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Abstract 

A generic and systematic model-based framework for the design of a process monitoring 

and control system to achieve the desired crystal size distribution (CSD) and crystal 

shape for a wide range of crystallization processes has been developed. This framework 

combines a generic multi-dimensional modelling framework, tools for design of set point 

profiles, for design of PAT (Process Analytical Technology) systems as well as option to 

perform the uncertainty and sensitivity analysis of the PAT system design. Through this 

framework, it is possible for a wide range of crystallization processes to generate the 

necessary problem-system specific model, the necessary set point using the extended 

analytical CSD estimator and the response surface method (RSM) and a PAT system 

design including implementation of monitoring tools and control strategies in order to 

produce a desired product with its corresponding target properties. In addition the impact 

and influence of input uncertainties on the predicted PAT system performance can be 

quantified, i.e. the risk of not achieving the target specifications of the crystal product can 

also be investigated. The application of the systematic model-based framework is divided 

into three sections: a) the application of the generic multi-dimensional modelling 

framework are highlighted: i) the capability to develop and further extend a batch cooling 

crystallization model is illustrated through a paracetamol case study, supplemented by a 

sucrose crystallization example to demonstrate how the framework supports smooth 

switching between chemical systems with a minimum modelling effort; ii) a potassium 

dihydrogen phosphate (KDP) case study is used to demonstrate how the model 

complexity can be increased, that is, by switching from a one-dimensional to a two-

dimensional description; b) the systematic framework is used in a case study to design a 
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monitoring and control (PAT) system for a potassium dichromate and KDP 

crystallization processes to achieve the desired target CSD respectively; and c) Based on 

the PAT system design in b), the application of uncertainty and sensitivity analysis is 

then highlighted for the potassium dichromate and KDP crystallization process both in 

open-loop and closed-loop operation. In the case study, the impact of input uncertainties 

related to parameters of the nucleation and the crystal growth model on the predicted 

system performance has been investigated for a one- and two-dimensional CSD and it 

shown the PAT system design is reliable and robust under considered uncertainties.  
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Resume på Dansk 

En generelt og systematisk modelbaseret ramme til design af procesovervågnings- og 

kontrolsystem med henblik på at opnå en ønsket krystalstørrelsesfordeling og krystalform 

for et bredt spektrum af krystallisationsprocesser er blevet udviklet. Denne ramme 

kombinerer en generel multidimensionel ramme til modellering, værktøjer til design af 

indstillingsværdiprofiler, design af PAT (Process Analytical Technology)-systemer samt 

muligheden for at udføre usikkerheds- og sensitivitetsanalyse for disse PAT-systemer. 

Med denne ramme er det muligt at generere de nødvendige problem- og systemspecifikke 

modeller for et bredt spektrum af krystallisationsprocesser, det krævede sætpunkt gennem 

den udvidede analytiske estimator til krystalstørrelsesfordeling og ”Response Surface 

Method”, samt et design til PAT-systemer, der inkluderer implementeringen af værktøjer 

til overvågning og kontrolstrategier til at opnå et ønsket produkt, med dets tilsvarende 

ønskede egenskaber. Derudover kan virkning og indflydelse af usikkerheder i input på 

det forhåndsbestemte PAT-systems virkningsgrad kvantificeres, dvs. risikoen for ikke at 

opnå de givne specifikationer for krystalproduktet tilsvarende kan undersøges. 

Anvendelsen af den systematisk modelbaserede ramme er inddelt i tre afsnit: a) 

anvendelsen af den generelle modelbaserede ramme er fremhævet: i) muligheden for at 

udvikle og yderligere udvide en model for batch kølingskrystallisation illustreres ved et 

paracetamol case study suppleret med et eksempel med sakkarose for at demonstrere 

hvordan rammen understøtter glidende overgang fra et kemisk system til et andet med et 

minimum af modelleringsarbejde; ii) et kaliumdihydrogenphosphat (KDP) case study 

anvendes til at vise hvordan modellens kompleksitet kan øges ved at skifte fra en 

endimensionel til en todimensionel beskrivelse af systemet; b) den systematiske ramme 
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 viii

anvendes i et case study til at designe et overvågnings- og kontrolsystem til at opnå den 

ønskede krystalstørrelsesfordeling i henholdsvis en kaliumdichromat og en KDP 

krystallisationsproces; samt c) baseret på designet af PAT-systemet i b) fremhæves 

anvendelse af usikkerheds- og sensitivitetsanalyse for kaliumdichromat og en KDP 

krystallisationsprocesserne både i åben og lukket sløjfe. I det pågældende case study er 

virkningen af usikkerheder i input relateret til parametre i modellerne for kimdannelse og 

væksten af krystallerne på systemets forhåndsbestemte præstation undersøgt for både en- 

og todimensionel krystalstørrelsesfordeling og det viste PAT-sytemet designet er 

pålidelig og robust under betragtes som usikkerheder. 
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1. Introduction 
 

The chapter begins with an introduction (section 1.1) to give an overview of 

challenges in crystallization processes. This leads to the definition of the objective of this 

work, which is the development of a generic and systematic model-based framework for 

the design of a process monitoring and control (PAT) system for crystallization 

processes. Finally, the organization of this thesis is summarized.  

   

1.1 Introduction

Crystallization processes have a wide application range as a solid-liquid 

separation technique in the chemical, the pharmaceutical and the food industries due to 

the fact that high quality crystalline products can be produced. For example in the 

chemical industries, crystallization is usually utilized in the manufacture of polymers, 

high value chemicals and as a purification and separation technique in the petrochemical 

industry. Furthermore, the crystallization of protein is one of the most common 

techniques used for drug design in the pharmaceutical industry (Shi et al., 2006). Due to 

special bioavailability and stability reasons, some pharmaceuticals are crystallized during 

the preparation of various drug delivery devices (Garcia et al., 1999; Mangin et al., 

2006). In the food industries, the crystallization is often used as a purification and 

separation technique for the production of butter, cheese, salt and sugar (Myerson, 2002). 

The main specifications of the crystal product are usually given in terms of 

crystal size, crystal size distribution (CSD), shape and purity. A challenge, however, in 
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many crystallization processes is how to obtain a uniform and reproducible CSD 

(Wibowo & Ng, 2001; Braatz, 2002). In order to achieve this specification, considerable 

efforts have been put in development of detailed models of crystallization processes in 

order to support the development of improved operation and control strategies. In terms 

of the model-based approaches, each time a crystallization process is studied, one usually 

develops the necessary specific model to cover the effects of the various operational 

parameters on the behavior of the crystals. The control strategies are then implemented as 

well, to allow simulation-based investigation of the control of the CSD, for example by 

using supersaturation control or temperature control (Braatz, 2002; Fujiwara et al., 2005; 

Aamir et al., 2009). Finally it is then checked whether the obtained CSD matches the 

target. If not, then the simulation is repeated for a different set point candidate until the 

target CSD is obtained. Although these approaches can yield a control strategy and a set 

point candidate that allows obtaining the target product with the desired CSD, they face 

quite some challenges that are worth mentioning. These challenges must be overcome, 

since they stand in the way for fully exploiting the crystallization model for development 

of monitoring or control strategies.  

A first challenge, in terms of crystallization modelling, is that the necessary 

balance and constitutive equations need to be collected, for example from the literature, 

in order to develop a crystallization model that can be used to describe the CSD during 

the crystallization process. However, one of the challenges here is that most models 

reported in the literature (Fujiwara et al., 2002; Ma et al., 2002; Puel et al., 2003; Nagy et 

al., 2008a,b; Aamir et al., 2010; to name a few) are problem-specific, meaning that the 

models were developed with a certain crystal product in mind. As a consequence, a series 
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of different model assumptions and model types have been reported in the literature and 

applied to specific crystallization case studies. The result is that the model user often 

experiences difficulties to select the appropriate model. There is thus an obvious need for 

a generic crystallization model that can describe a crystallization operation, and from 

which the model user can – in a well-structured and transparent way – generate a large 

number of specific models for studying and optimizing different crystallization processes. 

Such a problem-system specific model then needs to be analyzed and extended 

further with appropriate monitoring and control algorithms, in order to perform 

simulation-based design of control strategies. However there are two challenges that need 

to be considered before the monitoring and control tools can be implemented. When 

designing control strategies of crystallization systems, one problem is the design of 

suitable set point profiles that need to be achieved through an appropriate control system. 

Two approaches could be considered: a model-based design approach and a model free 

(or direct design) approach. In the model-based design approach, the set point profile is 

obtained using optimal control (Shi et al., 2006; Zhang and Rohani, 2003, 2004; 

Rawlings et al., 1993). This approach requires a detailed first principle model of the 

system with accurate model parameters, for example, for nucleation and growth kinetics, 

in order to ensure the successful implementation of the optimal control trajectory. It may 

not, however, be possible to obtain all the necessary model parameters and the 

performance of this approach depends on the model accuracy (Nagy et al., 2008a). In 

addition, some additional set point constraints need to be considered as well. On the one 

hand, if the crystallization process is operated close to the metastable limit, excessive 

nucleation may result because of the high supersaturation. On the other hand, in case the 
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set point profile is too close to the solubility line, it may lead to slow growth and long 

batch times (Fujiwara et al., 2005), resulting in a low overall productivity.   

The model free approach uses a feedback control system to maintain the 

operation at its set point profiles where the set point profile is designed to lie within the 

metastable zone. Unlike the model-based approach, a detailed first principle model is not 

required, and a close-to-optimal set point profiles can be obtained relatively fast (Nagy 

and Braatz, 2012; Nagy et al., 2008a; Fujiwara et al., 2005). For example, the approach 

can be used to generate concentration set point profiles in the crystallization phase 

diagram and maintain the set point profiles using a proportional-integral (PI) control 

system. The set point profiles, which in fact consists of both the supersaturation and the 

total batch time needed to complete the crystallization operation, can be determined using 

an analytical CSD estimator as highlighted in the work of Nagy and Aamir (2012) and 

Aamir (2010). The analytical CSD estimator originally developed by Aamir (2010) is 

computationally efficient and can be applied for size independent and size dependent 

growth for one-dimensional crystallization processes. Although the one-dimensional 

crystallization process is widely used in many applications, the crystal shape used is 

somehow limited to a spherical or cubic shape, described by only one characteristic 

length. However, crystal particles may exhibit other shapes also. For example, some 

organic crystals produced by the pharmaceutical industry typically have shapes like a 

tetragonal prism that is described by more than one characteristic length, represented 

mathematically as a two-dimensional model (Briesen, 2006).  

Once a set point profile has been designed, another problem is the design of a 

monitoring and control system (Process Analytical Technology (PAT) system) for the 
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crystallization process in order to keep the process at the proposed set point profile. Here 

a unique model-based methodology for PAT system design has been developed (Singh et 

al., 2009). This methodology involves the selection of critical process variables, the 

selection and placement of suitable monitoring and analysis equipments, and finally the 

coupling of monitoring and analysis tools for a control system to ensure that the selected 

critical process variables can be controlled. So far the design methodology has been 

applied in fermentation, tablet manufacturing and cheese production. However, in order 

to achieve a wide application range of the PAT system design methodology, and 

particularly for crystallization processes, it needs to be linked to a modelling framework 

for efficient generation of problem-system specific models as well as PAT system design. 

Another challenge is that so far in model-based PAT system design, it has been 

assumed that the exact value of the model parameters is known, for example in the 

nucleation and crystal growth rate expressions (Singh et al., 2009; Samad et al., 2012a). 

These parameters are usually estimated from experimental data, often with considerable 

measurement errors which also implies a certain error on the estimated parameters. 

Consequently, there is a degree of uncertainty around the values of nucleation and crystal 

growth model parameters, which must be taken into account to design a reliable and 

robust PAT system. In the crystallization process, several approaches have been taken to 

deal with uncertainties by incorporating robustness in the control of crystallization (Nagy 

& Braatz, 2003; 2004; Nagy, 2009; Saengchan et al., 2011). Nagy (2009) proposed a 

robust on-line model-based optimization algorithm using distributional batch nonlinear 

model predictive control (NMPC) which considers the nucleation parameter uncertainties 

in the optimization problem formulation to determine the robust operating profiles. The 
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Monte Carlo simulations were then performed off-line by randomly sampling the 

uncertain parameter space and applying the robust operating profiles. By performing this 

approach, the variability in the product CSD has been significantly reduced. However the 

uncertainties around the crystal growth parameters are not considered in their work and 

the impact of individual contribution in the input uncertainties on the output are not 

quantified. In the work of Saengchan et al. (2011), improvement of batch crystallization 

control on potassium sulfate crystallization given uncertain kinetic parameters has been 

proposed using model predictive control (MPC).   

Furthermore, the impact of parameter uncertainty and control implementation 

inaccuracies on the performance of optimal control trajectory are quantified in the work 

of Ma et al. (1999). These quantitative estimates are then used to decide whether more 

laboratory experiments are needed to provide more accurate parameter values or to define 

performance objectives for control loops that implement the optimal control trajectory. 

As a result, a robust feedback control whether using a simple PID controller or more 

advanced controller such as MPC is needed to deal with uncertainties and to ensure the 

desired crystal product is achieved. Before deciding for an appropriate approach to deal 

with uncertainties in crystallization process, foremost the impact of such model parameter 

uncertainties on the predicted system performance needs to be quantified and evaluated. 

Such an evaluation is useful to find out whether uncertainties considered may lead to a 

situation where the target specifications of the crystal product are no longer reached. The 

latter situation is of course not desirable in a pharmaceutical production process. This 

requires expansion of model-based methods with formal uncertainty and sensitivity 

analysis in a comprehensive way.        
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1.2 Objective of this work 

The main objective of this work is to develop a generic and systematic model-

based framework for the design of a process monitoring and control (PAT) system to 

achieve the desired CSD and crystal shape for a wide range of crystallization processes. 

In order to reach the main objective, several steps had to be taken. First of all, a generic 

modelling framework needs to be developed with the purpose of a generating problem-

system specific model in an efficient way for a wide range of crystallization processes. 

Once the problem-system specific model is available, then there is a need to decide where 

the crystallization should be operated in order to obtain the desired crystal product 

consistently. Therefore the appropriate techniques for efficient determination of the set 

point need to be available as one of the steps in the design framework as well. This 

design framework should furthermore be able to link with the already available tools for 

PAT system design (Singh et al., 2009) to ensure the monitoring and control 

implementation. Furthermore, the tools needed to perform the uncertainty and sensitivity 

analysis should be included in the steps of the overall design framework where the impact 

and influence of the model parameter uncertainty on the predicted system performance 

can be investigated. Lastly, the overall design framework should also be generic, 

meaning that all the tools included and models are applicable to a wide range of 

crystallization processes. 

 

27



 

 8

1.3 Thesis organization 

This PhD-thesis is organized in six chapters including this chapter 

(Introduction), where the motivation and the objective of the work are presented. Chapter 

2 gives a review of the literature about crystallization processes in terms of the 

crystallization fundamentals, modelling issues, operation and control as well as an 

overview of the most common techniques available for the uncertainty and sensitivity 

analysis. The generic multi-dimensional framework for modelling of batch cooling 

crystallization is presented in Chapter 3. This chapter presents the model generation 

procedure incorporated within the modelling framework and highlights its use through 

the paracetamol, sucrose and potassium dihydrogen phosphate (KDP) crystallization case 

studies where the different features of the framework are highlighted: (1) efficient 

adaptation of the generated model to another chemical system; (2) handling model 

complexity, where the switching between a one-dimensional and a two-dimensional 

model are highlighted for the same chemical system.  

In Chapter 4, the generic and systematic model-based framework for the design 

of a process monitoring and control (PAT) system is presented. The systematic design 

framework contains a generic crystallizer modelling tool box, a tool for design of set 

point profiles, a tool for design of a process monitoring and control (PAT) system as well 

as a tool for implementing uncertainty and sensitivity analysis. The application is 

highlighted through potassium dichromate and KDP crystallization process case studies 

to achieve a desired crystal CSD and shape. The features of the systematic design 

framework to perform uncertainty and sensitivity analysis are presented in Chapter 5. 

Here the framework for uncertainty and sensitivity analysis is presented first where it is 
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embedded within the systematic design framework. Based on the PAT system designed 

for the potassium dichromate and KDP crystallization process in Chapter 4, the 

uncertainty and sensitivity analysis is then conducted in this chapter and the risk of not 

achieving the desired CSD and crystal shape is quantified for both processes. Finally, 

Chapter 6 presents conclusions and directions for future work.  
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2. Literature Review 

In crystallization processes, the need to achieve the desired crystal products and 

consistently improve the product quality requires an understanding of the fundamentals 

of crystallization processes. In order to achieve this, a model of the process is typically 

necessary. It can be a valuable tool for process analysis, design, monitoring and control 

(Ramkrishna, 2000). In this chapter, an overview of crystallization processes is presented 

in terms of the fundamentals of the crystallization process, and is followed by a review on 

modelling and solution approaches for the population balance equation. A summary of 

the recent literature related to the monitoring and control of crystallization processes is 

then provided. Lastly, the methods and tools needed to perform the uncertainty and 

sensitivity analysis are highlighted. 

 

2.1 Fundamentals of crystallization process 

The crystallization process is a separation process as it produces solid particles 

from the liquid or from the vapor phase. The fundamental driving force for crystallization 

of a specific chemical from a liquid solution is supersaturation, which is defined as the 

state where the concentration of that chemical is above the saturation concentration. The 

supersaturation profile obtained during the crystallization operation determines the CSD, 

the shape and the solid state of the product crystals (Myerson, 2002). This supersaturation 

is usually achieved by cooling, evaporation, antisolvent addition or a combination of the 

three. The most widely used method is by cooling a solution through indirect heat 
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exchange. Here the supersaturation created by the cooling method can be represented by 

a phase diagram as shown in Figure 2.1. 

 

 

Figure 2.1 Supersaturation in crystallization processes (Smith, 2005) 

 

Based on Figure 2.1, there are two curves, i.e. the solubility curve, also known as 

saturation curve (indicated as AB), and the metastable curve, also called the nucleation 

curve (represented as CD). In a cooling crystallization process, the solution initially starts 

in the unsaturated region at point ‘a’. The solution is then cooled until it reaches the 

solubility curve at point ‘b’. Now the solution becomes saturated. Further cooling is 

needed to cool the solution past the solubility curve, where it enters the metastable 

region. The solution is now in the supersaturated state. The metastable region is bounded 

by the solubility curve and the metastable curve. This is the region where the crystals will 

start to grow. Basically the solute in the solution is transferred to the crystal particles and 

thus the crystals will grow into larger particles. However, it is essential to keep the 

crystallization to operate within the metastable zone. If the solution is cooled until it 
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reaches point ‘c’ and the labile region at point ‘d’, then the solution will nucleate 

spontaneously. Here an excessive nucleation will occur which will result into the 

production of relatively small crystals which is not preferable in most crystallization 

processes.   

Another method to generate a supersaturation is by using evaporation. Unlike 

the cooling method where the crystals will grow by capturing solute molecules from the 

solution, the solvent in the solution is removed gradually in the evaporation method and 

as a consequence the solute concentration is increased. This can be shown in Figure 2.1 

where the solution originally at point ‘a’, reaches saturation at point ‘e’ and finally enters 

the metastable region by slowly removing the solvent by evaporation. The same concept 

used in the cooling crystallization is applied where the solution must be kept in the 

metastable region to avoid excessive nucleation occurring beyond point ‘f’. 

In the antisolvent addition method, the supersaturation can be created by adding 

an extraneous substance (antisolvent) into the solution. Here the solute is crystallized 

from a primary solvent by the addition of a second solvent (antisolvent) in which the 

solute is relatively insoluble. Usually the antisolvent is selected based on several criteria 

such as: (1) the ability to be miscible with the primary solvent; (2) the ability to change 

the solubility of the solute in the primary solvent; and (3) the ability to modify the 

polarity where it should be different from the primary solvent polarity. Usually the 

antisolvent crystallization is conducted under low operating temperature which is 

important for thermally sensitive products. However, there are disadvantages using this 

technique which include the added unit for the separation of this extraneous material 

which can add complexity to the solution as well as increase cost. 
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Once the solution has reached the supersaturation condition, the solution starts to 

crystallize where there are two phenomena occurring which are nucleation and crystal 

growth. The nucleation is considered as a birth of new crystals and the crystal growth 

involves the growth of these crystals to larger sizes. In addition, there are also other 

phenomena which serve the same purposes as nucleation and crystal growth. The first 

one is called agglomeration, where the crystal may merge together with other crystal 

particles which results into larger crystal sizes. The other one is breakage which can 

occur due to the collision of crystals with each other. These are the phenomena that are 

very important to understand when developing a model of a specific crystallization 

process. 

 

2.1.1 Nucleation 

Usually the nucleation is classified into primary and secondary nucleation. The 

primary nucleation occurs in the absence of crystalline surfaces and is more prevalent in 

the unseeded crystallization (Myerson, 2002). The primary nucleation can also be 

categorized into homogeneous and heterogeneous primary nucleation. The homogeneous 

primary nucleation occurs in the pure bulk solution. It is determined by the formation of 

stable nuclei in a supersaturated solution, which means molecules of solute come close 

together to form clusters in an arranged order. Meanwhile the heterogeneous primary 

nucleation is usually induced by the presence of dissolved impurities. Nucleation in a 

heterogeneous system generally occurs at a lower supersaturation than a homogeneous 

nucleation (Mullin, 2001). Secondary nucleation normally occurs due to the presence of 

crystals in the supersaturated solution in case of the seeded crystallization. It can also be 
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induced by contact of crystals with an external surface (e.g. walls, impellers, etc.), initial 

breeding, macro-abrasion, dendritic and fluid shear. As a result, there are many efforts to 

model the nucleation phenomena and some of the commonly used models are shown in 

Table 2.1. Most of the models can be applied with both the normal and the relative 

supersaturation ( S ).    

 

Table 2.1 Overview of models used to represent the nucleation 

Mechanisms Model References Remarks 
Primary 

nucleation 

21,

ln
exp

sat

pn
pnn

c
c

B
AB  

Marchal et al. 
(1988) 

 

,1
b

n bB k S  Mullin 
(2001) 

 

Secondary 
nucleation 

,2
j b

n b cB k M S  Choong and 
Smith (2004) 

 

,2
j b p

n b c rpmB k M S N  Quintana-
Hernández et 

al. (2004) 

Effect of 
agitation is 
included 

,2 0 exp / b m
n b b cB k E RT S M  Ouiazzane et 

al. (2008) 
Temperature 
dependent 

2.1.2 Crystal growth  

As mentioned earlier the new crystals will gradually develop towards larger 

sizes due to crystal growth phenomena. The crystal growth has a significant impact on 

the size of crystal particles that is achieved by the end of the crystallization operation. 

The growth of a crystal is often described by the change of a certain dimension, 

particularly the characteristic length of the crystal with time. This is called the linear 

growth rate and has dimensions of length per unit of time. However the most common 
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theory used for describing the crystal growth rate is the diffusion-reaction theory. Based 

on this theory, the crystal growth involves two main steps. The first step is the diffusion 

process whereby the solute molecules are transported from the bulk of the fluid phase to 

the solid phase. It is followed by the reaction phase where the solute molecules arrange 

themselves into the crystal lattice (Myerson, 2002). Based on these theories, Table 2.2 

shows the empirical models that are widely used to represent the crystal growth. 

 

Table 2.2 Overview of models used to represent the crystal growth 

Mechanisms Model References Remarks 
Size 

independent 
growth 

g
gG k S  Choong and 

Smith (2004) 
 

0 /exp g
gg E RTG k S  Ouiazzane et 

al. (2008) 
Temperature 
dependent 

g q
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Quintana-

Hernández et 
al. (2004) 
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agitation is 
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Size 
dependent 

growth 

1 pdg
gG k S L  Aamir et al. 

(2010) 
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Mass transfer coefficient: 
0.624/3 1/3

2 0.47d
D Lk
L v  

0.17 0.36

T

Diam v
Diam D

 

Marchal et al. 
(1988) 

Expression 
for the 
growth rate 
developed is 
based on the 
assumption 
of a film 
model. 
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2.1.3 Agglomeration and breakage 

Agglomeration is a particle size enlargement process by which fine particles are 

joined in an assembly e.g. within a suspension crystallization process (Jones, 2002). 

There are two main types of agglomeration, i.e. of primary and secondary agglomeration. 

In the primary agglomeration, the crystalline particles undergo a form of mal-growth, 

related to their crystallography and comprise individual crystals within a structure of 

parallel units, dendrites or twins. Secondly, crystals suspended in liquids may collide 

induced by the flow and join together i.e. aggregate to form a larger particulate entity 

which may subsequently be disrupted and redisperse or fuse to form a secondary 

agglomerate (Jones, 2002). Meanwhile, breakage is the particle formation that occurs 

based on the collision between crystal particles, and the collision of the crystal particles 

with the walls or the impeller. This collision then results into new crystal particles that 

are smaller and of varying size.  

Some efforts have been made to model the agglomeration and breakage. The 

agglomeration model developed by Marchal et al. (1988) is based on the assumption that 

the agglomeration mechanism can be considered as a chemical reaction between particle 

sizes. The final agglomeration rate expression per size domain is based on the intrinsic 

rate, function of the number of collisions per time and volume unit and of the 

supersaturation. The breakage rate has also been modelled similar to agglomeration, 

except that the crystals are supposed to break up only into two smaller ones. In the work 

of Quintana-Hernández et al. (2004), the production-reduction term has been used to 

represent the agglomeration and breakage. This term is based on the empirical model to 

measure the global effect of birth and death of crystals due to agglomeration and 

36



 

 17

breakage and represented as a function of a kinetic constant, the supersaturation, the total 

mass of crystals formed and the agitation intensity. The models for agglomeration and 

breakage are summarized in Table 2.3. 

 

Table 2.3 Overview of models used to represent the agglomeration and breakage 

phenomena 

Mechanisms Model References Remarks 
Production-

reduction rate 
r
rpm
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ab NMSk  Quintana-
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et al. (2004) 

Represent 
the birth 
and death 
rates 
generated 
by 
agglomerati
-on and 
breakage of 
crystals. 

Agglomerati-
on rate lrB

NN

l
ilestiAgg

2/)1(

1
),(,

 
 
Overall stoichiometric coefficient: 

nimiqi
q

nm
ilest S

SS
,,,3

33

),(

 

Intrinsic rate of agglomeration of rank l:
 

2
' 1 .n
a m rpm

m

Sr l k S N Diam
S  

2

21 n m satn
d

m e

S SSf k c c
S  

n m m e n mN N S H S S  

 
Relative shape function of crystals: 

131

114

2

2

mnmn

mnmn

m

n

SSSS

SSSS

S
S

f  

Marchal et 
al. (1988); 
Costa et al. 

(2005) 

The net rate 
of particle 
production 
by 
agglomerati
-on in the ith 
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37



 

 18

                    
2

2 1mnmn SSSS  

                     

3132 2
mnmn SSSS  

 
Lagrangian microscale: 

5.0

10
603.0 vDiamNrpme  

 

2.2 Modelling of crystallization process 

In order to represent the crystallization process for analysis, design, monitoring 

and control, appropriate models covering the effects of the various operational parameters 

on the behaviour of the crystal particles are necessary. Crystallization models generally 

involve three types of dynamic balance equations: population, mass and energy. These 

balance equations are combined with a set of constitutive equations describing 

phenomena such as, the nucleation, crystal growth as well as saturation equilibria and 

mass and heat transfer involved with the crystallization process. The type of population 

balance equation (PBE) employed is usually a hyperbolic partial differential equation, 

which also includes the crystallization kinetic phenomena. For a well-mixed batch 

crystallizer in which the crystals have two characteristic lengths, the process is described 

by a two-dimensional PBE (Hulburt and Katz, 1964; Randolph and Larson, 1988): 

 

, , , , , , , , , , , ,n x y n x y x x y n x y y x y

x y

f L L t f L L t G L L c T f L L t G L L c T
B D

t L L  

 
(2.1) 
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Where nf  is the CSD, xL  and yL refer to characteristic length and width scales, xG  and 

yG  represent the crystal growth rate for each characteristic length and width scale, c  is 

the solute concentration and T is the crystallizer temperature. The terms B  and D  in 

Equation (2.1) are the birth and death rate of crystals that can be represented as: 

 

 brbraggaggnuc DBDBBDB
                                  

                                     (2.2) 

 

Where nucB , aggB  and brB  are the birth rates due to nucleation, agglomeration and 

breakage respectively, while aggD  and brD  represent the death rates caused by 

agglomeration and breakage. Equation (2.1) can be transformed into a one-dimensional 

form if the crystals only have one characteristic dimension (characteristic length). In this 

case, Equation (2.1) takes the form: 

 

, , , ,n x n x x x

x

f L t f L t G L c T
B D

t L                                                               
(2.3) 

 

Equations (2.1) and (2.3) represent the generic equations for a two- and a one-

dimensional PBE, respectively. Usually the solution of the generic PBE is 

computationally expensive and requires complex numerical solution techniques. 

Numerous solution techniques have been introduced in the literature and a review of the 

numerical solution methods of the PBE is provided by Ramkrishna (2000) and Costa et 

al. (2006). The most common of these can be classified into two categories: standard 
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method of moments and discretization (method of classes) techniques. The standard 

method of moments reported by Hulburt and Katz (1964) and later by Randolph and 

Larson (1988) is very popular, and its application has been reported by many researchers 

(Fujiwara et al., 2002; Shi et al., 2006; Paengjuntuek et al., 2008; Nagy et al., 2008b; to 

name a few). This method converts the partial differential equation (PDE) representing 

the population balance into a set of coupled ordinary differential equations (ODEs) for 

the n moments considered. The advantage of this method is the ease of solution, as ODE 

solvers are readily available. Moreover, the method can be applied in one- or two-

dimensional forms (Hulburt and Katz, 1964). With the standard method of moments, 

however, the population balances carrying size dependent growth functions as well as 

agglomeration and breakage terms may cause convergence problems because of closure 

problems with the respective moment equations (Gimbun et al., 2009). The latter can be 

avoided by employing instead, any of the different forms of the quadrature method of 

moments (Gimbun et al., 2009, Aamir et al., 2010).  

Another technique to solve the PBEs is based on discretization, where the partial 

differential equations are sectioned along the size domains into finite classes. This 

method overcomes the problems encountered with the standard method of moments as it 

permits the discretization of the growth functions along the size domains. Furthermore, 

this method allows phenomena such as agglomeration and breakage to be incorporated 

within the solution of the PBEs. This method is pioneered by the works of Hounslow et 

al. (1988) and Marchal et al. (1988). In their work, Marchal et al. solved the PBEs 

representing the adipic acid crystallization taking into account the nucleation, size 

dependent growth and agglomeration. A disadvantage of this method is that the accuracy 
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of the simulated behaviour is dependent on the accuracy of the numerical solution which 

in turn is dependent on the selected number of discretization points and therefore, also on 

the computational effort required to solve the system of equations. However, with the 

availability of faster computers and more efficient numerical solvers, this problem can be 

overcome (Puel et al., 2003; Costa et al., 2005; and Abbas & Romagnoli, 2007).  

Although the development of PBE based solution approaches has made a 

significant contribution to the modelling of crystallization processes, a comprehensive 

generic model capable of representing a wide range of crystallization processes cannot 

yet be found. Current literature points to many attempts to model different crystallization 

operations with emphasis on different issues such as CSD or crystallization kinetics. 

Also, most of the literature reporting on crystallization processes described by population 

balance models makes the underlying assumptions that attrition, breakage, agglomeration 

and aggregation of crystals could be neglected (Farrell & Tsai, 1994; Hu et al., 2005; 

Paengjuntuek et al., 2008). Some works on population balance modelling show that 

agglomeration and breakage can be considered in the modelling of the crystallization 

process (Quintana-Hernández et al., 2004; Costa et al., 2005). However, the kinetics 

considered in these models (Hu et al., 2005; Abbas & Romagnoli, 2007; Paengjuntuek et 

al., 2008) describe only the primary nucleation and size independent growth rates but do 

not consider the effect of agitation on crystallization. Clearly, it can be concluded that 

there are many different types of models with associated variations in their complexities 

making their selection difficult and their use confusing. Table 2.4 shows representative 

examples of the different model type variations that can be found.  
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Based on the example in Table 2.4, it can be demonstrated that many attempts 

have been made to model the one-dimensional crystallization process. Only a few 

researchers have made an effort to model the crystallization process in the two-

dimensional case. For example, Puel et al. analyzed the transient behavior of 

hydroquinone crystallization. They characterized each individual crystal as a 

parallelepiped with its length and then an identical width and depth. They used the 

method of classes to solve the two-dimensional population balance and further extended 

their work by including nucleation and crystal growth kinetics (Puel et al., 2003). By 

using the same particle shape characterization concept as Puel et al., the two-dimensional 

population balance for potassium dihydrogen phosphate (KDP) has been studied in the 

work of Ma et al. (2002), Briesen (2006) and Qamar et al. (2007). However, the main 

focus of their work is solely to develop an efficient solution technique to solve the two-

dimensional population balance equations.  

The main advantage of implementing the two-dimensional model is the ability to 

consider more complex crystal shapes compared to the one-dimensional model. In one-

dimensional models, the population balance equations only consider one inner variable 

which represents the characteristic length as a measure for crystal size. This approach is 

undoubtedly used to obtain a required CSD but is limited only to the description of 

spherical or cubic crystals, i.e., crystal shapes that can be described by a single 

characteristic length. Organic crystals, however, have many crystal shapes that need to be 

described by more than one characteristic length (Briesen, 2006). Thus, in order to fully 

represent such crystal particles, higher dimensional models are necessary. That is, a 
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multi-dimensional population balance modelling approach, where two – or even three – 

characteristic lengths of a crystal can be considered, is needed. 

Based on the review of the crystallization modeling field, it appears that no 

attempt has been made to model a one- and two-dimensional crystallization process for 

the same chemical system. All the work that has been reported so far has either been 

focused on the one- or the two-dimensional case study only. This is one of the gaps 

within crystallization modelling. The availability of a one- and a two-dimensional model 

for the same chemical system offers more opportunities to study the crystallization 

process. First, the comparison of crystal products can be done in terms of CSD and 

shapes. Here, the evolution of the CSD in the one- and two-dimensional case, and the size 

of the resulting crystal shapes can be observed and compared for both cases. 

Furthermore, the accurate information in terms of the total mass of solute that has been 

transferred from the solution to the crystal particles can be obtained and compared for the 

one- and the two-dimensional model. 

 

2.3 Operation and control 

The operation of crystallization processes is usually conducted within the 

metastable zone which is bounded by the solubility curve and the metastable curve as 

shown in Figure 2.2. The metastable zone specifies the default region for operating the 

crystallization process in order to avoid the occurrence of nucleation and produces 

acceptable crystals. The main challenge here is the determination of set point profiles for 

the supersaturation or temperature controller. The set point needs to be carefully designed 

in order to avoid the occurrence of excessive nucleation if the process is operated close to 
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the metastable limit or to prevent slow growth in case the process is operated near the 

solubility curve.  

 

 
Figure 2.2 Operating region for a crystallization process (Fujiwara et al., 2005) 

 

In the work of Aamir (2010) and Aamir et al. (2010), effort have been made to 

design the set point profile for a supersaturation controlled crystallization process which 

produces the target CSD at the end of the batch. Here the set point, which in fact consists 

of both the supersaturation set point and the total batch time, has been determined using 

an analytical CSD estimator. It is practical efficient considering that the initial seed 

distribution and growth kinetics for the crystallization process are known, the target CSD 

can be predicted easily. However the use of analytical CSD estimator is limited to the 

one-dimensional crystallization process only. Therefore, in order to have a wide 

application range the estimator needs to be extended to cover the two-dimensional case as 

well. 
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In order to keep the process at the proposed set point profile and achieve the 

desired crystal products, the critical variables need to be monitored and controlled. 

Therefore suitable monitoring tools are needed to monitor the critical variables and the 

controller needs to be available to control the critical variables by manipulating the 

necessary manipulated variables. Such tools are available in the model-based 

methodology for Process Analytical Technology (PAT) system design developed by 

Singh et al. (2009). The design procedure consists of 9 hierarchical steps involving the 

selection of critical process variables, selection of suitable monitoring tools/techniques 

and the implementation of control strategies to ensure that the selected critical process 

variables can be controlled in order to ensure the final product quality.  

The methodology has been implemented into a software known as ICAS-PAT 

(Singh et al., 2010). An overview of the ICAS-PAT software is shown in Figure 2.3 

where the knowledge base and the model library act as supporting tools. The knowledge 

base contains information on the process variables involved, the corresponding 

manipulated variables (actuators) and the list of the equipments used for measurement of 

data. Specifically for crystallization processes, the example of part of the knowledge base 

is shown in Figure 2.4. Meanwhile the model library contains a set of mathematical 

models for different types of processes, sensors and controllers. However, in order to 

achieve a wide application range of the PAT system design methodology, it needs to be 

linked to a modelling framework for efficient generation of problem-system specific 

models. Furthermore the creation of a larger model library and knowledge base for 

crystallization processes particularly, could play an important role in process control and 

product property monitoring. 
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Figure 2.3 ICAS-PAT software overview 
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2.4 Uncertainty and sensitivity issues 

Basically the uncertainty and sensitivity analysis can be applied in order to 

quantify the uncertainties and minimize the risk of not achieving the target specifications. 

This is actually a part of good modeling practice (GMoP) to allow improvement of the 

usage and the reliability of the model within PAT applications (Sin et al., 2009a). In 

general, uncertainty analysis is concerned with propagation of the various sources of 

uncertainty (e.g., data, parameters, kinetics, etc.) to the model output (e.g., performance 

index). The uncertainty analysis leads to probability distributions of model predictions, 

which are then used to infer the mean, variance and percentiles of model predictions. The 

sensitivity analysis, on the other hand, aims at identifying and quantifying the individual 

contributions of the uncertain inputs to the output uncertainty. Uncertainty and sensitivity 

analysis are usually (and preferably) performed in tandem with each other (Sin et al., 

2009b). 

Uncertainty analysis associated with the predictions of simulation models is 

generally classified as: a) stochastic uncertainty that arises from stochastic components of 

a simulation model required to describe a stochastic system; b) subjective (or input) 

uncertainty that represents incomplete knowledge about the fixed values used as input to 

the model for example process parameters; and c) structural uncertainty that relates to the 

mathematical formulation or the model structure (Helton and Davis, 2003). Basically 

there are numerous techniques to perform the uncertainty analysis including linear error 

propagation (Omlin and Reichert, 1999), the Monte Carlo procedure (Helton and Davis, 

2003; Flores-Alsina et al., 2009; Sin et al., 2009b; etc.) and fast probability integration 

(FPI) (Haskin et al., 1996). 
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In the differential analysis technique, a Taylor series is developed to represent 

the model under consideration. Based on the Taylor series approximation, variance 

propagation formulas can be used to determine the output uncertainty that results from 

the input distributions. The main advantage of the differential analysis technique is that 

uncertainty as well as sensitivity analysis can be implemented easily once the Taylor 

series approximation is obtained. However, this technique is inherently local, 

implementation is difficult and a large computational time is required.  

The response surface methodology (RSM) is another technique that can be used 

for the propagation of uncertainty. The RSM involves Design of Experiment (DoE) to 

select the model input. The DoE can be designed using factorial, fractional factorial or 

central composite design to cover all the model inputs (Myers et al., 2009). The RSM 

offers a complete control over the structure of the model input based on the selected 

designs in the DoE and thus a reliable response surface model can be produced to 

represent the original model which subsequently can be used in the uncertainty and 

sensitivity analysis. However, the most difficult part in the RSM is to develop an 

appropriate response surface. This is due to the fact that a large number of design points 

are needed to cover all the considered factors to produce a reasonable response surface 

where only a limited number of values for each input variable are available. Furthermore, 

there are some difficulties using the RSM technique when there are correlations and 

restrictions between input variables. 

Monte Carlo techniques are based on the use of a probabilistic procedure to 

select model input and result in a mapping between inputs and analysis outputs that is 

then used to produce uncertainty analysis results. The advantages of Monte Carlo analysis 
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is the extensive sampling from the ranges of the uncertain variables, and a surrogate 

model is not needed to obtain the uncertainty results unlike the other uncertainty 

techniques such as Taylor series in differential analysis or RSM. A variety of sensitivity 

analysis techniques are available to complement the uncertainty analysis based on Monte 

Carlo and the approach is conceptually simple, widely used and easy to explain (Helton 

and Davis, 2003). 

Alternatively, the fast probability integration (FPI) can be employed to 

propagate input uncertainty. The technique is based on the use of analytical procedures to 

evaluate distribution functions (Haskin et al., 1996). In this technique, only the estimation 

of the tails of a distribution is needed compared to another technique such as the 

differential analysis which requires the estimation of full distributions. This unique 

feature allows this technique to require less computational time compared to the other 

techniques. However, the underlying mathematics is rather complicated, and therefore 

hard to explain, which limits practical application. Furthermore, the approach is 

implemented only to uncertainty analysis and there is a lack of sensitivity analysis 

techniques to complement the uncertainty analysis.      

Sensitivity analysis is complimentary to uncertainty analysis and can be viewed 

as an analysis of variance, in which the aim is to decompose the output variance with 

respect to input parameters (Helton and Davis, 2003; Saltelli et al., 2006). Based on the 

variance in model predictions, the input parameters will then be ranked as a parameter 

significance ranking where the top in the ranking reveals the input parameter explaining 

most of the variance. The main purpose of this parameter ranking obtained from the 

sensitivity analysis is that the efforts can then be focused on reducing the uncertainty in 
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the most influential parameters, whereas the parameters that have little or no influence on 

the model output can be neglected. Examples of sensitivity analysis based ranking 

include the standardized regression coefficient method (SRC) and Morris screening.  

The SRC method is one of the global sensitivity analysis techniques where the 

effect on the output of a factor can be estimated when all the other factors are varying, 

thus enabling the identification in non-linear and/or non-additive models (Cariboni et al., 

2007). Since the SRCs basically are built on regression analysis, and are also based on 

Monte Carlo simulation, the method reflects the shape of the probability distribution of 

each factor. Regression analysis allows also for the estimation of the coefficient of 

determination, 2R , which represents the fraction of the output variance explained by the 

regression. However, since we typically work with non-linear models, the SRC method is 

only considered valid for assessing the factor importance when 7.02R . If the 2R  is 

below 0.7, then the method cannot be considered as a reliable sensitivity measure 

(Cariboni et al., 2007), i.e. indicating that the effect of the parameters on the model 

output cannot be represented by a linear regression. The coefficients from the regression 

model are then scaled using the standard deviations of model input and output to provide 

the sensitivity measures, jk , which will then be ranked in order of importance. 

Another method to test the sensitivity of the model is the Morris screening 

method (Morris, 1991). The method is based on calculating a number of incremental 

ratios for each input, called elementary effects (EE), from which basic statistics are 

computed to derive sensitivity information. Based on the EE, two sensitivity measures are 

computed for each input: the mean ( ), which assesses the overall influence of the factor 

on the output, and the standard deviation ( ), which estimates the ensemble of the 
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factor’s higher order effects. The ranking can then be determined based on the values of 

. 

 

2.5 Conclusion 

Crystallization is often applied in the production of pharmaceutical product and 

the crystallization step is an essential part of the manufacturing process for many 

chemicals-based products. Although the literature reports on many significant 

contributions within the modelling of crystallization processes, a comprehensive generic 

model still remains a task for the future. Current literature points to many attempts to 

model crystallization operations with emphasis on different issues such as CSD or 

crystallization kinetics. Therefore, there is a need for a generic crystallization model from 

which a large number of specific models for different crystallization processes can be 

generated. It is essential to maintain the crystallization operation at the designated set 

point where supersaturation or temperature control can be applied to drive the process 

within the metastable zone and thereby enhance the control of the CSD. Although this 

approach has been shown to produce high quality crystals, the set point operating profiles 

for the controller are usually chosen arbitrarily or by trial-and-error. Therefore there is a 

need for a systematic procedure to generate set points that guarantees that the target CSD 

can be achieved.  

Furthermore, to control and monitor the crystallization operations and to ensure 

that the desired CSD is achieved, the developed PAT system needs to be linked with the 

modelling framework as well. In order to minimize the risk of not obtaining the target 

crystal products, an uncertainty and sensitivity analysis need to be carried out. Here a 
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number of procedures have been discussed for the propagation of uncertainty. Based on 

the analysis, the Monte Carlo procedure has been chosen to implement the uncertainty 

analysis. This is due to the fact that it is generally accepted as computationally effective 

and reliable. In order to complement the Monte Carlo-based uncertainty analysis, the 

SRC method and Morris screening are chosen as techniques for sensitivity analysis. As a 

consequence, a model-based framework that allows the study of different crystallization 

operational scenarios, and has the ability to generate the set point profiles and to design 

the PAT system as well as conducting the uncertainty and sensitivity analysis will be 

developed and applied in the following chapters of this thesis. 
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3. A generic multi-dimensional model-
based framework for crystallization 
processes 

 

In this chapter, a generic model for multi-dimensional PBEs (within a modelling 

framework) from which a large number of “problem-system” specific models for 

different crystallization processes can be created, is presented. The term “problem” refers 

to different crystallization operational scenarios, while the term “system” refers to 

different chemical systems. The generality of the framework and the developed 

modelling approach allow the further development and adaptation of the crystallization 

model to reflect changing product monitoring schemes (such as, monitoring of crystal 

properties) and/or process conditions (such as, temperature and/or agitation profiles). The 

chapter presents a model generation procedure incorporated within the modelling 

framework and highlights its use through two case studies where the creation (generation) 

of appropriate models needed for different modelling objectives is considered. In the first 

case study, one-dimensional models are generated and their simulated results analyzed 

for the crystallization of paracetamol and sucrose, respectively. In the second case study, 

one- as well as two-dimensional models are generated and solved with standard method 

of moments and method of classes for potassium dihydrogen phosphate (KDP) 

crystallization. 
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3.1 Generic multi-dimensional model-based 
framework

 

A generic multi-dimensional framework for modelling of batch cooling 

crystallization (Figure 3.1) and related operations (solvent based crystallization and/or 

continuous crystallization) has been developed (Samad et al., 2010, 2011a,b).  This 

modelling framework helps to generate problem-system specific models describing 

various crystallization processes through a generic crystallization model. As shown in 

Figure 3.1, the problem-system specific model generation procedure consists of four main 

steps. It should be noted that this model generation procedure combines selection criteria 

related to theory or "what is the correct model structure" with data-based empiricism or 

"can the model parameters be estimated realistically ". The latter obviously depends on 

the data availability and quality and that is why the model generation procedure includes 

a regression step, if necessary. 
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Figure 3.1 Generic crystallization modelling framework (Note that the selection of 

constitutive equations also includes model parameter estimation) 

 

3.2 Problem definition (Step 1) 

The modelling framework starts with the problem definition for the 

crystallization process under study in terms of the overall modelling objective and details 

of the crystallization process to be studied. For example, the overall objective could be to 

study properties of the crystal particles (CSD, mean crystal size), the evolution of the 

CSD or to generate information related to the crystallization operation (such as, 
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concentration-temperature profiles). The process details could be operational 

characteristics such as unseeded versus seeded operation; size dependent or independent 

growth; temperature of operation and many more. Furthermore, decisions related to the 

dimensions of the model need to be made in this step. Note that the dimension of the 

model is related to the crystal morphology (single versus multiple dimensions) that would 

be studied. 

 

3.3 Model (process) problem specification (Step 2) 

The problem specification starts with the selection of the chemical system that is 

to be investigated and the collection of the information about its process and product 

specifications. For example, this information could be a list of chemicals involved, such 

as the solute and solvent(s) and equipments used in the process (batch crystallizer, 

jacketed tank, etc.). Information on the solute-solvent saturation solid-liquid equilibrium 

(saturation) data – generated experimentally or by simulation with a model (Thomsen et 

al., 1998); crystal growth kinetics data; etc., help in the selection of the appropriate 

constitutive models in the next step. 

 

3.4 Model development and solution (Step 3) 

This step is concerned with the listing of the necessary balance and constitutive 

equations involved in the crystallization process. The balance equations library consists 

of population, overall mass and energy balances for a defined crystallization volume 

supplemented with energy balance equations for external heating/cooling, for example, a 
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cooling jacket. The constitutive model equations library contains a set of models 

describing nucleation, crystal growth rate, supersaturation, saturation concentration, 

metastable concentration, agglomeration, breakage and physical properties corresponding 

to different types of chemical systems found in the literature on crystallization processes. 

Based on the modelling objectives (step 1) and the problem specification details (step 2), 

the appropriate problem-system specific model equations are retrieved from the generic 

model. 

 

3.4.1 Population balance equation (PBE) formulation and selection of 
solution method 

 

The generic PBEs for the one- and two-dimensional case as listed in Table 3.1 

are transformed to a system of ODEs by applying the standard method of moments in the 

case of unseeded/seeded, size independent growth and nucleation or the method of 

classes for unseeded/seeded, size dependent as well as size independent growth, 

agglomeration and breakage, as shown in Figure 3.2. The method of classes (adopted 

from Costa et al. (2005) and Puel et al. (2003)) is employed based on the assumption that 

the number of particles in the size domain (class) is constant. In order to avoid artificial 

diffusion, small size of class width is chosen and the integrator must be carefully 

selected. The accuracy of this method is depending on the the number of classes meaning 

that the greater number of classes, the better is the accuracy in this method. In this work, 

the Backward Differentiation Formulas (BDF) is chosen as an integrator to solve the 

method of classes. The decisions (see Figure 3.2) are based on the process definition (step 

1). Tables 3.2 and 3.3 list the generic PBEs corresponding to each solution technique. 
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Table 3.1 Generic equations for the PBE 

Dimension Equation Description 
1D , , , ,n x n x x x

x

f L t f L t G L c T
B D

t L
 

 
Where 
 

brbraggaggnuc DBDBBDB  

This is a general PBE 
for the x-direction only 
( xL0  )  

2D , , , , , , ,n x y n x y x x y

x

f L L t f L L t G L L c T
t L

   

                             
, , , , ,n x y y x y

y

f L L t G L L c T
B D

L
 

Where 
 

brbraggaggnuc DBDBBDB  

This is a general PBE 
for the x and y-direction 
only ( yx LL 0;0 )  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 PBE solution techniques based on process operation characteristics 
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Table 3.2 Solution techniques for one-dimensional PBEs 

Solution Cases Equations 
Method of 
moments 

Size 
independent 

growth 
nucB

dt
d 0

 
1 0 ;    1, , 4mm

x m nuc
d mG B L m
dt
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growth 
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Table 3.3 Solution techniques for two-dimensional PBE 

Solution Cases Equation 
Method of 
moments 

Size 
independent 

growth 
nucB

dt
d 00
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3.4.2 Overall mass balance formulation 

For the one-dimensional model, the overall mass balance equation is obtained, 

for example, by specifying the shape factor, vk . For a sphere shaped crystal it is /6, 

while, for a cube shaped crystal, it is 1. The overall mass balance equations for the one-

dimensional generic model are listed in Table 3.4. The rate of change of the solute 

concentration in a crystallizer for two-dimensional models is represented by Equation 

(3.1) where the final form of the equation depends on the crystal shape. 

dt
dV

mdt
dc c

w

c                                                                                                               (3.1)     
    

 

 

For example, if the crystal is rod-shaped, the volume of the crystal is then given by 

 

2
yxc LLV                                                                                                                        (3.2) 

 

The generic overall mass balance equation for rod-shaped crystals is given by  

 

2 2
0 00 0

, , 2c
n x y x y y x y x y nuc x y

w

dc f L L t G L G L L dL dL B L L
dt m

                           (3.3) 

 

By specifying the shape of the crystals, the final equation for the overall mass balance is 

obtained by substituting the volume occupied by the crystal shapes. Table 3.5 lists the 

overall mass balance equations for the two-dimensional generic model for rod-shaped 

63



 

 44

crystals. The two-dimensional generic model for the shape of a tetragonal prism is also 

listed in Table 3.5.  

 

Table 3.4 Overall mass balance equations for the one-dimensional generic model 

Generic equations 2 3

0
3 ,c v

x n x x nuc xo
w

k Vdc G f L t L dL B L
dt m

 

Method of moments 3
2 03c v

nuc x
w

k Vdc G B L
dt m

 

Method of classes 
3

1

i n
c v i

xi
iw

k V dNdc S
dt m dt

 

 

Table 3.5 Overall mass balance equations for the two-dimensional generic model 

Generic 
equations 

Shape: rod 
2 2

0 00 0
, , 2c

n x y x y y x y x y nuc x y
w

dc f L L t G L G L L dL dL B L L
dt m  

Shape: tetragonal prism 
2 2

0 0
, , 2c

n x y x x y x y x x y
w

dc
f L L t G L L L G L dL dL

dt m  

            3 2
0 0 0

2
3 nuc x nuc x yB L B L L

Method of 
moments 

Shape: rod 
2

02 11 0 02c
x y nuc x y

w

dc G G B L L
dt m  

Shape: tetragonal prism 
3 2

11 20 20 0 0 0
22
3

c
x y nuc x nuc x y

w

dc G G B L B L L
dt m

 

Method of 
classes 

Shape: rod 
,2

, ,
,

i jc
x i y j

i jw

dNdc S S
dt m dt  

Shape: tetragonal prism 
,3 2

, , , ,
,

1
3

i jc
x i y j x i x i

i jw

dNdc S S S S
dt m dt
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3.4.3 Energy balance formulation 

In a similar way to the mass balance, energy balance equations are derived for 

the one-dimensional generic model (see Table 3.6) and the two-dimensional generic 

model (see Table 3.7). 

 

Table 3.6 Energy balances for the one-dimensional generic model 

Generic equations 2 3
1 10

3 ,p c c v x x x x nuc xo
dTVc H k V G n L t L dL B L U A T
dt

 

Method of 
moments 

3
2 0 1 13p c c v x nuc x

dTVc H k V G B L U A T
dt

 

Method of classes 
,3

1 1
1

i N
i j

p c c v i
i

dNdTVc H k V S U A T
dt dt

 

 

Table 3.7 Energy balances for the two-dimensional generic model 

Generic 
equations 

Shape: rod 
 

2

0 0
, , 2p c c v n x y x y y x y x y

dTVc H k V f L L t G L G L L dL dL
dt  

                   2
1 10 0nuc x y U A TB L L  

 
Shape: tetragonal prism 

2 2

0 0
, , 2p c c v n x y x x y x y x x y

dTVc H k V f L L t G L L L G L dL dL
dt

                   3 2
0 0 0 1 1

2
3 nuc x nuc x yB L B L L U A T   

Method of 
moments 

Shape: rod 
2

02 11 0 0 1 12p c c v x y nuc x y
dTVc H k V G G B L L U A T
dt  

Shape: tetragonal prism 
3 2

11 20 20 0 0 0
22
3p c c v x y nuc x nuc x y

dTVc H k V G G B L B L L
dt  

                  1 1U A T  
Method of Shape: rod 
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classes 
,2

, , 1 1
,

i j
p c c v x i y j

i j

dNdTVc H k V S S U A T
dt dt  

Shape: tetragonal prism 
,3 2

, , , , 1 1
,

1
3

i j
p c c v x i y j x i x i

i j

dNdTVc H k V S S S S U A T
dt dt

 

 

3.4.4 Cooling jacket energy balance formulation 

The energy balance model for the cooling jacket is similar for one- and two-

dimensional models and is applicable to both the standard method of moments and the 

method of classes (see Table 3.8). 

 

Table 3.8 Energy balance model for the cooling jacket 

Generic 
equations wexwwwinpwwinw

w
pwww TTAUTTAUTTcF

dt
dT

cV 2211  

 

 

3.4.5 Constitutive equation selection 

The constitutive equations represent the models describing saturation 

concentration, metastable concentration, supersaturation, nucleation, crystal growth rate, 

agglomeration, breakage and physical properties corresponding to different types of 

chemical systems that may be found in the crystallization process being studied 

(modelled). The selection of the constitutive equations (from the model library) starts 

with the specification of the saturation concentration. The dependence of the saturation 

concentration and the metastable concentration on temperature is approximated by a third 

order polynomial expression (see Table 3.9). The coefficients in the saturation and 
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metastable polynomial expression depend on the solubility of the chemical system being 

investigated, which can be obtained from a database of experimental data (Abildskov, 

2005) or solid solubility models (Modaressi et al., 2008). There are two main types of 

supersaturation, normal supersaturation and relative supersaturation. The nucleation and 

crystal growth rate equations are determined based on the supersaturation selection. Here 

the effect of agitation is included as an option as well. Furthermore two different growth 

kinetic models can be incorporated - size dependent or size independent, depending on 

the selection of the crystal growth rate model (see step 1). For the two-dimensional case, 

two crystal growth rates (one per dimension) need to be considered.  

The parameters needed to perform the calculation of saturation concentration, 

metastable concentration, heat of crystallization, nucleation rate and crystal growth rate 

are obtained from the literature, from a database or regressed through available 

experimental data. This modelling framework is also integrated with model identification 

and data handling frameworks where a model parameter regression and translation 

procedure for raw experimental data can be implemented (Samad et al., 2012c). Due to 

the importance of appropriately validated constitutive models, this cannot be disregarded 

as the performance of the full model largely depends on the quality of the parameters of 

the selected constitutive models, which in turn depends on the quality of the available 

data. However, the features are beyond the contribution of this work and are not 

highlighted in this thesis. In this work, the model parameters for the selected constitutive 

models are taken from published data (retrieved from the model library). Table 3.9 lists a 

representative set of constitutive models for the different phenomena considered in this 

work. 
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Table 3.9 List of constitutive models 

Constitutive 
Equations 

General Equations Selection Criteria 

Saturation 
Concentration 

2 3
1 1 1 1

sat
i i i ic a b T c T d T  The coefficients 

depend on 
chemical system 
solubility data 

Metastable 
Concentration 

2 3
2 2 2 2

met
i i i ic a b T c T d T  The coefficients 

depend on 
chemical system 
solubility data 

Heat of 
Crystallization  

2 3
3 3 3 3c i i i iH a b T c T d T  The coefficients 

depend on the 
chemical system 

Supersaturati-
on 

Normal,  S   
; ;sat sat sat

c x m
c x m

 
Depends on unit 
selection and if 

1satc c  
satc c c  Selected if 

1satc c   
Relative,  1S  

 
Ideal solution 
assumption and 
depends on the unit 
selection. 
Compare with the 
saturated reference. 
Valid only at 

1 
1S

  
Where:

 

, , ,

m x c

m eq x eq c eq

Non-ideal solution 
assumption and 
depends on the unit 
selection. 
Compare with 
saturated reference. 
The symbol  is the 
activity coefficient 
ratio used in the 
relative 
supersaturation. If 
the solution is 
assumed ideal then 
the activity 
coefficient is 1. If 
the solution is not 
ideal, then the 
activity coefficient 
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ratio must be 
calculated in the 
supersaturation 
equation. The  can 
be calculated using 
the given equation 
depending on the 
unit selection 
(molar, mass 
fraction or mass 
concentration): 

Nucleation rate Primary nucleation: 

21,

ln
exp

sat

pn
pnn

c
c

B
AB  

 
Secondary nucleation: 

,2
j b p

n b c rpmB k M S N or ,2
j b p

n b c rpmB k M N  
 
For temperature dependent: 

0 exp /b b bk k E RT  

Depends on data 
availability. If the 
data for primary 
nucleation 
(Marchal et al., 
1998) are not 
available then only 
secondary 
nucleation 
(Quintana-
Hernández et al., 
2004) should be 
used. 
Effect of agitation 
and temperature 
dependent are 
included as an 
option. 
Selection of 
nucleation rate 
equations is 
depending on the 
choice of the 
supersaturation. 

Crystal growth 
rate 
(for two-
dimensional 
systems, there 
will be two 
crystal growth 
rates) 

Size independent growth: 
gx qx

x gx rpmG k S N  or gx qx
x gx rpmG k N  

 
 For temperature dependent: 

0 /exp ggx gx E RTk k  

Assuming all the 
crystals has the 
same growth rate. 
Effect of agitation 
and temperature 
dependent are 
included as an 
option. 
Selection of crystal 
growth rate 
equations depends 
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on the choice of the 
supersaturation 
(Quintana-
Hernández et al., 
2004) 

Size dependent growth: 
1 pxqxgx

x gx rpm x xG k S N L  or 

1 pxqxgx
x gx rpm x xG k N L

  
For temperature dependent: 

0 /exp ggx gx E RTk k  
 

Effect of agitation 
and temperature 
dependent are 
included as an 
option. 
Selection of crystal 
growth rate 
equations depends 
on the choice of the 
supersaturation. 

Size dependent growth: 

3
gx r gx

x r
c v

k MMk
G S

k  
 
Effectiveness factor: 

01/11 g
rr

gsat

d

g cc
k
k

 
 
Mass transfer coefficient: 

d
Dk
L

 

0.170.62 0.364/3 1/3

2 0.47
T

L Diam v
v Diam D

 

The expression for 
the growth rate 
developed by 
Marchal et al. 
(1988) is based on 
the assumption of a 
film model. 
This expression is 
supplemented with 
effectiveness and 
mass transfer 
coefficient 
equations. 

Production-
reduction rate 

r
rpm

k
c

ab
ab NMSk  Represent the birth 

and death rates 
generated by 
agglomeration and 
breakage of 
crystals. Adopted 
from Quintana-
Hernández et al. 
(2004) 

Agglomeration 
rate lrB

NN

l
ilestiAgg

2/)1(

1
),(,

 
 
Overall stoichiometric coefficient: 

The net rate of 
particle production 
by agglomeration 
in the ith class 
(Costa et al., 2005) 
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nimiqi
q

nm
ilest S

SS
,,,3

33

),(

 

Intrinsic rate of agglomeration of rank l:
 

2
' 1 .n
a m rpm

m

Sr l k S N Diam
S  

            
2

21 n mn

m e

S SSf
S  

            
mnemmn

sat
d SSHSNNcck  

 
Relative shape function of crystals: 

131

114

2

2

mnmn

mnmn

m

n

SSSS

SSSS

S
S

f  

                    
2

2 1mnmn SSSS  

                     3132 2
mnmn SSSS

 

Lagrangian microscale: 
5.0

10
603.0 vDiamNrpme  

 

Equations for calculating the physical properties of crystal particles (such as total mass, 

average length of crystals, mean crystal area, etc.) for the one- and two-dimensional 

models are given in Tables 3.10 and 3.11, respectively. As can be noted in Tables 3.10-

11, the equations used for the properties of the crystal particles depend on the specific 

PBE solution method used and these equations may be used to compare the simulation 

results obtained from the two models. 
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Table 3.10 Physical properties of crystal particles for the two-dimensional model 

 Method of moments Method of classes 
Total 
number of 
particles 
 

00cN  ,
,

c i j
i j

N N  

Total mass 21c cM  2
,

,
c c i j xi yj

i j
M N S S

 
Where 1

2
xi xi

xi
L LS  

Average 
length of a 
crystal 

10
1

00

L  
Not available 

Average 
width of a 
crystal 

01
2

00

L  
Not available 

 

 

Table 3.11 Physical properties of crystal particles for the one-dimensional model 

 Method of moments Method of classes 
Total number of particles 
 

0cN  N

c i
i

N N  

Total length 1c LL k  N

c L i i
i

L k S N  

Total area 2c AA k  2
N

c A i i
i

A k S N  

Total mass 3c c vM k  3
N

c c v i i
i

M k S N  

Mean crystal size 1

0

1,0S  
1,0

N

i i
i
N

i
i

S N
S

N
 

Mean crystal area 2

0

2,0A  2

2,0

N

i i
i

N

i
i

S N
A

N
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Mean crystal volume 3

0

3,0V  3

3,0

N

i i
i

N

i
i

S N
V

N
 

Mean size diameter 4

3

4,3D  4

3
4,3

N

i i
i
N

i i
i

S N
D

S N
 

Population number density - 1

1

2

i i

i i
i

N N
Cl Cln L  

Where 1

2
i i

i
L LS   

3.4.6 Generation of problem-system specific models 

Based on the selection of the balance and constitutive equations, a process 

and/or chemical system specific model is generated through the modelling framework by 

applying the step by step approach outlined in Figure 3.1 (highlighted for the two case 

studies in section 3.6 and 3.7).

 

3.5 Model-based process (operation) analysis (Step 4) 

The complete set of equations representing a problem-system specific model is 

analyzed numerically and then solved according to an appropriate solution strategy 

(equation ordering, selection of numerical solver, etc.). The independent set of equations 

representing the model is listed and the associated variables are classified as scalars, 

vectors and/or matrices. An incidence matrix of all the equations and the associated 

variables is then developed, and ordered to obtain a lower triangular form (if feasible) for 

the algebraic equations (AEs). If the triangular form is obtained, then the resulting AEs 

73



 

 54

are decomposed and solved sequentially. Otherwise, they are solved simultaneously 

(Gani et al., 2006). 

Appropriate simulation strategies are developed based on the operation scenario 

(phase), the form of the constitutive models as well as the form of the generated specific 

model. For example, the operations of a batch cooling crystallizer could be divided into 

three phases, where for example, phase 1 represents cooling to reach the saturation point 

(in this case, nucleation and crystal growth models are not needed); phase 2 represents the 

nucleation phase of the operation and involves cooling until supersaturation is reached 

(the specific model includes overall mass and energy balance equations together with a 

model for nucleation and a model for the cooling jacket); phase 3 represents the crystal 

growth rate (all the model equations are now solved).  

This means that starting from the same generic model it is possible to generate 

each of the specific operation phase models and there is a smooth transfer of data from 

one phase of operation to the next. The solution strategy therefore depends on the specific 

sets of equations representing a specific operation and is connected to different solvers 

available in ICAS-MoT including the Backward Differentiation Formulas (BDF) method 

(Sales-Cruz, 2006). When the generated specific model is found to give satisfactory 

results, it is then included in a model library of the modelling framework. In this way, the 

generated model is each time adapted to reflect a specific case study and thereby allows 

the user to analyze various crystallization operations and conditions. 
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3.6 Application of the modelling framework: 
paracetamol crystallization process – a one-
dimensional modelling case study 

 

The application of the modelling framework is demonstrated through two case 

studies involving the generation and use of various types of models and complexities. 

The first case study involves one-dimensional models. A paracetamol crystallization 

process model (adopted from Fujiwara et al., 2002; Fujiwara et al., 2005; Nagy et al., 

2008b) without the description of agglomeration and breakage is generated first. The 

extension of this model to include the effects of agglomeration and breakage is then 

highlighted (by simply adding the corresponding constitutive models). Furthermore the 

option to adapt the generated model for another chemical system by simply changing the 

corresponding constitutive models (and/or model parameters) is illustrated for a sucrose 

crystallization process (adopted from Ouiazzane et al., 2008). 

 

3.6.1 Paracetamol without agglomeration and breakage 

The model for paracetamol without the effects of agglomeration and breakage is 

generated from the generic multi-dimensional model by following the steps (see Figure 

3.1) of the modelling framework. 

 

3.6.1.1 Problem definition (Step 1) 

The overall objective for this modelling task is to observe the one-dimensional 

crystallization for size independent growth based on concentration and temperature 
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profiles as well as to describe the properties of the crystal particles, and especially, the 

total crystal mass and the mean size diameter. 

 

3.6.1.2 Model (process) problem specification (Step 2) 

The chemical system being studied consists of paracetamol (solute) and water 

(solvent). The equipment involved is a jacketed batch crystallizer. 

 

3.6.1.3 Model development and solution (Step 3) 

For the generation of the problem-system specific model, the process conditions 

and assumptions as reported by others (Fujiwara et al., 2002; Fujiwara et al., 2005; Nagy 

et al., 2008b) have been used. First the balance equations to be used are selected 

(formulated). In the PBE formulation, the assumption for this model is size independent 

growth of the one-dimensional PBE. Also, the agglomeration and breakage phenomena 

are not considered. This one-dimensional PBE is solved (in step 4) using the standard 

method of moments. The operation is unseeded, the solution is ideal and the initial crystal 

size is neglected in the overall mass and energy balance equation. In the selection of the 

constitutive equations, secondary nucleation is assumed while the effect of agitation is 

neglected in the nucleation and crystal growth rate equations. Based on the above 

information, the necessary balance equations are created from the generic model (see 

Tables 3.3, 3.5, 3.7 & 3.8) and the necessary constitutive equations are retrieved from the 

constitutive models library (see Tables 3.9 & 3.11). The generated model is listed in 

Table 3.12.  
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Table 3.12 List of model equations for paracetamol crystallization 

Equations No.  Number of 
Equations 

nucB
dt

d 0  
1 1 

1
0x

d G
dt

 
2 1 

2
12 x

d G
dt

 
3 1 

3
23 x

d G
dt

 
4 1 

23 c v x
dc k G
dt

 
5 1 

2 1 13p c c v x w
dTVc H k V G U A T T
dt

 
6 1 

1 1
w

w w pw w win pw win w w
dTV c F c T T U A T T
dt

                        2 2 ex wU A T T  

7 1 

2 3
1 1 1 1

sat
i i i ic a b T c T d T 8 1 

satS c c 9 1 

3c c vM k 10 1 

b
nuc bB k S 11 1 

gx
x gxG k S 12 1 

1

0

1,0S
13 1 

2

0

2,0A
14 1 

3

0

3,0V
15 1 

Total number of equations = 15 
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Total number of variables = 39 

DOF = 39 - 15 = 24 
 

3.6.1.4 Model-based process (operation) analysis (Step 4) 

The generated problem-system specific model is first analyzed and then solved 

with the ICAS-MoT modelling tool to simulate the different crystallizer operation phases. 

As can be seen in Table 3.12, there are 7 differential and 8 algebraic equations in the 

generated paracetamol crystallization model. All the variables found in the equations are 

listed in Table 3.13, with the degrees of freedom (DOF) found to be 24. 

Table 3.13 Variable types in the paracetamol crystallization model 

Variable 
types 

Status Symbol Number Total 

Known 
(To be 
specified) 

Fixed by 
system 

1 1 1 1, , , , , , , , ,c i i i i c w pw pa b c d H c c  10  
 
 
 

24 

Fixed by 
model  

, , , ,gx b v xk k k g b  5 

Fixed by 
problem 

1 1 2 2, , , , , , , ,w win win exV F T U A U A T V  9 

Adjustable 
parameter 

- - 

Unknown 
variables 
(To be 
predicted) 

Algebraic 
(Explicit) 

, , , , , 1,0 , 2,0 ,sat
c nuc xc M B G S S A

 3,0V  

8 15 
 

Differential 
(Dependent) 

0 1 2 3, , , , , , wc T T  7 

Based on the DOF analysis, the variables are divided into a set that needs to be 

specified and a set that needs to be predicted, as shown in Table 3.13. The variables that 

need to be specified (known) are then classified as those that are fixed by the system, 

fixed by the problem, fixed by the model and finally the ones that are the adjustable 

(regressed) model parameters. The unknown variables are determined by solving the 
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model equations. Next the incidence matrix of the model equations is developed 

(highlighted for the base model (Table 3.12) in Appendix A) – note that the specified 

variables are not included in this matrix. The equations are ordered to obtain the lower 

triangular form. The shaded section of the matrix represents differential variables and 

differential equations. By neglecting the shaded portion, the incidence matrix shows a 

lower triangular form indicating that the remaining model equations (algebraic equations) 

can be solved sequentially (one equation at a time). Based on this analysis, the model 

equations were then solved in ICAS-MoT. 

The simulation strategies (and the corresponding model) for this case study are 

different depending on the specific phase of the crystallization operation. Crystallization 

starts with an initial cooling operation (phase 1) where the solution is cooled from 45 C 

to reach the saturation concentration. Once the saturation point is reached, the solution is 

further cooled to create supersaturation conditions where the solution starts to crystallize 

(phase 2-nucleation). In phase 2, the nucleation rate needs to be computed together with 

the concentration, temperature and cooling jacket temperature. The crystal nuclei then 

start to grow, thus necessitating (phase 3) the crystal growth rate model and continues 

until the end of the crystallization operation. 
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Figure 3.3 Paracetamol concentration and temperature profile for open-loop operation. 

Numbers above the graph refer to the different phases in the crystallization process (see 

text for details) 

 

The open-loop simulation results obtained in this way are shown in Figure 3.3. 

According to the simulation results, a solute concentration of 0.013 g paracetamol/g 

water is reached at the end of the batch process when the temperature is decreased from 

45 to 20 C (see Figure 3.3). Phase 1 indicates that the simulated paracetamol 

concentration (initially started at 0.0256 g paracetamol/g water) is saturated at time 5.5 

minutes. However the paracetamol (saturated) concentration is maintained in phase 2 

because most crystal nuclei remain dissolved. In the unseeded operation, usually the 

crystal nuclei are generated first by the nucleation and subsequently grown by crystal 

growth phenomena. In order to specify the nucleation region, a threshold value has been 

set at 0.0255 g paracetamol/g water where the nucleation is first occurred when the 

paracetamol concentration is in the supersaturated condition. Once the paracetamol 

concentration reached this threshold value, then the crystal growth phase is started as 
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shown in Figure 4.3 where the paracetamol concentration starts to decrease at time 45 

minutes, i.e. during phase 3, until the end of the operation at time 300 minutes. 

 

Figure 3.4 Comparison of particles simulation results for different solution methods of 

the PBE 

 

Figure 3.5 Comparison of PBE solution methods for total crystal mass simulation results 

with and without agglomeration and breakage 
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The generated paracetamol crystallization model has also been solved using the 

method of classes to verify that both methods of solution, in principle, give similar 

simulated behaviour under similar process conditions (specifications). This also validates 

the model generation options in the modelling framework. In this case study, the 

simulated behaviours by the method of classes and the standard method of moments have 

been found to be in good agreement. As shown in Figures 3.4 and 3.5, both methods are 

in agreement in terms of the total number of particles and the total crystal mass produced. 

In term of total crystal mass produced, it is assumed that less total number of crystal 

particles have been generated due to effect of agglomeration and breakage which explains 

the low crystal mass obtained compared to the total crystal mass generated without 

agglomeration and breakage. Therefore both methods can be used for one-dimensional 

paracetamol crystallization studies. In terms of computational details, both methods have 

been implemented in the ICAS-MoT modelling tool, and the calculations have been 

performed on a desktop PC Intel Core 2 Quad CPU, 2.66 GHz, 3.46 GB RAM. The time 

needed to solve the paracetamol crystallization model using the standard method of 

moments is 15 seconds compared to 40 seconds for the method of classes. This difference 

is mainly because the standard method of moments solves a smaller number of ODEs (as 

listed in Table 3.12), while the number of ODEs for the method of classes depends on the 

number of discretization points.  

 

3.6.2 Paracetamol with agglomeration and breakage

An interesting and useful feature of the modelling framework is that it makes 

model reformulations (generating actually new models or step by step development of 
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models) quite easy. For example, the generated one-dimensional paracetamol 

crystallization model can be extended to include the effect of agglomeration and 

breakage. This means that the specific model generated earlier (see Table 3.12) is simply 

reformulated by extending the population balance equation by adding the constitutive 

models corresponding to agglomeration and breakage phenomena. The necessary 

equations are extracted from the agglomeration and breakage rate expressions, which are 

available in the set of constitutive models (see Table 3.9). The production-reduction term 

is selected from Table 3.9 without considering the agitation effects and is assumed to 

represent the birth and death rates generated by agglomeration and breakage. The other 

model equations remain unchanged. The new generated specific model for paracetamol 

crystallization is then analyzed and solved in ICAS-MoT to study the influence of 

agglomeration and breakage phenomena on the physical properties of the crystals. 

  

 

Figure 3.6 Comparison in term of mean crystal size between paracetamol crystallization 

model with and without agglomeration and breakage 
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Figures 3.5 and 3.6 show that a total paracetamol crystal mass of approximately 

10 g with a mean crystal size of 14 m is obtained when agglomeration and breakage 

phenomena are not considered. When agglomeration and breakage are included, the 

paracetamol crystallization resulted in a total crystal mass of about 9 g, with an 

approximate mean crystal size of 13 m. Note that both crystal (physical) properties are 

rather low, especially the mean crystal size. The low value can be explained because the 

solute concentration is far above the saturation concentration in this case, resulting in a 

high supersaturation in the beginning of the crystallization process. The high 

supersaturation significantly increases the nucleation rate and produces many crystal 

particles. However by the end of the process the solute concentration operates closer to 

the saturation concentration indicating relatively low supersaturation. This low 

supersaturation leads to a low crystal growth rate contributing to a low value of the mean 

crystal size (diameter). These crystal properties could be further adjusted by operating the 

crystallizer such that the concentration is within a metastable zone. The implementation 

of process control and monitoring schemes to improve the crystallization operation is 

discussed in more detail in the Chapter 4. 

 

3.6.3 Changes in the chemical system selection 

Another interesting and useful modelling option is to reformulate (that is, reuse 

of models) an existing model by changing the set of constitutive model equations (or their 

parameters) suitable for another chemical system. Thus, using the generated one-

dimensional paracetamol crystallization model, a model for sucrose crystallization is 

easily obtained, as will be demonstrated below. 
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For the sucrose crystallization model, the specific model generated for 

paracetamol (in the case without agglomeration and breakage) can be reused considering 

that there are no changes in the process specifications: size independent growth, unseeded 

and no agitation (see example in Table 2.4). Therefore, the sucrose crystallization model 

uses the same balances and constitutive equations as the paracetamol crystallization 

model. The only changes needed are that one needs to reselect the chemicals involved, 

which are now sucrose (solute) and water (solvent). The new chemical systems then 

necessitate an update of the parameters and coefficients needed to perform the calculation 

of the constitutive equations such as saturation concentration, nucleation rate and crystal 

growth rate. These are the only modifications needed to obtain the sucrose crystallization 

model. Moreover, a numerical analysis of the sucrose crystallization model is not needed 

since it has the same structure as the paracetamol model, which has already been 

analyzed. The sucrose crystallization model is solved in ICAS-MoT where the parameters 

and known variables are adopted from Quintana-Hernández et al. (2004) and Ouiazzane 

et al. (2008). Figure 3.7 shows the temperature profile when cooling down from 70 to 

40 C and a concentration of 2.33 g sucrose/g water is obtained by the end of the process 

operation. In terms of crystal properties, Figure 3.8 shows that a total crystal mass of 

approximately 137 g and a mean crystal size of 337 m are obtained. 
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Figure 3.7 Temperature and concentration profiles for the sucrose crystallization process 

considering no agglomeration and breakage take place 

 

Figure 3.8 Total crystal mass and mean crystal size for the sucrose crystallization process 

considering no agglomeration and breakage take place 

 

 

86



 

 67

3.7 Application of the modelling framework: 
potassium dihydrogen phosphate (KDP) 
crystallization process – a two-dimensional 
modelling case study 

 

In this section, the capability of the modelling framework to deal with increased 

model complexity (use of two-dimensional models) is demonstrated using the potassium 

dihydrogen phosphate (KDP) crystallization process (adopted from Ma et al., 2002; 

Gunawan et al., 2002). 

 

3.7.1 Problem definition (Step 1) 

The overall modelling objective in this case study is to generate models that can 

help to analyze the concentration and temperature profiles obtained for the one- and the 

two-dimensional models, as well as to predict the properties of the crystal particles, 

especially with respect to the total crystal mass and mean size diameter. 

 

3.7.2 Model (process) problem specification (Step 2) 

The chemical system that needs to be investigated is the crystallization of 

potassium dihydrogen phosphate (KDP) from an aqueous solution and involves KDP 

(solute) and water (solvent). The process equipment involved is a jacketed batch 

crystallizer. 
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3.7.3 Model development and solution (Step 3) 

The one-dimensional KDP case study is developed first. In the PBE formulation, 

the assumptions for this model are size independent growth with no agglomeration and 

breakage phenomena considered. This one-dimensional PBE is solved using the standard 

method of moments. The operation is seeded and the initial crystal size is neglected in the 

overall mass and energy balance equation. In the constitutive models selection, the 

secondary nucleation is assumed. The effect of agitation is neglected in the nucleation 

and crystal growth rate equations, and a cube shaped crystal is assumed. Based on this 

information, the necessary balance and constitutive equations are extracted from the set 

of generic balance and constitutive equations (see Tables 3.3, 3.5, 3.7-9, 3.11).  

For the same chemical system and crystallization process, the one-dimensional 

model can easily be transformed to a two-dimensional model. The changes needed to 

develop the two-dimensional KDP crystallization process model are mainly the PBE 

formulation where the equations now are extended to consider the growth in two 

directions (length and width). This two-dimensional PBE is also solved using the 

standard method of moments. By considering the growth in two directions, a more 

complex crystal shape can be considered in the two-dimensional model thus overcoming 

the limitation of shape selection in the one-dimensional model (e.g. cube, sphere etc.). 

However, the same crystal shape used in the one-dimensional model cannot be used in 

the two-dimensional model. In this case, a tetragonal prism-shaped crystal is assumed for 

the two-dimensional model. Unlike the overall mass balance equation in the one-

dimensional model, where the particle shape factor is applied to represent the crystal 

shape, the final overall mass balance in the two-dimensional model is obtained by 
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substituting the volume occupied by the selected crystal shape. In the constitutive 

equations, two crystal growth rate equations are now added (length and width), as well as 

equations for calculating the average length and width of the crystals. Other than that, the 

same assumptions, equations and chemical properties used in the one-dimensional model, 

are also used here. The generated specific two-dimensional model is listed in Table 3.14. 
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Table 3.14 List of model equations for the two-dimensional KDP crystallization 

Equations No. Number of 
Equations

nucB
dt

d 00 1 1 

10
00x

d G
dt

2 1 

01
00y

d G
dt

3 1 

20
102 x

d G
dt

4 1 

02
012 y

d G
dt

5 1 

11
01 10x y

d G G
dt

6 1 

21
11 202 x y

d G G
dt

                              

7 1 

11 20 202c
x y

w

dc G G
dt m

8 1 

batchf ttTTTT /00 9 1 
2 3

1 1 1 1
sat

i i i ic a b T c T d T 10 1 
satsat cccS / 11 1 

b
nuc bB k S V 12 1 

gx
x gxG k S 13 1 

gy
y gyG k S 14 1 

00cN 15 1 

21c cM 16  

10
1

00

L
17 1 

01
2

00

L
 

18 1 

Total number of equations = 18 
Total number of variables = 34 
DOF = 34 – 18 = 16 

90



 

 71

3.7.4 Model-based process (operation) analysis (Step 4) 

The two-dimensional model (see Table 3.14) for the KDP crystallization process 

is analyzed and then solved in the ICAS-MoT modelling tool. The DOF for this specific 

model is 16. The complete set of variables are classified into those that need to be 

specified and those that need to be calculated, as listed in Table 3.15 (given only for the 

two-dimensional model). Next, the incidence matrix is analyzed (see Appendix B), an 

optimal equation-ordering is obtained (in this case also a lower-triangular form is again 

obtained) and based on this, the model equations are solved in ICAS-MoT. 

 

Table 3.15 Variable types in the two-dimensional KDP crystallization model 

Variable 
types 

Status Symbol Number Total

Known 
(To be 
specified) 

Fixed by 
system 

wiiiic Mdcba ,,,,, 1111  6  
 
 
 

16 

Fixed by 
model  

, , , , ,b gx x gy yk b k g k g  6 

Fixed by 
problem 

batchf ttTT ,,,0  4 

Adjustable 
parameter 

- - 

Unknown 
variables 
(To be 
predicted) 

Algebraic 
(Explicit) 

1 2, , , , , , , , ,sat
nuc x y c cT B G G c S N M L L  10 18 

 
Differential 
(Dependent) 

c,,,,,,, 21110220011000  8 

For a batch time of 2 hours (for one- and two-dimensional models), the 

temperature is decreased linearly from 34 to 28°C until the end of the crystallization 

operation. The initial solute concentration of 0.308 g KDP/g water is cooled from 34°C 

until it reaches the saturation line after approximately 1000 seconds (phase 1). The 

solution is then further cooled to create the supersaturation condition. Once the 
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supersaturation condition is reached, 1.5 g of seed crystals are introduced into the 

solution to prevent a too high nucleation in the beginning (phase 2). The average size of 

the crystal seed in the one-dimensional case is 100 m, while in the two-dimensional 

model, the average length and width of the crystal seed are also 100 m. This seed then 

grows based on crystal growth phenomena until the end of the batch operation (phase 3).  

 

Figure 3.9 Comparison of concentration profiles for the KDP crystallization model. 

Numbers above the graph refer to the different phases in the crystallization process (see 

text for details) 

 

This can be seen in Figure 3.9 where the solute concentration according to both 

models is decreasing steadily because some of the solute in the solution is transferred to 

the solid crystal particles until the KDP concentration reaches 0.281 g KDP/g water (one-

dimensional) and 0.283 g KDP/g water (two-dimensional), when the batch operation 

ends. Comparing the predictions from the two models, it can be noted (see Figure 3.9) 

that the solute concentration profile in the one-dimensional model is decreasing more 
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rapidly than in the two-dimensional model. This is because the cube-shaped volume in 

the one-dimensional case consumes more solute from the solution than the tetragonal 

prism-shaped volume in the two-dimensional case. 

 

 

Figure 3.10 Characteristic lengths for the one- and two-dimensional KDP crystallization 

model 

 

As shown in Figure 3.10, the crystal seed in the one-dimensional model has 

grown from 100 m to a final average crystal size of 540 m. The initial average length 

and width of the seed crystal is 100 m for the two-dimensional case. Figure 3.10 also 

shows that the average length and width of the crystal increases towards the end of the 

process (for example, at t = 7200 seconds). The average length of the crystals grown from 

seeds is around 538 m and the average width is approximately 280 m indicating that 

the crystals are elongating because of two different kinetic crystal growth parameters 

applied to the same crystal growth model. The significance of this result is that the 
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volume of more complicated crystal shapes can be determined more accurately based on 

information on the average length and width. 

The method of classes has also been applied to solve the KDP model for similar 

process specifications: size independent crystal growth, no agglomeration and breakage. 

This was done in order to compare the performance of the method of classes with the 

standard method of moments. As illustrated in Figures 3.11 and 3.12, results obtained 

from both methods are similar in terms of the total number of particles and the total 

crystal mass produced for the KDP process. However the total simulation time for the 

method of classes is 14 minutes, which is much longer than for the standard method of 

moments (20 seconds). In the two-dimensional case, the method of classes requires 

discretization in the length and width direction, resulting in a significantly higher number 

of ODEs.  

 

 

Figure 3.11 Comparison of total number of crystals for different solution methods of the 

PBE 
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Figure 3.12 Comparison of total crystal mass for different solution methods of the PBE 

 

3.8 Conclusion 
 

A modelling framework for generating multi-dimensional batch cooling 

crystallization process operation models from a generic model has been presented. The 

generic model and the generated specific models cover different operation phases of a 

crystallizer. Also, by changing the constitutive models, the crystallization of a wide range 

of chemical systems can be studied. The application of the modelling framework has 

been highlighted through two case studies. In the first case study, a one-dimensional 

model for paracetamol crystallization was generated; the model was then extended to 

consider the agglomeration and breakage effects, and was then reformulated for 

application to sucrose crystallization. In the second case study, the feature of the 

modelling framework to handle different levels of model complexity, including one-

dimensional and two-dimensional crystals, has been illustrated through a KDP 

crystallization case study. The results of the models generated with the modelling 
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framework have shown good agreement with the published crystallization data, validating 

thereby the models based on the data reported by others. These generated models are 

therefore ready for use in model-based design and control/-analysis of crystallization 

operations within model-based process monitoring and control systems (for example, 

Singh et al., 2009, 2010).  
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4. A systematic framework for design of 
a process monitoring and control 
(PAT) system for crystallization 
processes 

 

In this chapter, the development of a generic and systematic model-based 

computer-aided framework for the design of a process monitoring and control system to 

achieve a desired CSD and crystal shape for a wide range of crystallization processes is 

presented. This framework combines a generic multi-dimensional modelling framework 

(Samad et al., 2011a), with methods and tools for generating set point profiles, for design 

of PAT systems (Singh et al., 2009) including methods for monitoring and control. For 

monitoring and control, well-known methods (Nagy et al., 2008a) have been integrated. 

For set point profiles generation, an extended analytical CSD estimator method and the 

response surface method (RSM) are employed to generate the set point profiles needed to 

match the desired target crystal products. The systematic framework is used to design a 

monitoring and control system for two systems: potassium dichromate and potassium 

dihydrogen phosphate (KDP) crystallization processes. In each case study, one-

dimensional CSD and two-dimensional CSD modelling features of the methodology are 

highlighted. 
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4.1 Systematic design framework for process 
monitoring and control (PAT) system  

 

1. Problem Definition

”Crystallization Process”

2. Crystallization 
Model Development

”Target Product”

3. Design of Set Point Profiles

Problem-System 
Specific Model

4. Design of Process Monitoring 
and Control (PAT) System

Data Handling and 
Model Identification

5. Validation of Process 
Monitoring and Control (PAT) 
System using Uncertainty and 

Sensitivity Analysis

6. Implementation of Process 
Monitoring and Control        

(PAT) System

1-D CSD 2-D CSD

 

Figure 4.1 Systematic design framework for the process monitoring and control (PAT) 

system in crystallization processes 
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The main specifications of a crystal product are usually given in terms of any 

desired CSD, crystal size and/or shape. In order to develop an operational policy that can 

indeed achieve these specifications, a model-based systematic framework for design of 

monitoring and control systems of crystallization processes has been developed (see 

Figure 4.1) - it consists of 6 main steps. Each step in this framework is explained in more 

detail below. 

 

4.2 Problem definition (Step 1) and crystallization 
model development (Step 2) 
 

The first step concerns the definition of the overall design objective. For 

example, design a process monitoring and control system to achieve the specified (target) 

crystal product properties, such as, one- or two-dimensional CSD, crystal size and/or 

crystal shape. In the crystallization model development phase (Step 2), the necessary 

problem-system specific model for the chemical system under investigation is generated. 

For this step, although, the generic multi-dimensional crystallization modelling 

framework developed in Chapter 3 is adopted, in principle, the framework can allow any 

other modelling framework or user-specified model. This step is also connected to the 

practical data handling and the model identification (shown in Figure 4.1) but these 

features however are not highlighted in this work. 

 

99



 

 80

4.3 Design of set point profiles (Step 3) 

Usually, the crystallization operation takes place within a zone bounded by the 

metastable limit and the solubility curve, and set point generation is based on a trial and 

error approach where the operation is maintained at a suggested set point trajectory until 

the end of the operation. It is then checked whether the obtained CSD matches the target 

CSD. If this is not the case, the operation is repeated using a different set point trajectory 

until the target CSD is matched. A major disadvantage of such an approach, apart from 

the fact that it can be very time consuming, is that it does not come with any guarantee 

that the desired target CSD will be obtained at any point. In this step of the design 

framework, a systematic procedure to generate the set point profiles is applied instead, by 

either using an extended analytical CSD estimator based method or by using the response 

surface method (RSM). It is also possible to supply user-specified target set point 

profiles. 

 

4.3.1 Analytical CSD estimator 

A one-dimensional analytical CSD estimator has been developed by Aamir 

(2010). The estimator, which is based on the assumptions of constant supersaturation 

throughout the entire batch operation and absence of nucleation, helps to generate set 

point profiles that yield a target CSD, given that the initial seed distribution and growth 

kinetics of the crystallization system are known. The generated set point profiles 

represent the supersaturation point that needs to be maintained during the entire batch 

operation in order to achieve the desired target CSD. 
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Figure 4.2 Flow chart for the generation of set point profiles to achieve a desired target 

CSD using the analytical CSD estimator 

 

Figure 4.2 shows the flow chart for generating the set point profiles that allow achieving 

a desired target CSD using the analytical CSD estimator. In this work, the original 

analytical CSD estimator (Aamir, 2010) has been extended to cover one- as well as two-

dimensional problems (see Table 4.1). To apply the analytical CSD estimator, three 

requirements need to be satisfied: (1) a target CSD is available; (2) a CSD of the initial 

seed crystals is known; and (3) a model representing the growth kinetics is available. The 

target CSD ( nf ), usually a one- or two-dimensional CSD, is specified by the users in the 

form of a distribution such as a normal, lognormal or bimodal (sum of two normal) 

distribution (Aamir, 2010). Also, the quadratic distribution can also be used as a target 

CSD for simulation purposes (Qamar et al., 2007; Gunawan et al., 2004). It is important 

to remark that although the analytical CSD estimator can be used to design the operation 

of crystallization systems with respect to any arbitrary target CSD, the achievable target 

distribution will however depend on the initial seed distribution and the growth kinetics. 

For example, the target distribution in the form of a normal distribution can only be 

attained by starting with normally distributed seed crystals and may not be attained by the 

use of seed crystals that follow a quadratic distribution or other distribution functions.  

In order to select a feasible target CSD, the user thus needs to be aware of the 

distribution of the initial seed crystals. Furthermore, in the case of size independent 
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growth rates, the width of the distribution (based on the standard deviation for a normal 

and lognormal distribution) from the initial seed is not changed when compared to the 

target CSD, i.e., only the mean of the characteristic length is increased. In the case of a 

size dependent growth rate, however, a narrow initial seed size distribution may be used 

to attain a wider target CSD. The CSD of the initial seed ( 0nf ) needs to be specified 

because it serves as a starting point for the crystals to grow from an initial characteristic 

length ( 0xL ). In the proposed design framework, the CSD of the initial seed is specified 

(based on available experimental data or information) and/or assumed to have a normal, 

lognormal, bimodal or a quadratic distribution (Aamir, 2010; Qamar et al., 2007; 

Gunawan et al., 2004). In addition the kinetic growth parameters 

( , , , , , , ,gx x x gy y yk gx p k gy p ) in the analytical CSD expressions should be available and 

are specific for the chemical system that is investigated. In case these parameters are not 

available, the modelling framework provides options to estimate them first. The estimator 

can handle size independent growth as well as size dependent growth (case 

0;  1x y x yp p  or 0;  1x y x yp p  respectively). 
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Table 4.1 Generic analytical CSD estimator expressions 

Characteristic Analytical Solutions 
Size independent growth: 

gx
x gxG k S  

gy
y gyG k S  

Final CSD: 
0n nf f  

Final characteristic length: 
0

gx
x x gx sp cL L k S t  

Final characteristic width: 
0

gy
y y gy sp cL L k S t  

Size dependent growth: 
1 xpgx

x gx x xG k S L  

1 ypgy
y yy gy LG k S  

For the case of: 

0;  1x y x yp p  

Final CSD: 
1 1

0
0 1

0

1 1

1

x
x x

x

p
p gx p

x x gx sp x c x
n n p

x x

L k S t p
f f

L           
1 1

0
0 1

0

1 1

1

y

y y

y

p
p pgy

y y ygy sp y c
n p

y y

L pk S t
f

L
 

Final characteristic length: 
1

1 1
0 11 1x x

p gx p
x x gx sp x c x

x
x

L k S t p
L  

Final characteristic width: 
1

1 1
0 11 1y y

p pgy
y y ygy sp y c

y
y

L pk S t
L  

Size dependent growth 
1gx

x gx x xG k S L  
1gy

y yy gy LG k S  
For the case of: 

0;  1x y x yp p  

Final CSD: 

0exp
gx gy

x gx sp c y gy sp ck S t k S t
n nf f  

Final characteristic length: 

01 exp 1
gx

x gx sp ck S t
x x

x
x

L
L  

Final characteristic width: 

01 exp 1
gy

y gy sp ck S t
y y

y
y

L
L  

*Note that only one growth kinetic expression is used for the one-dimensional case, 
and therefore the growth term represents the additional growth kinetics in the final 
CSD expressions and the final characteristic width is neglected  

 

 

103



 

 84

Each candidate of set point profile, in essence consisting of a combination of the 

required supersaturation set point profiles ( spS ) and the total crystallization time ( ct ), is 

generated using the analytical CSD estimator. The set point profiles are then optimized 

(model-based) to obtain the optimal set point profile by minimizing the sum of squares of 

relative errors between the predicted CSD obtained from the analytical estimator and the 

desired target CSD. 

arg

arg

2

, ,

1 ,

Minimize

calculated t et

t et

n
n i n i

obj
i n i

f f
F

f
                                                                                        (4.1)

 

Subject to: ,sp cS t  

,min ,maxsp sp spS S S                                                                                                        (4.2) 

min maxct t t                                                                                                                   (4.3) 

maxbatcht fc c                                                                                                                       (4.4) 

 

Where n is the number of discretization points, , calculatedn if is the predicted CSD obtained 

from the analytical CSD estimator and
arg, t etn if is the desired target CSD, 

batchtc is the 

expected solute concentration at the end of the batch and 
maxfc represents the maximum 

acceptable solute concentration at the end of the batch to achieve a required yield. The 

optimization problem consisting of Equations (4.1) to (4.4) is then constructed for either 

the one- or the two-dimensional case, depending on the requirements of the specific 

problem that is considered, and is solved using a sequential quadratic programming 

(SQP) based solver to obtain the optimal set point profile (combination of supersaturation 
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set point profile and total crystallization time). The optimal set point profile is then used 

in design steps (steps 4 to 6). In case a different set point profile or changes in the target 

specifications are desired, options to return to the analytical CSD estimator is provided 

(see Figure 4.2). 

 

4.3.2 Response surface method (RSM) 
An alternative way to generate the set point profiles to achieve desired target 

CSDs is to employ the response surface method (RSM) (Myers et al., 2009) as shown in 

Figure 3. Or in other words, design of experiments (DoE) is used for the generation of a 

number of suitable set point profile candidates. In the DoE, the central composite design 

(CCD) technique is employed to determine the required number of 

experiments/simulations to cover all factors. In the model-based study presented here, 

only simulations are considered. The number of required simulations for the CCD is 

estimated as 2 2 6k k  runs, where k  corresponds to the number of considered factors 

(Box and Hunter, 1957). An important reason for also including the DoE in the 

systematic framework is that this is a methodology that is generally used in the 

pharmaceutical industry when setting up experiments.  

 

Figure 4.3 Flow chart for the generation of set point profiles to achieve a desired target 

CSD using the RSM 
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The crystallization model is then simulated for each generated set point profiles 

candidate in order to determine the final CSD. The final CSD corresponding to the 

different set point profiles candidates are then used together with the target CSD for 

calculating the response function (RF). The RF (Equation 4.5) is here identified as the 

sum of squares of relative errors between the final CSD obtained from the detailed 

crystallization model for each set point profiles candidate and the specified target CSD.  

 

arg

2
, ,

1 ,

calculated t et

calculated

n
n i n i

i n i

f f
RF

f
                                                                                        (4.5) 

 

Where n is the number of discretization points, , calculatedn if is the predicted CSD obtained 

from the detailed crystallization model and
arg, t etn if is the desired target CSD. The response 

model is then developed. The process factors that affect the final CSD are: a) 

supersaturation set point profiles, spS and b) total crystallization time, ct . The response 

model is therefore given by Equation (4.6). Based on the response data, obtained through 

simulations, a regression analysis is carried out to determine the coefficients of the 

response model 0 1 2, , , , nb b b b . 

 

2 2
0 1 2 3 4 5sp c sp c sp cRF b b S b t b S t b S b t                                                                  (4.6) 

 

The coefficients in Equation (4.6) are estimated using the least squares regression 

method. The 2R coefficient is determined as well to assay the quality of the response 
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model, in order to quantify whether or not a reliable correlation is obtained. The results 

are evaluated by plotting the effects of the considered factors on the response through the 

three-dimensional response surface plots. The optimal solution is identified based on the 

optimal set of factors that produce a minimum response value. This is due to the fact that 

the lowest response value indicates that the final CSD obtained from applying the set 

point profiles candidates is very close to the target CSD, resulting in the lowest relative 

errors (response value). Similarly, the optimal set point profile is then used in the further 

design steps (steps 4 to 6). Again, there are options to return to the response function step 

if it is necessary to analyze different set point profiles candidates (see Figure 4.3). 

 

4.4 Design of process monitoring and control (PAT) 
system (Step 4) 

 

In this step, the process monitoring and control system is designed to achieve the 

desired end product properties. In order to properly design a process monitoring and 

control system for crystallization processes, the design methodology for PAT systems 

developed by Singh et al. (2009) is employed. The details of this methodology can be 

found in the referenced paper. In this work, the model library and the knowledge base 

have been supplemented with crystallization related processes. 
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4.5 Validation of process monitoring and control 
(PAT) system using uncertainty and sensitivity 
analysis (Step 5) 

 

Another feature of the proposed framework is the ability to perform uncertainty 

and sensitivity analysis on the designed PAT system. In this step, the impact and 

influence of input uncertainties on the predicted system performance are investigated, i.e., 

the risk of not achieving the target specifications of the crystal product is quantified. This 

feature however is discussed in more detail in the Chapter 5.  

 

4.6 Implementation of process monitoring and control 
(PAT) system (Step 6) 

 

The developed design of the process monitoring and control system for a 

crystallization process is then implemented (in a rigorous simulator or an actual process) 

to ensure that the final product quality is satisfied with respect to the process/product 

specifications. The final design proposal contains the process flowsheet with the 

necessary monitoring tools/techniques, the model equipment data corresponding to the 

identified monitoring equipments for process variables (such as temperature, 

concentration etc.) and the graphics to illustrate the predicted evolution of the CSD 

(obtained in this work, by simulation). There are also options here to return to the design 

of the set point profiles (step 3) if a different set point profiles candidates or changes in 

target product specifications are considered. Furthermore, this step is also linked to the 
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uncertainty and sensitivity analysis step (step 5) if it is necessary to investigate the 

influence of uncertainty on the product properties. 

 

4.7 Application of the design framework: potassium 
dichromate crystallization case study

The application of the developed systematic design framework to achieve a 

target one-dimensional CSD is demonstrated for the potassium dichromate crystallization 

process (adopted from Aamir et al., 2009, 2010). By defining the target CSD, the 

stepwise procedure in the design framework is highlighted in terms of the crystallizer 

model needed, the required set point generated using the analytical CSD estimator and 

the control strategies implementation in order to achieve the given target. The feature of 

the design framework to perform the uncertainty and sensitivity analysis of the Process 

Monitoring and Control (PAT) system (Step 5) is not highlighted in this chapter but it is 

the main subject of the next chapter.  

 

4.7.1 Problem definition (Step 1) 

The overall objective for this design task is to design a monitoring and control 

system for a potassium dichromate crystallization process in order to achieve a desired 

target one-dimensional CSD together with the mean characteristic length and total crystal 

mass. The target one-dimensional CSD is assumed as a normal distribution given in 

Equation (4.7). The mean and standard deviation of this target distribution are 490 m 
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and 52 m respectively and the desired target CSD shown in Figure 4.4 is generated 

using Equation (4.7).  

5408
490

exp00767.0
2

arg
1,

xett
Dn

L
f                                                                     (4.7) 

 

 

Figure 4.4 Desired target CSD 

 

4.7.2 Crystallization model development (Step 2) 

In order to generate a problem-system specific one-dimensional model for 

potassium dichromate crystallization, the generic multi-dimensional model-based 

framework (Samad et al., 2011a) is employed. Similar conditions and assumptions as 

reported in the literature (Aamir et al., 2009, 2010) are used to generate the problem-

system specific model. Here the operation is seeded, and the one-dimensional case with 

no agglomeration and breakage is considered. Furthermore, size dependent growth and 

secondary nucleation are assumed while the effect of agitation is neglected in the 

nucleation and crystal growth rate. By using these assumptions, the set of equations 
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needed to represent the model is then extracted from the generic multi-dimensional 

model-based framework. Table 4.2 shows the complete problem-system specific model 

for the potassium dichromate crystallization process generated by the generic multi-

dimensional model-based framework.  
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Table 4.2 List of model equations for the one-dimensional model of potassium 

dichromate crystallization 

No. Type of equations Equations
1 Population balance 

equation 
(size dependent growth) 

For 1;i
 1 1 01

2 1
2 1

,                            
2 2

x x x
nuc

G G GdN N N B
dt Cl Cl

 
For 1 ;i n

 1 1
1 1

1 1

0,    
2 2 2

i xi xi xi xi
i i i

i i i

dN G G G GN N N
dt Cl Cl Cl

 
For ;i n

 
1 1

1
1

0,                               
2 2

n xn xn
n n

n n

dN G GN N
dt Cl Cl

2 Overall mass balance: 
solute concentration 

3

1

c v i
xi

iw

k V dNdc S
dt m dt

 

3 Energy balance 
3

1 1
1

i
p c c v xi w

i

dNdTVc H k V S U A T T
dt dt  

 
4 Cooling jacket energy 

balance  1 1
w

w w pw w win pw win w w
dTV c F c T T U A T T
dt  

2 2 ex wU A T T
5 Saturation 

concentration 
2 3

1 1 1 1
sat

i i i ic a b T c T d T  

6 Supersaturation satS c c
7 Nucleation b

nuc bB k S V  
8 Crystal growth rate 

(Length direction) 
1 xx

pg
xi gx x xiG k S L  

9 Characteristic size 1

2
xi xi

xi
L LS

10 Total number of 
particles 

1 2 3c nN N N N N  

11 Total crystal mass 
3

1
c c v xi i

i
M k S N

12 Crystal size distribution 1

1

2

i i

i i
n xi

N N
Cl Cl

f L
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4.7.3 Design of set point profiles (Step 3) 

In this step, the set point profile that yields the desired target one-dimensional 

CSD is generated using model-based optimization involving the analytical CSD 

estimator. First, the initial seed of the CSD is specified. Here the initial seed of the CSD 

has been generated as a normal distribution by using a mean characteristic length of 

156.89 m and a standard deviation of 43.75 m as shown in Equation (4.8). The 

generated initial seed of the CSD is shown in Figure 4.5 where it served as the starting 

point for the seed crystal to grow until it reaches the target CSD.  

 

13.3828
89.156

exp00912.0
2

1,0
x

Dn
L

f                                                                        (4.8) 

 

 

Figure 4.5 Size distribution of the initial seed of the CSD 

 

The analytical CSD estimator for the one-dimensional and the case of size 

dependent growth 0;  1x xp  is selected as shown in Table 4.1 and the growth 
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parameter for the potassium dichromate system used is shown in Table 4.3 (adopted from 

Aamir (2010). Subsequently the analytical CSD estimator is applied to generate the set 

point candidates and based on these candidates, the optimal set point is obtained by 

solving the model-based optimization problem consisting of Equations (4.1) to (4.4) 

using the SQP approach implemented in the ICAS-MoT software. The lower and upper 

bounds set for the supersaturation set point are 51 10  g solute/g water and 31 10  g 

solute/g water, respectively. Meanwhile the lower bound of 150 minutes and upper bound 

of 200 minutes are set for the total crystallization time. The optimal set point profiles 

obtained in this way consist of the supersaturation set point of 41.25 10  g solute/g water 

and a total crystallization time of 180 minutes.  

 

Table 4.3 Kinetic growth parameters of potassium dichromate crystallization 

Parameter Value Units 
Growth rate constant, gxk  9.56 m/s 

Growth constant, x  0.0075 1/ m 
Growth constant, xp  1.24 - 
Growth order constant, xg  0.8 - 
 

4.7.4 Design of process monitoring and control (PAT) system (Step 4) 

The problem-system specific model generated in Step 2 and the set point created 

in Step 3 are used to design a process monitoring and control system (PAT system) for 

the potassium dichromate crystallization process. The objective here is to design a 

process monitoring and control (PAT) system for this process to achieve the desired 

target one-dimensional CSD. In this study, the design of a PAT system for potassium 

dichromate crystallization process has been performed in the ICAS-PAT software (Singh 
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et al., 2010). Based on the design procedure, the target product properties are potassium 

dichromate with the following specifications: potassium dichromate concentration: 0.137 

g potassium dichromate/g water; the target one-dimensional CSD generated earlier (see 

Figure 4.4) with mean characteristic length: 490 m, standard deviation of 52 m and 

total crystal mass: 6.75 g. The chemical system being studied consists of potassium 

dichromate (solute) and water (solvent). The equipment involved is a jacketed batch 

crystallizer. 

 

 

Figure 4.6 Potassium dichromate concentration profiles for open-loop simulation 

 

The open-loop simulation is then performed in the sensitivity analysis step to 

identify the critical process variables. Based on the open-loop simulation as shown in 

Figure 4.6, the potassium dichromate concentration was found to violate the upper limit 

(metastable limit) specified for this process. Therefore it is concluded that the potassium 

dichromate concentration needs to be controlled in order to maintain the operation within 

115



 

 96

the specified limits. The analysis is then carried out for all process variables and based on 

the analysis it was found that the temperature also violated the specified limits and thus is 

listed together with the potassium dichromate concentration as a critical process variable. 

 

 

Figure 4.7 Interdependency analysis for change in potassium dichromate concentration 

based on a) change in coolant flow rate and b) change in inlet water temperature 

 

The interdependency analysis is performed for each critical process variable to 

select a suitable actuator. The analysis is conducted for the potassium dichromate 

concentration and the corresponding actuator candidates (coolant flow rate and inlet 

water temperature) were selected for analysis. Figure 4.7 shows that the change in the 

inlet water temperature is more affected the potassium dichromate compare to the change 

in the coolant flow rate indicating thereby, the inlet water temperature is more sensitive 

than the coolant flow rate. Therefore, it was selected as an actuator to control the 

potassium dichromate concentration in the batch crystallization process. The analysis is 

then repeated for temperature and based on this analysis it is also concluded that the inlet 

water temperature is more sensitive and selected as an actuator to control the temperature. 

Since the objective of the control implementation in the crystallization process is usually 

to maintain the operation in the metastable zone, therefore only one control-loop is 
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applied. This can be done by implementing either supersaturation control or temperature 

control. In this work, the supersaturation control is used and thus the potassium 

dichromate concentration is controlled by manipulating the inlet water temperature.  

The performance analysis of the monitoring tools is then conducted to select the 

appropriate monitoring tools for each measurable critical process variables. Based on the 

analysis, the potassium dichromate concentration, the temperature and the CSD are 

monitored using the attenuated total reflection fourier transform infrared (ATR-FTIR), 

thermocouple and laser diffraction using malvern masterisizer respectively. Based on the 

PAT design procedure, the process monitoring and control (PAT) system for the 

potassium dichromate crystallization is summarized in Table 4.4.  

 

Table 4.4 Proposed process monitoring and analysis system for potassium dichromate 

crystallization 

Propose a process monitoring and control system 
Critical 

process points 
Critical process 

variables 
Actuators Monitoring 

techniques 
Monitoring 

tools 
Crystallizer Concentration Inlet water 

temperature 
ATR-FTIR ATR-FTIR 

probe 
Crystallizer Temperature Inlet water 

temperature 
Thermocouple WZ-08541-28 

(E20-gauge 
thermocouple) 

Crystallizer Crystal size 
distribution 

(CSD) 

- Laser 
diffraction 

Malvern 
Mastersizer 
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4.7.5 Implementation of process monitoring and control (PAT) system 
(Step 6) 

A closed-loop simulation is then performed to validate the proposed PAT 

system. Here a proportional-integral (PI) controller has been developed in order to control 

the concentration at the desired set points where the generated set point profile is used as 

a supersaturation set point for the controller. Based on the closed-loop simulation result, 

where the potassium dichromate concentration initially started at 0.1928 g potassium 

dichromate/g water, it can be concluded that once the concentration set point was reached 

the concentration was successfully maintained at the set point using the PI controller. In 

Figure 4.8, approximately 0.1377 g potassium dichromate/g water remains by the end of 

the operation.  

 

 

Figure 4.8 Concentration profiles for closed-loop simulation 
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Figure 4.9 Temperature profiles for closed-loop simulation 

 

Figure 4.9 shows the temperature profiles obtained from closed-loop simulation, where 

the temperature initially is at 30°C, and the liquid is then cooled down to 20°C in 180 

minutes. Based on this analysis it was found that the potassium dichromate concentration 

was maintained at the set point indicating that the generated set point was feasible. 

Subsequently the performance of the simulated operation is compared with the desired 

target CSD as highlighted in Figure 4.10. It can be seen that the final CSD obtained from 

the detailed simulation model is very close to the desired target. The mean and standard 

deviation obtained for this final CSD are 488.1 m and 51.83 m, which is in good 

agreement with the mean (490 m) and standard deviation (52 m) for the target CSD. In 

terms of total mass obtained, Figure 4.11 shows that a total crystal mass of approximately 

6.73 g is obtained from an initial seed mass of 1.2 g used in this study. Based on this 

analysis, it is shown that the analytical CSD estimator has the ability to provide the set 

point profiles for producing the desired target CSD. This has been confirmed through the 

PAT system implementation for potassium dichromate which indicates that by 
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maintaining the operation at the generated set point profile, the target CSD is successfully 

achieved. 

 

 

Figure 4.10 Final CSD for potassium dichromate, comparison between the detailed 

simulation model and the target CSD 

 

 

Figure 4.11 Total predicted crystal mass for potassium dichromate crystallization 
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Finally, a feasible design of the PAT system as shown in Figure 4.12 is obtained. 

A PI control system is used to control the solute concentration. The concentration is 

monitored by ATR-FTIR and the temperature is monitored by a thermocouple. The inlet 

water temperature is manipulated by blending hot and cold water. Meanwhile the CSD is 

also monitored by Malvern mastersizer. Finally the evolution of the CSD from the initial 

seed CSD (see Figure 4.5) to the final CSD (see Figure 4.10) is represented in 3-D graphs 

as shown in Figure 4.13. Figure 4.13(a) shows the initial seed view, were a relatively 

narrow distribution at the starting point has been grown into the wider distribution at the 

final time due to the size dependent growth effects included in the model as also shown in 

Figure 4.13(b).  

 

 

Figure 4.12 Potassium dichromate crystallization process flowsheet with designed PAT 

system 
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Figure 4.13 Evolution of CSD (a) initial seed view (b) final seed view 

 

4.8 Application of the design framework: potassium 
dihydrogen phosphate (KDP) crystallization case 
study

In this section, application of the systematic framework for design of PAT 

systems is highlighted through the chemical system involving crystallization of potassium 

dihydrogen phosphate (KDP). Relevant data on the crystallization process were taken 

from Qamar et al. (2007) and Gunawan et al. (2004). The objective of the case study is to 

generate set point profiles and their implementation to achieve target CSDs for one- as 

well as two-dimensional crystals of KDP. Note that in the published literature, only the 

two-dimensional CSD datas could be found for the KDP chemical system. As pointed out 

earlier, the validation of Process Monitoring and Control (PAT) system using uncertainty 

and sensitivity analysis (Step 5) is not considered in this paper. 
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4.8.1 Problem definition (Step 1) 

The overall objective for this design task is to design a monitoring and control 

system for the KDP crystallization process in order to achieve a target one- and two-

dimensional CSD together with the desired crystal shape, characteristic length, 

characteristic width (for the two-dimensional case) and total crystal mass. The desired 

crystal shapes for the one- and two-dimensional cases are cube-shaped and tetragonal 

prism-shaped crystals, respectively. The desired targets for the one- and two-dimensional 

cases used in this work are assumed to be a univariate and a bivariate quadratic 

distribution respectively, and expressed as follows: 

 

For one-dimensional target: 

arg 2
,1

arg
,1

if 56.4 65.8
0.0521 6.381 194.2

else
0

x
t et

n D x x

t et
n D

L
f L L

f

                                                 (4.9) 

For two-dimensional target: 

arg 2 2
,2

arg
,2

if 56.4 65.8;   24.5 30.5

0.0085 0.3321 6.4956

else
0

x y

t et
x yn D x y

t et
n D

L L
L Lf L L

f

                   (4.10) 

 

The mean characteristic length and standard deviation for the target one-dimensional 

CSD are 60.85 m and 2.8 m, respectively, while the mean characteristic length and 

width for the two-dimensional CSD are set at 60.85 m and 27.36 m with a standard 
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deviation of 2.8 m (length) and 1.34 m (width), respectively. The target one- and two-

dimensional CSD are shown in Figure 4.14.   
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Figure 4.14 Target one- (left) and two-dimensional (right) CSD 

 

4.8.2 Crystallization model development (Step 2) 

In order to generate a problem-system specific one-dimensional model for KDP 

crystallization, the generic multi-dimensional model-based framework (Samad et al., 

2011a) is employed. In the one-dimensional case, models for size dependent growth, 

relative supersaturation and a cube-shaped crystal are generated to obtain the problem-

system specific model. Table 2 shows the complete problem-system specific one-

dimensional model for the KDP crystallization process generated by the generic multi-

dimensional model-based framework.  
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Table 4.5 List of model equations for the one-dimensional model of KDP crystallization 

No. Type of equations Equations
1 Population balance 

equation 
(size dependent growth) 

For 1;i
 1 1 01

2 1
2 1

,                            
2 2

x x x
nuc

G G GdN N N B
dt Cl Cl

 
For 1 ;i n

 1 1
1 1

1 1

0,    
2 2 2

i xi xi xi xi
i i i

i i i

dN G G G GN N N
dt Cl Cl Cl

 
For ;i n

 
1 1

1
1

0,                               
2 2

n xn xn
n n

n n

dN G GN N
dt Cl Cl

2 Overall mass balance: 
solute concentration 

3

1

c v i
xi

iw

k V dNdc S
dt m dt

 

3 Energy balance 
3

1 1
1

i
p c c v xi w

i

dNdTVc H k V S U A T T
dt dt  

 
4 Cooling jacket energy 

balance  1 1
w

w w pw w win pw win w w
dTV c F c T T U A T T
dt  

2 2 ex wU A T T
5 Saturation 

concentration 
2 3

1 1 1 1
sat

i i i ic a b T c T d T  

6 Supersaturation sat

sat

c cS
c

7 Nucleation b
nuc bB k S V  

8 Crystal growth rate 
(Length direction) 

0.1 1 xx
pg

xi gx x xiG k S L  

9 Characteristic size 1

2
xi xi

xi
L LS

10 Total number of 
particles 

1 2 3c nN N N N N  

11 Total crystal mass 
3

1
c c v xi i

i
M k S N

12 Crystal size distribution 1

1

2

i i

i i
n xi

N N
Cl Cl

f L
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For the same chemical system and crystallization process, the one-dimensional 

model can be extended to a two-dimensional model (Samad et al., 2011a,b). The changes 

needed to develop the two-dimensional model of the KDP crystallization process are 

mainly the population balance equation (PBE) formulation where the equations are now 

extended to consider growth in two directions (length and width). In the two-dimensional 

model, a tetragonal prism-shaped crystal is assumed. The overall mass and energy 

balances are obtained by substituting the volume occupied by the selected crystal shape. 

In the constitutive equations, two crystal growth rate equations are now added, as well as 

equations for calculating the CSD, total number of crystal particles, total crystal mass, 

mean characteristic length and width. Other than that, the same assumptions, equations 

and chemical properties used in the one-dimensional model are also used here. The 

generated problem specific two-dimensional model equations are listed in the Table 4.6. 

Note that a similar two-dimensional model as published in the literature (Qamar et al., 

2007; Gunawan et al., 2004) is generated but in this work, the PBE is solved using the 

method of classes.  

Table 4.6 List of model equations for the two-dimensional model of KDP crystallization 

No. Type of equations Equations
1 Population Balance 

Equation 
, '

, , ,    1, , ; 1, ,i j
i j i j nuc

dN
f f B i n j m

dt
2 Overall Mass Balance: 

Solute Concentration 
,3 2

,

1
3

i jc
xi yjyj yj

i jw

dNdc S SS S
dt m dt

 

3 Energy Balance 
p c c

dTVc H V
dt                        

,3 2
1 1

,

1
3

i j
xi yj wyj yj

i j

dN
S S U A T TS S

dt
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4 Cooling Jacket Energy 
Balance  1 1

w
w w pw w win pw win w w

dTV c F c T T U A T T
dt  

                            2 2 ex wU A T T
5 Saturation 

Concentration 
2 3

1 1 1 1
sat

i i i ic a b T c T d T  

6 Supersaturation 
sat

sat

c
ccS

7 Nucleation VSkB b
bnuc  

8 Crystal Growth Rate 
(Length direction) 

0.1 1 xx
pg

xi gx x xiG k S L  

9 Crystal Growth Rate 
(Width direction) 

0.1 1 yy
pg

yj gy y yjG k S L

10 Tailor development 
coefficient for length 
classes 

1

1

i
xi

i i i

Cla
Cl Cl Cl  

11 Tailor development 
coefficient for length 
classes 1 1

i
xi

i i i

Clb
Cl Cl Cl  

12 Tailor development 
coefficient for width 
classes 

1

1

j
yj

j j j

Cl
c

Cl Cl Cl  
13 Tailor development 

coefficient for width 
classes 1 1

j
yj

j j j

Cl
d

Cl Cl Cl  
14 Characteristic length 1

2
xi xi

xi
L LS

15 Characteristic width 1

2
yj yj

yj

L L
S  

16 Outlet crystal flux for 
length direction 

1,
, , 1,

O
i j xi xi i j xi i jf G a N b N  

17 Inlet crystal flux for 
length direction 

1,
, 1 1, 1 ,

I
i j xi xi i j xi i jf G a N b N  

18 Outlet crystal flux for 
width direction 

2,
, , , 1

O
i j yj yj i j yj i jf G c N d N  

19 Inlet crystal flux for 
width direction 

2,
, 1 , 1 1 ,

I
i j yj yj i j yj i jf G c N d N  

20 Inlet flow for length 
direction 

1, 1,
, , ,

O I
i j i j i jf f f  

21 Inlet flow for width 
direction 

' 2, 2,
, , ,

O I
i j i j i jf f f  

22 Total number of 
particles 

,
,

c i j
i j

N N  
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4.8.3 Design of set point profiles (Step 3) 

In this section, the set point profiles that guarantee the target one- and two-

dimensional CSD are generated using, (i) the analytical CSD estimator, and, (ii) the 

response surface method (RSM). 

 

4.8.3.1 Generation of set point profiles using analytical CSD estimator 
 

The set point profiles needed to achieve the specified target one- and two-

dimensional CSD are generated using the analytical CSD estimator. In order to use the 

analytical CSD estimator, the initial seed distribution as well as the kinetic growth 

parameters needs to be specified. The initial seed distribution is acting as a starting point 

from where the seed is grown until it reaches the final CSD, which in the ideal case 

should be as close as possible to the target CSD. The initial seed distribution for the one- 

and the two-dimensional case was taken from Qamar et al. (2007) as follows: 

 

For one-dimensional: 

0
2

0,1 0 0

0,1

if 18.05 21.05
1.364 53.54 522

else
0

x

n D x x

n D

L
f L L

f

                                                    (4.11) 

23 Total crystal mass 3 2
,

,

1
3 xi yjc c i jyj yj

i j
S SM NS S

 
24 Crystal size distribution , 1, 1

1 1,
2

i j i j

i j i j
n xi yj

N N
Cl Cl Cl Cl

f L L
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For two-dimensional: 

0 0

2 2
0 00,2 0 0

0,2

if 18.05 , 21.05

0.0348 1.36 26.6

else
0

x y

x yn D x y

n D

L L
L Lf L L

f

                          (4.12) 

 

The CSD of the initial crystal seed is shown in Figure 4.15 for the one- and the 

two-dimensional cases. For the one-dimensional case, the mean characteristic length of 

the initial seed is 19.5 m and the standard deviation is 0.97 m, while, for the two-

dimensional case, the corresponding means and standard deviations for the initial 

characteristic length and width are assumed to be identical to the one-dimensional case, 

i.e., 19.5 m and 0.97 m respectively. The total number of crystal particles as initial 

seed is 736 in both cases. The analytical CSD estimator for the case of size dependent 

growth 0;  1x y x yp p  is selected from Table 4.1 for the one- and the two-

dimensional cases.  
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Figure 4.15 Initial seed of the one- (left) and two-dimensional (right) CSD 

 

The kinetic growth parameters for KDP crystallization are taken from Qamar et 

al. (2007) as indicated in Table 4.7. Using the information of the initial seed, the target 

CSD and the kinetic growth parameters, the set point profiles candidates are generated 

using the analytical CSD estimator and subsequently applying Equations (4.1) to (4.4) for 

the one- and the two-dimensional cases to determine the optimal set point profile. The 

lower and upper bounds specified for the supersaturation are 0.015 g/g and 0.045 g/g, 

while a lower bound of 40 seconds and an upper bound of 120 seconds are set for the 

total crystallization time. The models for both cases are solved using the SQP based 

solver available in the ICAS-MoT software (Heitzig et al., 2011). The optimal set point 

profile consisting of the supersaturation set point profile of 0.03 g/g that is to be 

maintained and the total crystallization time of 80 seconds are obtained for both cases. 

The total crystallization time generated in this work is consistent with the total 
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crystallization time used in the published literature which is also 80 seconds (Qamar et 

al., 2007; Gunawan et al., 2004). 

Table 4.7 Kinetic growth parameters of KDP crystallization (Qamar et al., 2007) 

Parameter Value Units 
Growth rate constant (length direction), gxk  100.75 m/s 

Growth rate constant (width direction), gyk  12.21 m/s 

Growth constant (length direction), x  0.6 1/ m 
Growth constant (width direction), y  0.6 1/ m 

Growth constant (length direction), xp  1 Dimensionless
Growth constant (width direction), yp  1 Dimensionless

Growth order constant (length direction), xg  1.74 Dimensionless
Growth order constant (width direction), yg  1.48 Dimensionless
 

4.8.3.2 Generation of set point profiles using the response surface 
method (RSM) 

The response surface method (RSM) can alternatively be employed to generate 

the necessary set point profiles corresponding to the desired target one- or two-

dimensional CSD. In this study, the one- and two-dimensional CSD are considered as the 

response. Therefore the response function (RF) as shown in Equation (4.5) is identified as 

the sum of squares of relative errors between the final CSD obtained from a simulation of 

the detailed mathematical model for a combination of set point profiles candidates and 

the target CSD (generated through Equation (4.9) for the one-dimensional case and 

Equation (4.10) for the two-dimensional case, respectively). 

The response surface study was implemented for the one- and two-dimensional 

cases using Matlab (R2009). The DoE was performed using a CCD to generate the set 
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point profile candidates. The range of values for supersaturation set point profile ( spS ) 

and total crystallization time ( ct ) was defined as shown in Table 4.8. These ranges are 

applicable for both the one- and two-dimensional cases. 

 

Table 4.8 The range of independent variables for experimental design 

Variables Symbol Range of independent variables 
Lowest Low Center High Highest 

Supersaturatio
n set point 

spS  0.009 0.015 0.03 0.045 0.051 

Total 
crystallization 
time  

ct  23.431 40 80 120 136.568 

 

The number of tests (simulation runs) required for CCD is 2 2 6 14k k , for k (the 

number of considered factors) = 2. However in this specific case, the 6 simulations 

corresponding to the center point are using the same operating conditions where identical 

response function values are expected considering that the tests here are conducted 

through simulations. Therefore, the one- and two-dimensional KDP model was solved for 

only 9 different set point profiles candidates. Table 6 lists the set point profiles candidates 

characterizing each of the 9 simulations and the corresponding values of the response 

function to evaluate the crystallization performance for the one- and two-dimensional 

cases.  
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Table 4.9 Central composite design for one- and two-dimensional cases for KDP 

crystallization 

Test 
number 

Factors Response functions                 
(Relative error) 

Supersaturation 
set point 

Total crystallization 
time 

One-dimensional Two-dimensional

1 0.015 40 5.434 8.151 
2 0.045 40 2.771 4.184 
3 0.015 120 3.029 4.453 
4 0.045 120 11.879 17.819 
5 0.03 80 0.112 1.021 
6 0.009 80 5.639 8.797 
7 0.051 80 9.762 14.838 
8 0.03 23.431 4.295 6.356 
9 0.03 136.569 4.291 6.436 

 

 

Based on the response data from the CCD, a regression analysis is carried out to 

determine the coefficients of the response model 0 1, , , nb b b . In this study, the 

coefficients (see Equation 4.6) were estimated by least squares regression in Matlab 

(R2009). The solutions for the quadratic model for the one- and two-dimensional case are 

as follows: 

 

One-dimensional: 

2 230.05 1281 0.3266 4.797 16620 0.0012735sp c sp c sp cRF S t S t S t                    (4.13) 

 

Two-dimensional:                

22 001609.023490222.74426.0183779.42 cspcspcsp tStStSRF                 (4.14) 
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Figure 4.16 compares the values predicted by the model versus the observed data 

for the one- and the two-dimensional cases and a good model fit has been obtained. The 

analysis of variance (ANOVA) test related to this model indicates a predicted 2R  value 

of 0.9448 (one-dimensional) and 0.9441 (two-dimensional). 
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Figure 4.16 Predicted versus actual values of the response function for:  (a) one-

dimensional case; (b) two-dimensional case 

 

Figure 4.17 presents the response surface as a function of total crystallization 

time and supersaturation set point profiles for the one-dimensional case. It shows that the 

relative error is the lowest for a supersaturation set point profile of 0.03 g/g and a total 

crystallization time of 80 seconds. The lowest relative error indicates that the final CSD 

obtained using this set point profile is very close to the specified target CSD. However, 

the relative error tends to increase at the lower supersaturation set point profile (0.015 

g/g) and lower crystallization time (40 seconds). When the crystallization is operated at 
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the lower supersaturation and lower crystallization time, the CSD obtained is far away 

from the target CSD which explains the large relative error in Figure 4.17. Moreover the 

relative error also becomes larger for the higher supersaturation set point profile (0.045 

g/g) and the higher total crystallization time (120 seconds). This is due to the fact that the 

crystallization, when operated at the higher supersaturation set point profile and total 

crystallization time (Figure 4.17, top, right), is influenced by secondary nucleation as 

well, severely influencing thereby, the final CSD. The set point profiles of the response 

function model with the lowest relative error is then also selected for generating the 

optimal set point profiles to achieve the desired target one-dimensional CSD. 
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Figure 4.17 Response surface as a function of supersaturation set point and crystallization 

time for the one-dimensional case 
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Figure 4.18 Response surface as a function of supersaturation set point and crystallization 

time for the two-dimensional case 

 

A similar procedure is repeated for the two-dimensional case and a similar trend 

is observed for the two-dimensional case as highlighted in Figure 4.18. The relative error 

in the two-dimensional case is a little higher than for the one-dimensional case (see Table 

4.9). This is probably due to the fact that a more complex model is used in the simulation 

with the two-dimensional model compared to the one-dimensional model, resulting in a 

different type of crystal shape. Similarly, the response function model yields an optimal 

set point profile which, as expected, is identical to the one-dimensional case 

(supersaturation set point profile = 0.03 g/g and total crystallization time = 80 seconds). 

The optimal set point profile obtained from RSM for both cases are also matching with 
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the optimal set point profiles generated using the analytical CSD estimator and thus, 

indicating this approach is reliable and able to generate the optimal set point profiles as 

well. The total crystallization time (80 seconds) obtained through the RSM is also 

consistent with the published literature (Qamar et al., 2007; Gunawan et al., 2004). 

 

4.8.3.3 Comparison of set point profiles obtained using analytical CSD 
estimator and response surface method (RSM) 

In this work, the optimal set point profiles to produce the desired target CSD 

have been generated using analytical CSD estimator and RSM approaches for one- and 

two-dimensional KDP crystallization process. The optimal set point profiles obtained are 

shown in Table 4.10 where both approaches produced identical set point profiles. This 

indicates that both approaches can be used to generate the optimal set point profile to 

achieve the desired target CSD. However it is worth to highlight that the analytical CSD 

estimator is simpler and computationally more efficient. Furthermore the detailed 

crystallization model is not needed and therefore the user is able to use this approach to 

gain some important information about initial seed, set point profiles and the CSD 

obtained without the need to perform simulations with the detailed model. Meanwhile a 

higher number of simulations with model are required in the RSM approach in order to 

provide adequate and reliable data of the response of interest. Nevertheless, the RSM 

approach is able to generate the necessary set point profile and provides another attractive 

option for the user to apply in this systematic design framework.  
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Table 4.10 Comparison of set point profiles obtained using analytical CSD estimator and 

response surface method (RSM) for both cases 

Cases Approaches 
Analytical CSD estimator Response surface method 
Set point 
profiles 

(g/g) 

Total 
crystallization 

time (sec) 

Set point 
profiles 

(g/g) 

Total 
crystallization 

time (sec) 
One-dimensional  0.03 80 0.03 80 
Two-dimensional  0.03 80 0.03 80 

4.8.4 Design of process monitoring and control (PAT) system (Step 4)

In this section, the process monitoring and control system for the KDP 

crystallization process is designed for the one-dimensional and the two-dimensional cases 

using the PAT design methodology developed by Singh et al. (2009) and implemented in 

the ICAS-PAT software (Singh et al., 2010). The desired product is KDP with the 

following predefined qualities: target one-dimensional CSD with mean characteristic 

length of 60.85 m and cube-shaped crystals; target two-dimensional CSD with mean 

characteristic length of 60.85 m; mean characteristic width of 27.36 m and tetragonal 

prism-shaped crystals. The basic raw materials required include: Water as a solvent and 

KDP as a solute assuming that the pure KDP has been isolated with water during the 

organic synthesis step. The process equipment used is a jacketed batch crystallizer. 

Furthermore, initial condition, known variable values and model parameters taken from 

Qamar et al. (2007) and Gunawan et al. (2004) have been used to solve the one- and two-

dimensional models in the open- and closed-loop simulations.  
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The sensitivity analysis based on open-loop simulations is now performed to 

identify the variables that need to be monitored and controlled in order to assure the 

predefined end product quality. The KDP concentration is considered as an example of a 

process variable for the sensitivity analysis. As shown in Figure 4.19, the KDP 

concentration for both cases was found to violate the operational limits in the open-loop, 

indicating thereby that this variable needs to be monitored and controlled. Repeating this 

procedure for all process variables yielded a list of critical process variables which are the 

KDP concentration and temperature for both cases. The interdependency analysis was 

performed for each critical process variable to select a suitable actuator. Considering that 

the same critical process variables were obtained for both cases, and, since the same 

chemical system is used, only one interdependency analysis was carried out. As shown in 

Figure 4.20, a critical process variable (KDP concentration) and the corresponding 

actuator candidates (coolant flow rate and inlet water temperature) were selected for 

analysis. The analysis indicates that inlet water temperature is the most sensitive based on 

the large change occur in the KDP concentration when inlet water temperature is 

perturbed compare to only small change in the KDP concentration when coolant flow rate 

is perturbed, and therefore, it was selected as an actuator to control the solute 

concentration in the batch crystallization for both cases. 
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Figure 4.19 KDP concentration profile for a) one-dimensional, b) two-dimensional cases 

in the open-loop simulation 

 

Figure 4.20 Interdependency analysis results for the change in KDP concentration based 

on a) change in coolant flow rate and b) change in inlet water temperature 

 

The monitoring tools were selected to monitor each identified critical process variable 

based on a set of monitoring tools performance criteria: accuracy, precision, drift, 

resolution, response time, operating range and cost. Based on these performance criteria, 

the attenuated total reflection fourier transform infrared (ATR-FTIR), thermocouple, laser 

diffraction using Malvern mastersizer (one-dimensional CSD) and in situ video 

microscopy using particle vision microscope (two-dimensional) are selected as the 

monitoring techniques to monitor the solute concentration, the temperature and the CSD 

for both the one- and the two-dimensional cases. The PAT system is proposed based on 

a) b) 
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the outcomes of the sensitivity analysis, interdependency analysis and performance 

analysis of monitoring tools as shown in Table 4.11. 

 

Table 4.11 Proposed process monitoring and analysis system for one- and two-

dimensional KDP crystallization 

Propose a process monitoring and control system 
Critical 

process points 
Critical process 

variables 
Actuators Monitoring 

techniques 
Monitoring 

tools 
Crystallizer Concentration Inlet water 

temperature 
ATR-FTIR ATR-FTIR 

probe 
Crystallizer Temperature Inlet water 

temperature 
Thermocouple WZ-08541-28 

(E20-gauge 
thermocouple) 

Crystallizer Crystal size 
distribution 

(CSD) 

- Laser 
diffraction (one-
dimensional); In 

situ video 
microscopy 

(two-
dimensional) 

Malvern 
Mastersizer 

(one-
dimensional); 

Mettler-Toledo 
particle vision 

microscope 
(two-

dimensional) 
 

4.8.5 Implementation of process monitoring and control (PAT) system 
(Step 6) 

For the closed-loop simulation of the PAT system, a PI controller has been 

considered in order to maintain the KDP concentration at the desired set point profile. 

The generated supersaturation set point profile at 0.03 g/g is used as a set point profile for 

the controller for both the one- and the two-dimensional cases. The closed-loop 

simulation results obtained for one- and two-dimensional cases are shown in Figure 4.21. 

The KDP concentration for both cases initially started at 0.307 g KDP/g water and once 

the concentration set point profile was reached the PI controller successfully maintained 
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the concentration at the set point profile until the end of the operation. As shown in 

Figure 4.21, approximately 0.2921 g KDP/g water (one-dimensional) and 0.2957 g 

KDP/g water (two-dimensional) are obtained at the end of the operation. Comparing the 

predictions from the two models, it can be noted that the one-dimensional model 

consumes more solute from the solution than the two-dimensional model. This is because 

there are two different kinetic crystal growth parameters applied to the same crystal 

growth model in the two-dimensional case. The crystal growth rate for the width 

direction has a lower rate compared to the crystal growth rate for the length direction. As 

a consequence, the crystals in the two-dimensional case grow slower, thus explaining 

why less solute has been consumed compared to the one-dimensional case. 

 

 

 

 

Figure 4.21 KDP concentration profile for: a) one-dimensional; b) two-dimensional cases 

in the closed-loop simulation 

 

Figure 4.22 shows the temperature profile, for both cases set initially at 32 C and then 

cooled down to 28 C (one-dimensional) and 28.7 C (two-dimensional), respectively. The 

temperature in the one-dimensional case is decreasing faster than in the two-dimensional 

case. The solubility line (lower limit) is temperature dependant. Since the KDP 

concentration is decreasing, the solubility line must also decrease in order to maintain the 

a) b) 
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operation at the desired set point profile (constant supersaturation), which results in a 

decrease of the temperatures. 

 

Figure 4.22 Temperature profiles comparison in the closed-loop simulation 

 

 

Figure 4.23 Comparison of generated CSD with the target CSD for the one-dimensional 

case 

 

In terms of CSD, a good agreement with the target CSD was achieved as shown 

in Figure 4.23, i.e. the detailed one-dimensional simulation model (closed-loop) predicted 
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a CSD which was almost identical to the target CSD using the generated set point 

profiles. The cube-shaped seed originally at mean characteristic length of 19.5 m 

(standard deviation of 0.97 m) has been grown to a mean characteristic length of 60.73 

m (standard deviation of 2.79 m) which is very close to the target mean characteristic 

length of 60.85 m (standard deviation of 2.8 m). Although the good agreement has 

been achieved between the target and simulated CSD, however the shape of distribution 

is slightly different as shown in Figure 4.23. This is may be due to the error from the 

BDF integrator used to solve the method of classes.  
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Figure 4.24 Final two-dimensional CSD obtained from the detailed simulation model 

 

Figure 4.24 shows the final two-dimensional CSD with respect to final 

characteristic length and width obtained from the detailed simulation model based on the 
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given initial seed of the CSD and the generated set point profiles. The seed has been 

grown starting from a mean characteristic length and width of 19.5 m up to a mean 

characteristic length of approximately 60.6 m and a mean characteristic width of 26.55 

m. The dimensions obtained from the detailed simulation model are very close to the 

target mean characteristic length of 60.85 m and a mean characteristic width of 27.36 

m. Meanwhile the standard deviations obtained from the detailed two-dimensional 

model for the length and width direction are 2.79 m and 1.33 m respectively. Both 

standard deviations are in good agreement with the target standard deviations of 2.8 m 

(length) and 1.34 m (width). The final two-dimensional CSD obtained in this work is 

also matched with the two-dimensional CSD obtained from published literature data 

(Qamar et al., 2007; Gunawan et al., 2004). However, only two-dimensional CSD has 

been compared with the published literature data due to unavailability of the published 

one-dimensional CSD data for KDP crystallization. Furthermore, based on the simulation 

results for the one- and the two-dimensional cases, it was observed that the total number 

of crystal particles initially at 736 remains unchanged at the end of the operation, 

indicating no generation of new seeds due to secondary nucleation. Thus it is concluded 

that by maintaining the operation at the generated set point profiles, the feasible target 

one- and two-dimensional CSD as well as crystal shapes are achieved, and the 

undesirable secondary nucleation is avoided. Although the total crystallization time for 

this case study is rather short, the objective has been to verify the results with published 

data (Qamar et al., 2007; Gunawan et al., 2004). In principle, operational time can be 

extended but data would be necessary for verification. 
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Figure 4.25 Total crystal mass obtained 

 

As highlighted in Figure 4.25, the one-dimensional model yields the highest total 

crystal mass of approximately 16.4 g starting from an initial seed mass of 1.5 g. The two-

dimensional case produced about 12.8 g. The higher total crystal mass obtained in the 

one-dimensional case is due to the fact that the cube-shaped volume in the one-

dimensional case consumes more solute from the solution than the tetragonal-prism 

volume in the two-dimensional case. Therefore the one-dimensional case produces more 

crystal mass compared to the two-dimensional case. 

Finally the final PAT design flowsheet for one- and two-dimensional KDP 

crystallization is obtained as shown in Figure 4.26 where PI control is implemented to 

control the KDP concentration by manipulating the inlet water temperature. The KDP 

concentration and temperature are monitored by ATR-FTIR and thermocouple 

respectively. For monitoring CSD in the one dimensional case, the laser diffraction using 

Malvern mastersizer is employed and in situ video microscopy using particle vision 
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microscope is used to monitor the two-dimensional CSD respectively. The evolution of 

the one-dimensional CSD from initial seed to the final one-dimensional CSD is 

represented in 3-D visual pictures as shown in Figure 4.27. Figure 4.27(a) shows how the 

initial narrow distribution of the seed has grown into a wider size distribution at the final 

time, which is due to the size dependent growth effects included in the model, as shown 

also in Figure 4.27(b). Similarly, the initial seed distribution also becomes wider by the 

end of the operation for the two-dimensional case as indicated in Figure 4.28. 

 

Figure 4.26 KDP crystallization process flowsheet with designed PAT system 
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Figure 4.27 Evolution of one-dimensional CSD (a) initial seed view (b) final product 

view 
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Figure 4.28 Evolution of two-dimensional CSD from initial seed (left) to the final crystal 

product (right) 

 

(a) (b)
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4.9 Conclusion

A generic and systematic model-based framework for design of process 

monitoring and control systems to achieve the desired target CSD and shape for a wide 

range of crystallization processes has been developed and evaluated on a KDP 

crystallization process. The KDP process was selected because it is the most common 

two-dimensional case study and the data for nucleation and growth kinetics are available. 

The generic nature of the framework allows the further development and adaptation of 

crystallization models to reflect changing product demands (such as one- or two-

dimensional CSD). The application of the framework has been highlighted through the 

KDP crystallization case study where the feature for handling of model complexity, 

including generation of one-dimensional and two-dimensional models, has been 

illustrated through the generated models for KDP crystallization. The set point profiles 

needed for product monitoring and control system design have been generated using the 

analytical CSD estimator method and the response surface method. The optimal set point 

profiles obtained from these approaches are comparable, but it is worth pointing out that 

the analytical CSD estimator provides a more efficient and computationally effective way 

to generate set point profiles. The results of the simulated CSD achieved through the 

designed monitoring system show good agreement with the published crystallization data 

(Qamar et al., 2007; Gunawan et al., 2004), indicating thereby, the power of systematic 

computer-aided framework for design of PAT systems involving crystallization.   
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5. Uncertainty and sensitivity analysis of 
process monitoring and control (PAT) 
system

 

In this chapter, the generic framework for model-based PAT system design has 

been expanded with advanced uncertainty and sensitivity analysis tools and methods to 

comprehensively test and develop reliable PAT system designs. In particular for PAT 

system design, the objective of this work is to study and analyze the impact of 

uncertainties in the nucleation and crystal growth parameters on the product-process 

performances (e.g. CSD) of a crystallization process. The uncertainty and sensitivity 

analysis is performed under open-loop and closed-loop scenarios with two respective 

aims: in open-loop, the aim is to understand and identify key parameters that drive 

crystallization performance metrics (product CSD, etc.) and to form a basis for 

comparison with the output uncertainties in the closed-loop scenario. In the closed-loop 

scenario, the aim is to comprehensively test the PAT system design performance in 

delivering the desired product characteristics under the considered domain of 

uncertainties. The application of uncertainty and sensitivity analysis is highlighted 

through the potassium dichromate and potassium dihydrogen phosphate (KDP) 

crystallization processes where it will be shown that the effect of the input uncertainties 

on the outputs (product quality) can be minimized and target specifications can indeed be 

achieved ensuring that the PAT system design is reliable under the considered domain of 

uncertainties. 
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5.1 Expanding the generic framework for model-
based PAT system design with uncertainty and 
sensitivity analysis 

 

 

Figure 5.1 Incorporation of a methodology for combined uncertainty and sensitivity 

analysis in the framework for model-based design of product-process problems 

 

A model-based systematic design framework for monitoring and control (PAT) 

systems of crystallization processes has been developed earlier in Chapter 4 is shown in 

Figure 5.1 (left). Through this framework, it is possible to generate a large number of 

problem-system specific models which can subsequently be used to design a PAT system. 

In this study, the methodology for performing the uncertainty and sensitivity analysis 

adopted from Sin et al. (2009b) as shown in Figure 5.1 (right) has been added as a new 
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feature into the generic framework (Figure 5.1), and will be explained in more detail 

below.  

 

5.1.1 Framing of uncertainty and sensitivity analysis (Step 5.1) 

This step deals with the identification, understanding, calculation and analysis of 

uncertainties in the model predictions, and includes the following sub-steps: (i) 

identification and characterization of various sources of uncertainties; (ii) Monte-Carlo 

procedure; and (iii) sensitivity analysis. 

 

5.1.1.1 Identify sources of uncertainties (Step 5.1.1) 

Generally, the uncertainties can be classified as: (a) stochastic uncertainty that 

arises from stochastic components of a simulation model required to describe a stochastic 

system; (b) input uncertainty that represents incomplete knowledge about the fixed values 

used as input to the model; and (c) structural uncertainty that relates to the mathematical 

formulation or the model structure (Sin et al., 2009b). In this study, only input uncertainty 

is considered, where the effects on the model output prediction of the uncertainty around 

the parameter values will be investigated.  

In this study, we consider uncertainties in the input parameters to the model. To 

characterise the degree of uncertainty (i.e. range of uncertainties), the expert review 

process is used (Sin et al., 2009b; Helton and Davis, 2003). In the expert review, the 

process expertise and knowledge in the crystallization is considered as well as the 

relevant literature resources to identify uncertain parameters and assign an appropriate 
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range of uncertainty to each parameter, e.g. what is the upper and lower bound of kinetic 

parameters. In order to structure the expert review process, all the selected model 

parameters are assumed to follow a uniform probability distribution and three classes of 

uncertainty are defined (5, 25 and 50% of variability around the mean values; Sin et al., 

2009b). The minimum and maximum values of the uniform distribution can then be 

calculated as (100% - %variation) x mean and (100% + %variation) x mean respectively. 

Alternatively and if available, the lower and upper bound values of the kinetic parameters 

can be obtained from parameter estimation techniques, e.g. by using the 95% confidence 

interval of the model parameters. 

 

5.1.1.2 Monte Carlo procedure (Step 5.1.2) 

In order to propagate different sources of uncertainties to the model predictions, 

the Monte Carlo procedure is applied and it involves three sub-steps: (1) sampling of 

uncertainties; (2) Monte Carlo simulations; and (3) evaluation of output uncertainties. 

 

5.1.1.2.1Sampling of uncertainties (Step 5.1.2.1) 

The input uncertainties specified in the earlier step are sampled using the Latin-

Hypercube sampling method, a commonly used method (Helton and Davis, 2003). Here 

the user has to specify the number of samples. Based on the specified number of samples, 

a random combination of the uncertain model parameters is then generated and will be 

used as input to the Monte Carlo simulations. In case there is a known correlation 

between the parameters (input uncertainties), for example on the basis of the results of a 
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parameter estimation on available process data, the Iman and Conover method of 

correlation control can be used (Iman and Conover, 1982). 

5.1.1.2.2Monte Carlo simulations (Step 5.1.2.2) 

The next step in the Monte Carlo procedure is to perform simulations. Here the 

mathematical model of the crystallization process is simulated for each set of parameter 

samples obtained in the previous steps. In this work, the model implementation and the 

Monte Carlo simulations are performed in the ICAS-MoT modelling tool (Heitzig et al, 

2011). 

5.1.1.2.3Evaluation of output uncertainties (Step 5.1.2.3) 

The results from the Monte Carlo simulations are analyzed in this step by 

calculating typical statistics such as mean, standard deviation and relevant percentiles of 

model output distributions. The uncertainty is indicated by the variance of the 

distribution, which indicates the spread of the data. The larger the spread of the simulated 

data indicates the larger the uncertainty in that model output. Similarly, the percentiles 

can also indicate the extent of uncertainties in the outputs, e.g. the further the 10th and 

90th percentiles away from the mean, the larger the uncertainty of the model output. 

 

5.1.1.3 Sensitivity analysis (Step 5.1.3) 

The sensitivity analysis is performed next to identify the individual contributions 

of uncertain parameters to the total variance calculated in the step 5.1.2 which provides a 
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parameter significance ranking for each output. As mentioned above, two methods 

namely (1) Standardized regression coefficients (SRC) method (Cariboni et al., 2007); 

and (2) Morris screening method (Morris, 1991) are used. 

5.1.1.3.1Standardized regression coefficients (SRC) (Step 5.1.3.1) 

In this method, a linear regression is performed on the Monte Carlo results 

describing each model output of interest as a multivariate linear function of the model 

inputs considered in the uncertainty analysis. Here the user selects the model output of 

interest to the analysis. As for a crystallization process, usually the most important model 

output is the CSD considering that this is one of the most important product 

specifications that needs to be achieved. Therefore the mean of the CSD at the final time 

can be used as a scalar output for the SRC method. The scalar model output matrix can be 

denoted as sy  and has the dimensions of KxN where K is the number of output variables 

and N is the number of samples. The regression model is then fitted to the (scalar) output 

of the Monte Carlo simulations relating model output, sy  to the model inputs considered 

in the uncertainty analysis, ij as shown in Equation (5.1): 

 

0
1

   for 1, 2, ,  and for 1, 2, ,
M

ik k jk ij ik
j

sy b b i N k K                                  (5.1) 

 

Where, iksy  is the scalar value for the kth output, jkb  is the coefficient of the jth input 

parameter, j , for the kth output, ij is the value of the jth parameter and ik  is the error of 
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the regression model. Equation (5.1) is then written in dimensionless form by scaling the 

outputs and the parameters using their corresponding mean and standard deviations 

(Campolongo and Saltelli, 1997) as shown in Equation (5.2): 

 

1
.k

k

M
ik sy ij j

jk ik
jsy j

sy
                                                                                   (5.2) 

 

The standardized regression coefficients, jk , can have values in the range [-1 1] with the 

following meaning: (i) a high absolute value indicates a large effect of the corresponding 

parameter on the output, (ii) a negative sign indicates a negative effect and vice versa a 

positive sign indicates a positive effect on the output, and (iii) coefficients close to zero 

mean that the output is not sensitive to that parameter (Campolongo and Saltelli, 1997; 

Helton and Davis, 2003). Furthermore, for these coefficients to be considered a valid 

measure of sensitivity, the coefficient of determination should be sufficiently high, e.g., 

2 0.7R , which implies that the model is sufficiently linear (Campolongo and Saltelli, 

1997; Saltelli et al., 2006). 

 

5.1.1.3.2Morris screening (Step 5.1.3.2) 

The Morris screening method relies on estimating the distribution of the 

elementary effects (EE) of each input parameter on the kth model output called EEjk. The 

EEjk attributable to each input parameter was obtained from the following differentiation 

of the model output, ksy , with respect to the input, j , as shown in Equation (5.3): 
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1 2 1 2, , , , , , , ,
        

k
jk

j

j M j Mk k

syEE

sy sy
                                              (5.3) 

  

Where  is a predetermined perturbation factor of j , 1 2, , , ,j Mksy is the 

scalar model output evaluated at input parameters 1 2, , , ,j M , whereas 

1 2, , , ,j Mksy is the scalar model output corresponding to a change in j . 

The distribution function is denoted as Fjk, which represents the distribution of the effects 

of the jth input parameter on the kth output. The Fjk was estimated by performing 

calculations of the elementary effects, EEjk, at randomly sampled points in the input space 

and this procedure was repeated a number of times, r. In the Morris sampling design, the 

calculation of one elementary effect for each input requires (M + 1) model simulations 

(Morris, 1991). Because a number of repetitions, r, is needed (typically 10-50), the total 

number of model simulations needed for the Morris screening becomes r*(M + 1). Based 

on the Morris method, there are three degrees of freedom that need to be specified which 

are the values of , p and r, respectively. In this study, the values for , p and r were 

specified as 2/3, 4 and 10, respectively. Finally, the Morris results can be evaluated by 

comparing the mean, j  and the standard deviations, j  of the distribution functions, Fjk, 

of each input. The measure of sensitivity for the mean of the distribution functions 

follows the same concept as the standardized regression coefficients in the SRC method. 

In this study, the Morris screening is also implemented in the ICAS-MoT modelling tool 

(Heitzig et al., 2011).   
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5.1.2 Decision making (Step 5.2) 

In this step, the robustness of the model-based solution is evaluated by judging 

on a number of criteria including the probability of failure to meet target product 

specifications. If the target product specifications are not met due to the input 

uncertainties, then a solution is to be proposed in order to reduce or eliminate the 

probability of failure. For example, if the analysis indicates that the proposed PAT system 

design failed to provide the target product specifications, then appropriate changes to the 

PAT system need to be made and a new analysis should be performed. Suggestions to 

modify PAT systems include re-tuning of the controller or the proposal of a new 

controller structure such as model predictive control (MPC). The modified PAT system 

with the new controller structure proposal or the new tuning parameters is then tested 

again in the uncertainty and sensitivity analysis methodology until a reliable PAT system 

is obtained. 

 

5.2 Application of the systematic framework for 
managing uncertainties: potassium dichromate 
crystallization case study 

 

It has been assumed during the PAT system design for potassium dichromate 

crystallization in Chapter 4 that the uncertainty around parameters could be neglected. In 

this section, the PAT system for potassium dichromate crystallization is validated using 

uncertainty and sensitivity analysis.  
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5.2.1 Problem definition (Step 1), crystallization model development 
(Step 2) and design of set point profiles (Step 3) 

 

The main objective of this study is to test and validate a PAT system design 

using uncertainty and sensitivity analysis in term of its reliability and robustness in the 

presence of input uncertainties. Here the analysis is carried out on two different 

scenarios: (1) open-loop, and (2) closed-loop. Specifically for step 2 and 3, the problem-

system specific one-dimensional model for the potassium dichromate crystallization 

process (see Table 4.2) and the optimal set point profiles (supersaturation set point of 

41.25 10  g solute/g water and the total crystallization time of 180 minutes) generated in 

Chapter 4 are employed in this work. 

 

5.2.2 Design of process monitoring and control (PAT) system (Step 4) 

The PAT system for potassium dichromate PAT as shown in Figure 4.12 where 

a PI control system is used to control the solute concentration. The inlet water 

temperature is manipulated by blending hot and cold water. The concentration, 

temperature and CSD are monitored by ATR-FTIR, thermocouple and FBRM 

respectively.  

 

5.2.3 Validation of process monitoring and control (PAT) system using 
uncertainty and sensitivity analysis (Step 5) 

 

In this section, the uncertainty and sensitivity analysis are carried out under 

open-loop and closed-loop scenarios. 
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a) Open-loop 

The objective here is to quantify the effect of input uncertainties in nucleation and 

crystal growth parameters on the prediction of the crystallization process. Furthermore, 

the main reason performing the uncertainty and sensitivity analysis is to check whether 

the model prediction performance is affected by the input uncertainties. If the input 

uncertainty is indeed affecting the model prediction then the influential parameter is 

identified and used as an input in the closed-loop condition. Here the model equations as 

shown in Table 4.2 have been simulated in the ICAS-MoT modelling tool under open-

loop conditions. The open-loop simulation results are shown in Figure 5.2 where the 

performance in terms of potassium dichromate concentration, temperature, inlet water 

temperature and final CSD is evaluated based on the assumption of no uncertainty on the 

process parameters. 

Figure 5.2 shows the open-loop reference simulation results for the seeded 

potassium dichromate crystallization process. The temperature is decreased from 30 C to 

20 C, and as a result the profiles of the potassium dichromate concentration deviated far 

from the saturation concentration line. Under these conditions, the high supersaturation is 

obtained in the beginning of the operation. Therefore secondary nucleation is expected. 

The final CSD as shown in Figure 5.2 indicates indeed that a secondary peak is obtained 

in the CSD when the operation is based on the open-loop conditions. 
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Figure 5.2 Reference simulation results using nominal values for potassium dichromate 

concentration, temperature, inlet water temperature and final CSD under open-loop 

operation 

 

5.2.3.1 Framing for uncertainty and sensitivity analysis (Step 5.1) 

This step involves the development of framing scenario for uncertainty and 

sensitivity analysis for the potassium dichromate crystallization process.  

 

Step 5.1.1: Identify sources of uncertainty 

For the one-dimensional potassium dichromate crystallization process, the input 

uncertainty has been chosen based on the 6 parameters ( bk , b  , gxk , xg , x  and xp ) from 

the nucleation model and the crystal growth model (see Equation (7) and (8) in Table 

4.2). Table 5.1 shows the input uncertainty of nucleation and crystal growth parameters. 
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The values for lower and upper bound of each parameter are calculated based on the 95% 

confidence interval taken from Aamir et al. (2010). 

 

Table 5.1 Input uncertainties on nucleation and crystal growth rate parameters for 

potassium dichromate crystallization 

ID Parameters Units Values Confidence 
interval 
(95%) 

Lower 
bound 
values 

Upper 
bound 
values 

1 Growth rate 
constant, gxk   

m/s 9.56 ±0.0832 9.4768 9.6432 

2 Growth order 
constant, xg  

Dimensionless 0.8 ±0.2411 0.5589 1.0411 

3 Growth constant, 
x  

1/ m 0.0075 ±0.0021 0.0054 0.0096 

4 Growth constant, 
xp  

Dimensionless 1.24 ±0.0633 1.1767 1.3033 

5 Nucleation rate 
constant, bk  

No. of 
particles/ m3.s

0.038 ±0.0044 0.0336 0.0424 

6 Nucleation order 
constant, b  

Dimensionless 3.4174 ±0.037 3.3804 3.4544 

 

Step 5.1.2: Monte Carlo procedure 

There are 3 sub-steps in the Monte Carlo procedure. The first sub-steps is sampling of 

uncertainties (step 5.1.2.1). The Latin hypercube sampling (LHS) method is employed as 

a sampling method to sample the parameters. Next task involves the specification of 

number of samples. In this work, repetitive test using 25, 50, 100 and 150 samples have 

been implemented in order to obtain a suitable number of samples which can be obtained 

based on the lowest Monte Carlo errors. Based on the repetitive test, it was shown the 

100 and 150 samples have the lowest Monte Carlo errors. Therefore 100 samples are 

selected as a number of sampling to be used in this work as well as no correlation 
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between parameters is assumed. Step 5.1.2.2 is the Monte Carlo simulations. Here the 

open-loop potassium dichromate model is simulated 100 times for each different set of 

model parameters. The Monte Carlo simulations have been performed in the ICAS-MoT 

modelling tool.  
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Figure 5.3 Open-loop simulation results for potassium dichromate concentration, 

temperature, initial CSD and final CSD obtained from the Monte Carlo simulation (in 

total there are 100 lines, corresponding to 100 samples) 

 

Step 5.1.2.3 concerns the evaluation of output uncertainties based on the Monte Carlo 

simulations. The Monte Carlo simulation results obtained for potassium dichromate 

concentration, temperature and final CSD are shown in Figure 5.3. Each output contains 

100 lines which represents the dynamic model output obtained based on the 100 sets of 

parameter values resulting from the sampling. The data are interpreted by evaluating the 

spread of the simulation results at each time point where a large spread indicate that a 

high uncertainty is present. In Figure 5.3, it is shown that the highest uncertainty is 

achieved for the potassium dichromate concentration and final CSD. Meanwhile the 

temperature shows a low spread, indicating that the uncertain parameters have a low or 

non-existent effect on the temperature profiles. 
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Figure 5.4 Representation of uncertainty using mean, 10th and 90th percentile values of 

the Monte Carlo simulations under open-loop conditions 

 

Figure 5.4 shows the representation of uncertainty in terms of mean, 10th and 90th 

percentile values of the Monte Carlo simulations under open-loop conditions. The 

potassium dichromate concentration and final CSD indicate that the 10th and 90th 

percentile for both variables are far away from the mean, indicating that the uncertainties 

for both variables are large. Meanwhile the effect of uncertainty is almost non-existent 

for the temperature profiles since the 10th and 90th percentile for the temperature profile 

are very close to the mean. Based on the uncertainty analysis, it can be concluded that the 

parameters in the nucleation and crystal growth rate model have a strong impact on some 

of the model outputs, particularly the potassium dichromate concentration and the final 

CSD.   

 

Step 5.1.3: Sensitivity analysis 

Two sensitivity analysis techniques are used here: the standardized regression 

coefficients (SRC) method and the Morris sampling method. 
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Step 5.1.3.1: Standardized regression coefficients (SRC) method 

The SRC method is performed on 2 different locations of the one-dimensional CSD data 

as shown in Figure 5.5. The data taken at point p1) are the CSD data generated by 

secondary nucleation and the data taken at point p2) correspond to that part of the CSD 

that corresponds to the seed crystals. The linear regression model is then constructed 

using Equation (5.1) for the data of points p1) and p2), where the regression coefficients, 

jk , are calculated using the linear least-squares method. The standardized regression 

coefficients, jk , are then obtained using Equation (5.2). Finally, the jk  obtained for 

each input parameter are arranged in their order of importance for the data corresponding 

to points p1) and p2). Table 5.2 shows the results of the parameter significance ranking 

for the open-loop potassium dichromate crystallization. 

 

Figure 5.5 Points where the one-dimensional CSD for potassium dichromate 

crystallization is sampled for sensitivity analysis  
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Table 5.2 Standardized regression coefficients of linear models and parameters 

significance ranking for the one-dimensional case 

Location CSD data taken at p1) CSD data taken at p2) 
R2 = 0.8626 R2 = 0.9269 

Ranking Parameter jk  Parameter jk  
1 b  -0.9142 xg  0.8908 
2 xg  0.1554 x  -0.3419 
3 bk  0.0592 xp  -0.1268 
4 x  -0.0467 b  -0.0965 
5 xp  -0.0382 gxk  0.0418 

6 gxk  -0.0115 bk  0.014 

 

The linearized model obtained for data corresponding to points p1) and p2) is 

indeed reliable. This is because the coefficient of model determination, R2, was above the 

recommended value 0.7. As shown in Table 5.2, the parameters b  (SRC of -0.91) and xg  

(SRC of 0.89) were found as the most significant parameters based on the CSD data 

taken at points p1) and p2), respectively. The parameter b  is the nucleation order 

constant in the nucleation model (see Equation (7) in Table 4.2). The decreasing value of 

parameter b  results into more generation of new crystal indicating thereby a negative 

impact on the CSD. This is the reason the magnitude of SRC for parameter b is negative. 

Therefore, it can be concluded that the variation in this parameter affects the production 

of the new crystal significantly due to the nucleation effects. This explains the large 

variation of the CSD data taken at point p1) which correspond to that part of the CSD 

caused by secondary nucleation.  

Meanwhile, the nucleation parameters are not affecting the CSD data taken at 

p2). This is because the CSD data at p2) are directly grown from the seeded crystals. 

Since no agglomeration and breakage were considered, the seed crystals have grown to 
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larger sizes due to the effect of crystal growth only. This is also the reason why the 

parameters for the crystal growth rate are dominant in the parameter significance ranking 

for CSD data taken at point p2). Here the growth order constant ( xg ) is the most 

influential because the distribution of the CSD is usually depending on this parameter. 

Therefore, at point p2) the higher value of the growth order constant will result into a 

CSD that is distributed at a higher characteristic length.     

 

Step 5.1.3.2: Morris screening method 

Alternatively, the Morris screening method can be employed to obtain the parameter 

significance ranking, and can thus be compared with the the SRC method to see the 

reliability of both results. The simulations have been implemented in the ICAS-MoT 

modelling tool and the Morris results are evaluated based on the parameter significance 

ranking. The parameters have been ranked according to the mean of the distribution 

function, j . Firstly the parameter significance ranking has been compared based on the 

one-dimensional CSD data taken at point p1), afterwards followed by a similar analysis 

for data taken at point p2). Tables 5.3-5.4 show the comparison between the parameter 

significance rankings obtained using the Morris screening and the SRC method. 

Based on Table 5.3, the results of the Morris screening of input parameters were 

found to be in the good agreement with the ranking obtained by the SRC for the first 

three parameters. The CSD data taken at point p1) correspond to the secondary nucleation 

peak. Therefore the most influential parameter is b , which is one of the parameters in the 

nucleation rate equations (see Equation (7) in Table 4.2). However the parameter xg  is 

also deemed significant since it influences the growth of particles generated by this 
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secondary nucleation. Although the last three parameters are not in the same order for 

both methods, the value of the factors is too low and is interpreted as insignificant in this 

study. 

 

Table 5.3 Method comparison for screening influential factors based on the CSD data 

taken at point p1) for potassium dichromate crystallization 

Morris sampling method SRC method 

Ranking Parameters j j  Parameters jk

1 b -0.8832 0.8423 b  -0.9142 

2 xg 0.2122 0.3964 xg  0.1554 

3 bk 0.0611 0.1306 bk  0.0592 

4 xp -0.0386 0.0563 x  -0.0467 

5 x -0.0294 0.0392 xp  -0.0382 

6 gxk -0.0083 0.0002 gxk  -0.0115 

 

Similarly the first three significant parameters obtained for both methods were 

found to be in good agreement as shown in Table 5.4 (similar ranking and similar signs 

for each parameter). The standard deviations obtained for Morris sampling for point p1) 

shows the non-zero value indicating the all the parameters are involved in non-linear 

interactions on the outputs. Both methods indicate that the parameters xg , x  and xp  are 

the most significant parameters. This result shows that the kinetic growth parameters 

have a strong influence on the CSD data. Meanwhile the kinetic nucleation parameters 

are not significant considering that the CSD results obtained at point p2) are dominated 

by growth effects only. Similarly, the non-zero standard deviations obtained for point p2) 

indicates the non-linear interaction on the outputs caused by all the parameters. 
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Table 5.4 Method comparison for screening influential factors based on the CSD data 

taken at point p2) for potassium dichromate crystallization 

Morris sampling method SRC method 

Ranking Parameters j j  Parameters jk

1 xg  0.7322 0.7821 xg  0.8908 

2 x  -0.3218 0.4975 x  -0.3419 

3 xp  -0.1643 0.3038 
xp  -0.1268 

4 gxk 0.0421 0.1425 b  -0.0965 

5 b -0.0205 0.0184 gxk  0.0418 

6 bk 0.0108 0.0068 bk  0.014 

 

b) Closed-loop 

The open-loop analysis based on the uncertainty and sensitivity analysis prove 

that the input uncertainties in the nucleation and crystal growth parameters clearly 

affecting the model prediction. In this step, the objective is to perform the PAT system 

using uncertainty and sensitivity analysis. Here a robustness of the designed PAT system 

for potassium dichromate crystallization is tested where the controller performance is 

evaluated in terms of its capability to deal with the presence of uncertainties and obtain 

the target specifications of the crystal product. Firstly, the closed-loop simulation results 

are analyzed. Here the closed-loop simulation results are shown in Figure 5.6 where the 

potassium dichromate concentration initially started at 0.1928 g potassium dichromate/g 

water and the PI controller successfully maintained the concentration at the set point once 

the concentration set point was reached. In Figure 5.6 (left, top), approximately 0.1377 g 

potassium dichromate/g water remains by the end of the operation. Figure 5.6 (right, top) 
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shows the temperature profiles obtained from closed-loop simulation initially at 30°C and 

then cooled down to 20°C in 180 minutes. Figure 5.6 (right, bottom) shows the final CSD 

(mean of 488.1 m and a standard deviation of 51.83 m) that has been achieved at the 

end of the batch crystallization. The final CSD obtained is in good agreement with the 

mean (490 m) and standard deviation (52 m) for the target CSD. 
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Figure 5.6 Reference simulation results using nominal values for potassium dichromate 

concentration, temperature, inlet water temperature (manipulated variable) and final CSD 

under closed-loop operation 

 

Based on the closed-loop simulation results, the uncertainty and sensitivity analysis of the 

PAT system (step 5) is now repeated again where the same framing scenario and input 

uncertainties (parameters) used for the open-loop operation are employed. The results 

from the Monte Carlo simulations for 100 parameter samples are presented in Figure 5.7. 
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Figure 5.7 Closed-loop simulation results for potassium dichromate concentration, 

temperature, inlet water temperature (manipulated variable) and final CSD obtained from 

the Monte Carlo simulation (in total there are 100 simulations) 

 

Based on Figure 5.7, the potassium dichromate concentration (Figure 5.7, left, 

top) shows only a small variation indicating a low extent of uncertainty. It can be clearly 

seen that the impact of the uncertain parameters has been minimized for the potassium 

dichromate concentration when operated under closed-loop conditions. This shows that 

the PI controller is able to counteract the effect of input uncertainty. The inlet water 

temperature is used as a manipulated variable in this study. Figure 5.7 (left, bottom) 

shows the inlet water temperature profile where the profile changes rather vigorously by 

the end of the operation in order to maintain the concentration at the set point and thus 

counteract the effects of the input uncertainties. Meanwhile the uncertainty is almost non-
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existent in the temperature profiles. Unlike the CSD in the open-loop, the final CSD 

obtained as shown in Figure 5.7 (right, bottom) indicates that a small variation of the final 

CSD is achieved. Although it can be observed that there is still a presence of uncertainty 

in the final CSD, the final CSD obtained from the Monte Carlo simulations is in good 

agreement with the specified target CSD. 
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Figure 5.8 Representation of uncertainty using mean, 10th and 90th percentile values of 

the Monte Carlo simulations under closed-loop potassium dichromate crystallization 

   

Finally the data is analyzed based on the representation of uncertainty using 

mean, 10th and 90th percentile values of the Monte Carlo simulations as shown in Figure 

5.8. The 10th and 90th percentiles for the potassium dichromate concentration (Figure 5.8, 

left, top) temperature (Figure 5.8, right, top) and inlet water temperature (Figure 5.8, left, 
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bottom) are very close to the mean respectively indicating that the uncertainty of these 

model outputs is very low or non-existent. Only the final CSD shows that the 10th and 

90th percentile is a little further away from the mean especially at the top of the CSD 

peak. Nevertheless it still can be concluded that the final CSD obtained under the 

presence of uncertainties is in good agreement with the desired target CSD. Through this 

case study, it also shows that the PAT system for potassium dichormate is robust and 

reliable to counteract the effect of input uncertainty and thus, obtains the target product 

specification efficiently.  

 

5.2.3.2 Decision making (Step 5.2) 

In this work, the PAT system for potassium dichromate crystallization has been 

tested using uncertainty and sensitivity analysis. It was carried out on open-loop and 

closed-loop condition. Based on the open-loop, it has been shown the presence of 

uncertainties on the model prediction. Therefore, the uncertainty and sensitivity analysis 

are repeated again under closed-loop condition. Based on the analysis, it is confirmed that 

the PI controller used in this study is capable to deal with uncertainties indicating a robust 

PAT system design has been succesfully developed.    
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5.3 Application of the systematic framework for 
managing uncertainties: potassium dihydrogen 
phosphate (KDP) crystallization case study 

 

In the previous chapter, the one- and two-dimensional models are generated to 

represent the crystallization process, and by implementing a controller through PAT 

system design to maintain the concentration at the required set points, the target one- and 

two-dimensional CSDs are achieved. However, thus far it has been assumed during the 

PAT system design that the uncertainty around parameter values can be neglected. In this 

section, the feature of the systematic design framework to perform uncertainty and 

sensitivity analysis on the designed PAT system is highlighted through the KDP 

crystallization process case study: it will be investigated how input (parameter) 

uncertainty affects the target one- and two-dimensional CSD (see Figure 4.14) and how 

this uncertainty can be minimized to achieve the desired target CSD.  

 

5.3.1 Problem definition (Step 1), crystallization model development 
(Step 2) and design of set point profiles (Step 3) 

 

The main objective of this study is to develop a reliable and robust PAT system 

design for the KDP crystallization process by performing uncertainty and sensitivity 

analysis on the designed PAT system. In this study, the uncertainty and sensitivity 

analysis are performed under two different scenarios: (1) open-loop, and (2) closed-loop. 

In step 2, the model equations for the one-dimensional (see Table 4.5) and the two-

dimensional (see Table 4.6) KDP crystallization process are used in this section. The 

optimal set point profile (step 3) that is to be maintained here, consisting of a 
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supersaturation set point of 0.03 g/g as well as the total crystallization time of 80 seconds 

is obtained for both cases. 

 

5.3.2 Design of process monitoring and control (PAT) system (Step 4) 

The PAT system for the KDP crystallization process designed in Chapter 4 is 

used here. Based on the PAT system design, the ATR-FTIR, thermocouple and FBRM 

are used to monitor the solute concentration, the temperature and the CSD for both the 

one- and the two-dimensional cases. The PI control is implemented to control the KDP 

concentration by manipulating the inlet water temperature. 

 

5.3.3 Validation of process monitoring and control (PAT) system using 
uncertainty and sensitivity analysis (Step 5) 
 

In this study, the uncertainty and sensitivity analysis are performed under two 

different scenarios: a) open-loop; b) closed-loop. 

 

a) Open-loop 

The objective here is to understand the effect of uncertain system parameters 

such as nucleation and crystal growth parameters on the prediction of the crystallization 

performance and to identify which parameters are the key driver of variance in the 

product CSD. Furthermore, the open-loop results will form the basis for comparison with 

the results obtained from closed-loop simulation using the designed PAT system. The 

open-loop analysis is conducted where the model equations for the one-dimensional (see 
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Table 4.5) and two-dimensional (see Table 4.6) KDP crystallization process are simulated 

in the ICAS-MoT modelling tool. The resulting performance is evaluated here in terms of 

KDP concentration, temperature profile and final CSD for both cases. The evaluation is 

first done assuming no uncertainty on the inputs, i.e. only a single output profile is 

obtained for each output variable. The open-loop reference simulation results for the one- 

and two-dimensional KDP crystallization process are shown in Figure 5.9. 

Figure 5.9 shows the open-loop reference simulation results for the seeded one- 

and two-dimensional KDP crystallization process. The temperature for both process are 

cooled from 32ºC to 28 ºC resulting into KDP concentration profiles that are in both 

cases deviating far from the saturation concentration line. Under such conditions, a too 

high supersaturation is obtained in the beginning of the operation, and therefore 

secondary nucleation occurs. The final one- and two-dimensional CSD as shown in 

Figure 5.9 indeed indicate that the secondary peak consisting of small crystal is obtained 

as a result of a too high supersaturation.  
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Figure 5.9 Reference simulation results using nominal values for KDP concentration, 

temperature and final CSD under open-loop operation for the one- and two-dimensional 

cases 

5.3.3.1 Framing for uncertainty and sensitivity analysis (Step 5.1) 
The framing scenario for uncertainty and sensitivity analysis for KDP 

crystallization process is as follows:  

 

Step 5.1.1: Identify sources of uncertainty 

In this work, 5 parameters ( bk , b  , gxk , xg and x ) from the nucleation and crystal 

growth model equations (see Equation (7) and (8)  in Table 4.5) were investigated for the 
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one-dimensional case, and 8 parameters  ( bk , b  , gxk , xg , x  , gyk , yg  and y  ) from 

the nucleation and crystal growth models (see Equation (7-9) in Table 4.6) were 

investigated for the two-dimensional case. All the parameters are assumed to have a 

uniform probability distribution as shown in Table 5.5 where the reported lower and 

upper bound values of each parameter are obtained based on the 95% confidence 

intervals taken from Gunawan et al. (2002). 

 

Table 5.5 Input uncertainties on nucleation and crystal growth rate parameters for KDP 

crystallization 

ID Parameters Units Values Confidence 
interval 
(95%) 

Lower 
bound 
values 

Upper 
bound 
values 

1 Nucleation rate 
constant, bk  

No. of 
particles/ m3.s

7.49E-
08 

±3.5E-09 7.14E-08 7.84E-08 

2 Nucleation order 
constant, b  

Dimensionless 2.04 ±0.16 1.88 2.2 

3 Growth rate 
constant, gxk   

m/s 100.75 ±12.3833 88.3667 113.1333 

4 Growth order 
constant, xg  

Dimensionless 1.74 ±0.07 1.67 1.81 

5 Growth constant, 
x  

1/ m 0.6 ±0.1 0.5 0.7 

6 Growth rate 
constant, gyk   

m/s 12.21 ±3.3167 8.8933 15.5267 

7 Growth order 
constant, yg  

Dimensionless 1.48 ±0.06 1.42 1.54 

8 Growth constant, 
y  

1/ m 0.6 ±0.1 0.5 0.7 

 

Step 5.1.2: Monte Carlo procedure 

The first step in the Monte Carlo procedure is the sampling of uncertainties (step 5.1.2.1). 

In this step, a parameter is sampled from a distribution using the Latin hypercube 
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sampling (LHS) method. In this work, different numbers of samples have been tested 

repetitively for 25, 50, 100 and 150 samples, and were compared based on the Monte 

Carlo simulation errors to determine whether the number of samples used is suitable or 

not. Based on the analysis, the error for 25 and 50 samples are larger than the error for 

100 samples. However, the error for 100 and 150 samples is almost identical. Therefore, 

the number of samples used in this study is 100 samples for both the one- and the two-

dimensional cases where no correlation between the parameters is assumed. The next step 

in the Monte Carlo procedure is to perform simulations (step 5.1.2.2). In this case, the 

open-loop one- and two-dimensional KDP models are simulated 100 times, i.e. once for 

each different set of model parameters. The Monte Carlo simulations for both cases have 

been performed in the ICAS-MoT modelling tool. 

The results from the Monte Carlo simulations are then analyzed in the evaluation 

of output uncertainties step (step 5.1.2.3) as shown in Figure 5.10. Each line in Figure 

5.10, for example for the final CSD, corresponds to a dynamic model output obtained by 

simulating the KDP model with one set of parameter values. The varying spread of the 

band indicates the extent of uncertainty in the simulated outputs. For both cases, the KDP 

concentration indicates a large spread indicating a high extent of uncertainty. Meanwhile 

the uncertainty is at the minimum level in the one- and two-dimensional temperature 

profiles. The wide spread in the final one- and two-dimensional CSD (shown as contour 

plot) profiles demonstrates that there is a relatively high extent of uncertainty about the 

output values. Clearly, the induced variation in the nucleation and crystal growth rate 

parameters affects the final CSD, as shown in Figure 5.10. 
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Figure 5.10 Open-loop simulation results for KDP concentration, temperature, and final 

CSD obtained from the Monte Carlo simulation (in total there are 100 lines) for the one- 

and two-dimensional cases 
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Furthermore, the spread of the output variation is larger in the two-dimensional 

case than the one-dimensional case. This is due to the fact that more parameters are 

considered for the input uncertainty in the two-dimensional case compared to the one-

dimensional case. There are two crystal growth rate models for the two-dimensional case 

where one crystal growth rate model has the faster growth rate for the characteristic 

length direction and the other one has a slower rate for the characteristic width direction 

compared to the single crystal growth model that has been used in the one dimensional 

case. The crystal growth model is used to grow the crystal and is related with the KDP 

concentration equation (see Equation (2) in Table 4.6) as well as the CSD through the 

population balance equation (see Equation (1) in Table 4.6). Therefore the induced 

variation in parameters used in the two-dimensional case contributes more to the 

uncertainty in the KDP concentration and CSD model prediction compared to the one-

dimensional case.  

The data can be assessed further using the mean, 10th and 90th percentiles of the 

Monte Carlo output at each simulation time as indicated in Figure 5.11. Based on Figure 

5.11, the 10th and 90th percentile for the temperature in both the one- and the two-

dimensional case are very close to the mean, indicating that the uncertainty of this model 

output is very low or not existing. However, the 10th and 90th percentiles for the KDP 

concentration and final CSD for both cases are further away from the mean. Therefore 

also it is concluded that the uncertainty of the KDP concentration and the final CSD is 

quite large. 
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Figure 5.11 Representation of uncertainty using mean, 10th and 90th percentile values of 

the Monte Carlo simulations under open-loop condition 
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Step 5.1.3: Sensitivity analysis 

In this step, the sensitivity analysis is conducted first using the SRC method. Then the 

reliability of the parameter significance ranking obtained by SRC method is confirmed 

through the use of the Morris screening method. 

 

Step 5.1.3.1: Standardized regression coefficients (SRC) method 

 

Figure 5.12 Points where the one-dimensional CSD is sampled for sensitivity analysis 
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Equation (5.2), and the resulting summary of the parameter significance ranking for the 

one-dimensional case is given in Table 5.6. 

 

Table 5.6 Standardized regression coefficients of linear models and parameter 

significance ranking for the one-dimensional case 

Location CSD data taken at p1) CSD data taken at p2) 
R2 = 0.9506 R2 = 0.8456 

Ranking Parameter jk  Parameter jk  
1 b  -0.8241 xg  0.6890 
2 xg  0.4502 x  -0.5804 
3 x  -0.2355 gxk  0.3405 

4 gxk  -0.1734 b  -0.1603 

5 bk  0.063 bk  -0.03 
 

The degree of linearization indicated by the coefficient of model determination, 

R2, was found to be high for all CSD data taken, i.e. the R2 values were above the 

recommended value of 0.7 (Campolongo and Saltelli, 1997; Saltelli et al., 2006). This 

indicates that the linearized model is reliable and the corresponding coefficients can be 

used to assess and rank the importance of the input parameters with respect to the 

outputs. Based on the one-dimensional CSD data taken at p1, it was shown that the most 

significant parameter is the nucleation order constant, b , which has a SRC of -0.82 and 

belongs to the nucleation equation (Equation (7) in Table 4.5).  This is a reasonable 

result, considering that the data are taken from the CSD region generated by secondary 

nucleation. Therefore, the variation of the input parameter, b , influences the generation 

of new crystals due to nucleation effects which explains the large variation of the CSD 

data taken at p1). In addition, the negative sign for the parameter, b , indicates the 
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negative impact on the CSD where more new crystals are generated when the value of the 

parameter, b , is decreased.  

Meanwhile, the parameters, xg and x , have a SRC of 0.45 and -0.24 

respectively. Both parameters are part of the crystal growth rate equation (Equation (8) in 

Table 4.5) which also contributes to the large uncertainty on the CSD data prediction at 

point p1). Both parameters will have an effect on the growth of the new crystals that have 

been produced due to the secondary nucleation where the parameter, xg , is responsible 

for driving the CSD towards a larger characteristic length, whereas the parameter, x , 

contributes to variation of the secondary peak of the CSD data at point p1). In this case, 

the parameter x , has a negative impact, i.e. the lower the value of parameter, x , the 

higher the secondary peak that will be obtained which also explains the large variation of 

the CSD data at point p1). The one-dimensional CSD data taken at p2) correspond to 

crystal growth of the original seed crystals. Therefore the most significant parameters for 

the data taken at p2) are xg , x  and gxk where all three parameters have a SRC of 0.69, -

0.58 and 0.34 respectively, and appear in the crystal growth rate equation (Equation (8) in 

Table 4.5). A higher value of the growth order constant ( xg ) results into a CSD with a 

higher characteristic length, which explains the variation in the distribution of the CSD 

data. Table 5.6 shows that the magnitude of the growth constant ( x ) is negative. It 

means that when the value of the growth constant ( x ) is decreased, a higher CSD peak is 

obtained resulting into a more narrow CSD as well. The nucleation phenomenon has no 

influence on the CSD data taken at p2) which explains why both parameters for 

nucleation have the lowest ranking in the table.       
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Figure 5.13 Points where the two-dimensional CSD is sampled for sensitivity analysis 
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two-dimensional CSD data, which are shown as a contour plot in Figure 5.13: the data of 
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parameters of the one-dimensional case. The main difference is that there are two 

different crystal growth rates used in the two-dimensional case. 
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characteristic width direction. This is because the parameters in the crystal growth 

expression for the characteristic length direction have a higher value than the parameters 

in the crystal growth model for the characteristic width direction and, thereby, contribute 

more uncertainty to the model prediction. This is due to the fact that usually the high 

characteristic length is favorable in the two-dimensional case in order to achieve a desired 

aspect ratio (average characteristic length over average characteristic width) around 1.5-

2.2 (Lee et al., 2002). Therefore, the parameter value of crystal growth for characteristic 

length usually has a higher value compared to the parameter value of crystal growth for 

characteristic width in order to obtain the desired aspect ratio. 

 

Table 5.7 Standardized regression coefficients of linear models and parameter 

significance ranking for the two-dimensional case 

Location CSD data taken at p1) CSD data taken at p2) 
R2 = 0.9212 R2 = 0.8443 

Ranking Parameter jk  Parameter jk  
1 b  -0.9032 xg  0.6641 
2 

xg  0.2312 yg  0.5395 

3 yg  0.1932 x  -0.3781 

4 x  -0.1671 y  -0.3021 

5 y  -0.0921 gxk  0.1643 

6 
bk  0.0851 gyk  0.1296 

7 gxk  
-0.0212 b  -0.0403 

8 gyk  
-0.0128 bk  -0.0276 

 

Step 5.1.3.2: Morris screening method 

In this work, the parameter significance ranking obtained from the Morris screening 

method has been compared with the one obtained from the SRC method to investigate the 
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reliability of both sensitivity analysis results. Firstly the parameter significance ranking 

has been compared based on the one-dimensional CSD data taken at p1) and p2) (refer to 

Figure 5.12). The results of the Morris method were found to be in good agreement for all 

the parameters with the ranking obtained by the SRC method as shown in Tables 5.8-5.9. 

Moreover, the standard deviation, j  is alco calculated in this method. Here, all the 

parameters have a non-zero value of j  with non-zero mean, j  indicating all the 

parameters are involved in non-linear interactions on the outputs. This observation is 

clearly correct as the crystallization models are indeed non-linear (Ma et al., 1999). 

Similarly, for the two-dimensional CSD data, the parameter significance ranking obtained 

from the Morris screening method is also identical to the ranking obtained by the SRC 

method as shown in Appendix D. Moreover, all the parameters for the two-dimensional 

CSD data are also involved in non-linear interactions on the outputs based on the non-

zero values obtained for both j  and j  respectively. 

 

Table 5.8 Method comparison for screening influential factors based on the one-

dimensional CSD data taken at point p1) 

Morris screening method SRC method 

Ranking Parameters j j  Parameters jk

1 b  -0.8213 0.7143 b  -0.8241 

2 xg  0.3912 0.2386 xg  0.4502 

3 x  -0.2687 0.1308 x  -0.2355 

4 gxk  -0.1154 0.0061 gxk  -0.1734 

5 bk  0.0294 0.0001 bk  0.063 
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Table 5.9 Method comparison for screening influential factors based on the one-

dimensional CSD data taken at point p2) 

Morris screening method SRC method 

Ranking Parameters j j  Parameters jk

1 xg  0.6623 0.5627 xg  0.6890 

2 x  -0.5456 0.5318 x  -0.5804 

3 gxk  0.4312 0.3954 gxk  0.3405 

4 b  -0.1221 0.0175 b  -0.1603 

5 bk  -0.0335 0.0006 bk  -0.03 

 

b) Closed-loop 

The open-loop analysis of uncertainties for the one- and two-dimensional KDP 

crystallization process concluded that significant uncertainty exists in the model outputs 

for both cases, especially for the KDP concentration and the final CSD. The most 

significant parameter for that part of the CSD data generated by secondary nucleation is 

the nucleation order constant, b , for both cases. Meanwhile the growth order constant, 

xg , is identified as the most significant parameter for the part of the CSD corresponding 

to the seeded crystals for both cases respectively. With this result in mind, in this step we 

repeat the uncertainty and sensitivity analysis on the PAT system. Here the objective is to 

comprehensively test the PAT system design performance in achieving the desired target 

product properties taking into account the under considered domain of uncertainties. For 

the closed-loop simulation, a PI controller has been developed in order to maintain the 

KDP concentration at the desired set point. The generated set point profiles consist of a 
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supersaturation set-point at 0.03 g/g. The closed-loop reference simulation results 

obtained for the one- and two-dimensional case are shown in Figure 5.14. 

 

Figure 5.14 Reference one- and two-dimensional simulation results using nominal values 

for KDP concentration, temperature, inlet water temperature (manipulated variable) and 

final CSD under closed-loop operation 

 

One-dimensional Two-dimensional 

0 20 40 60 80

0.3

0.32

0.34

Time (sec)

C
on

ce
nt

ra
tio

n 
(g

/g
)

Solute Concentration
Saturation Concentration

0 20 40 60 80
28

30

32

Time (sec)

Te
m

pe
ra

tu
re

 (C
)

0 20 40 60 80
28

30

32

Time (sec)

In
le

t W
at

er
 T

em
p 

(C
)

0 20 40 60 80
0

0.5

1

1.5

Characteristic Length (um)

Fi
na

l C
SD

 (#
/u

m
)

0 20 40 60 80

0.3

0.32

0.34

Time (sec)

C
on

ce
nt

ra
tio

n 
(g

/g
)

Solute Concentration
Saturation Concentration

0 20 40 60 80
28

30

32

Time (sec)
Te

m
pe

ra
tu

re
 (C

)

0 20 40 60 80
28

30

32

Time (sec)

In
le

t W
at

er
 T

em
p 

(C
)

50 60 70
20

30
40

0

0.05

Characteristic 
Length ( m)

Characteristic Width ( m)

fn
 (N

o.
/

m
2 )

Characteristic Length ( m)

C
ha

ra
ct

er
is

tic
 

W
id

th
 (

m
)

55 60 65

26

28

30

190



 

 171

The KDP concentration for both cases initially started at 0.307 g KDP/g water and once 

the KDP concentration set point was reached the PI controller successfully maintained 

the concentration at the set point until the end of the operation. In Figure 5.14, 

approximately 0.291 g KDP/g water (one-dimensional) and 0.295 g KDP/g water (two-

dimensional) remain by the end of the operation. Comparing the predictions from the two 

models, it can be noted that the KDP concentration profile in the one-dimensional model 

is decreasing more rapidly than in the two-dimensional model. This is because the cube-

shaped volume in the one-dimensional case consumes more solute from the solution than 

the tetragonal-prism volume in the two-dimensional case, which becomes clear also from 

the characteristic length data in the two-dimensional case (the crystal growth rate in the 

width direction is lower in the two-dimensional case, compared to the crystal growth rate 

in the one-dimensional case). 

In terms of CSD, the detailed one-dimensional simulation model predicted an 

almost identical target CSD. The cube-shaped seed originally at mean characteristic 

length of 19.5 m with a standard deviation of 0.97 m has been grown to the mean 

characteristic length of 60.73 m with a standard deviation of 2.79 m which is very 

close to the mean characteristic length of 60.85 m and standard deviation of 2.8 m for 

the target CSD. In the two-dimensional case, the final CSD obtained from the detailed 

simulation model shows that the tetragonal prism shape of the seed has been grown from 

initially 19.5 m in the mean characteristic length and width up to approximately 60.6 

m average characteristic length and 26.55 m mean characteristic width. The length and 

width obtained from the detailed simulation model are very close to the target values 

which are the mean characteristic length of 60.85 m and mean characteristic width of 
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27.36 m. Based on the closed-loop operation, it can be concluded that the controller is 

able to maintain the KDP concentration at its set point for both cases while achieving the 

target specifications. Therefore the next task is to evaluate the controller performance in 

terms of its ability to manage the uncertainties and still achieve the desired target 

specifications. 

Here the uncertainty and sensitivity analysis is repeated again where the same 

framing scenario used in the open-loop operation is applied. Here the same 8 parameters 

from the nucleation and crystal growth rate models as shown in Table 5.5 as well as the 

same 100 samples are applied for the one- and two-dimensional case in this analysis. The 

results from the Monte Carlo simulations are presented in Figure 5.15. The KDP 

concentration for the one- and two-dimensional cases indicates a small spread indicating 

a low degree of uncertainty. It can be clearly seen that the impacts of the uncertain 

parameters have been minimized for the KDP concentration when operated under closed-

loop conditions. Meanwhile the uncertainty is almost non-existent in the temperature 

profiles. In addition, the small spread in the final one- and two-dimensional CSD profiles 

shows a low extent of uncertainty.  
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Figure 5.15 Closed-loop simulation results for KDP concentration, temperature, and final 

CSD obtained from the Monte Carlo simulation (in total there are 100 lines) for one- and 

two-dimensional cases 
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Figure 5.16 Representation of uncertainty using mean, 10th and 90th percentile values of 

the Monte Carlo simulations under closed-loop for one- and two-dimensional cases

 

The data are then analysed using the representation of uncertainty using mean, 

10th and 90th percentile values of the Monte Carlo simulations. As shown in Figure 5.16, 

the 10th and 90th percentiles for the KDP concentration and final CSD in the one- and 

two-dimensional case are very close to the mean, respectively, indicating that the 

uncertainty of these model outputs is very low. Comparing both cases, it is clearly shown 

that the uncertainty for both the KDP concentration and the final CSD are slightly higher 

for the two-dimensional case than for the one-dimensional case. This is due to the fact 

that more parameters (8 parameters) have been used as input uncertainty in the two-

dimensional case compared to only 5 parameters in the one-dimensional case. 
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Nevertheless, both CSDs obtained under the presence of uncertainty are in good 

agreement with the specified target CSD. Thus, it can be concluded that the PAT system 

design using the simple PI control structure and proper controller tuning applied in this 

study is indeed reliable and robust enough to deal with the presence of uncertainties, and 

is able to deliver target properties. 

 

5.3.3.2 Decision making (Step 5.2) 

Based on the validation of the PAT system using uncertainty and sensitivity 

analysis, it is concluded that the designed PAT system used in this study is able to 

achieve the target properties under the considered domain of uncertainties. Therefore this 

PAT system design is now ready to be implemented in the next step.  

 

5.3.4 Implementation of process monitoring and control (PAT) system 
(Step 6) 

 

In this work, the PAT system has been designed for KDP crystallization. So far 

the designed PAT system has been implemented only in a simulation (Samad et al., 

2012a) and was shown to achieve the target crystal product for the one- and two-

dimensional cases. In order to have a practical application, the simulation results need to 

be supported by results from laboratory experiments. However, this is beyond the scope 

of this contribution but will be subject of future work. 
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5.4 Concluding remark 

The methodology for implementing uncertainty and sensitivity analysis has been 

successfully incorporated in the model-based systematic design framework for 

monitoring and control (PAT) systems of crystallization processes. The application of 

uncertainty and sensitivity analysis has been highlighted through a one- and two-

dimensional KDP crystallization process in the frame of the model-based design of a 

PAT system for both open-loop and closed-loop scenarios. In this work, the input 

uncertainty of the parameters of the nucleation and the crystal growth rate was 

propagated using the Monte Carlo procedure. In open-loop, the output uncertainty was 

found large for the KDP concentration and the CSD obtained for both cases, which 

confirms the influence of input uncertainties on the model predictions. Subsequently 

global sensitivity analysis has been performed using SRC and the Morris screening 

method. Both methods showed a good agreement in terms of the ranking of significant 

parameters, which helps to identify the main causes of the output uncertainty. The 

analysis for the closed-loop condition was carried out next to test the reliability of the 

PAT system design and it was demonstrated that the PAT system using a PI controller 

with proper tuning developed for the KDP crystallization is reliable and sufficiently 

robust to produce the desired one- and two-dimensional CSD under a wide range of 

uncertainties. 
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6. Conclusions and future work 

This chapter summarizes the overall achievements of this work and the 

recommendations for future work. 

 

6.1 Achievements 

A generic framework for systematic design of a process monitoring and control 

(PAT) system for crystallization processes has been developed to study various aspects of 

crystallization operations. The main achievements that have been obtained from this work 

are summarized as follows: 

 

1. The overall framework is a step-by-step procedure. Each step of the overall 

framework has its specific purpose. The procedure has been structured in an 

efficient way, and the generic nature of the framework allows its wide 

application to crystallization processes. 

2. The generic multi-dimensional model-based framework has been developed and 

succesfully integrated in the overall framework for systematic design of a 

process monitoring and control (PAT) system. The generic multi-dimensional 

model-based framework allows the user to generate any problem-system specific 

model to be studied for a wide range of crystallization processes. This is due to 

the fact that the framework contains a set of generic balances and a set of 

constitutive equations that can be selected and used to represent the 
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crystallization process. Furthermore, the unique features of the modelling 

framework are that it allows the user to generate a problem-system specific 

model and further extend the model to consider any crystallization phenomena 

as well as the ability to reuse the model by changing the chemical system to 

another chemical system and thus, a wide range of chemical systems can be 

investigated. In addition, the modelling framework is able to handle increased 

model complexity from a one-dimensional to a two-dimensional case with 

minimum modelling effort. The application of the modelling framework has 

been succesfully highlighted, firstly for paracetamol where the problem-system 

specific model has been generated and further extended to cover agglomeration 

and breakage effects. Then, by changing the chemical system, the problem-

system specific model for paracetamol was reused and applied to the sucrose 

crystallization process. Secondly, the KDP crystallization process was studied to 

demonstrate the capability of the modelling framework to generate the one-

dimensional model, and then the resulting model was transformed easily into a 

two-dimensional model. 

3. The systematic procedure to design the set point profiles for the crystallization 

process is also included in the framework, both by using an analytical CSD 

estimator and the RSM technique. Here the original one-dimensional analytical 

CSD estimator of Aamir et al. (2010) has been extended to cover both the one- 

and the two-dimensional case. This is another contribution where the extended 

analytical CSD estimator is now able to generate a set point profile that 

guarantees that the target CSD is achieved and is ready to be applied in a range 
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of systems, covering size independent crystal growth as well as size dependent 

crystal growth for a one- or two-dimensional case. As an alternative, the RSM 

can also be employed to generate the set point profiles, and through the 

highlighted case studies for potassium dichromate and KDP crystallization 

processes, it has been proved that both analytical CSD estimator and RSM 

generate identical optimal set point profiles. 

4. Previously, the model-based methodology for design of process monitoring and 

analysis systems developed by Singh et al. (2009) has been tested on tablet 

manufacturing, fermentation and cheese manufacturing processes. In this work, 

the methodology has been extended to crystallization process applications where 

the knowledge base and model library which both serve as supporting tools in 

the methodology have been extended to include the relevant monitoring 

tools/techniques, process variables involved and mathematical models for 

crystallization processes. Furthermore, the methodology has been integrated into 

the overall systematic design framework and has been succesfully linked with 

the developed crystallization modelling framework for efficient model 

generation and PAT system design application. In this work, the application of 

the PAT system design has been highlighted as part of the overall systematic 

framework application for potassium dichromate and KDP crystallization 

processes to achieve the desired target crystal product. 

5. The uncertainty and sensitivity analysis is also included in the overall systematic 

framework. This provides another unique feature of the overall systematic 

framework where the uncertainty in the crystallization process inputs and its 
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propagation to the outputs can be quantified through the Monte Carlo procedure. 

Furthermore, sensitivity analysis can be conducted as well to determine the most 

significant parameters. Through this analysis, the risk of not obtaining the target 

product specifications can now be investigated and the solution is then proposed 

in order to minimize/reduce the uncertainty and achieve the target product 

specifications. In order to realize this idea in practice, the framework for 

uncertainty and sensitivity analysis has been integrated in the existing overall 

systematic design framework. The application of the uncertainty and sensitivity 

analysis has been demonstrated for both potassium dichromate and KDP 

crystallization processes. 

        

6.2 Recommendations for future work 

The work done within this thesis has resulted in the succesful development of a 

generic framework for systematic design of a process monitoring and control (PAT) 

system for crystallization processes. However, there are still opportunities for further 

developments and improvements. The recommendations for future work are summarized 

as follows: 

 

1. In this work, the generic modelling framework has been developed to generate 

problem-system specific models for crystallization processes. However, only 

one- and two-dimensional models can be generated at this moment through the 

generic modelling framework. However, the one- and two-dimensional models 

only consider one inner variable (characteristic length) and two inner variables 
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(characteristic length and width) in the population balance equations as a 

measure for crystal size, thus limiting the crystal shape only to the description of 

spherical, cubic, rod and tetragonal prism crystals. Therefore, to fully 

characterize the crystal particles higher dimensional models are necessary, that 

is, a three-dimensional population balance modeling approach is needed, where 

three characteristic directions in terms of length, width and depth of a crystal 

may be considered. Through the incorporation of three-dimensional models, 

more complicated crystal shapes than the above-mentioned shapes (for the one- 

and two-dimensional case) can be incorporated where the accurate information 

about size-related dimensional evolution of crystals can be simulated as well as 

morphology of single crystals can also be studied. 

2. The modelling framework needs integration with model identification and data 

handling frameworks (Samad et al., 2012c) where it should be possible to 

perform the parameter estimation using raw experimental data. However, such a 

feature has not been highlighted in this work. The future work should be focused 

on expanding the databases for operational scenarios, data measurement 

techniques and data translation policies that will allow a broader range of 

applications of the total modelling framework. 

3. In the uncertainty and sensitivity analysis work, only kinetic parameters in the 

nucleation and crystal growth rate expressions were considered as an input 

uncertainty. There is also uncertainty present in the initial conditions, for 

example the seed crystals. Seeding is an efficient approach to stabilize the 

crystallization process and produce the desired target product. Usually the 
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amount and size of seeds to be added to the crystallizer is determined from 

experimental data which contribute to some extent to the uncertainties. 

Therefore also, it could be interesting in the future to consider the properties of 

the seed crystals as an input uncertainty as well. As indicated earlier, 

implementation of the proposed PAT system in a real crystallization process 

could both be used to verify and confirm the methodology and the results 

obtained here. 

4. In addition, the optimization of the seed crystals has a major effect on the 

resulting crystal product, and especially the crystal size distribution (CSD). The 

developed generic framework (a systematic procedure, collection of relevant 

methods and tools) in this work is flexible and can be extended to include the 

optimization of seed crystals and it could be interesting work to optimize seed 

crystals for the one- and two-dimensional problem in the future work. 

5. In this work, the validation of the designed crystallization process is presently 

based on the process models. However, it would be interesting to include 

extended experimental validations to validate the designed process. 

6. So far only the design and implementation of the PAT system step in the overall 

systematic design framework has been conducted in the ICAS-PAT software 

(Singh et al., 2010). In order to provide a more flexible, user-friendly and 

efficient environment, this software should be expanded to include all those 

features in the overall systematic design framework, especially the 

crystallization model development and uncertainty and sensitivity analysis.  
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7. Another way to improve the robustness of PAT system design is to incorporate 

robustness in the control of crystallization processes (Nagy, 2009; Nagy and 

Braatz, 2004). Through this approach, parameter uncertainties are taken into 

account in the problem formulation for robust optimization. Based on evaluation 

of robust optimization, the product quality has been successfully improved. 

Through this approach, the control is implemented in the way of hierarchical 

structure based on two levels. The lower level is a direct design crystallization 

control methodology where the supersaturation controller is employed to drive 

the system in the phase diagram. In the higher level, the robust on-line model-

based optimization algorithm using the distributional batch nonlinear model 

predictive control (NMPC), adapts the set-point of the supersaturation controller 

to counteract the effects of changing operation conditions. This is another 

interesting area for the future work. 
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Appendix C 

Derivation of analytical CSD estimator for the one- and two-dimensional case 

This appendix shows the detailed derivation of the analytical CSD estimator for the one- 

and two-dimensional case as shown in Table 4.1. 

 

Considering two growth directios with one characteristic length and width in a well-

mixed crystallizer with supersaturation control and growth as the only dominating 

phenomenon, as well as assuming absence of nucleation, agglomeration and breakage, 

the population balance equation has the form: 

 

, , , , , , ,,
0x y x y y x yn x x n y n

x y

L L t L L t L t L L tf G L t f G f
t L L

                         (C1) 

a) Size independent growth rate 

In the case of the generic size independent growth rate, Equation (C1) can be rewritten in 

the form of: 

0n n n
x y

x y

f f fG G
t L L

                                                                                              (C2) 

The expression for size independent growth is given by: 

gx
x gxG k S                                                                                                                      (C3) 

gy
y gyG k S                                                                                                                      (C4) 

The supersaturation can be assumed constant which is possible in a controlled 

crystallization and the supersaturation expression is given by: 
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satS c c                                                                                                                       (C5) 

Differentiating Equations (C3) and (C4) with respect to characteristic length and width, 

respectively gives: 

0x

x

dG
dL

                                                                                                                          (C6) 

0y

y

dG
dL

                                                                                                                          (C7) 

Introduce , , , ,x y x yn nL L t L L tf f Z Z Z  and by applying the chain rules give: 

yx n n n n

x y

dLdL f f f dfdt
dZ L dZ L dZ t dZ

                                                                                 (C8) 

Comparing Equation (C8) and (C2), we have: 

1dt
dZ

                                                                                                                             (C9) 

x
x

dL G
dZ

                                                                                                                       (C10) 

y
y

dL
G

dZ
                                                                                                                       (C11) 

0ndf
dZ

                                                                                                                          (C12) 

Integrating Equation (C9) with limits: 

dt dZ                                                                                                                          (C13) 

0 0

t Z

t Z
dt dZ                                                                                                                  (C14) 

0 0t t Z Z                                                                                                          (C15) 

By assuming 0 0 0t Z , Equation (C15) can be simplified into: 
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t Z                                                                                                                              (C16) 

Since dt dZ , Equation (C10) becomes: 

x
x

dL G
dt

                                                                                                                       (C17) 

Substitute Equation (C3) into (C17) gives: 

gxx
gx

dL k S
dt

                                                                                                                 (C18) 

Integrating Equation (C18) with limits: 

gx
x gxdL k S dt                                                                                                                (C19) 

0 0

x

x

L tgx
x gxL t

dL k S dt                                                                                                      (C20) 

0 0
gx

x x gxL L k S t t                                                                                              (C21) 

By assuming 0 0t , Equation (C21) can be simplified into: 

 0
gx

x x gxL L k S t                                                                                                       (C22) 

Rearranging Equation (C22) gives: 

0
gx

x x gxL L k S t                                                                                                           (C23) 

Equation (C23) represents the final characteristic length which can be applied for the 

one- or two-dimensional case. A similar derivation is applied in order to obtain the 

analytical solution for the final characteristic width. Since dt dZ , Equation (C11) 

becomes: 

y
y

dL
G

dt
                                                                                                                       (C24) 

Substituting Equation (C4) into (C24) gives: 
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y gy
gy

dL
k S

dt
                                                                                                                 (C25) 

Integrating Equation (C25) with limits: 

gy
y gydL k S dt                                                                                                               (C26) 

0 0

y

y

L tgy
y gyL t

dL k S dt                                                                                                      (C27) 

0 0
gy

y y gyL L k S t t                                                                                              (C28) 

By assuming 0 0t , Equation (C28) can be simplified into: 

 0
gy

y y gyL L k S t                                                                                                       (C29) 

Rearranging Equation (C29) gives: 

0
gy

y y gyL L k S t                                                                                                           (C30) 

Equation (C30) represents the final characteristic width for the two-dimensional case. In 

order to obtain the analytical solution for the crystal size distribution, since dt dZ , 

Equation (C12) becomes: 

0ndf
dt

                                                                                                                          (C31) 

Integrating Equation (C31) with limits: 

0

0n

n

f

nf
df                                                                                                                      (C32) 

0 0n nf f                                                                                                                 (C33) 

0n nf f                                                                                                                          (C34) 

Equation (34) represents the final crystal size distribution for the two- and one-

dimensional case assuming size independent growth rates. 
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b) Size dependent growth rate 0; 1x y x yp p  

Revisiting Equation (C1): 

, , , , , , ,,
0x y x y y x yn x x n y n

x y

L L t L L t L t L L tf G L t f G f
t L L

                         (C1) 

In the case of the generic size dependent growth rate 0; 1x y x yp p , Equation 

(C1) can be expanded and rewritten in the form: 

0yn x n n
n x n y

x x y y

Gf G f ff G f G
t L L L L

                                                               (C35) 

The expressions for the size dependent growth in the length and width direction are given 

by: 

1 xpgx
x gx x xG k S L                                                                                                  (C36) 

1 ypgy
y gy y yG k S L                                                                                                 (C37) 

Differentiating Equations (C36) and (C37) with respect to characteristic length and 

width: 

11 xpgxx
gx x x x x

x

dG k S p L
dL

                                                                                    (C38) 

1
1 ypy gy

gy y y y y
y

dG
k S p L

dL                                                                                     (C39) 

Introducing , , , ,x y x yn nL L t L L tf f Z Z Z  and by applying the chain rules give: 

yx n n n n

x y

dLdL f f f dfdt
dZ L dZ L dZ t dZ

                                                                               (C40) 

Comparing Equation (C39) and (C35), we have: 
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1dt
dZ

                                                                                                                           (C41) 

x
x

dL G
dZ

                                                                                                                       (C42) 

y
y

dL
G

dZ
                                                                                                                       (C43) 

yn x
n n

x y

Gdf Gf f
dZ L L

                                                                                               (C44) 

Integrating Equation (C41) with limits: 

dt dZ                                                                                                                          (C45) 

0 0

t Z

t Z
dt dZ                                                                                                                  (C46) 

0 0t t Z Z                                                                                                          (C47) 

By assuming 0 0 0t Z , Equation (C44) can be simplified into: 

t Z                                                                                                                              (C48) 

Since dt dZ , Equation (C42) becomes: 

x
x

dL G
dt

                                                                                                                       (C49) 

Substituting Equation (C36) into (C49) gives: 

1 xpgxx
gx x x

dL k S L
dt

                                                                                               (C50) 

Integrating Equation (C50) with limits: 

1 x

gxx
gxp

x x

dL k S dt
L

                                                                                                 (C51) 

0 01
x

xx

L t gxx
gxpL t

x x

dL k S dt
L

                                                                                        (C52) 
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By assuming 0 0t , Equation (C52) can be simplified into: 

1 1
0

1
1 1

1
x xp p gx

gx xx x x x
x

k S tL L
p

                                                        (C53) 

Rearranging Equation (C53) gives: 

1 1
01 1 1x xp p gx

x x x x gx x xL L k S t p                                                          (C54) 

1 1
01 1 1x xp p gx

x x x x gx x xL L k S t p                                                          (C55) 

1
1 1

01 1 1x x
p gx p

x x x x gx x xL L k S t p                                                      (C56) 

1
1 1

0 11 1x x
p gx p

x x x x gx x xL L k S t p                                                         (C57) 

1
1 1

0 11 1x x
p gx p

x x gx x x
x

x

L k S t p
L                                                            (C58) 

Equation (C58) represents the analytical solution for the final characteristic length which 

can be applied for the two- and the one-dimensional case. In order to obtain the analytical 

solution for final characteristic width, similarly, since dt dZ , Equation (C43) becomes: 

y
y

dL
G

dt
                                                                                                                       (C59) 

Substituting Equation (C37) into (C59) gives: 

1 ypy gy
gy y y

dL
k S L

dt
                                                                                              (C60) 

Integrating Equation (C60) with limits: 

1 y

y gy
gyp

y y

dL
k S dt

L
                                                                                                 (C61) 
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0 01

y

yy

L ty gy
gypL t

y y

dL
k S dt

L
                                                                                        (C62) 

By assuming 0 0t , Equation (C62) can be simplified into: 

1 1

0

1
1 1

1
y yp p gy

gy yy y y y
y

k S tL L
p

                                                       (C63) 

Rearranging Equation (C63): 

1 1

0 11 1y yp p gy
yy y y y gy y pL L k S t                                                         (C64) 

1 1

0 11 1y yp p gy
yy y y y gy y pL L k S t                                                         (C65) 

1
1 1

01 11 y y
p pgy

y y yy y gy yL pL k S t                                                     (C66) 

1
1 1

0 111 y y
p pgy

y y yy y gy yL pL k S t                                                        (C67) 

1
1 1

0 111 y y
p pgy

yy y gy y
y

y

pL k S t
L                                                           (C68) 

Equation (C68) is the analytical solution for the final characteristic width in the case of 

the two-dimensional case only. The next task is to obtain the analytical solution for the 

crystal size distribution. Since dt dZ , Equation (C44) becomes: 

yn x
n n

x y

Gdf Gf f
dt L L

                                                                                               (C69) 

Substituting Equations (C38) and (C39) into (C69) yields: 

111 1 yx ppgx gyn
n gx x x x x n gy y y y y

df f k S p L f k S p L
dt

                                   (C70) 

Rearranging and integrating Equation (C70) with limits: 
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111 1 yx ppgx gyn
gx x x x x gy y y y y

n

df k S p L dt k S p L dt
f

                                  (C71) 

0 0 0

111 1n yx

n

f t t ppgx gyn
gx x x x x gy y y y yf t t

n

df k S p L dt k S p L dt
f

                     (C72) 

0 0 0
1 11 1

n

x yn

gx gy
f t tgx x x gy y yn

p pf t t
n x x y y

k S p k S pdf dt dt
f L L

                                                          (C73) 

Substituting Equations (C55) and (C66) into (C73) gives: 

0 0 0
1 1

0 0
1 1 11

n

x yn

gx gy
f t tgx x x gy y yn

p pgxf t t gy
n x x gx x x yy y gy y

k S p k S pdf dt dt
f L k S t p pL k S t

 

                                                                                                                                      (C74) 

By integrating Equation (C74): 

1
0

1
0 0

1 1
ln ln

1 1

x

x

pgx gx
gx x x x x gx x xn
gx p

n gx x x x x

k S p L k S t pf
f k S p L

 

1

0
1

0

11
ln

1 1

y

y

p gygy
yy y gy ygy y y

pgy
ygy y y y

pL k S tk S p
pk S L

                                           (C75) 

Simplifying Equation (C75) yields: 

1
0

1
0 0

1 1
ln ln

1 1

x

x

p gx
x x gx x xn x

p
n x x x

L k S t pf p
f p L

 

1

0
1

0

11
ln

1 1

y

y

p gy
yy y gy yy

p
y y y

pL k S tp
p L

                                                         (C76) 

Rearranging Equation (C76): 

1 11 1
00

11
0 0 0

111 1

1 1

y
x

y yx x

yx

pp
p pp gygx p

yy y gy yx x gx x xn
pp

n x x y y

pL k S tL k S t pf
f L L
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                                                                                                                                      (C77) 

Rearranging Equation (C77) yields: 

1 1
0

0 1
0

1 1

1

x
x x

x

p
p gx p

x x gx x x
n n p

x x

L k S t p
f f

L
 

1 1
0

0 1

0

11

1

y

y y

y

p
p pgy

yy y gy y
n p

y y

pL k S t
f

L
                                                             (C78) 

Equation (C78) represents the analytical solution for the final crystal size distribution for 

two-dimensional size dependent growth 0; 1x y x yp p . In order to obtain the 

analytical solution for the one-dimensional final crystal size distribution, the width 

direction term can be neglected and thus, Equation (C78) becomes: 

1 1
0

0 1
0

1 1

1

x
x x

x

p
p gx p

x x gx x x
n n p

x x

L k S t p
f f

L
                                                         (C79) 

Equation (C79) represents the analytical solution for the final crystal size distribution for 

one-dimensional size dependent growth 0; 1x y x yp p . 

                                                   

c) Size dependent growth rate 0; 1x y x yp p  

Revisiting Equation (C1):

, , , , , , ,,
0x y x y y x yn x x n y n

x y

L L t L L t L t L L tf G L t f G f
t L L

                         (C1) 

In the case of a generic size dependent growth rate 0; 1x y x yp p , Equation 

(C1) can be expanded and rewritten in the form: 
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0yn x n n
n x n y

x x y y

Gf G f ff G f G
t L L L L

                                                               (C80) 

The expressions for the size dependent growth in the length and width direction are given 

by: 

1gx
x gx x xG k S L                                                                                                     (C81) 

1gy
y gy y yG k S L                                                                                                    (C82) 

Differentiating Equations (C81) and (C82) with respect to characteristic length and width 

yields: 

gxx
gx x

x

dG k S
dL

                                                                                                             (C83) 

y gy
gy y

y

dG
k S

dL
                                                                                                             (C84) 

Introducing , , , ,x y x yn nL L t L L tf f Z Z Z , and by applying the chain rules 

gives: 

yx n n n n

x y

dLdL f f f dfdt
dZ L dZ L dZ t dZ

                                                                               (C85) 

Comparing Equation (C85) and (C80), we have: 

1dt
dZ

                                                                                                                           (C86) 

x
x

dL G
dZ

                                                                                                                       (C87) 

y
y

dL
G

dZ
                                                                                                                       (C88) 

yn x
n n

x y

Gdf Gf f
dZ L L

                                                                                               (C89) 
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Integrating Equation (C86) with limits: 

dt dZ                                                                                                                          (C90) 

0 0

t Z

t Z
dt dZ                                                                                                                  (C91) 

0 0t t Z Z                                                                                                          (C92) 

By assuming 0 0 0t Z , Equation (C92) can be simplified into: 

t Z                                                                                                                              (C93) 

Since dt dZ , Equation (C87) becomes: 

x
x

dL G
dt

                                                                                                                       (C94) 

Substituting Equation (C81) into (C94) gives: 

1gxx
gx x x

dL k S L
dt

                                                                                                  (C95) 

Integrating Equation (C95) with limits: 

1
gxx

gx
x x

dL k S dt
L

                                                                                                     (C96) 

0 01
x

x

L tgxx
gxL t

x x

dL k S dt
L

                                                                                           (C97) 

By assuming 0 0t , Equation (C97) can be simplified into: 

0

11 ln
1

x x gx
gx

x x x

L
k S t

L
                                                                                             (C98) 

Rearranging Equation (C98) yields: 

0

1
ln

1
x x gx

gx x
x x

L
k S t

L
                                                                                              (C99) 

Equation (99) is then rearranged in the form of: 
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0

1
exp

1
gx

gx xk S tx x

x x

L
L

                                                                                               (C100) 

Rearranging Equation (C100) becomes: 

01 1 exp
gx

gx xk S t
x x x xL L                                                                                    (C101) 

01 exp 1
gx

gx xk S t
x x

x
x

L
L                                                                                       (C102) 

Equation (C102) represents the analytical solution for the final characteristic length 

which can be applied for the two- and the one-dimensional case. In order to obtain the 

analytical solution for final characteristic width, similarly, since dt dZ , Equation (C88) 

becomes: 

y
y

dL
G

dt
                                                                                                                     (C103) 

Substituting Equation (C82) into (C103) gives: 

1y gy
gy y y

dL
k S L

dt
                                                                                               (C104) 

Integrating Equation (C104) with limits: 

1
y gy

gy
y y

dL
k S dt

L
                                                                                                  (C105) 

0 01
y

y

L ty gy
gyL t

y y

dL
k S dt

L
                                                                                         (C106) 

By assuming 0 0t , Equation (C106) can be simplified into: 

0

11 ln
1

y y gy
gy

y y y

L
k S t

L
                                                                                          (C107) 

Rearranging Equation (C107) yields: 
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0

1
ln

1
y y gy

gy y
y y

L
k S t

L
                                                                                            (C108) 

Equation (108) is then rearranged into the form: 

0

1
exp

1

gy
gy yy y k S t

y y

L

L
                                                                                               (C109) 

Rearranging Equation (C109) becomes: 

01 1 exp
gy

gy yk S t
y y y yL L                                                                                    (C110) 

01 exp 1
gy

gy yk S t
y y

y
y

L
L                                                                                       (C111) 

Equation (C111) is the analytical solution for final characteristic width in the two-

dimensionalc case only. The next task is to obtain the analytical solution for crystal size 

distribution. Since dt dZ , Equation (C89) becomes: 

yn x
n n

x y

Gdf Gf f
dt L L

                                                                                             (C112) 

Substituting Equations (C83) and (C84) into (C112) yields: 

gx gyn
n gx x n gy y

df f k S f k S
dt

                                                                                   (C113) 

Rearranging and integrating Equation (C113) with limits: 

gx gyn
gx x gy y

n

df k S dt k S dt
f

                                                                                   (C114) 

0 0 0

n

n

f t tgx gyn
gx x gy yf t t

n

df k S dt k S dt
f

                                                                     (C115) 

0 0
0

ln gx gyn
gx x gy y

n

f k S t t k S t t
f

                                                                (C116) 
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By assuming 0 0t , Equation (C106) can be simplified into: 

0

ln gx gyn
gx x gy y

n

f k S t k S t
f

                                                                                    (C117) 

Based on Equation (C117), the analytical solution for crystal size distribution can be 

obtained by:  

0

exp
gx gy

gx x gy yk S t k S tn

n

f
f

                                                                                             (C118) 

Rearranging Equation (C118):  

0 exp
gx gy

gx x gy yk S t k S t
n nf f                                                                                          (C119) 

Equation (C119) represents the analytical solution for final crystal size distribution in the 

two-dimensional case with size dependent growth rates 0; 1x y x yp p . In 

order to obtain the analytical solution for the one-dimensional final crystal size 

distribution, the width direction term can be neglected and thus, Equation (C119) 

becomes: 

0 exp
gx

gx xk S t
n nf f                                                                                                       (C120) 

Equation (C120) represents the analytical solution for the final crystal size distribution 

for the one-dimensional case with size dependent growth 0; 1x y x yp p . 

 

 

 

 

 

 

220



 

 201

Appendix D 

Method comparison for screening influential factors between SRC and Morris 

screening based on the two-dimensional data 

 

Table D1 Method comparison for screening influential factors based on the two-

dimensional CSD data taken at point p1) in Figure 5.13 

Morris screening method SRC method 
Ranking Parameters j j  Parameters jk

1 b  -0.8563 0.6943 b  -0.9032 
2 xg  0.2561 0.1856 xg  0.2312 
3 yg  0.2043 0.1264 yg  0.1932 

4 x  -0.1201 0.0043 x  -0.1671 
5 y  -0.1143 0.0028 y  -0.0921 

6 bk  0.0495 0.0009 bk  0.0851 
7 gxk -0.0392 0.0005 gxk -0.0212 

8 gyk -0.0065 0.0001 gyk -0.0128 

 

Table D2 Method comparisons for screening influential factors based on the two-

dimensional CSD data taken at point p2) in Figure 5.13 

Morris sampling method SRC method 
Ranking Parameters j j  Parameters jk

1 xg  0.5921 0.5296 xg  0.6641 
2 yg  0.5843 0.4965 yg  0.5395 

3 x  -0.3094 0.2538 x  -0.3781 
4 y  -0.2895 0.1932 y  -0.3021 

5 gxk  0.1153 0.0054 gxk  0.1643 

6 gyk  0.0843 0.0010 gyk  0.1296 

7 b -0.0201 0.0002 b -0.0403 
8 bk  -0.0184 0.0001 bk  -0.0276 
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Nomenclature 
 

0,2A mean crystal area (cm2) 

1A crystallizer’s internal area (cm2) 

2A crystallizer’s external area (cm2)  

cA  total area of particles (cm2) 

pnA  empirical coefficient in primary nucleation 
ab production-reduction order 

ia  tailor development coefficient 

1ia  polynomial coefficient for saturation concentration 

2ia  polynomial coefficient for metastable concentration 

3ia  polynomial coefficient for heat of crystallization 

xia  tailor development coefficient 
B birth rate (number of particles/cm3.min) 

aggB  birth rate due to agglomeration (number of particles/cm3.min) 

brB  birth rate due to breakage (number of particles/cm3.min) 

nucB  birth rate due to nucleation (number of particles/cm3.min) 

1,nB  primary nucleation (number of particles/cm3.min) 

2,nB  secondary nucleation (number of particles/cm3.min) 

pnB  empirical coefficient in primary nucleation 
b nucleation order 

ib  coefficients of the response model 

1ib  polynomial coefficient for saturation concentration 

2ib  polynomial coefficient for metastable concentration 

3ib  polynomial coefficient for heat of crystallization 

xib  tailor development coefficient 
c solute concentration (g solute/g solvent)

satc saturation concentration (g solute/g solvent) 
metc metastable concentration (g solute/g solvent) 

ic  tailor development coefficient 

1ic  polynomial coefficient for saturation concentration 

2ic  polynomial coefficient for metastable concentration 

3ic  polynomial coefficient for heat of crystallization 

pc  heat capacity (J/g.°C) 

pwc  water heat capacity (J/g.°C) 
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yjc  tailor development coefficient 

D diffusivity of the solute (cm2/min) 
Diam stirrer diameter (cm) 

TDiam  tank diameter (cm) 
3,4D mean size diameter ( m) 

brD  death rate due to breakage (number of particles/cm3.min) 

id  tailor development coefficient 

1id  polynomial coefficient for saturation concentration 

2id  polynomial coefficient for metastable concentration 

3id  polynomial coefficient for heat of crystallization 

yjd  tailor development coefficient 

objF  objective function 

winF  cooling water flow rate (cm3/min) 
f relative shape function of crystals 

I
ijf  

inlet crystal number flow in the length direction 
'I

ijf  
inlet crystal number flow in the width direction 

O
ijf  

outlet crystal number flow in the length direction 
'O

ijf  
outlet crystal number flow in the width direction 

nf  final population density function (number of particles/ m)  

0nf  initial population density function (number of particles/ m)  

xG  crystal growth rate in length direction ( m /sec) 

yG  crystal growth rate in width direction ( m /sec) 

xg  growth order in length direction 

yg  growth order in width direction 
j mass order at nucleation 
k number of considered variables (factors) 

'
ak  

agglomeration rate constant in the diffusional growth regime (min) 

abk  kinetic coefficient for production-reduction (number of particles/cm3. 
cm2.min.(g/cm3)k(rpm)ab) 

bk  kinetic coefficient for nucleation (number of 
particles/cm3.min.(g/cm3)j(rpm)p) 

0bk  frequency factor of nucleation rate 

dk  mass transfer coefficient (cm/min) 

gxk  kinetic coefficient for crystal growth in length direction ( m /sec) 

0gk  frequency factor of crystal growth rate 

gyk  kinetic coefficient for crystal growth in width direction ( m /sec) 
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Ak crystal shape factor 

Lk crystal shape factor 

prk  mass order at production-reduction 

rk  surface shape factor 

vk  crystal shape factor 

xL  length of crystal particles ( m) 

xL  
average length of crystal particles ( m) 

0xL  initial length of crystal particles ( m) 

yL  width of crystal particles ( m) 

yL  
average width of crystal particles ( m) 

0yL  initial width of crystal particles ( m) 

cL  total length of crystal particles ( m) 
MM molecular weight of the crystal (kg/mol) 

cM  total crystal mass (g) 
m molal concentration of solute (moles solute/g solvent) 

satm  molal concentration of solute at saturated solution (moles solute/g 
solvent) 

wm  mass of solvent (g) 

cN  total number of particles (number of particles) 
N number of classes 

iN  number of crystals per unit volume of suspension for class i (number of 
particles/cm3) 

ijN  number of crystals per unit volume of suspension for class i and  j 
(number of particles/cm3) 

rpmN  agitation rate (rpm) 
p agitation order at nucleation 

xp  size dependent growth constant for length direction 

yp  size dependent growth constant for width direction 
q agitation order at crystal growth 

2R regression of the polynomial model 
R ideal gas constant (J/mol.K) 
r agitation order at production-reduction 

lr  intrinsic rate of agglomeration of rank l (1/m3s) 
S normal supersaturation (g solute/g solvent) 

spS  Supersaturation set point (g solute/g solvent) 

0,1S mean crystal size ( m)  

xiS  mean size of class i ( m) 

yjS  mean size of class j ( m) 
T  solution temperature (°C) 
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exT  exterior temperature (°C) 

wT  cooling water temperature (°C) 

winT  inlet cooling water temperature (°C) 

ct  total crystallization time (sec) 

1U heat transfer coefficient for internal crystallizer (J/°C.min.cm2) 

2U heat transfer coefficient for external crystallizer (J/°C.min.cm2) 
V solution volume (cm3) 

0,3V mean crystal volume (cm3) 

cV  crystal volume (cm3) 

wV  cooling water volume (cm3) 
v kinematic viscosity (m2/s) 

ilestv ,  stoichiometric coefficient of class i in agglomeration of number l 
x  mole fraction of solute 

satx  mole fraction of solute at saturated solution 
 
Greek letters  

production-reduction rate (number of particles/cm3.min) 
00  zeroth moment for two-dimensional PBE 

0  zeroth moment for one-dimensional PBE 

mn  mth and nth moment for two-dimensional PBE 

m  mth for one-dimensional PBE

iCl  extent of ith classes ( m) 

jCl  extent of jth classes ( m) 

bE activation energy for nucleation rate 

gE  
activation energy for crystal growth rate 

cH  heat of crystallization (J/g) 
c concentration difference (g solute/g solvent) 

relative supersaturation 
x  standard deviation for length direction 

y  standard deviation for width direction 
activity coefficient 

c  crystal density (g/cm3) 

w  water density (g/cm3) 

x  size dependent growth constant for length direction 

y  size dependent growth constant for width direction 

r  effectiveness factor 
power dissipation per unit of mass (W.m2/kg.s3)

e  Lagrangian microscale (m) 
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Abbreviation 
 

AE Algebraic equation 
ANOVA Analysis of variance 
ATR-FTIR Attenuated total reflectance fourier transform infrared 
BDF Backward differentiation formulas 
CCD Central composite design 
CSD Crystal size distribution 
DoE Design of experiments 
DOF Degree of freedom 
EE Elementary effect 
FBRM Focused beam reflectance measurement 
GMoP Good modelling practice 
ICAS-MoT Integrated computer-aided system-Modelling testbed 
ICAS-PAT Integrated computer-aided system-Process analytical technology 
KDP Potassium dihydrogen phosphate
LHS Latin hypercube sampling 
MPC Model predictive control 
NMPC Nonlinear model predictive control 
ODE Ordinary differential equation 
PAT Process analytical technology 
PBE Population balance equation 
PID Proportional-integral-derivative 
PDE Partial differential equation 
RF Response function 
RSM Response surface methodology 
SRC Standardized regression coefficient 
SQP Sequential quadratic programming 
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