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Summary1

1. Matrix population models are widely used to predict population dynamics but, when2

applied to species rich ecosystems with many rare species, the small population sam-3

ple sizes hinder a good fit of species-specific models. This issue can be overcome by4

assigning species to groups to increase the size of the calibration data sets. However,5

the species classification is often disconnected from the matrix modelling and from the6

estimation of matrix parameters, thus bringing species groups that may not be optimal7

with respect to the predicted community dynamics.8

2. We proposed here a method that jointly classified species into groups and fit the matrix9

models in an integrated way. The model was a special case of mixture with unknown10

number of components and was cast in a Bayesian framework. An MCMC algorithm11

was developed to infer the unknown parameters: the number of groups, the group of12

each species and the dynamics parameters.13

3. We applied the method to simulated data and showed that the algorithm efficiently14

recovered the model parameters.15

4. When applied to a tree data set from a tropical rain forest in French Guiana, the mix-16

ture matrix model classified tree species into well differentiated groups with clear ecolog-17

ical interpretations. It also accurately predicted the forest dynamics over the sixteen-year18

observation period.19

5. Our model and algorithm can straightforwardly be adapted to any type of matrix20

model, using the life cycle diagram. It can be used as an unsupervised classification21

technique to group species with similar population dynamics.22

Key-words: Bayesian, clustering, mixture models, reversible jump Markov chain Monte23
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Carlo, tropical rainforests, species rich ecosystems, population dynamics.24

Introduction25

The conservation of animal and plant species and their biological control require models to26

understand and predict population dynamics (Fieberg & Ellner 2001; Buongiorno & Gilless27

2003; Demyanov, Wood & Kedwards 2006). Among population dynamics models, projec-28

tion matrix models have been widely used to investigate the dynamics of age-, stage- or29

size-structured populations (Caswell 2001; Stott, Townley, Carslake & Hodgson 2010). They30

provide a simple way of integrating vital rate information such as recruitment, birth, growth31

or ageing, and mortality (Crone, Menges, Ellis, Bell, Bierzychudek, Ehrlén, Kaye, Knight,32

Lesica, Morris, Oostermeijer, Quintana-Ascencio, Stanley, Ticktin, Valverde & Williams33

2011). Matrix models have been used to model population demography in the context of34

species invasion (Hooten, Wikle, Dorazio & Royle 2007; Sebert-Cuvillier, Paccaut, Chabrerie,35

Endels, Goubet & Decocq 2007), species extinction or conservation of endangered species36

(Cropper & Loudermilk 2006), and the sustainable management of exploited species (Hauser,37

Cooch & Lebreton 2006). Recent improvements in matrix models targeted the estimation of38

demographic parameters, in particular for animal populations using capture-recapture meth-39

ods (Besbeas, Freeman, Morgan & Catchpole 2002).40

In species-rich ecosystems like tropical rain forests, tropical marine fish or coral reefs,41

high diversity implies that the number of individuals for most species is limited. The small42

sample size hinders a good fit of species-specific dynamics models, including matrix pop-43
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ulation models. To address this problem, modellers usually cluster species into groups. A44

variety of methods has been used to group species, favouring either ecological interpretation45

or the accuracy of predictions. Groups of species can be derived from functional groups46

(Steneck & Dethier 1994), ecomorphology (Bellwood & Wainwright 2001) or ecological47

subjective strategy (Swaine & Whitmore 1988; Favrichon 1994; Gitay & Noble 1997). None48

of these methods is a statistical method, thus not ensuring that the within-group similarity is49

maximum, or that the number of groups is optimal. Gourlet-Fleury, Cornu, Jésel, Dessard,50

Jourget, Blanc & Picard (2005) described two other strategies applied in tropical rain forests:51

the ecological data-driven strategy (Phillips, Yasman, Brash & van Gardingen 2002) and the52

dynamic process strategy, in which “process” refers to the components of forest dynamics53

(recruitment, growth or mortality) (Gourlet-Fleury & Houllier 2000; Picard, Mortier, Rossi54

& Gourlet-Fleury 2010). These strategies rely on statistical unsupervised classification meth-55

ods, such as hierarchical cluster analysis, to group species with similar traits. Moreover,56

species classification is most often disconnected from the matrix modelling and from the es-57

timation of the matrix parameters, thus bringing species groups that may not be optimal with58

respect to the predicted community dynamics.59

The use of mixture models has recently been proposed to model the presence/absence60

of species (Dunstan, Foster & Darnell 2011), the species richness in a species assemblage61

(Mao, Colwell & Chang 2005), or the heterogeneity of capture and survival probabilities62

in natural populations (Pledger, Pollock & Norris 2010). Mixture models are based on the63

assumption that observation data arise from several unobserved groups (McLachlan & Peel64

2000). A model is associated to each group. Each observation contributes to the fitting of the65
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model for a given group with a weight that represents its probability to belong to this group.66

These weights can eventually be used to classify observations among groups. Thus, mixture67

modelling simultaneously fits models and classifies observations, and the clustering step is68

closely linked to the calibration step. This favours the similarity of species response within69

groups rather than the similarity of species traits (Dunstan, Foster & Darnell 2011).70

Mixture modelling has mainly been developed for observations with a normal distribution71

(e.g. mixture regressions). This study aims at extending mixture modelling to matrix popula-72

tion models. The mixture of matrix population models will simultaneously solve two issues:73

fit matrix models for species-rich ecosystem with many rare species, and classify species into74

groups. As proposed in population genetics (Pritchard, Stephens & Donnelly 2000; Coran-75

der, Waldmann & Sillanpaa 2003; Guillot, Estoup, Mortier & Cosson 2005), the strategy76

consists in a probabilistic model-based clustering method expressed in terms of matrix popu-77

lation mixture models with an unknown number of components (Richardson & Green 1997;78

Dunson 2000; Marin, Mengersen & Robert 2005). The number of groups and the parameters79

of the matrix population models associated with each group are the unknown quantities. We80

propose to use a Bayesian framework to infer these unknown quantities. The Bayesian frame-81

work approach has several advantages over frequentist methods. First, it enables us to obtain82

the exact posterior distribution for population sizes, whereas classical maximum likelihood83

methods provide asymptotic confident intervals. Secondly, with the use of prior distributions,84

strong biological or ecological knowledge can be included in the model.85

The mixture of matrix models is defined in the next section. An inference method is then86

shortly presented, and extensively tested using simulated data. The mixture matrix model was87
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finally applied to a tree data set from the Paracou tropical rain forest in French Guiana. The88

tree species groups thus obtained had consistent ecological behaviours with contrasted func-89

tional traits, and compared favourably to other groups obtained by a standard classification90

technique.91

Material and methods92

Mixture of matrix population models93

When fitting a base model to some observations, it is assumed that the set of observations94

is homogeneous, in the sense that all observations share a common distribution (e.g. the95

centred normal distribution for the residuals of the linear model). When dealing with an96

heterogeneous set of observations composed of K assumedly homogeneous subsets, finite97

mixture modelling is a relevant framework to extend this base model (McLachlan & Peel98

2000). Finite mixture model assumes that the distribution of observations is a mixture of99

K base distributions, with mixing weights that represent the probability for an observation100

to belong to each of the homogeneous subsets. Conditionally on an observation belonging101

to a subset, the model identifies with the base model, while the distribution of the mixture102

includes the uncertainty on which subset an observation belongs to.103

Finite mixture of matrix population models results from the application of the finite mix-104

ture framework to matrix population models. In matrix population models, individuals are105

classified into stage, size or age classes, and the population dynamics is described by tran-106

sition rates among classes (Caswell 2001). At the individual level, these transitions can107
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be interpreted as the transitions of a Markov chain, which defines some distribution of the108

population-level numbers of individuals having passed between any two classes. Mixing109

K such distributions defines a mixture of K matrix population models. A specificity of the110

mixture of matrix models is that one observation corresponds to one population (more specif-111

ically, it is the vector of all numbers of individual transitions between classes), and the set of112

observations is the community-level set of populations. Hence, mixture of matrix models is113

relevant to model the dynamics of a community when assuming that its constituent species114

can be assigned to K homogeneous groups of species.115

Hereafter, we detail the mathematical expression of the mixture of matrix models for116

a specific type of matrix population models, namely the Usher model. Nevertheless, this117

framework readily extends to any type of matrix models on the basis of individual transitions118

among classes.119

Mixture of Usher matrix models120

The Usher matrix model applies to size-structured populations (Usher 1966, 1969). It is based

on the description of the change of the population by a vector, ~Nt, of the numbers Nl,t of

individuals in L ordered size classes (l = 1, . . . , L) at discrete time t. Let Nt =
∑L

l=1 Nl,t be

the total number of individuals at time t. Like any other matrix population model, the Usher

model can be interpreted as the expectation of Nt independent Markov chains (Figure 1).

The relationship between ~Nt and ~Nt+1 is described by a L×L transition matrix U , called the

Usher matrix:

E[ ~Nt+1| ~Nt] = U E[ ~Nt] (1)
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where U is equal to:

U =



p1 + f f . . . f

q1 p2 0

. . . . . .

0 qL−1 pL


(2)

pl is the probability for an individual to stay in class l, ql the probability to move up from121

class l to l + 1 and f the average fecundity. ql and pl take values in [0, 1], whereas f takes122

values in R+. The probability to die for an individual in class l is given by ml = 1− pl − ql.123

Let ~d = (d1, . . . , dL) be the class distribution of the population, such that dl denotes the124

probability for a randomly chosen individual to belong to class l (
∑L

l=1 dl = 1). Let Nl,l,t125

denote the number of individuals staying in class l between t − 1 and t, Nl,l+1,t the number126

of individuals moving up from class l to l + 1 between t − 1 and t, and Nl,†,t the number of127

individuals dying in class l between t − 1 and t. Let Rt be the number of recruits between128

t − 1 and t, assumed to be a Poisson random variable with parameter fNt−1. The vector of129

observations for the population is ~N = (N1,l,t, . . . , NL,†,t, ~Nt−1, Rt). The likelihood of the130

joined individual Markov transitions, and thus of the Usher matrix model, is:131

L( ~N |θ) =
L−1∏
l=1

M(Nl,l,t, Nl,l+1,t, Nl,†,t|pl, ql, ml, Nl,t−1) (3)

×M(NL,L,t, NL,†,t|pL, mL, NL,t−1)

×M(N1,t−1, . . . , NL,t−1|d1, . . . , dL, Nt−1)

×P(Rt|fNt−1)
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where M denotes the multinomial distribution, P the Poisson distribution, and θ = (~p, ~q, ~m,132

f , ~d) is the vector of parameters with ~p = (p1, . . . , pL), ~q = (q1, . . . , qL−1) and ~m = (m1, . . . ,133

mL). Eqn 1 is the deterministic version of the Usher projection model while eqn 3 accounts134

for the demographic stochasticity and is useful when the population size gets small (Caswell135

2001).136

Suppose now that the modelled population issues from K unobserved groups of species

such that each group is modelled by a Usher projection matrix. Thus, there are K Usher

matrices U1, . . . , UK . Because the group to which the population belongs is not known a

priori, one can define a random latent variable C that identifies the group of the species.

For example, if the species belongs to the third group: C = 3. Conditionally on C, the

prediction of the dynamics is given by eqn 1, with U being replaced by UC . Accounting for

the uncertainty on C brings:

E[ ~Nt+1| ~Nt] =
K∑

k=1

πk UkE[ ~Nt] (4)

where πk is the posterior probability that C equals k. Eqn 4 defines the mixture of Usher

matrix models, whose likelihood is:

L( ~N |~θ, ~π) =
K∑

k=1

πk L( ~N |θk) (5)

where ~θ = (θ1, . . . , θK) is the vector of all parameters associated with the K matrix models,137

~π = (π1, . . . , πK) is the vector of all posterior probabilities, and L( ~N |θk) is given by eqn 3.138

The species can be a posteriori classified by assigning it to the group g with the maximum139

posterior probability: πg = maxk{πk}. Hence, the mixture of matrix models jointly defines140
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K matrix models (i.e. provides an estimate of ~θ) and classifies the species into K groups (i.e.141

provides an estimate of ~π).142

Mixture model inference143

The parameters ~θ and ~π of the mixture matrix model can be estimated in a frequentist context144

by maximizing the likelihood (5) of the mixture model. Inference can be achieved using an145

EM algorithm (McLachlan & Krishnan 2008). However, we here preferred to use Bayesian146

inference to have the opportunity to integrate biological knowledge into the model through147

the prior distribution of the parameters. Based on the direct acyclic graph of the mixture148

matrix model (Figure 2), a Markov chain Monte Carlo (MCMC) inference algorithm was149

implemented: a long sequence of parameter values was randomly drawn from the posterior150

distribution, and the parameter estimates were extracted from this sample by computing its151

mode or its means (Gilks, Richardson & Spiegelhalter 1996). Details on the Bayesian in-152

ference, including the choice of the priors, are given in Appendix A. Annotated R codes (R153

Core Team 2012) for the algorithm are available in the Supporting Information.154

Fitting a finite mixture model also requires estimating the number K of groups. Classi-155

cally, different mixture models with different number of groups are independently fitted, and156

an information criterion is finally used to select among these competing models (Biernacki,157

Celeux & Govaert 2000). A MCMC algorithm for a fixed K was developed with this aim in158

view. Alternatively, we also developed an inference algorithm that considered K as unknown159

and jointly estimated it with the other parameters. This involved using a reversible jump160

MCMC approach when the number of groups changed (Richardson & Green 1997). With161
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this latter approach, posterior probabilities for each value of K were obtained, thus enabling162

one to choose the most likely K while assessing the reliability of this choice.163

Because the posterior distribution for the number K of groups may be sensitive to changes164

in the prior distribution for the parameters when using a reversible jump MCMC algorithm165

(Richardson & Green 1997), a sensitivity analysis to the priors was achieved. Details on the166

different priors that were tested are given in Appendix A.167

Simulations168

Data were simulated to assess the efficiency of the algorithm to correctly classify species into169

groups, according to different levels of differentiation between groups and different numbers170

of groups. Simulated data were composed of 100 species distributed across eight diameter171

classes. Numerical experiments tested the combinations of three factors: (i) the number172

of groups, that was equal to 1, 5 or 10 (3 modalities), and will be refered to as the true173

number of groups; (ii) the number of individuals per species, that was equal to 100 or 1000174

(2 modalities); and (iii) hyper-priors for parameters (~d, ~p, ~q, ~m, f ), that took the values given175

in Table 1 (5 modalities).176

The five different hyper-priors for the parameters corresponded to five levels of differen-177

tiation between groups. Indeed, the expectation of the diameter class or transition parameters178

was constant (E(dl) = 1/8 and E(pl) = E(ql) = E(ml) = 1/3 for all the hyper-priors in179

Table 1), but their variances decreased from 0.012 to 0.0015 for dl and from 0.055 to 0.0079180

for the transition parameters. As this variance corresponded to the between-group variance,181

the lower it was, the more similar the groups were. Let us note Ldiff1, . . . , Ldiff5, the five de-182
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creasing differentiation levels of the hyper-parameters. When the number of groups was one,183

only the level Ldiff1 was used for hyper-priors. In total, there were thus: 2×1+2×2×5 = 22184

combinations of factors in the numerical experiments. For each combination, 50 replications185

were simulated. For each replication, the 100 species were randomly assigned to groups.186

This simulated classification was the reference to compare with the estimated classification187

and was referred as the ‘true classification’. Then, for each group, the diameter class param-188

eters, the transition parameters and the fecundity parameter were randomly drawn according189

to their hyper-prior distributions (Table 1). Finally, for each species, the prescribed number190

of individuals was drawn according to the law defined by eqn 3 using the parameters of the191

group to which the species belonged.192

To assess the performance of the method, we compared the estimated number K̂ of groups

with the true number K used to simulate data sets, and we compared the estimated classi-

fication with the true classification using two set matching indices I1 and I2 (Meilă 2007).

These indices are based on the K × K̂ contingency table T = (Tij) with i = 1, . . . , K

and j = 1, . . . , K̂ that cross-tabulates the species according to the true and the estimated

classifications:

I1 =
1

S

K∑
i=1

max {Ti1, . . . , TiK̂} and I2 =
1

S

K̂∑
j=1

max {T1j, . . . , TKj}

These indices vary between 1/S and 1, and the higher they are, the better is the adequacy193

between the two classifications (Meilă 2007). They jointly reflect how groups collapsed and194

merged: I1 = 1 and I2 = 1 means that both classifications were identical; I1 = 1 and I2 < 1195

means that the number of groups was underestimated and one or more groups were merged;196

12



I1 < 1 and I2 = 1 means that the number of groups was overestimated and one or more197

groups were split; I1 < 1 and I2 < 1 means that several set operations are needed to move198

from one classification to the other.199

Tropical forest data200

Data on the tropical rain forest were collected at the Paracou experimental site (5◦18′N,201

52◦53’W), French Guiana. The site is located in a undisturbed terra firme forest under equa-202

torial climate. Three 250 m × 250 m permanent sample plots (18.75 ha in total) have been203

established in 1984 and left as control of the undisturbed forest dynamics. All trees greater204

than 10 cm dbh (diameter at breast height) have been identified and georeferenced. Girth205

at breast height, standing deaths, treefalls and newly recruited trees greater than 10 cm dbh206

have been monitored either annually or every two years since 1984 (Gourlet-Fleury, Guehl &207

Laroussinie 2004). Because the Paracou forest is a mature undisturbed forest, the diameter208

distribution in those control plots could be considered at quasi-equilibrium. Two data sets209

were extracted from the Paracou database: one training data set to infer the mixture of Usher210

models, and one validation data set. A data set gave the species, the diameter class at year t211

and the diameter class at year t + 2 for n trees. Trees that died between years t and t + 2, and212

trees whose diameter overcame the inventory threshold of 10 cm between years t and t + 2213

(recruited individuals) were included in the data set.214

The training data set consisted of the data collected in 1993 and 1995 on the three control215

plots. One hundred and eighty one species were identified in these three control plots (Fig-216

ure 3), illustrating both the high species richness, and the relative scarcity of most species217
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of the Guianan forest. The mean number of individuals per species was 64.54 (total on the218

three control plots of the training data set), with a minimum of 1 and a maximum of 980.219

The median number of individuals per species was 22, with a first quartile of 8 and a third220

quartile of 61.25. Although it could be possible to include species with few individuals into221

the analysis, we decided to leave out species with less than 20 individuals in the control plots222

in 1993. A preliminary analysis (not shown) evidenced that there was little difference be-223

tween the classification based on all species and the classification restricted to species having224

at least 20 individuals: the algorithm took longer to converge in the former case, rare species225

were not well classified, and actually behaved like noise with respect to the estimation of226

groups. Moreover, from an ecological point of view, it does not make sense to assign species227

to groups when they are represented by few individuals. It is ecologically much more mean-228

ingful to a posteriori assign rare species to existing groups, using expert’s knowledge on the229

species autecology. Hence, we reckon that rare species should rather be a posteriori assigned230

to existing groups. We were left with 93 species that included at least 20 trees monitored in231

the three control plots. This training data set contained 10,756 trees. The validation data set232

consisted of the data collected in 2009 on the same three control plots.233

A classification of tree species into five groups was defined at Paracou by Favrichon234

(1994), using multivariate analysis and k-means clustering of species attributes (including235

size summary statistics, growth and recruitment). On the basis of these groups, Favrichon236

(1998) then fitted a Usher matrix model to predict forest dynamics. Hence, Favrichon’s ap-237

proach is illustrative of a two-step approach with a species classification that is disconnected238

from the matrix population model. We compared Favrichon’s species classification with the239
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one obtained by the mixture matrix model using the likelihood (5) of the training data set.240

Because there were missing observations between 1995 and 2009, the same computation was241

intractable for the validation data set. Nevertheless, considering that the undisturbed forest242

was close to equilibrium, we also compared the likelihoods of the validation data set given243

the asymptotic diameter distributions according to the two classifications. For a given pop-244

ulation with Usher transition matrix U (eqn 2), the asymptotic diameter distribution is the245

normalized eigenvector of U associated to its dominant eigenvalue (Caswell 2001).246

Results247

Recovery of simulated classifications248

Simulation results were similar whether we used a uniform or a truncated Poisson distribution249

as a prior for K. Hence, only the results with the later prior (that was the default one) are250

reported here. For 1000 individuals per species, the estimated classification perfectly matched251

with the true simulated classification for all differentiation levels: I1 and I2 were always equal252

to one.253

For 100 individuals per species, the results depended on the differentiation levels and on254

the number of groups (Table 2). When the true number of groups was one, the algorithm255

always found one group. For 5 groups, we correctly estimated the number of groups in 100,256

100, 96, 76 and 52% of the cases for the 5 decreasing levels of differentiation respectively.257

When the number of groups was wrongly estimated, it was systematically underestimated: I1258

was very close to 1 and I2 always remained lower than I1. The classification method tended259
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to merge different species groups into one group, and to dispatch very few species of a given260

group into another group. The same results were found with stronger evidence in the case of261

10 groups. At the fourth level of differentiation, the number of group was correctly estimated262

in about 80% of the cases, and more than 95% of the species were classified into the correct263

groups.264

Tropical rain forest tree species classification265

The 93 tree species at Paracou were classified using the mixture of matrix models, based266

on eight diameter classes (≤ 15 cm, 15–20, 20–25, 25–30, 30–40, 40–50, 50–60, ≥ 60 cm).267

Based on 50 different chains, and 20,000 iterations after a burn-in of 10,000 iterations, five268

groups were obtained 48 times and six groups twice. Groups remained globally the same for269

all chains. We kept the chain with the highest log-likelihood. For this chain, the posterior270

probabilities for K = 5, 6, 7 or 35 groups were equal to 0.99, 5.3 × 10−3, 9.3 × 10−4 and271

6.7× 10−5, respectively.272

The sensitivity analysis to the prior distributions showed that the estimate of K was fairly273

insensitive to the specification of the prior distributions for the parameters. For all priors274

except one, the algorithm found again five groups of species. The exception corresponded to275

α = β = 10 for the priors of the transition and diameter class parameters, to be compared276

to α = β = 1 for the default prior (Appendix A). In that case, K was estimated to three277

groups (with former groups 2 and 3 merged into a single one, and former groups 4 and 5278

merged into a single one). Because α and β can be interpreted as pseudo-counts of individuals279

in diameter classes, large values of α and β tend to decrease the impact of observations280
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on the classification, in particular for the largest diameter class that have few observations.281

Hence, the sensitivity of K to α and β expresses the sensitivity of the species classification282

to differences between species in the largest diameter classes.283

To help interpreting the five species groups, five demographic and biological attributes284

were computed for each group: growth rate, mortality rate, fecundity rate, upper bound for285

diameter, and turnover. Direct estimates of these attributes were computed from the training286

data set, and compared to the indirect estimates obtained from the estimated transition and287

diameter class parameters of the mixture matrix model (see the Supplementray Information288

for the estimates of all mixture matrix model parameters). The direct estimate of growth was289

the mean diameter increment between 1993 and 1995 of all trees that belonged to the group,290

while its indirect estimate was
∑L−1

i=1 pidiδi, where δi is the width of the ith diameter class.291

The direct estimate of the mortality was the ratio of the number of dead trees in the group292

between 1993 and 1995 over the number of trees in the group in 1993, while its indirect293

estimate was
∑L

i=1 midi. The direct estimate of the fecundity was the ratio of the number of294

recruited trees in the group between 1993 and 1995 over the number of trees in the group in295

1993, while its indirect estimate was f . The direct estimate of the upper bound for diameter296

was the 95% quantile of diameters in 1995, while its indirect estimate was interpolated from297

~d assuming that the diameter distribution was uniform within each class. Finally, the turnover298

was computed as half the sum of the mortality rate and of the fecundity rate. The direct and299

indirect estimates of these attributes were not expected to be strictly equal since they did not300

derive from the same estimators; yet, their values were quite close and evidenced the same301

differences between groups (Table 3).302
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Groups were labelled by decreasing order of growth (Table 3). The gradients of maxi-303

mum size and turnover perfectly paralleled this gradient of growth, with the fastest growing304

group 1 having the greatest maximum size and the lowest turnover rate. Group 1 was com-305

posed of emergent mid-tolerant species, i.e. species that need to settle in the upper strata and306

sometimes above the forest canopy to complete their whole life-cycle. Group 2 was com-307

posed of a mix of shade-tolerant (mostly) and light-demanding (to a lesser extent) canopy308

species. Group 3 was composed of shade-tolerant species, with a mix of canopy (mostly) and309

understorey (to a lesser extent) species. As a consequence, its growth rate and maximum size310

were lower than for group 2, but higher than for group 4. The two small-sized groups 4 and 5311

were composed of understorey shade-tolerant species, although group 4 also included a few312

pioneer species. As a consequence, the growth rate of group 4 was higher than that of group313

5.314

Because mixture of matrix models jointly classifies species and fits matrix models, we315

also compared the predicted and the observed number of individuals in each diameter class316

and each group in 2009, to check the validity of the matrix model. The mixture matrix317

population model correctly predicted both the number of trees 16 years later and their size318

distribution (Figure 4).319

The log-likelihood of the training data set was−2722.7 for the Bayesian classification and320

−3351.7 for Favrichon’s classification. The log-likelihood of the validation data set given the321

asymptotic diameter distriution was −2007.7 for the Bayesian classification and −2874.3 for322

Favrichon’s classification. Hence, both criteria largely favoured the Bayesian classification323

to the detriment of Favrichon’s classification.324
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Discussion325

Mixture modelling can deal with matrix population models, and can jointly classify species326

and fitting matrix models. Mixture of matrix population models can be addressed in the327

frequentist or in the Bayesian context. The algorithm that we developed in the Bayesian328

context performed well on simulated data with known groups, even when the differentiation329

between groups was low. Classification was correctly predicted when between-group vari-330

ances were higher than 0.0019 for diameter parameters (~dk) and 0.010 for transition parame-331

ters (~pk, ~qk, ~mk and fk), corresponding to the fourth level of differentiation (see Table 1). A332

specificity of the Bayesian method presented here is that it estimated the number K of groups333

together with the other parameters. This is quite original as mixture modelling generally op-334

erates conditionally on K, and then uses an information criterion to select K (Biernacki,335

Celeux & Govaert 2000). Moreover, the Bayesian approach allowed us to construct prior dis-336

tributions taking into account ecological expert knowledge. For example, we assumed that337

the prior diameter distribution was a Dirichlet distribution where all parameters were equal338

to one meaning that the diameter distribution was uniform across diameter classes. Never-339

theless, using the Bayesian paradigm, it is straightforward to change the prior distribution to340

model expert knowledge, assuming for example that diameter distribution is decreasing from341

the first to the last diameter class. Another example was the use of the prior distribution used342

to model recruitment based on expert knowledge343

The method that we developed for the mixture of Usher matrix models could straightfor-344

wardly be adapted to other types of matrix projection models, such as Leslie or Lefkovitch345
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matrix models for age- and stage-structured populations, respectively. Starting from the life346

cycle representation of the matrix model (Figure 1), one simply has to translate the probabil-347

ities associated to each transition into a distribution law for an observation (eqn 3).348

When applied to a tropical rainforest at Paracou, the mixture of Usher matrix models was349

able to jointly classify species and make reliable predictions. Predictions were better with350

the mixture model than with Favrichon’s two-step approach, thus exemplifying that a clas-351

sification disconnected from the matrix model may not be optimal to predict the community352

dynamics. The characteristics of the tree species groups formed at Paracou were consistent353

with known ecological behaviour (Lieberman, Lieberman, Hartshorn & Peralta 1985; Nasci-354

mento, Laurance, Condit, Laurance, D’Angelo & Andrade 2005; Delcamp, S., O. & E. 2008;355

Poorter, Wright, Paz, Ackerly, Condit, Ibarra-Manrı́quez, Harms, Martı́nez-Ramos, Mazer,356

Muller-Landau, Peña-Claros, Webb & Wright 2008): small-sized species (with the excep-357

tion of pioneers) tend to grow slowly, to have high recruitment and mortality rates (i.e. high358

turnover rates), whereas large sized species that reach the forest canopy tend to grow rapidly359

and have low turnover rates. The mixture of Usher matrix models classified species according360

to both their growth rate and their maximum size (Picard, Köhler, Mortier & Gourlet-Fleury361

2012). When plotting species along these two axes, species groups were clearly separated362

(Figure 5). Because these two axes can be used to order species along a continuum of eco-363

logical strategies (Turner 2001; Alder, Oavika, Sanchez, Silva, Van der Hout & Wright 2002),364

this means that the mixture of Usher matrix models was also able to classify species in a way365

that is consistent with their autecology.366

The heterogeneity, in terms of light-requirement, found in groups 2 and 4 can be eas-367
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ily understood given the environmental conditions prevailing in the control plots. These368

plots are largely undisturbed, with only small gaps occurring at a rate of more or less 3 per369

year (Gourlet-Fleury, Guehl & Laroussinie 2004). Such conditions do not favour the growth370

of light-demanding species, nor the growth and survival of pioneer species. Because these371

species do not express their growth potential, they tended to be gathered with slower-growing372

species in groups 2 and 4. This, in addition to the fact that few pioneer species can survive373

in these plots, explains why no pioneer group was identified by our procedure while such a374

group usually is the first one to be isolated in a classification, due to its particular behaviour375

(Swaine & Whitmore 1988). Applying the mixture of matrix models to disturbed plots would376

have raised a different classification better accounting for the variety of potential specific be-377

haviours.378

In the Paracou example, the distribution of individuals across diameter classes in 1993379

was taken into account in the mixture of matrix models: the likelihood (eqn 3) depended380

on the vector of parameters ~d. This means that the shape of the initial diameter distribution381

influenced the outcome of the species classification. This made sense for the Paracou control382

plots because these plots were settled in undisturbed forest, whose state in 1993 could be383

considered as close to equilibrium. The vector ~d was thus representative of the equilibrium384

state of the forest. We checked indeed (results not shown here) that the asymptotic growth385

rate of the matrix models were close to one, and the associated eigenvectors close to ~d. In386

other situations where the forest is far from equilibrium, it might not be advisable to account387

for the initial diameter distribution ~d in the species classification. Computing the conditional388

likelihood knowing ~Nt would enable to drop ~d from the expression of the likelihood (eqn 3).389
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Apart from this, the mixture of matrix models would be unchanged.390

Appendix A Bayesian inference391

Let S be the number of species in the calibration data set. Using the same notation as above

with the additional superscript s, let ~N s = (N s
1,l,t, . . . , N s

L,†,t, ~N s
t−1, Rs

t ) be the vector of

observations for species s = 1, . . . , S and let N = ( ~N1, . . . , ~NS) be the vector of observa-

tions for all species. Let ~C = (C1, . . . , CS) be the latent vector that gives the group of each

species. Considering K as unknown, the posterior probability πk follows from the posterior

density distribution of the mixture model:

πN
~C,~θ,K

(~C, ~θ,K|N) ∝
S∏

s=1

L( ~N s|θCs) π0
~C|~θ,K

(~C|~θ, K) π0
~θ|K(~θ|K) π0

K(K) (6)

where L( ~N s|θCs) is given by eqn 3, and π0
~C|~θ,K

, π0
~θ|K and π0

K are the prior densities associated392

with the class latent random variables, the parameters of each matrix model and the number393

of groups, respectively. For full Bayesian inference of the model, we set the followings priors394

on the unknown quantities ~C, ~θ and K.395

We assumed that the prior distribution for the number K was a Poisson distribution with396

mean one, truncated to strictly positive values: π0
K(K) ≡ P(1)\{0}. This prior distribution397

was suggested by Nobile (2005) in order to be more parsimonious than under uniform distri-398

bution. For the sensitivity analysis, a uniform distribution between one and S was also used399

as a prior for K.400

The parameters associated with the matrix population model for group k are (~pk, ~qk, ~mk), fk

and ~dk. The prior for the parameters ~θ of the K matrix population models assumed that the
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parameters of the different classes and groups were independent:

π0
~θ|K(~θ|K) =

K∏
k=1

{ L−1∏
l=1

π0
p,q,m|l,k(plk, qlk, mlk)

}
π0

p,m|k(pLk, mLk) π0
~d|k(

~dk) π0
f |k(fk)

Because the Dirichlet distribution (denoted D) is the conjugate prior of the multinomial dis-401

tribution, we used the Dirichlet distribution as a prior for all transition parameters and all di-402

ameter class parameters: π0
~d|k ≡ D(α, . . . , α), π0

p,q,m|l,k ≡ D(β, β, β) and π0
p,m|k ≡ D(β, β),403

where α and β are hyper-parameters that can be interpreted as pseudo-counts of individuals.404

The default priors used α = β = 1. For the sensibility analysis, we also tested α = β = 0.5405

that corresponds to the non-informative Jeffreys prior (Jeffreys 1946; Atwood 1996), and406

α = β = 10. Because the gamma distribution (denoted G) is the conjugate prior of the407

Poisson distribution, we used the gamma distribution as a prior for the fecundity parameter:408

π0
f |k ≡ G(γ, δ), where δ and γ are hyper-parameters. The default prior used γ = 0.01 and409

δ = 1, which expresses the expert’s knowledge that the recruitment rate in undisturbed natu-410

ral rain forest is around 1%. For the sensitivity analysis, we also tested γ = 0.5 and δ = 1,411

10−1 or 10−10 (but the Jeffreys prior that corresponds to γ = 0.5 and δ = 0 could not be used412

because it is improper).413

The prior for the class vector ~C assumed that, given the number of groups, each species414

could equally and independently of the other species be in any group: π0
~C|~θ,K

(~C|~θ,K) =415 ∏S
s=1 π0

~C|K(Cs|K) where π0
~C|K(Cs|K) is a uniform distribution on the number of groups:416

U(1, . . . , K).417

The inference of parameters was made through the investigation of the posterior distri-418

bution πN
~C,~θ,K

(~C, ~θ,K|N) defined by eqn 6. As the number of groups was unknown, the419
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posterior distribution was not available in an analytic form. Hence, a specific Metropolis420

within Gibbs Monte Carlo Markov chain (MCMC) algorithm was developed. The algorithm421

consisted of three moves: increasing the number of groups (birth case); decreasing the num-422

ber of groups (death case); keeping the same number of groups but potentially changing one423

species assignment (no jump case). In the first two cases, the number of parameters was424

not constant, so a reversible jump MCMC approach was used (Richardson & Green 1997),425

whereas in the third case, a Gibbs step could be used. All moves were equally distributed426

with probability 1/3.427

In the following, we detail the proposal step for the three moves and the selection step for428

the birth and death cases.429

1. Proposal step. Let us |k| denote the number of species in group k, for k = 1, . . . , K.430

Let us K? denote the number of groups of the proposal and ~C? denote the latent class431

vector of the proposal.432

• No jump case: K? = K. The proposal ~C? = (C?
1 , . . . , C

?
S) for the latent class433

vector is drawn in two steps:434

(a) randomly choose one species s among the groups that include two or more435

species;436

(b) new assignment C?
s for species s is sampled from a multinomial distribution

M(1; w1, . . . , wK), whereas C?
t = Ct for t 6= s. The coefficients wk are

equal to

wk =
L( ~N s|θk)∑K
j=1 L( ~N s|θj)
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where L is given by (3).437

• Birth case: K? = K + 1. The proposal for the latent class vector is obtained by438

splitting one group into two subgroups:439

(a) randomly choose one group k among the groups that include two or more440

species; this group will form two subgroups labelled k1 and k2;441

(b) choose the number |k1| of species that will compose group k1 following a442

uniform distribution: |k1| ∼ U(1, . . . , |k| − 1)443

(c) sample |k1| species among the |k| species in group k and allocate them to the444

first subgroup k1. The others are allocated to the second subgroup k2. Let D445

denote the resulting allocation vector of the |k| species between k1 and k2.446

Let ~C? = (~C, k, |k1|, D) denote the new classification that results from ~C through447

steps (a)–(c). Then, the conditional probability distribution of the new classifica-448

tion into K + 1 groups given the old one into K groups, πsplit
~C?| ~C,K

, is defined by:449

πsplit
~C?| ~C,K

(~C?|~C, K) = Pr(~C? = (~C, k, |k1|, D)|~C, K)

=
|k1|!(|k| − |k1|)!

|k|!
1

|k| − 1

1∑K
i=1 1l|i|>1

1

2

• Death case: K? = K − 1. The proposal for the latent class vector is obtained450

by merging two groups into a single one: randomly choose two groups among K451

and merge them into one group. Let k1 and k2 be the two selected groups and let452

~C? = (~C, k1, k2) be the new classification that results from ~C by merging k1 and453

k2. Then, the conditional probability distribution of the new classification into454
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K − 1 groups given the old one into K groups, πmerge
~C?| ~C,K

, is defined by:455

πmerge
~C?| ~C,K

(~C?|~C, K) = Pr(~C? = (~C, k1, k2)|~C, K)

=
2!(K − 2)!

K!

1

2

2. Selection step. Given ~C and K, the vector of new parameters ~θ? = (~p?, ~q?, ~m?, f ?, ~d?)456

is sampled from its marginal posterior distribution πN
~θ| ~C,K

(~θ|~C, K, N). This marginal457

posterior distribution (not given here to save space) is known in an analytical form458

since multinomial/Dirichlet and Poisson/gamma distributions are conjugate distribu-459

tions (Robert & Casella 2005).460

The following equations give the expression of the Metropolis-Hasting ratio in the death case,

for example. Let the current number of groups be K, and the new state K? be K − 1. Let us

assume that two groups k1 and k2 have been chosen and merged into a unique group k. Then,

πsplit
~C| ~C?,K?

(~C|~C?, K?)

πmerge
~C?| ~C,K

(~C?|~C, K)
=

(
|k|
|k1|

)
1

|k| − 1

1∑K
i=1 1l|i|>1(

K

2

)

Moreover,
π

N
~θ|~C,K

(~θ| ~C,K,N)

π
N
~θ|~C,K

(~θ?| ~C?,K?,N)
is the ratio of marginal posterior distributions of ~θ and is equal

to

π
Nk
θ (θk|Nk)

π
Nk1
θ (θk1 |Nk1

)π
Nk2
θ (θk2|Nk2

)

where Nk is the set of observations belonging to all species classified in group k. π
Nk
θ (θ|Nk)

is broken down as follows:

π
Nk
θ (θ|Nk) =

L∏
l

π
Nk

pqm|l,k(pl, ql, ml|Nk) π
Nk

~d|k
(~d|Nk) π

Nk

f |k(f |Nk)
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where

π
Nk

pqm|l,k ≡ D(1 + nllk, 1 + nl(l+1)k, 1 + nl†k)

where nllk, nl(l+1)k and nl†k are the number of individuals in group k that respectively stay in

class l, move from class l to l + 1 or die;

π
Nk

~d|k
≡ D(1 + nlk, . . . , 1 + nLk)

where nlk is the number of individuals of group k in class l at initial time t; and finally,

π
Nk

f |k ≡ G
(

0.01 + n01k,
1

nk + 1

)

where nk is the total number of individuals in group k at initial time t and n01k is the number461

of recruits in group k. Given this, the calculation of prior distribution as well as likelihood462

ratios is straightforward. As the matrix population model parameters are sampled from their463

posterior distributions, the canonical reversible transition function is the identity function.464

Hence, its Jacobian is equal to one and does not appear in the Metropolis-Hasting ratios.465
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Table 1: Hyper-prior distributions of the parameters used for simulations. D is the Dirichlet

distribution, G is the gamma distribution. ‘Var’ is the variance of di, of pl, ql, ml, and of f ,

respectively.

Differentation Diameter ~d Transition (pl, ql, ml) Fecundity f

Level Distribution Var Distribution Var Distribution Var

Ldiff1 D(1, 1, 1, 1, 1, 1, 1, 1) 0.0121 D(1, 1, 1) 0.055 G(10, 1000) 10−5

Ldiff2 D(3, 3, 3, 3, 3, 3, 3, 3) 0.0044 D(3, 3, 3) 0.022 G(10, 2000) 2.5·10−6

Ldiff3 D(5, 5, 5, 5, 5, 5, 5, 5) 0.0027 D(5, 5, 5) 0.014 G(10, 3000) 1.1·10−6

Ldiff4 D(7, 7, 7, 7, 7, 7, 7, 7) 0.0019 D(7, 7, 7) 0.010 G(10, 4000) 6.25·10−7

Ldiff5 D(9, 9, 9, 9, 9, 9, 9, 9) 0.0015 D(9, 9, 9) 0.008 G(10, 5000) 4·10−7
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Table 2: Comparison between simulated and estimated classifications: mean of (I1, I2) on

the 50 simulations for 100 individuals per species, depending of the differentiation levels for

the hyper-priors. Definition of the Ldiffi is given in Table 1. n.d. means “not defined”.

Differentiation level 1 group 5 groups 10 groups

Ldiff1 (1,1) (1,1) (1,1)

Ldiff2 n.d. (0.996,0.996) (0.998,0.988)

Ldiff3 n.d. (0.996,0.989) (0.978,0.889)

Ldiff4 n.d. (0.983,0.933) (0.929,0.686)

Ldiff5 n.d. (0.964,0.865) (0.899,0.574)
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Table 3: Observed vital rates of groups (Obs.) and average vital rates computed from the

estimated transition rates (Est.): two-year dbh increment (∆DBH), two-year mortality rate,

two-year fecundity rate, upper bound of diameters (DBH95) and two-year turnover of the five

groups obtained using matrix population mixture model classification. The observed ∆DBH

for group i was 1
ki

∑ki

j=1(Y
1995
j − Y 1993

j ), where Y t
j was the dbh of individual j at year t, and

ki the number of individuals in group i.

∆DBH (cm) Mortality (%) Fecundity (%) DBH95 (cm) Turnover (%)

Group Obs. Est. Obs. Est. Obs. Est. Obs. Est. Obs. Est.

1 0.38 0.42 0.91 1.31 1.25 1.25 65.3 68.1 1.08 1.28

2 0.27 0.25 1.33 1.58 1.04 1.05 44.2 45.6 1.19 1.32

3 0.24 0.24 2.34 2.70 1.02 1.09 37.4 37.8 1.68 1.90

4 0.13 0.10 2.21 2.38 1.54 1.47 24.2 24.7 1.87 1.93

5 0.08 0.05 2.18 2.74 1.86 2.03 16.4 17.9 2.02 2.39
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Figure 1: Life cycle representation of the Usher projection matrix model, where pl is the

probability for an individual to stay in class l, ql is the probability to move up from class l to

l + 1, ml is the probability of dying and f is the average fecundity.
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Figure 2: Direct acyclic graph of the mixture of Usher projection matrix model. Double dot

arrows indicate deterministic links, dot lines indicate direct links, circles indicate random

nodes and frames indicate deterministic nodes.
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Figure 3: Rank-abundance diagram in the control plots at Paracou in 1993.
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Figure 4: Predicted (boxplot) and observed (black dot) number of individuals in each diame-

ter class and each species group in the control plots at Paracou in 2009.
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Figure 5: Upper bound of diameters (95% quantile of dbh in 1995, in cm) versus mean

diameter increment between 1993 and 1995 (cm) for 93 species at Paracou, French Guiana.

The five different symbols correspond to the five groups defined by the mixture matrix model.
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