa] to 2.5 ·105 [Pa] with a step size of 0.1 ·105[Pa] or the
equivalent of changing the evaporation temperature approximately 2◦C. For
each of the steps in the suction pressure reference the disturbance, Q̇airload, and
thereby also the load of the system has been changed by changing the ambient
temperature of the display cases in steps from 18 [◦C] to 28 [◦C], with a step
size of 0.5◦C. In these simulations, steady state values of various measurements
have been used. Therefore changes, both in the suction pressure reference and
ambient temperature, are step like. The dynamic behaviour has not been the
focus.

D.3 Simulation setup

The simulation setup is based on a simpli�ed model of a supermarket refrigera-
tion system. The model contains two display cases, a compressor rack comprised
of two compressors and a condensing unit. Each of the display cases are �tted
with a PI controller that controls the air temperature in the display case. The
compressor rack is �tted with a PI controller and a step controller that main-
tains the desired suction pressure, and thereby ensures a su�cient temperature
di�erence to enable a heat transfer. The layout for a supermarket refrigeration
system is shown in Fig. D.1.

The control task of the display case is to ensure that the temperature is
maintained at the desired level within the display case. This is normally done
by controlling the opening degree of the inlet valve to the evaporator. The
capacities of the compressors should ideally be chosen so that the common
operation points of the refrigeration plant can be handled with a �xed number
of compressors running. However, in practice the compressor rack will not �t
the operation points exactly. Therefore, the compressors will have to switch to
satisfy the refrigeration load. Thus, the choice of compressors is a compromise
and is usually in favour of a certain operation point. Hence, switching of the
compressors are unavoidable but should be kept at a minimum to avoid excessive
wear on the compressors and super�uous energy consumption.

D.3.1 Modelling the refrigeration system

The model used for simulation in this paper is a slightly modi�ed version of the
supermarket refrigeration system model presented in [28]. The model has been
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changed so that the injection valve can be controlled continuously and thereby
providing a model where the temperature in the display case can be controlled
continuously.

The model features a refrigeration system with two display cases, a suction
manifold, a compressor rack and a condenser. The temperature in each of the
display cases is described by (D.8), where (D.9) describes heat �ow from the
surroundings and into the display case. The other terms in (D.8) are described
in detail in [28]. The ambient temperature of the display case, Tamb, is assumed
constant since it corresponds to the indoor temperature of the supermarket. To
enable the possibility of a continuously controlled refrigerant �ow the mass �ow
into the evaporator is modelled using (D.10).

dTair,i

dt
=
Q̇goods−air,i(·) + Q̇load,i(·)− Q̇air−wall,i(·)

MairCp,air,i
(D.8)

Q̇load,i = UAamb · (Tamb − Tair,i) (D.9)

dMr,i

dt
= ODi · α ·

√
Pc − Psuc −

Q̇e,i
∆hlg

(D.10)

dPsuc

dt
=
ṁin−suc(·)− ṁcomp

Vsuc ∇ρsuc(Psuc)
(D.11)

In (D.10) the opening degree of the expansion valve is denoted by OD, Pc
denotes the condensing pressure, Q̇e denotes the heat removed by evaporation
and the enthalpy di�erence across the two-phase region is denoted by ∆hlg. For
details about the modelling of Q̇e and ∆hlg see [28].

The suction pressure is the only common state for all of the display cases,
the suction manifold and the compressor, and its dynamics can be described
by (D.11). The refrigerant density is denoted by ρsuc and ∇ρsuc denotes the
pressure derivative of the refrigerant density.

The mass �ow rate into the suction manifold, ṁin−suc is described by:

ṁin−suc(Mr,i, Twall,i, Psuc) =

N∑
i=1

Q̇e,i(·)
∆hlg(Psuc)

(D.12)

The temperature, Te, denotes the evaporation temperature. As explained in
[28] ∆hlg, ρsuc and ∇ρsuc are all refrigerant speci�c functions.

The compressor rack is described by (D.13).

ṁcomp = Cap · 1

100
· ηvol,i · V̇sl,i · ρsuc (D.13)
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In (D.13) Cap denotes the running compressor capacity of the rack, the volu-
metric e�ciency is denoted by ηvol, and the swept volume �ow rate is denoted
by V̇sl. The condenser model contains no dynamic, it only de�nes a static con-
densing pressure and a static sub-cooling, which suggests an assumption that
the condenser is controlled well enough to keep a constant condensing pressure
and a constant sub-cooling.

D.3.2 Controller setup

The control setup is comprised of a temperature controller for each of the dis-
play cases that manipulates the opening degree of the expansion valve, ODi,
and a suction pressure controller that manipulates the running compressor ca-
pacity in the compressor rack. The temperature controllers and the suction
pressure controller are implemented as PI controllers. Emulation of the discrete
behaviour of the compressor rack is achieved by de�ning the compressor rack
as being comprised of two compressors. Generally the Cap in (D.13) has the
following form:

Cap =

i=N∑
i=1

δiCapi (D.14)

with δi ∈ {0, 1} and
∑N
i=1 Capi = 100%. In our application N = 2, Cap1 = 45%

and Cap2 = 55%. To avoid excessive switching of the compressors a hysteresis
band is applied around each compressor step. The layout of the compressor
rack is based on a real supermarket system which has the same layout of the
compressor rack.

D.4 Simulation results

The simulation results presented in this section will be used as a basis for the
analysis for the set-point optimisation presented in section D.5. On Fig. D.2
the top plot shows the performance function and the remaining plots each of
the terms from the performance function versus Poref at three di�erent loads,
�Low, Medium and High�, which in the simulation corresponds to a change in the
ambient temperature of the display cases. As shown in Fig. D.2, by increasing
the load, the minimums are shifted to the right on the Poref axis. The inverted
COP term is not changed in di�erent loads. The performance function is highly
correlated with the switch frequency and this term mostly shapes the behavior
of the performance function.
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Figure D.2: Performance function and each of the terms plottet versus Poref
at di�erent load levels

Fig. D.3 shows the performance function plotted versus Poref and the load,
Q̇airload and it can be seen that the reference for the suction pressure is de-
pendent on the load, Q̇airload. Increasing load clearly calls for a higher suction
pressure reference if optimal operation should be maintained. The same con-
clusion can be made by looking at Fig. D.4 and Fig. D.6. The contribution
from the inverted COP term is shown in Fig. D.5, which represents the curve
form that will usually be used for optimising a refrigeration plant. Hence, using
the performance function (D.1) as shown on Fig. D.3 for choosing the optimal
suction pressure will present a better set-point than solely basing the choice on
the inverted COP .

D.5 Set-point optimisation

The set-point optimisation has to be based on the available information in the
system. The optimisation method can not assume that there exists a su�ciently
detailed model of any given refrigeration plant. Thus, it will not be possible to
predict or estimate the performance for any given set-point. In addition, the
method cannot use a benchmark data set, because it does not exist, and it is not
feasible to assume the existence of such a data set for any given supermarket.
However, it is feasible to online generate a limited data set.
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Figure D.3: Performance function versus Poref and Q̇airload

Figure D.4: Error term from the performance function versus Poref and Q̇airload
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Figure D.5: Inverted COP term from the performance function versus Poref
and Q̇airload

Figure D.6: Switch term from the performance function versus Poref and
Q̇airload
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Considering the above simulation results and problem statement, interpola-
tion is chosen as a method to �nd the optimal set-pont.

D.5.1 Interpolation

Interpolation is a technique used to estimate unknown values that lie between
known values, see chapter 6 in [7]. A linear interpolation of the following form
is been used:

Poref = Poref,a + (Poref,b − Poref,a) · Q̇airload − Q̇airload,a
Q̇airload,b − Q̇airload,a

(D.15)

More sophisticated interpolations are available and often applied to datasets
with irregular spacing. However, in this case, the linear interpolation technique
is used for set-point optimisation purpose because of the speed of the method,
accurate response and the linear behaviour of the system performance with
respect to the change on load and set-point pressure, see Fig. D.7. Linear inter-
polation requires at least two sweeps of the suction pressure reference Poref at
di�erent values of the disturbance Q̇airload. According to the previous analyses,
optimal set-points have been shifted to the right on the Poref axis, see Fig. D.2
or D.3. Analysis of Fig. D.3 through D.6, shows that the optimal point is chang-
ing linearly with respect to the change in the disturbance, Q̇airload. Therefore,
by means of three or at least two optimal set-points, an optimal set-point line at
di�erent values of Q̇airload can be interpolated D.7. Therefore, the optimisation
problem could be solved by determining the value of Q̇airload at each instance
and then set Poref to the corresponding value of Q̇airload base on the knowledge
gain by the two sweeps and the interpolation. Since the interpolation approach
is based on the ability to do at least two sweeps at di�erent values of Q̇airload,
which is a disturbance, the method relies on that the disturbance changes over
time and thereby renders sweeping at di�erent load situations possible. The
proposed algorithm can be described as follows:

1. For a given Q̇airload sweep Poref and save the values of J(t)

2. Find the minimum value J(t) and use the corresponding Poref as the
optimal set-point for the given Q̇airload

3. When Q̇airload changes signi�cantly, repeat step 1 and 2 and establish the
linear interpolation as suggested in (D.15).

4. Use the interpolated line to chose the optimal suction pressure reference,
Poref , for future Q̇airload.
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The load change between opening and closing hours of the supermarket system
will be su�cient to provide a good interpolation results. However, extending the
algorithm to update the interpolation when there has been a seasonal change
might be a good idea. The proposed method will provide a close to optimal

Figure D.7: Optimal interpolated line

set-point based on the interpolation.

D.6 Conclusion

Optimising the global steady state performance of a supermarket refrigeration
system has been the focus of this paper. This has been done by concentrating
the optimisation e�ort on the choice of set-point for predominate controller for
the plant, which is the compressor controller. The paper presents a method
for handling the problem of choosing the optimal suction pressure reference
with minimum knowledge of the refrigeration plant. The problem is solved by
utilising the general knowledge gained by examining the simulation results based
on model of a supermarket refrigeration system. The results clearly indicates
that the optimal set-point is dependent on the load on the system, which is a
disturbance in the system. The proposed method indicates that the set-point
should be adjusted when the load changes signi�cantly. The proposed method
does not rely on the existence of a detailed model of the system or the availability
of benchmark data.
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Abstract: This paper investigates the problem of plant-wide performance op-
timisation seen from an industrial perspective. The refrigeration system is used
as a case study, because it has a distributed control architecture and operates in
steady state conditions, which is common for many industrial applications in the
process industry. The paper addresses the fact that dynamic performance of the
system is important, to ensure optimal changes between di�erent operation con-
ditions. To enable optimisation of the dynamic controller behaviour a method
for designing the required excitation signal is presented. Furthermore, invasive
weed optimisation is used to �nd the optimal parameters for local controllers
based on the plant wide performance measure.

E.1 Introduction

Achieving performance optimisation in plants with multiple interconnected sub-
systems in practice is far from being a trivial task. To illustrate the complexity
of such tasks a routine installation and commissioning process in supermarket
refrigeration systems is described in the following: An installer connects the
control instrumentation into the display cases and uses the parameter set that
he has used in a similar system (that can actually be signi�cantly di�erent from
the one he is working on) and starts the control system. If the controller sta-
bilises the system and can track the set point to a certain degree then he will
be content and no more e�ort is spent on optimising the controller. If there is a
need for more optimisation it will primarily be carried out on local subsystems.

As the predominant used controllers in the process industry are of PI(D)
types there exist a number of optimisation/ tuning methods that can be utilised
to modify the controller parameters in order to achieve improved performance
(see for instance, [1, 2, 48]. However, these techniques/ methods are developed
in order to achieve local performance optimisation.

When considering supermarket refrigeration systems, a challenging issue ap-
pears, which is due to the fact that refrigeration systems are usually operating
in steady state conditions and, therefore, will not be a�ected by a change in
controller parameters unless the dynamics of the system is excited. This leads
to the problem of designing auxiliary signals for a given subsystem that can be
used for optimisation without a�ecting the performance of the subsystem. The
problem is accumulated by the fact that there is little or no á priori knowledge
of the underlying system dynamics.

In complex plants, such as large supermarket systems, when the subsys-
tems are coupled and interact dynamically, local tuning of individual controllers
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for each of the subsystems does not guarantee that an optimal plant-wide per-
formance can be achieved. Furthermore, due to the lack of knowledge of the
underlying dynamics, it is very di�cult to use the same techniques/methods
that are typically used for local control tuning / subsystem optimisation. The
optimisation techniques in these methods are often gradient based and utilise
the derivative of a performance function. The commonly stated problems with
these derivative-based optimisation methods are:

• Gradients may not be available or it can be impractical to calculate ana-
lytic gradients,

• Noise or non-smoothness in the performance function can makes �nite
di�erences inaccurate,

An alternative is utilisation of derivative-free search algorithms, which use the
performance function and constraints to steer towards the optimal solution.
Since derivative information is not used, the direct search methods are typically
slow, requiring many function evaluations for convergence. Recently, genetic
algorithm [11], particle swarm optimisation [25], ant colony optimisation [9],
simulated annealing [37] and tabu search [38] have been extensively used for
optimisation and have shown high capability of searching for global minimum
in di�erent engineering applications [6, 45]. Evaluation of the algorithms have
not been the focus in this work and the reader is therefore encouraged to consult
the literature for a comparison of the di�erent algorithms. In this work, invasive
weed optimisation algorithm, IWO, is employed for plant-wide performance op-
timisation. IWO, which is introduced in [31] for the �rst time, is a bio-inspired
numerical optimisation algorithm that simply simulates natural behaviour of
weeds in colonizing and �nding suitable place for growth and reproduction.
The idea behind this paper is to plant-wide optimise the performance of the
refrigeration plant, using invasive weed optimisation to �nd the parameters, kc
and Ti, for the PI controllers.

E.2 Problem formulation

The governing problem is to globally optimise the operation of the supermarket
refrigeration system. To achieve global optimisation a performance function is
required and a formalised method to search for the solution is required. In ad-
dition, an excitation signal is required to ensure that the e�ect of changes in the
controller parameters are visible from the performance function. The excitation
signal is required because refrigeration systems are operating in steady state
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most of the time. To give a better insight to the problem an short description
of a supermarket refrigeration system will be presented hereafter. The refriger-
ation system is presented as simple diagram on Fig. E.1. In a supermarket the
compressors are usually placed in a machine room and then parallel connected
to the display cases in the sales area. The condenser unit, which is usually
places outside the supermarket, receives compressed gas from the compressors
and condenses the gas into liquid by rejecting the heat to the surroundings.
The outlet of the condenser is parallel connected to the display cases and can
therefore supply liquid refrigerant to them.

The control task of for each of the display cases is to maintain a prede�ned air
temperature inside the cabinet. That is done by measuring the air temperature
and then using a PI controller manipulating the inlet valve to the evaporator.
The suction/evaporation pressure is chosen to deliver a su�cient temperature
di�erence in the display cases to create su�cient heat transfer. The control
task for the compressor rack is then to deliver the chosen suction pressure.
The compressor rack control is based on a PI controller followed by a step
controller. The PI controller calculates the required compressor capacity which
is used by the step controller to decide how many compressors that should be
running. System wide optimisation of a supermarket refrigeration system can of

Figure E.1: Simpli�ed supermarket refrigeration layout

course only be achieved with a prede�ned performance measure. In this paper,
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the performance function, (E.1), presented in [13] will be used to assess the
operational performance.

J(t) =

K∑
k=1

||ek(t)||2Q +

L∑
l=1

|| 1

COPl(t)
||2R +

P∑
p=1

||fswp
(t)||2S (E.1)

The �rst term in (E.1) represents the food quality by the control errors in K
controllers and the second term is a measure of the e�ciency of the plant at dif-
ferent suction pressures using the inverted coe�cient of performance, COP , for
L suction levels, and the last term is the switch frequency of the P compressors
which is used to avoid excessive wear on the compressors. Q, R and S are cost
weights with appropriate size.

As mentioned previously, in order to assess and optimise the system perfor-
mance there is a need for dedicated auxiliary signals. The problem is to design
a set of signals, {η1, · · · , ηm}, that lie in the appropriate frequency range of
their corresponding closed loop systems. Such design is not a trivial task as the
dynamics of the controlled subsystems is not known in advance. The knowl-
edge regarding the system under investigation is limited to a structural level.
Meaning that time constants and gain of the subsystems is unknown. Thus, the
design methods such as the ones introduced in [33] and [40] cannot be directly
applied since they rely on model knowledge.

Since the aim is that the active performance assessment setup should run
online on a supermarket refrigeration system, compromising the operation of
the system will not be acceptable. Hence, the excitation signal cannot be cho-
sen without considering the impact on the operation of the plant. In addition,
choosing the amplitude for the external excitation signal is an online task, be-
cause the internal generated excitation is dependent on the operation point.

In this work the subsystems that the method will be applied on are the
display cases in the supermarket refrigeration system. In order to describe
the problem in mathematical terms a number of facts and assumptions are
introduced in the sequel:

1. The closed loop consists of a PI controller and a physical system, here a
display case, for which the dynamics are unknown.

2. The parameters of the PI controller are known.

3. The existing controller is stabilising the closed loop.

Assumptions:
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1. The system dynamics can be described by a �rst order di�erential equation
with time delay.

2. The response time delay to an abrupt change in control action is known.

The �rst assumption can be veri�ed by consulting literature such as [18, 43, 44].
The time delay in the second assumption can be measured online.

Let us consider the kth subsystem (here a display case). Now the following
notation are introduced:

The subsystem dynamics is described by a �rst-order-plus-dead-time (FOPDT)
process model::

Gk(s) =
kpke

−Tdk
s

τks+ 1
,

where Tdk denotes the time delay and kpk and τk denotes the gain and time
constant, respectively. The corresponding controller Ck(s) is of PI type, i.e.

Ck(s) = kck +
kik
s
.

The closed loop transfer function is then given by:

Hk(s) =
Ck(s)Gk(s)

1 + Ck(s)Gk(s)
.

The performance measure for the total system is de�ned as given in (E.1). For a
given subsystem k, �nd an appropriate set of excitation signals {η1(t), · · · , ηm(t)}
and then use them to tune the controller parameters {kck , kik} so that the per-
formance function J(t) is minimised, i.e.

minimise
kck ,kik

J(t)

subject to yk(t) = (hk ∗ ζ)(t), ζ(t) =

m∑
i=1

ηi(t).
(E.2)

where yk denotes the output of the kth system. '∗' represent the convolution
and represent the time domain description of yk(s) = Hk(s)ζ(s). The excitation
signal is represented by ζ(t).

There are hence two main problems to solve: 1) How to design the exci-
tation signals?, and 2) what is the suitable strategy to optimise the controller
parameters in a time e�cient manner? The ensuing sections address these two
problems.
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E.3 Design of the excitation signals

Following choice/simpli�cation is been made:

ζ(t) =

m∑
i=1

ηi(t) =

m∑
i=1

η(ωit) (E.3)

It means that ζ is a sum of identical functions which are operating with di�erent
frequencies ωi. We choose sinusoidal functions as a candidate, i.e.

ηi(t) = Ai sin(ωit). (E.4)

The signal is added to the closed loop as shown on Fig. E.2. In the sequel the

Figure E.2: Active performance assessment setup with excitation added to the
measurement

process of choosing frequencies and the magnitude of each excitation signal will
be described.

E.3.1 Frequency

When the controller parameters, i.e. kc and ki, are known, the corresponding
system parameters, i.e. τ and kp, can be estimated based on the desired gain and
phase margins, see [14]. The estimated system parameters can be used as the
best guess to compute the cuto� frequency of the resulting closed loop transfer
function, denoted by ωc. In practice, the real system parameters may deviate
from the estimated ones by up to 100%. Therefore, in order to make sure that
the resulting excitation signal has the proper impact on the system dynamics a
set of frequencies should be chosen. Following strategy can be adopted:

ωi =
1

10
ωi+1 ∀i = 1, · · · ,m− 1 (E.5)
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where
ωm+1

2
= ωc

and m is chosen to be an odd number (a good choice would be 5 or 7).

E.3.2 Magnitude

When the choice of the excitation signal is based on the bandwidth of the closed-
loop transfer function and as the assumption is that the current controller is
stabilising the system then one can choose the magnitude of excitation signals
in accordance with the following practice: For industrial system a boundary is
typically de�ned, within which the set-point can vary. Lets denote the bound-
aries as, SPupper and SPlower. Furthermore, consider the PI controller as a sum
of two terms, the P-term and the I-term. The magnitude of the excitation signal
should hold the following conditions:

SetPoint+ ||ζ||∞ < SPupper (E.6)

SetPoint− ||ζ||∞ > SPlower (E.7)

Since according to (E.3) and (E.4), ζ is a sum of bounded continuous functions
then it is bounded and hence has extremum (here maximum/minimum). Lets
assume that the controller has been tracking a non-zero set-point and the system
has reached its steady-state conditions. In this state, due to the insigni�cant
tracking error, the contribution of the P-term in the PI controller is negligible.
Hence the I-term is the only term which is utilised in order to maintain the
set-point tracking. A suggestion for a choice for ||ζ||∞ is the following:

||ζ||∞ = α

∣∣∣∣∣ I-termk̂pk

∣∣∣∣∣ , (E.8)

where α ∈ {0.01 · · · 0.25} and k̂pk is the estimated system gain. α should be
chosen as high as possible as long as conditions given by (E.6), and (E.7) are
not violated. A typical choice would be α = 0.15. In order to realize ζ with
correct magnitude the amplitude of the signals in Eq. E.4 are given by:

Ai = α

∣∣∣∣∣ I-termmk̂pk

∣∣∣∣∣ ∀k ∈ {1, · · · ,m}. (E.9)

The next step, after determining the characteristics of the excitation signals for
each subsystem, is to employ an appropriate method to optimise the plant-wide
performance.
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E.4 Invasive Weed Optimsation (IWO)

The IWO is inspired from the phenomenon of colonization of invasive weeds in
nature and became a powerful optimsation algorithm by capturing the natural
properties of the invasive weeds [31]. Weeds invade a cropping �eld by means of
dispersal and occupy opportunity spaces between the crops. Each invading weed
takes the unused resources in the �eld and grows to a �owering weed and creates
new weeds, separately. The number of newly produced weeds by each �owering
weed is subject to the �tness of that �owering weed in the colony. Those weeds
that take more unused resources and have better adoption to the environment
can rapidly grow and produce more seeds. Consequently, the newly produced
weeds are randomly dispread over the �eld and grow to �owering weeds. Due
to the limited resources, this procedure carries on until the maximum number
of weeds on the �eld is reached. Now, only those weeds with higher �tness can
survive and produce new weeds. This competitive evolution among the weeds
causes their well adaption to the environment and improvement over the time.

E.4.1 IWO Algorithm

At the beginning, prior to explaining the IWO algorithm, the key terms are
introduced here as follow: Each individual or agent in the colony, so called seed,
contains a value of each optimsation variable. A value represents the goodness
of the solution for each seed is called �tness. Each seed grows to a �owering
plant in the colony; so the meaning of a plant is one individual after evaluating
its �tness. Colony indicates the entire agents or seeds. The number of plants
in the colony is called population size. Therefore, growing a seed to a plant
corresponds to evaluating an individual's �tness or performance.

The following steps are considered to simulate the colonizing behaviour of
weeds [31]:

1. Search space de�nition: Initially, the number of parameters that need to
be optimised has to be de�ned, hereafter denoted by D. Next, for each
parameters in the D-dimensional search space, a minimum and maximum
value are assigned.

2. Population initialisation: A limited number of seeds are being randomly
dispread through the de�ned search space. Alternatively, each seed catches
a random position in the D-dimensional search space. Each seed's position
is an initial solution, including D values for the D parameters, of the
optimsation problem.
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3. Fitness estimation: Initial seeds grow up to �owering plants. A �tness
value for each seed is returned by the �tness function, de�ned to represent
the goodness of the solution.

4. Ranking and reproduction: The �owering plants are �rstly ranked based
on their assigned �tness values prior to generate new seeds. Then, �ower-
ing plants can reproduce new seeds depending on their rank in the colony.
In other words, the number of seeds produced by each plant can increase
from the minimum possible seeds production Smin, to its maximum, Smax
based on plant's �tness values and their ranking. Hereafter, the plants
with higher �tness which are more adapted to the colony can produce
more seeds that solve the problem better. In this step, it is permitted for
all plants to participate in the reproduction competition which adds an
important property to the IWO algorithm in searching a global optimum.

5. Dispersion: Here, the seeds are being randomly dispread through the
search space by using normally distributed numbers with mean equal to
the position of the producing plants and varying standard deviations. The
standard deviation σ at the current time step can be explained by:

σiter =
(itermax − iter)n

(itermax)n
(σinitial − σfinal) + σfinal (E.10)

where σinitial and σfinal denote to initial and �nal standard deviations,
respectively. itermax indicates the maximum number of iterations and n is
the nonlinear modulation index. The σ can be reduced from the σinitial to
the σfinal with di�erent velocities in accordance with the chosen nonlinear
modulation index, n. Initially, the whole search space can be explored
by the IWO algorithm due to the high value of initial standard deviation
σinitial. Then, the standard deviation σ is gradually reduced by increasing
the number of iterations, to focus the search around the local minima or
maxima to �nd the global optimum.

6. Competitive exclusion: Afterwards all seeds have been placed in their
positions in the search space; the new seeds grow up to the �owering plants
and subsequently, they are all ranked along with their parents according
to their �tness. Then, weeds with lower �tness are eliminated to reach the
prede�ned criterion of maximum number of plants in the colony, Pmax.
Apparently, the number of �tness evaluations, the population size, is more
than the maximum number of plants in the colony. This 'survival of the
best �t' mechanism, inspired from the theory of natural selection [20],
provides a chance to plants with lower �tness to reproduce and survive in
their seed's existence, if their seeds have good �tness.

7. Termination Condition: Survived plants can produce new seeds based on
their �tness rank in the colony. The whole process is continues until either
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the maximum number of iterations has been reached or the �tness criterion
met.

E.5 Simulation setup and Results

This section presents the results obtained by utilising the invasive weed optimi-
sation for plant-wide optimisation of the dynamic operation of the supermarket
refrigeration system. However, before presenting the results the simulation setup
will be described.

E.5.1 Simulation setup

The optimisation approach has been tested on a simulation model of a super-
market refrigeration system. The simulation setup is described in detail in [15].
The model is describing a supermarket refrigeration setup that is comprised of
two identical display cases and a compressor rack with two compressors and an
ideal and static condensing unit.

The optimisation algorithm has been used to optimise the gain, kc, and the
integration time, Ti, of the PI controller for the display cases. Since the feasible
set for the two parameters are not overlapping constraints are required on each
of the variables. The search space has been constrained based on the knowledge
about the controller behaviour. In addition, to allow the IWO algorithm to
have at least one good plant, a single seed has been de�ned by an initial guess
of values for kc and Ti. Thus, ensuring that at least one plant will produce a
reasonable performance.

The algorithm was started with the following input parameters:

• Maximum number of generations: itermax = 150

• Maximum number of plants: plantsmax = 30

• Maximum number of seeds per plant: seedmax = 5

• Number of initial plants: plantsinit = 5

The maximum number of evaluations of the simulation, simrunmax, is given by
(E.11).

simrunmax = (1 + seedmax) · plantinit + (itermax − 2) · plantsmax (E.11)
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With the chosen input parameters for the IWO algorithm simrunmax = 4470.
In this setup the simulation runs for 5000 seconds to ensure that the performance
function is in steady state with the given set of controller parameters, kc and
Ti.

E.5.2 Results

After 150 generations of the weed optimisation algorithm produces the results
shown on Fig. E.3 On Fig. E.3 the minimum, maximum and mean �tness or

Figure E.3: Generations versus the performance function J . The best achived
performance after 150 generations is 1.0546

performance of the refrigeration system is plotted for each generation of the
IWO algorithm. It can be seen that the maximum, the mean and the minimum
performance converges. Thus, the results is accepted as reasonable.

Fig. E.4 shows the evolution of the best and worst Ti versus the generations
of the optimisation algorithm, and it is clear to see that both the worst and the
best parameter result of each generation converges toward the same region in
the search space.

Fig. E.5 shows the evolution of the best and worst kc versus the generations
of the optimisation algorithm. In addition, Fig. E.5, shows that both the worst
and the best parameter result of each generation converges toward the same
region in the search space.
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Figure E.4: Evolution of Ti, The red line plots the evolution of the worst choice
of Ti and the blue line plots the evolution of the best choice of Ti

Figure E.5: Evolution of kc.The red line plots the evolution of the worst choice
of kc and the blue line plots the evolution of the best choice of kc
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Figure E.6: Ti versus kc, The red diamond indicates the end result for the
parameters, kc = −0.1877 and Ti = 60.6972.

Fig. E.6 shows that all the results of the best parameter combination, which
is indicated by blue triangles, lies within a small area close to the end result,
which is indicated by a red diamond. The parameter values proposed by the
IWO algorithm for the controller are, a gain of kc = −0.1877 and an integration
time at Ti = 60.6972, which can be seen on Fig. E.6. The results presented in
Fig. E.3 through E.6 indicate that the approach is feasible for optimising the
controller parameters. In addition, the results indicate that the use of initial
values for the IWO algorithm is a clear bene�t. Especially if the algorithm
has to run on a system instead of a simulation model. Narrowing the search
space and using initial values for the optimisation parameters would make it
possible to decrease the number of generations and thereby reducing the time
the algorithm uses to generate a result.

E.6 Conclusion

This paper considered plant-wide performance optimisation for industrial pro-
cesses that operate in steady state conditions most of the time. A simulated ver-
sion of a supermarket refrigeration system, which is an example of such plants,
was used as a test bench.

The challenge that has been addressed is, that under steady state condi-
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tions the performance of the system will not be a�ected by change in parameter
values of a controller of an underlying subsystem, unless the dynamics of the
corresponding subsystem is excited. A method of characterising the excitation
signal under realistic conditions was presented in the paper. The dynamic per-
formance has been addressed to ensure that the performance of the system will
be optimal even when the system is changing between operation conditions.

Furthermore, an optimisation method, based on invasive weed optimisation
(IWO), was utilised to optimise the dynamic behaviour of the local controllers
based on the de�ned global performance function. The simulation results showed
a clear improvement. The choice of the initial values for the IWO algorithm had
a signi�cant impact on convergence speed of the algorithm toward the global
minimum, and hence, need be considered with care.

This ensures that the system can maintain optimal operation when the op-
eration conditions changes from one operation point to another.
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Abstract: Optimising the operation of a supermarket refrigeration system
under both dynamic as well as steady state conditions is addressed in this pa-
per. For this purpose an appropriate performance function that encompasses
food quality, system e�ciency and also component reliability is established. De-
pending on whether the focus is on optimising the system performance under
steady state or dynamic conditions di�erent set of parameters will be subject to
optimisation. Focusing on steady state operations the total system performance
is shown to predominantly be in�uenced by the suction pressure. Employing
appropriate performance function leads to conclusions on the choice of set-point
for the suction pressure that are contrary to the existing practice. The dynamic
optimisation requires use of dedicated excitation signals. A method for designing
such signals under realistic operational conditions is been suggested. A deriva-
tive free optimisation technique based on invasive weed optimisation (IWO)
has been utilised to optimize the parameters of the controllers in the system.
Simulation results have been used to substantiate the suggested methodology.

F.1 Introduction

In a competitive and global business environment plant-wise performance as-
sessment and optimisation in the process industry have increasingly become
important issues as they have direct impact on the operational costs, energy
and environmental issues. Supermarket refrigeration systems are no exception:
One of the larger operational costs of a supermarket is the refrigeration plant.
In a supermarket, the refrigeration system accounts for 40% to 60% of annual
electrical energy consumption [10]. Furthermore, there are substantial costs
related to component replacement and unscheduled maintenance.

In many industrial systems, it is customary to use over-dimensioned com-
ponents that provide excess capacity in order to guarantee that the system
functionality is provided under all conditions, which are in particular caused
by non-optimal operational conditions. For instance, the compressor rack in
supermarket systems is typically made of compressors that can provide up to
50% more capacity than the supermarket system is actually designed for. Non-
optimal operation not only a�ects the cooling e�ciency and food quality but
also have direct impact on the operational life-time of the components. Proper
optimization tools/methods can not only be used to optimize the performance
of an operating system but also assist the design engineering group to choose
appropriate components of right dimensions/capacities at more suitable costs
in future plants. An appropriate performance function for plant-wise operation
should include contributing terms that describe the quality of products, system
e�ciency, as well as the operating life-time of the subsystems. Optimisation
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of refrigeration systems have been attempted in other references such as [18]
where multi variable control is used to get a better performance of a vapour
compression system. [23] introduces an energy optimal control approach for
refrigeration system and in [27] an online steady state energy minimisation is
presented, where the minimisation is relying on a model of the refrigeration
system.

The strategy toward system-wide performance assessment and optimisation,
proposed in this paper, can be described by using Fig. F.1. In Fig. F.1 the

Figure F.1: Block diagram illustrating the system-wide performance assessment
and optimisation approach.

optimiser adjusts the behavior of the controller for the subsystem. This is
achieved by passing an alternated reference signal y

′

ref and excitation signal η,
or by changing the parameters, φ. The output from the optmiser is based on the
performance function, J which is the output from the performance assessment
block. The performance assessment is base on the control error,e, the output
from the controller, u, the output from the subsystem, y, and contribution from
the other subsystems, Γ. The contributions from the other subsystems ensures
that the system-wide perspective is preserved.

A supermarket refrigeration systems, like many other plants in the process
industry, operate in steady state conditions in the majority of their operating
time it is reasonable to separate the optimisation task in two parts; the �rst one
will be addressing the plant-wide optimisation in steady state conditions and
the second one will be focusing on optimising the local subsystems' dynamic be-
haviour. To perform the optimisation task an appropriate performance function
is proposed in section F.2.3. Optimisation in steady state is typically formu-
lated in terms of set-point optimisation. For considered supermarket systems
the suction pressure is chosen as the dominating variable. In section F.4.1 it
is shown that the suggested operating set-points for the suction pressure di�er
signi�cantly from the ones that can be obtained by using performance function
that is used in common practice. The knowledge based on investigating the
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resulting performance under di�erent load conditions is used in section F.4.3 to
suggest a simple procedure for determining the pressure set-point that leads to
optimal operation for any given load condition. In section F.4.4 the approach
is generalised to the case where a compressor rack with three compressors is
employed.

Carrying out the dynamic optimisation task will be a challenge as refrigera-
tion systems usually operate in steady state conditions and, therefore, will not
be a�ected by a change in controller parameters unless the dynamics of the local
subsystem is actively excited. This leads to the problem of designing/choosing
auxiliary signals for a given subsystem that can be used for optimisation with-
out a�ecting the performance of the subsystem. The problem is accumulated by
the fact that there is little or no ´a priori knowledge of the underlying system
dynamics. In section F.5.1 the design of appropriate excitation signals will be
discussed and a design method will be suggested.

In complex plants, such as large supermarket systems, when the subsys-
tems are coupled and interact dynamically, local tuning of individual controllers
for each of the subsystems does not guarantee that an optimal plant-wide per-
formance can be achieved. Furthermore, due to the lack of knowledge of the
underlying dynamics, it is very di�cult to use the same techniques/methods
that are typically used for local control tuning/ subsystem optimisation. As the
predominant used controllers in the process industry are of PI(D) types there
exist a number of optimisation/ tuning methods that can be utilised to mod-
ify the controller parameters in order to achieve improved performance (see for
instance, [1, 2, 48]). However, these methods are developed in order to achieve
local performance optimisation. The optimisation techniques in these methods
are often gradient based and utilise the derivative of a performance function. An
alternative is utilisation of derivative-free search algorithms, which use the per-
formance function and constrain values to steer towards the optimal solution.
Recently, genetic algorithm [11], particle swarm optimisation [25], ant colony
optimisation [9], simulated annealing [37] and tabu search [38] have been ex-
tensively used for optimisation and have shown high capability of searching for
global minimum in di�erent engineering applications [6, 45]. Invasive Weed Op-
timisation (IWO), which is introduced in [31] for the �rst time, is a bio-inspired
numerical optimisation algorithm that simply simulates natural behaviour of
weeds in colonizing and �nding suitable place for growth and reproduction. In
this work, invasive weed optimisation algorithm, IWO, is employed for plant-
wide performance optimisation by �nding the most suitable parameters for the
local controllers. A short description of the IWO scheme is presented in section
F.5.2. Simulation setup and results are presented (and discussed) in sections
F.5.3 and F.5.4. Finally, concluding remarks will be provided in section F.6.
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F.2 System description

The considered refrigeration system dealt with in this paper is a simpli�ed su-
permarket refrigeration system for which a skectch can be seen on Fig. F.2. The
refrigeration system is comprised of two display cases, a compressor rack which is
comprised of two compressors and a condenser unit. Each of the display cases is
�tted with an air temperature controller which adjusts the temperature by ma-
nipulating the opening degree of the inlet valve to the evaporator. The control
task of the compressor rack is to ensure a certain suction pressure, by switching
the compressors on or o�, to �t the demand. In this work the condenser unit
has been considered to be ideal and is therefore not explained further.

Figure F.2: Schematic of the modelled supermarket system

F.2.1 Model of the simpli�ed refrigeration system

A slightly modi�ed version of the model, for a supermarket refrigeration sys-
tem, presented in [28] has been adopted. The inlet valves have been modi�ed
to enabled the possibility of continuous control which renders it possible to con-
trol the air temperature in the corresponding display cases continuously. The
mathematical model features two display cases, a suction manifold, a compres-
sor rack and a condenser. The air temperature within each of the display cases
is described by (F.1). The heat �ow from the surroundings and into the display
case is described by (F.2) and is considered to act as a disturbance.
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The other terms in (F.1) are described in detail in [28].

dTair,i

dt
=
Q̇goods−air,i(·) + Q̇load,i(·)− Q̇air−wall,i(·)

MairCp,air,i
(F.1)

Q̇load,i = UAamb · (Tamb − Tair,i) (F.2)

dMr,i

dt
= ODi · α ·

√
Pc − Psuc −

Q̇e,i
∆hlg

(F.3)

dPsuc

dt
=
ṁin−suc(·)− ṁcomp

Vsuc ∇ρsuc(Psuc)
(F.4)

In (F.3) OD denotes the opening degree of the expansion valve and Pc rep-
resents the condensing pressure. The heat removed by evaporation is denoted
by Q̇e,i, and the enthalpy di�erence across the two-phase region is denoted by
∆hlg. For details about the modelling of Q̇e,i and ∆hlg see [28].

The suction pressure is assumed to be the same across the low pressure sec-
tion of the refrigeration system and is therefore modelled as a common state for
all of the display cases in the suction manifold. The dynamics of the suction
pressure is modelled by (F.4), where ρsuc and ∇ρsuc denote the refrigerant den-
sity and the pressure derivative of the refrigerant density. The mass �ow rate
into the suction manifold, ṁin−suc is described by:

ṁin−suc(Mr,i, Twall,i, Psuc) =

I∑
i=1

Q̇e,i(·)
∆hlg(Psuc)

, (F.5)

which is a sum over the mass �ow contributions from the I display cases. The
terms ∆hlg, ρsuc and ∇ρsuc are all refrigerant speci�c functions which are ex-
plained in detail in [28] The mass �ow rate created by the compressor rack is
described by:

ṁcomp = Cap · 1

100
· ηvol,i · V̇sl,i · ρsuc, (F.6)

where the running compressor capacity of the rack is denoted by Cap and ηvol
and V̇sl denotes the volumetric e�ciency and the swept volume �ow rate, respec-
tively. No dynamics of the condenser is modelled. Hence, the condenser simply
de�nes a static condensing pressure and a static sub-cooling which indicates
that the condenser is considered ideal.

F.2.2 Controller structure

The control structure is comprised of PI controller for each of the display cases,
which controles the air temperature by manipulating the opening degree of the
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expansion valve, ODi. In addition the suction pressure is controlled by a PI
controller and switch logic that manipulates the running compressor capacity in
the compressor rack. The discrete behaviour of the compressor rack is achieved
by describing the delivered compressor capacity, Cap in (F.6) by:

Cap =

i=N∑
i=1

δiCapi (F.7)

In (F.7) δi ∈ {0, 1} and
∑N
i=1 Capi = 100%. In this particular application two

compressors are used i.e. N = 2, Cap1 = 45% and Cap2 = 55%. A hysteresis
band is applied around each compressor step to avoid excessive switching of the
compressors. The layout of the compressor rack is based on a real supermarket
system which has the same layout of the compressor rack.

F.2.3 Performance function

Improving the performance of any given plant requires a prede�ned notion for
the performance. Evaluating the performance based on total cost of ownership,
TOC, can be seen as the optimal solution. Direct measurement of the TOC is
a di�cult task and it can therefore be bene�cial to identify certain performance
criteria for the process and then use them as a performance measure. This idea
has been presented in [13] where the following has been identi�ed as relevant
performance criteria for a supermarket refrigeration system:

• Food quality

• Energy e�ciency

• Reliability

The food quality is monitored by measuring the control errors for the temper-
ature controller and the suction pressure controller. The energy e�ciency is
measured by using the coe�cient of performance, COP, in the setup. The COP
is de�ned as the delivered cooling power divided by the total electrical power
consumed. The reliability of the system is measured by the switch frequency of
the compressors because it gives an indication of the wear of the compressors.
Excessive switching of the compressors will lead to unnecessary wear of the com-
pressors and thereby increase the need for maintenance and thus decreases the
general reliability of the refrigeration system.
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Collecting all of the three performance criteria in one performance function
to provide overview was introduced in [13], and has been used in this work:

J(t) =

K∑
k=1

||e(k)||2Q +

L∑
l=1

|| 1

COP (l)
||2R +

M∑
m=1

||fsw(m)||2S (F.8)

The �rst term in (F.8) is the control errors of K controllers. The second term
is the inverted COP of L refrigeration cycles and the third term is the switch
frequency of M compressors. The inverted COP is used to ensure that the term
has the same properties as the two other terms in connection with performance
optimisation. The performance function (F.8) is a sum of quadratic terms where
the notation is given by:

||x||2A = xTAx, (F.9)

where x is a vector and A is a weight matrix for the particular term.

F.2.4 Normalisation

The performance function should be made of scalable terms that can be easily
adapted for a given supermarket, because the main objective is of course to be
able to employ the performance function and the related algorithms in various
supermarkets (with di�erent subsystems of di�erent sizes and dimensions). To
achieve scalability property the performance function has to be comprised of
scalable terms. Normalisation of the terms in the performance function pro-
vides precisely this scalability. The choice of the weights Q, R and S for the
performance function (F.8) will have to re�ect the regional regulations on safety
requirements as well as local operational expenses, for a particular supermarket
.

The normalisation of the terms will be described hereafter. Each display
case has a lower and an upper limit and the reference is chosen as the mean
value of the temperature limits and this knowledge is then used to achieve
the normalisation. By using the same argumentation on the suction pressure
controller the normalisation of the error term can be described as:

e =
2

(Tmax,i−Tmin,i)
· (Tref,i − Tair,i)

2
(Psuc,max−Psuc,min) · (Psucref − Psuc)

(F.10)

Normalisation of the switch frequency term is achieved by dividing the mea-
sured switch frequency with the the maximum allowable switch frequency of the
compressors in the rack. Hence, the switch frequency term is normalised in the
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following way:

fsw =
fmeas
fmax

, (F.11)

where fmeas denotes the measured switch frequency and fmax denotes the max-
imum allowable switch frequency of the compressors.

Due to the de�nition of the COP the term 1
COP is unit less and does therefore

not need any normalisation. The range of all of the three terms e, 1
COP and

fsw will after normalisation be in the interval between 0 and 1 and the weight
will therefore represent the cost associated with each of the terms. The weights
Q, R and S represent the costs, in terms of economic penalties or lost pro�ts,
which are associated with the performance of each subsystem. The choice of the
weights has to be done based on the impact on the total operation cost from
each of the terms in the performance function.

The price associated with temperature requirements for the display cases in
the supermarket should be used as a base for the weight in the error term, Q.
Too high or low temperature will destroy the stored food and thereby provide a
�nancial loss for the supermarket. The cost of electrical energy is the base for
the weight on the inverted COP term, R, since it is basically an e�ciency. The
weight on the switch term, S, has to be based on all the cost associated with
replacing and maintaining a compressor in the refrigeration system. Because
some of the contributions to the cost are hard to de�ne a signi�cant freedom for
manipulating the weights based on intuition is maintained. The simulation data
presented in this paper is scaled. Thus, the absolute values of the performance
function do not have any physical interpretation.

F.3 Optimisation formulation

The formulations of the optimisation problem will be presented in this section.
For the majority of the operation time the supermarket refrigeration system is
in steady state. However, the quality of the operation is still important un-
der dynamic behaviour. Thus, the problem of optimising the general operation
of the plant has been split into two separate tasks, where the �rst task is the
optimisation of the steady state performance and the second tasks is optimis-
ing the dynamic performance. From here on they will be referred to as static
optimisation and dynamic optimisation, respectively. The static and dynamic
optimisation will be described in detail in F.4 and F.5, respectively. Depending
on whether the optimisation focus is on static or dynamic performance, di�er-
ent parameters will be subject to optimisation. For the static optimisation case
the proposed strategy is to identify the predominant subsystem, with respect



130 P a p e r F

to the performance measure for the entire refrigeration plant. The optimisation
parameters should then be chosen to be the parameters with highest in�uence
on the performance. Parameters with these characteristics are usually the set-
points for the controllers. In the case of the supermarket refrigeration system
the predominant subsystem is the suction pressure control loop and the optimi-
sation parameter is the suction pressure reference. In the dynamic optimisation
case the controller parameters will be the optimisation variables. The common
optimisation problem can be formulated by rewriting the performance function
in (F.8) as:

J(φ(t)) =

I=K+M+L∑
i=1

Ji(φ(t)), (F.12)

where Ji(φ(t)) is the local performance function for the ith subsystem which is
depending on the parameter set φ(t).

F.4 Static performance Optimisation

As supermarket refrigeration systems operate in steady state conditions most of
the time (i.e. over 80% of the time) it makes sense to �rst focus on optimising
the system performance for steady state operations, henceforth denoted static
performance optimisation. When the main objective is to optimise the static
performance one should look for the subsystems that have the highest impact
on the total performance of the plant. For these systems, the conditions and
objectives of the operation, are predominantly realized through the choice of
appropriate set-points.

φ(t) in (F.12) is the set of optimisation variables which, in the static case, is
ide�ned as:

φ(t) =
{
Poref (t), Q̇airload(t)

}
, (F.13)

where Poref , denotes the suction pressure reference for the compressor rack
controller, which is the controllable variable and Q̇airload denotes the heat loss
to the surroundings in the supermarket sales are, which is considered to be the
main disturbance in the system.

Set-point optimisation of the supermarket is de�ned as:

min
Poref

J(φ(t)) ∀ Q̇airload (F.14)

The optimisation problem is to �nd the optimal value for Poref (t) that min-
imises J(φ(t)) for any given disturbance Q̇airload. To solve the optimisation
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problem it is required to obtain deeper knowledge about the pro�le of the per-
formance function J(φ) over the relevant search space φ. This can be done by
either carrying out comprehensive �eld tests or simulating the case by using
appropriate models of the plant.

F.4.1 Simulation setup and Results

The simulation model presented in section F.2.1 has been used for the purpose.
Hence, the simulated refrigeration system is comprised of two display cases and a
compressor rack comprised of two compressors. Simulations under varying loads
and suction pressures have been performed to get a deeper knowledge about the
performance function over a realistic search space. Investigation of simulation
results leads to a proposed procedure for choosing the optimal set-point under
any given load conditions.
In the simulations, the suction pressure reference has been changed in steps from
1.0 ·105 [Pa] to 2.5 ·105 [Pa] with a step size of 0.1 ·105[Pa] or the equivalent of
changing the evaporation temperature approximately 2◦C. For each of the steps
in the suction pressure reference the disturbance, Q̇airload, and thereby also the
load of the system has been changed by changing the ambient temperature of
the display cases in steps from 18 [◦C] to 28 [◦C], with a step size of 0.5◦C. In
these simulations, steady state values of various measurements have been used.

On Fig. F.3 the top plot shows the performance function and the remaining
plots each of the terms from the performance function versus Poref at three
di�erent loads, Low, Medium and High, which in the simulation corresponds to
a change in the ambient temperature of the display cases. As shown in Fig. F.3,
by increasing the load, the minimums are shifted to the right on the Poref axis.
The inverted COP term is not changed in di�erent loads. The performance
function is highly correlated with the switch frequency and this term mostly
shapes the behavior of the performance function.

Fig. F.4 shows the performance function plotted versus Poref and the load,
Q̇airload and it can be seen that the reference for the suction pressure is de-
pendent on the load, Q̇airload. Increasing load clearly calls for a higher suction
pressure reference if optimal operation should be maintained. The same con-
clusion can be made by looking at Fig. F.5 and Fig. F.7. The contribution
from the inverted COP term is shown in Fig. F.6, which represents the curve
form that will be used for optimising a refrigeration plant. Hence, using the
performance function (F.8) as shown on Fig. F.4 for choosing the optimal suc-
tion pressure will present a better set-point than solely basing the choice on the
inverted COP .
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Figure F.3: Performance function and each of the terms plotted separately
versus Poref at di�erent load levels. The top plot is the performance function
and the following plots are the error term, the inverted COP term and the
switch term of the performance function.

Figure F.4: Performance function versus Poref and Q̇airload
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Figure F.5: Error term from the performance function versus Poref and Q̇airload

Figure F.6: Inverted COP term from the performance function versus Poref
and Q̇airload
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Figure F.7: Switch term from the performance function versus Poref and
Q̇airload

F.4.2 Set-point optimisation

Under realistic conditions generating complete set of data is not a viable solu-
tion. Nor it is normally possible to use a su�ciently detailed model of a given
(arbitrary) refrigeration plant. However, it is feasible to online generate a lim-
ited data set. Taking these constraints into considerations and studying the
simulation results lead to an interesting observation; the optimal set-points for
suction pressure lie along two lines on the search space, see Fig. F.8. Analysis
of Fig. F.4 through F.7, shows that the optimal point is changing linearly with
respect to the change in the disturbance, Q̇airload. Therefore, by means of three
or at least two optimal set-points, an optimal set-point line at di�erent values
of Q̇airload can be interpolated F.8. These lines can be su�ciently characterised
by a linear interpolation of the following form:

Poref = Poref,a + (Poref,b − Poref,a) · Q̇airload − Q̇airload,a
Q̇airload,b − Q̇airload,a

(F.15)

Therefore, the optimisation problem could be solved by determining the value
of Q̇airload at each instance and then set Poref to the corresponding value of
Q̇airload based on the knowledge gained by the two sweeps and the interpola-
tion. Since the interpolation approach is based on the ability to do at least
two sweeps at di�erent values of Q̇airload, the method relies on the changes of
the disturbance over time and thereby renders sweeping at di�erent load sit-
uations possible. The load change between opening and closing hours of the
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supermarket system will be su�cient to provide a good interpolation results.
However, extending the algorithm to update the interpolation when there has
been a seasonal change might be a good idea.

F.4.3 Choosing strategy of the optimal set-point

For a given/estimated load the optimal set-point for the suction pressure need
be identi�ed. This can be done based on calculation of the minimum distance
from the current operating conditions, i.e. (Poref,current, Q̇airload,current) to
the interpolated lines. The procedure is described in the following:

The distance di between the point (Poref,current, Q̇airload,current) and the
ith line λi : Poref = miQ̇airload + bi, i ∈ {1, 2} is given by the following
formula:

di =
|Poref,current −miQ̇airload,current)− bi|√

m2
i + 1

(F.16)

The distance di between the point (Poref,current, Q̇airload,current) and the
ith line λi : Poref = miQ̇airload + bi, i ∈ {1, 2} is given by the following
formula:

di =
|Poref,current −miQ̇airload,current)− bi|√

m2
i + 1

(F.17)

The candidate line, λ∗ , will be the one that lies within the shortest distance
from the working point, i.e.

λ∗ = λi, such that: ∀j 6= i, di < dj (F.18)

λ∗ = λi, such that: ∀j 6= i, di < dj (F.19)

if di = dj then the candidate line should be chosen as the one that goes
through the higher suction pressure.

The proposed method will provide a close to optimal set-point based on the
interpolation.
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Figure F.8: Performance function versus Poref and Q̇airload with the optimal
interpolated line

F.4.4 Generalisation of the method

The considered system corresponds to a small supermarket refrigeration system
where the compressor rack consists of two compressors. The compressor rack
for larger supermarkets contains three or more compressors. Use of more com-
pressors implies that it is possible to combine the compressors so that the risk of
possible gaps in the delivered capacity is minimised. Furthermore, in compres-
sor racks with more than three compressors it is customary to use at least one
frequency controlled compressor. This will virtually remove any risk of gap in
the delivered compressor capacity. However, as there is a large segment in the
(small-medium) supermarket refrigeration systems where the compressor rack
consists of three on-o� compressors it is appropriate to generalise the method
in order to cover this case as well.

The compressors in the compressor rack is denoted by CA, CB and CC . The
corresponding control strategy always pursues the following switching pattern:

{CA}︸ ︷︷ ︸
Low

←→ {CA, CB}︸ ︷︷ ︸
Medium

←→ {CA, CB , CC}︸ ︷︷ ︸
High

,

i.e. start a compressor to deal with demands in low capacity area, then switch
the second one when the demand increases to medium level. All compressors
are then started in order to meet high capacity demand. There are two pos-
sible gaps in the compressor capacities, i.e. one in the capacity area between
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{CA} and {CA, CB} and the other one between {CA, CB} and {CA, CB , CC}.
Similar to the two-compressor case, the performance of the system within each
gap degrades, i.e. the value of the performance function (the cost) increases.
Correspondingly, the pro�le of the performance function will look similar to the
two-compressor case. The di�erence is that in stead of having two interpolated
lines that represent the optimal set-points for the suction pressure for given
external load, now we have three non-overlapping interpolated lines. The area
between two neighboring lines corresponds to a gap in compressor capacities
due to switches between two compressor con�gurations, for instance {CA} and
{CA, CB}.
To establish the three interpolated lines it is su�cient to perform a sweep over
the suction pressure range for two di�erent load conditions as it is prescribed in
section F.4.2. Similarly, for a given load Q̇airload,current the strategy of calculat-
ing the corresponding optimal set-point for the suction pressure follows exactly
the procedure presented in section F.4.3. The only di�erence is that there are
three interpolated lines, i.e. i ∈ {1, 2, 3}, that need be considered.

F.5 Dynamic Performance Optimisation

As stated before optimising the dynamic behaviour of a supermarket refriger-
ation system with the controller parameters as optimisation variables, creates
the need for active performance monitoring. The systems are usually in steady
state for a signi�cant amount of time, and a change in controller parameters
will not a�ect the error and therefore not in�uence the plant-wide performance.
Hence, excitation of the dynamics is required to optimise the dynamic behaviour
of the system. The setup for active system monitoring is shown on Fig. F.9,
as a block diagram of the closed loop under investigation. The controller is

Figure F.9: The general active system monitoring setup

denoted by K and the system is denoted by G. The input to the system and
the measured output is denoted by u and y, respectively and the reference to
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the controller is denoted by yref . The applied parameter change is denoted by
∆ξ and the contributions to the plant-wide performance function, J , is denoted
by Γ. The excitation signal is denoted by ηΣ. The novel idea is in essence to
excited relevant dynamics and then evaluate the current parameter setting with
respect to J .

F.5.1 Design of Excitation Signal

A prerequisite for the active system monitoring scheme is the design of an ex-
citation signal. Excitation of relevant dynamics of the system is the purpose
and the problem is therefore to design a set of signals, {η1, · · · , ηm}, that lie
in the appropriate frequency range of their corresponding closed loop systems.
Since the dynamics of the subsystem in the closed loop under investigation is
unknown the design problem is non-trivial. The knowledge regarding the closed
loop is limited to a structural level. The use of design strategies from [33] and
[39] is therefore restricted.

The intention is that the active performance monitoring setup should run
on a supermarket refrigeration system in operation, and it is therefore impor-
tant that a excitation signal does not compromise the operational performance
signi�cantly. In other words, the impact of on the system should be taken into
account when the excitation signal is designed.

The air temperature control loop in the display case of a supermarket refrig-
eration system has been used show case for the proposed method in this work.
The following facts are used as base for the design process hereafter:

1. The closed loop consists of a PI controller and a physical system, here a
display case, for which the dynamics are unknown.

2. The parameters of the PI controller are known.

3. The existing controller is stabilizing the closed loop.

Furthermore, the following assumptions are used in the design process:

1. The system can be described su�ciently using a �rst-order model plus
dead time (FOPDT).

2. The response time delay to an abrupt change in control action is known.
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Veri�cation of the �rst assumption can be obtained by consulting [18, 43, 44]
and the time delay can be measured with su�cient accuracy on the system.
The following notation is introduced fot the kth subsystem wich is described as
a �rst-order-plus-dead time (FOPDT) process model:

Gk(s) =
kpke

−Tdk
s

τks+ 1
,

where Tdk denote the time delay and kpk and τk) denotes the gain and time
constant, respectively. The corresponding controller Ck(s) is a PI type, i.e.

Ck(s) = kc +
kc
Tis

.

The closed loop transfer function for the subsystem is then given by:

Hk(s) =
Ck(s)Gk(s)

1 + Ck(s)Gk(s)
.

For the chosen subsystem k, the task is then to �nd an appropriate set of
excitation signals {η1(t), · · · , ηm(t)} which excites relevant dynamics of the sys-
tem and therefore assists in the task of �nding the optimal controller parameters
{kck , Tik} with respect to the plant-wide performance as describe in (F.8). The
optimisation problem can be formulated as:

minimize
kck ,Tik

J(t)

subject to:

yk(t) = (hk ∗ ζ)(t), ζ(t) =

m∑
i=1

ηi(t).

(F.20)

where yk denotes the output of the kth system. '∗' denotes the convolution
function and represents the time domain description of yk(s) = Hk(s)ζ(s). The
excitation signal is represented by ζ(t). Hence, there exists two main problems
that needs to be solved. Firstly, the excitation signal has to be designed and
secondly a suitable optimisation strategy has to be applied. The two problems
will be dealt with in the following.

The design of the excitation signal has been split into two di�erent tasks.
The �rst task is to determine the frequency content of the signal and the second
task is to determine a reasonable amplitude for the signal. To assist the design
process the following simpli�cation has been made:

ζ(t) =

m∑
i=1

ηi(t) =

m∑
i=1

η(ωit) (F.21)
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Thus, ζ is essentially a sum of identical functions with di�erent frequency ωi.
The candidate function is chosen to be a sinusoidal function described by:

ηi(t) = Ai sin(ωit). (F.22)

The excitation signal is then injected to the system as shown in Fig. F.9.

The following will describe how the frequencies and the magnitude for the
excitation signal will be described. Based on the knowledge of the controller
parameters, kc and Ti the corresponding system parameters, i.e. τ and kp, can
be estimated based on the desired gain and phase margins, see [14]. The cuto�
frequency ωc of the closed loop can then be estimated based on the transfer
function of the closed loop. The estimated parameters of a real system might
deviate from the estimation by up to 100%. Hence, to ensure that the resulting
excitation signal provides the proper impact on the dynamics a set of frequencies
should be used.

Choosing the frequencies can be done based on the strategy presented in
(F.24) and (F.23)

ωm+1
2

= ωc (F.23)

where m is chosen to be an odd number and hence the frequencies will be spread
using (F.24).

ωi =
1

10
ωi+1 ∀i = 1, · · · ,m− 1 (F.24)

After the frequency content has been chosen the amplitude of the signal should
be determined. The method for choosing the amplitude for the excitation signal
will be described hereafter. Since the choice of the frequency content relies on
the closed loop transfer function the assumption is that the current controller
is able to stabilise the closed loop and the choice of amplitude can therefore be
done by using the following method. The boundaries for a controllable signal
is usually provided as constraints on the set-point which can be denoted by
SPupper and SPlower and can therefore be used in the following way:

SetPoint+ ||ζ||∞ < SPupper (F.25)

SetPoint− ||ζ||∞ > SPlower (F.26)

Extrema for ζ does exists due to the de�nition in (F.21) and (F.22), which de�nes
ζ as a bounded function. Furthermore by assuming that the closed loop has
reached steady state the contribution from the P-term of the PI controller can
be neglected and the I-term is the only contributer that enables the controller to
keep set point tracking. Based on the discussion above, it is proposed to choose
||ζ||∞ using the following equation:

||ζ||∞ = α

∣∣∣∣∣ I-termk̂pk

∣∣∣∣∣ , (F.27)
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In (F.27) α ∈ {0.01 · · · 0.25} and k̂pk is the estimated system gain. The value
of α should be chosen as high as possible without violating (F.25), and (F.26).
A reasonable choice is α = 0.15. The correct amplitude for ζ is the sum of
amplitudes of the sinusoidal function in (F.22) which are given by:

Ai = α

∣∣∣∣∣ I-termmk̂pk

∣∣∣∣∣ ∀k ∈ {1, · · · ,m}. (F.28)

After the design of the excitation signal a proper method for optimisation with
respect to the plant-wide performance has to be employed.

F.5.2 Invasive Weed Optimisation (IWO)

The use of traditional optimisation techniques as those presented in [7] is hard
in complex industrial settings like the supermarket refrigeration system. The
methods usually rely on the existence of a process model and secondly the meth-
ods are derivative-based. Meaning that they rely on calculating the derivative
of the performance function. To avoid the problem of dealing with online cal-
culation of the derivative of the performance measurement the aim has been to
employ a derivative-free optimisation scheme. The invasive weed optimisation,
which was introduces in [31], is a derivative-free optimisation scheme that in
this paper has been used as a method for searching the parameter space.

The bio-inspired IWO algorithm basically tries to mimic the way an invasive
weed colonises an area to �nd the best position for the weed. The idea proposed
in this paper is to utilise the IWO algorithm to �nd the best parameters for the
controllers with respect to the plant-wide performance measurement. The IWO
algorithm searches the parameter space by randomly choosing an initial set up
parameters in the prede�ned search space and then evaluating the performance
of each parameter set. Then by applying the survival of the �ttest principle only
the best parameter sets are selected. In the next generation of the algorithm
there is then randomly selected new parameter sets in a radius to the surviving
parameter sets from the last generation. The radius is reduced after each gener-
ation of the algorithm and after a prede�ned number of generations a solution
is provided. This process corresponds to an invasive weed that colonises a �eld
with crops by randomly spreading seeds and then allowing them to grow into
plants where the best plants will be able to spread their seeds until there is no
more space between the crops.
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F.5.3 Simulation setup and Results

This section presents the simulation setup results for the use of the IWO al-
gorithm for plant-wide optimisation of the dynamic performance of the super-
market refrigeration system. The basic idea is to employ the approach online
on a real system and the method is therefore tested on the simulation model.
The simulation model used in the setup is described in section F.2. The IWO
algorithm has been used to �nd the optimal parameter set for the PI controller
in a display case which is the controller gain, kc, and the integration time, Ti.
The size of the search space has been chosen based on the knowledge about
what reasonable ranges can be accepted for the di�erent optimisation variables.
Furthermore, to assist the IWO algorithm an initial guess has been used in the
�rst generation of the algorithm to ensure that at least one parameter set is
reasonable.

In this setup the simulation runs for 5000 seconds to ensure that the perfor-
mance function is in steady state with the given set of controller parameters, kc
and Ti.

F.5.4 Results

The result produced by the IWO algorithm over 150 generation can be seen
on Fig. F.10, where the minimum, the mean and the maximum values of the
performance function is plotted for each generation each corresponding to a
di�erent parameter set. On Fig. F.11 the evolution of the worst and the best
integration time Ti is plotted and it can be seen that even the worst performing
converges toward the solution. The worst and the best controller gain kc is
plotted on Fig. F.12. In addition, it also shows that the worst performing choice
of kc is on the edge of the search space for many generations i.e kc = −0.001.
However, despite that even the worst performing choice of kc converges toward
the best solution. On Fig. F.13 the integration time Ti is plotted versus the
controller gain kc and it shows that all the best performing parameter sets from
all the generation are within a narrow area of the solution. Another important
point is that the initial guess of the controller parameter, kc = −0.1 and Ti =
100, has never been the best performing parameter set. The initial parameter set
is chosen based on empirical knowledge about the sýstem. However, the solution
provided by using the IWO algorithm is a controller gain of kc = −0.1716 and
an integration time of Ti = 55.84.
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Figure F.10: Generations versus the performance function J . The best achived
performance over 150 generations is 1.1512

Figure F.11: Evolution of Ti. The red line plots the evolution of the worst choice
of Ti and the blue line plots the evolution of the best choice of Ti
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Figure F.12: Evolution of kc. The red line plots the evolution of the worst choice
of kc and the blue line plots the evolution of the best choice of kc

Figure F.13: Ti versus kc, The blue triangle indicates the end result for the
parameters, kc = −0.1716 and Ti = 55.84.
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F.6 Conclusion

The focus of this paper was on achieving optimised system performance from a
plant-wide point of view. To enable performance assessment and optimisation
an appropriate performance function, which encompasses food quality, energy
e�ciency, and system reliability, was introduced. Due to the fact that the su-
permarket refrigeration systems operate the majority of time under steady-state
(i.e. static) conditions, it was appropriate to consider the performance optimi-
sation case under two di�erent conditions; static (steady state) conditions and
dynamic (transient) conditions. The static performance optimization was re-
alised through set-point optimisation. The simulation results on a supermarket
refrigeration system with a compressor rack, consisting of two on-o� compres-
sors with di�erent capacities, lead to a strategy for choosing set-point that is
contrary to the existing practice. A generalisation of the method to a compres-
sor rack with three compressors was also provided. As the system operates in
steady state conditions most of the time, it is necessary to generate auxiliary
signals in order to su�ciently excite the local subsystems to enable parameter
optimization of their corresponding controllers. The paper suggested a design
strategy for these signals that also takes the realistic operational conditions into
considerations. A derivative-free optimisation strategy, based on invasive weed
optimisation method, was employed to search for optimal parameters of the lo-
cal controllers. Simulation results were used to discuss and propose a strategy
for appropriate employment of the optimisation method.
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