

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Computational Materials Repository

Landis, David Dominic

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Landis, D. (2012). Computational Materials Repository. Technical University of Denmark, Center for Atomic-
Scale Materials Physics.

http://orbit.dtu.dk/en/publications/computational-materials-repository(01a2af34-d7e8-4814-9f86-0edb2e790894).html

Computational Materials Repository

David Dominic Landis
Ph.D. Thesis
Januar 2012

Computational Materials Repository

David Dominic Landis

Kongens Lyngby 2012

Technical University of Denmark
Center for Atomic-scale Materials Design
Building 311, DK-2800 Kongens-Lyngby, Denmark
www.camd.dtu.dk

4

Abstract

The ongoing growth in computing power enables researchers to perform such
a large number of simulations that cannot be analyzed with paper and pencil
any more. Simple approaches of processing data: ordering the calculations
in directories and using a script to create a spreadsheet or a small database
have to be redesigned for every new project. Sharing intermediate data with
collaborators can be cumbersome and when publishing on the Internet specially
tailored infrastructure has to be set up.

Due to the diverse and changing landscape of electronic structure codes and
methods there is no unique way of storing, collecting and presenting results.
However there are many partial solutions: VMDF (paper D) a tool to filter
and analyze aggregated sets of electronic structure data presents a first step
towards user-friendly analysis of data. The Inorganic Crystal Structure Database
ICSD[1, 2], collects very specific data and makes it accessible through a web
interface; AflowLib (Ab-initio Electronic Structure Library) [3] provides access
to structure properties of many compounds on the Internet.What is missing is a
system that is Open Source Software, generic enough to support different codes,
different abstraction levels and enables users to analyze their own results, and
allows to share data with collaborators.

The approach of the Computational Materials Repository (CMR) is to convert
data to an internal format that maintains the original variable names without
insisting on any semantics. Imported data can be implicitly grouped by user
criteria and therefore maintain their natural connection in the database as well.
Automatic data analysis is enabled through agents that analyze and group data
based on predefined rules. Small projects can be handled without the need of
database software while bigger projects one can use to improve performance.

ii

CMR enables one to create templates for the collection and analysis of data
independently of the electronic structure code, simplifies screenings involving a
lot of calculations, allows one to perform automatic analysis of data based on
taxonomy, tags and keywords, provides the ability to share data with collaborators
and maintains the link from the derived to the original data.

Resumé

Den igangværende vækst i computerkraft gør det muligt for forskere at udføre et
s̊astort antal simuleringer, at det ikke længere er muligt at analysere med papir
og blyant. Enkle tilgange til behandling af data: samling af beregninger i mapper
og brug af et script til at generere et regneark eller en lille database m̊aredesignes
for hvert nyt projekt. Deling af intermediær data med samarbejdspartnere kan
være besværligt og ved publikation p̊ainternettet skal specifikt skræddersyede
infrastrukturer opsættes.

Grundet det mangeartede og foranderlige landskab af koder og metoder til
elektronstruktur-beregninger findes ingen unik m̊ade at gemme, samle og præsen-
tere resultater p̊a. Der findes imidlertid mange delvise løsninger: VMDF (pa-
per D) er et værktøj til filtrering og analyse af aggregerede sæt af elektronstruktur
data og repræsenterer et første skridt p̊avejen mod brugervenlig analyse af data.
The Inorganic Crystal Structure Database ICSD[1, 2], samler meget specifikke
data og gør dem tilgængelige via et web-interface. AflowLib (Ab-initio Electronic
Structure Library) [3] giver adgang til struktur-egenskaber for mange kemiske
forbindelser p̊ainternettet.

Det som mangler er et system som er Open Source Software, er generelt nok til
at understøtte forskellige koder og forskellige abstraktions-niveauer, og som gør
det muligt for brugere at analysere deres egne resultater og tillader deling af
data med samarbejdspartnere.

Fremgangsmåden i Computational Materials Repository (CMR) er at konvert-
ere data til et internt format, som bibeholder de originale variable uden at
insistere p̊anogen semantik. Importerede data kan implicit grupperes efter
brugerbestemte kriterier, og derved ogs̊abibeholde deres naturlige forbindelse

iv

i databasen. Automatisk dataanalyse muliggøres af agenter som analyserer og
grupperer data baseret p̊aprædefinerede regler. Småprojekter kan h̊andteres
uden brug af database-software, mens større projekter kan bruges til forøget
ydeevne.

CMR gør det muligt at oprette skabeloner til samling og analyse af data
uafhængigt af den givne elektronstruktur-kode, forenkler screening af store
mængder beregninger, muliggør automatisk analyse af data baseret p̊ataksonomi,
tags og keywords, giver mulighed for at dele data med samarbejdspartnere og
bibeholder forbindelsen fra det afledte til det originale data.

Preface

This thesis is submitted in candidacy for the Ph.D. degree from the Technical
University of Denmark (DTU). The work presented was carried out at the Center
for Atomic-scale Materials Design (CAMd) from June 2008 to August 2011 under
the supervision of Professor Jens K. Nørskov with co-supervisor Professor Thomas
Bligaard and after Professor Jens K. Nørskov left with Professor Karsten W.
Jacobsen as supervisor.
NABIIT and CAMd which is funded by The Lundbeck Foundation are gratefully
acknowledged for their financial support.

I would like to thank my supervisor Karsten Wedel Jacobsen for his excellent
supervision and guidance throughout my Ph.D., Thomas Bligaard and Jens K.
Nørskov for sharing their vision with me and Thomas for telling me about this
really interesting project and for the many discussions at the beginning and at
the end of my Ph.D.
I would like to thank Jens Strabo Hummelshøj for all the lively discussion about
how things should be done.
I would like to thank Marcin Du lak for all his feedback and his interest in the
project.
I would like to thank Jefferey Greeley, Svetlozar Nestorov and Glen Ferguson for
all the good discussions.
I would like to thank all people that commented on my project and submitted
bugs and suggestions.

I would like to thank Tao Jiang for whom I’m extraordinarily happy to have
shared office, flat and many great experiences with.
I would like to thank all my office mates Jess Wellendorff, André Kelkkanen,

vi

Federico Calle Vallejo, Keld Lundg̊ard, Christen Kjær and all the others who at
some point inhabited office 254 for the good climate.
I would like to thank Jess Wellendorff for translating the abstract.
I would also like to thank Marcin Du lak for proof-reading my complete thesis
and as well Tao Jiang and Steen Lysg̊ard.
I would like to thank Juan Shen, Isabela Man, George Tritsaris, Jun-Yan, Ivano
Castelli, Vladimir Tripkovic, Ask Hjorth Larsen, Mohammedreza Karamad,
Samira Siahrostami, Pawe l Zawadzki, Marco Vanin, Elisa Fiordaliso and Tobias
Johansson, Falco Hüser, Duncan Mowbray, Anca Paduraru and all the people at
CAMd and CINF for the great atmosphere.
A special thanks to the administrative staff Marianne Ærsøe, Stavroula Nielsen,
Henning Bo Nicolajsen, Ole Holm Nielsen and Helle Wedel Wellejus which do
and did an awesome job keeping CAMd running.
Last but not least I would like to thank Kate for her loving support.

Lyngby, January 2012

David Dominic Landis

Papers included in the thesis

A The Computational Materials Repository
D. D. Landis, J. S. Hummelshøj, S. Nestorov, J. Greeley, M. Du lak, T. Bligaard,
J. K. Nørskov and K. W. Jacobsen
Accepted by Comput. Sci. Eng., 2012

B Computational Screening of Perovskite Metal Oxides for Optimal
Solar Light Capture
I. E. Castelli, T. Olsen, S. Datta, D. D. Landis, K. S. Thygesen, S. Dahl, K. W.
Jacobsen
Energy Environ. Sci., vol. 5, 2012

C Density functional theory based screening of ternary alkali-transition
metal borohydrides: A computational material design project
J. S. Hummelshøj, D. D. Landis, et al.
J. Chem. Phys., vol. 131, 2009

D Virtual Materials Design using Databases of Calculated Materials
Properties
T. R. Munter, D. D. Landis,F. Abild Pedersen, G. Jones, S. Wang and T.
Bligaard
Comput. Sci. Disc., vol.2, 2009

viii

Acronyms, Terms and
Definitions

term short explanation chapter
add/commit/ sub-
mit/upload

the process of adding db-files to the db-
file repository; from the db-file reposi-
tory the data is uploaded to the MySQL
database

3.3.4.a

agent autonomous process for data analysis or
tasks in the background

2.2, 2.9.3, 3.3.3.a

calculation a short name for an electronic struc-
ture calculation performed by a code
like GPAW or VASP

code electronic structure simulator e.g.
GPAW or VASP

CLI the command line interface allows to run
common tasks like showing content of
db-files to be executed in a linux shell

2.5,3.3.1.a

CMR database see database
CMR schema see schema
cluster a computer cluster or super computer

that executes jobs (scripts)
database with database the MySQL database

with the CMR database schema is meant
3.3.2.c

commit see add

x Acronyms, Terms and Definitions

db-file (cmr-files) db-file is the internal file format of CMR;
in the future these files will be called
cmr-files to avoid naming conflicts with
other file formats

3.3.3.b

db-file repository the db-file repository stores db-files
that are later uploaded to the MySQL
database

3.3.2.a

field(s) a field is a name/value pair e.g. energy/-
0.1

2.1

group a group contains a collection of results
(calculations); it is also possible that
groups contain other groups

2.2, 2.7

keyword(s) keywords are used to identify calcula-
tions and can be added to all the data
uploaded to the database

2.1

mapping the process of renaming a field or chang-
ing the unit of the value dynamically
when reading a db-file

2.9.2

MySQL database see CMR database
PHP/HTML (user)
interface

a user interface of CMR that runs on a
web server and is accessed with a web
browser

2.3, 3.3.1.c

PHPUI see PHP/HTML (user) interface
PUI see python (user) interface
python (user) inter-
face

a user interface of CMR 3.3.1.b

schema the database/ CMR schema 3.3.3.c, 3.3.2.c
submit see add
SiGUI a plug-in for Silo 3.3.1.d.1
Silo a user interface that connects to the

CMR database
3.3.1.d

unique identifier a unique identifier is created for every
db-file; this identifier is used to identify
group members

2.6

UI see unique identifier
upload see add

xi

xii Contents

Contents

Abstract i

Resumé iii

Preface v

Papers included in the thesis vii

Acronyms, Terms and Definitions ix

1 Introduction 1

2 Introduction and usage of CMR 7
2.1 Working with CMR . 9
2.2 Step by Step . 11
2.3 PHP/HTML Web Interface . 18
2.4 Querying and Analysis . 26
2.5 The Command Line Interface . 29
2.6 Modifying Data in the Database 34
2.7 Groups . 36
2.8 What is actually stored in a db-file? 38
2.9 Advanced Task . 41

3 Computational Materials Repository 49
3.1 Overview . 49
3.2 CMR Challenges . 51
3.3 System Components and Processes 52
3.4 Tools . 70
3.5 Outlook . 73

xiv CONTENTS

3.6 Discussion . 75
3.7 Conclusion . 78

4 Case Studies 79
4.1 Computational Screening of Perovskite Metal Oxides for Optimal

Solar Light Capture . 80
4.2 The Genetic Algorithm with CMR 87
4.3 DFT based screening of ternary alkali-transition metal borohy-

drides - a computational materials design project 112

5 Summary and Outlook 119

A The Computational Materials Repository 121

B Computational Screening of Perovskite Metal Oxides for Opti-
mal Solar Light Capture 135

C Density functional theory based screening of ternary alkali-transition
metal borohydrides: A computational material design project 143

D Virtual Materials Design using Databases of Calculated Mate-
rials Properties 155

E VMDF 185
E.1 Work in Progress? . 186
E.2 Conclusion . 188

F Appendix 189
F.1 Extracted Values from Codes . 189
F.2 PHPUI script to continue analysis in the PUI 192
F.3 Deployment Examples and Dependencies 194
F.4 GA minimization script template 197
F.5 Inside a db-file . 200

Chapter 1

Introduction

The design of novel and versatile materials is of great importance for our so-
ciety. This is is reflected by the strong focus on discovering new materials
for energy conversion and storage to provide a sustainable alternative to the
fossil-based fuel economy. Atomic-scale calculations are becoming increasingly
important in strengthening our ability towards meeting this challenge, as it over
time has provided an ever-improving alternative to expensive experiments. As
computational resources become more readily available and the methods more
efficient, studies can be performed on complex systems. This poses a challenge
in terms of systematic storage, retrieval and analysis of the results. If there is
no automated process or predefined schema for the collection and analysis, every
researcher will spend more and more time on administrating his/her data instead
of deriving useful information. Other time consuming tasks that have to be done
repeatedly are sharing intermediate results with collaborators, archiving data
and documentation how it was gathered and making it available on the Internet.

Institutes and research facilities have a particular interest in aggregating and
storing data in a uniform way: if done right they not only have access to
former research data, but can optimize future calculations by finding better
initial guesses of atomic positions, data mine older data or continue a project
seamlessly.

In biological research, scientists realized early that sharing of the data, through

2 Introduction

commonly available databases improves research and leads to faster progress in
the field. The National Center for Biotechnical Information (NCBI)[4] has the
biggest and the most cited database in the molecular biology and medical field -
and its free. The database was initiated in 1988 by the American government
and consists of subsets of smaller databases that hold information about gene
and protein structure, genetic variants, common domains, et cetera. Additionally
NCBI links all published articles to relating gene/protein datasets. By typing the
name of a gene in the search box, NCBI searches all its databases and provides
cross-linked results to relating data sets which enables further investigations and
analyses. Researchers are also able to upload their own data. Nowadays NCBI
is an integral part in daily routine of biologist researchers.

Other biological databases are Ensemble[5], which stores information about
the genome, or the Protein Data Bank (PDB)[6] - which contain published
3D structures of proteins; a good example of collaborate efforts is the Human
Genome Project[7] that was initiated in 1990 and aimed at sequencing the
whole human genome. Many institutes around the world were participating in
sequencing, analyzing, annotating and submitting data.

The electronic structure calculation community is not there yet. Especially
we are far from a cross-linked freely available database where researchers can
upload their data and put it in context with already available data in order
to derive new results - however partial solutions exist: The Virtual Materials
Design Framework (VMDF) (paper D), a tool to filter and analyze aggregated
sets of electronic structure data introduces a first step towards user-friendly
analysis of data, the CAMd database[8] or AFlowLib[3] that present a selection
of aggregated data on the Internet and make it available through a web interface
- or ICSD, the Inorganic Crystal Structure Database[1, 2] that collects validated
experimentally determined data, and provides a software tool and a web interface
to perform searches - unfortunately not for free. During the last eight months
more elaborate tools and databases have seen the light of day: ESTEST[9] aims
at validation and verification of electronic structure calculations of different
codes; Materials Genome[10, 11] has a high-throughput infrastructure to perform
screenings and presents results through toolboxes that are accessible on the
Internet - and the Quixote[12, 13] project that focuses on quantum chemistry
data presents a collaborative open source framework to collect and process data
from different sources.

The reasons why we are not there is that it is hard to find a common applicable
scheme that is able to cover most aspects. The electronic structure data is for
instance more heterogeneous - there are numerous file formats - and the the
analysis depends greatly on the perused goal. The challenges of handling data in
an efficient and reusable way can be divided in a few mature tasks as represented
in Fig. 1.1.

3

Figure 1.1: Major tasks when aggregating data - the arrows represent the work flow.
Calculating produces results that need to be collected in a commonly readable
format. These results could then be stored in a database for further analysis. The
presentation can be done in a web-interface or any other tool that is able to retrieve
data from the storage. Important is to notice that analysis can produce derived data
that should be added to the storage as well.

With the Computational Materials Repository (CMR) that is presented in this
thesis we provide a modular open source system that addresses the challenges
of collecting, storing, making data available through interfaces and propose
and implement basic ideas how to perform analysis. The focus is in particular
on DFT codes because they represent a favorable trade-off between speed and
accuracy for the treatment of “few-hundred-atom” systems highly relevant for
understanding physical and chemical properties of materials. We propose a
file-format (db-files) that holds extracted data syntactically and semantically as
close as possible to the original output file - and introduce groups to indicate
connections between data. The Python user interface allows to search and query
data which then can be analysed. In order to cope with different assumptions on
names and units, CMR implements mappings. A mapping enables to rename and
convert for example the field CartesianPositions in Bohr units, to positions

in Angstrom.

To get a user-friendly way of looking at the data, the PHP/HTML interface
presents the data with the help of a MySQL database and a webserver as shown
in Fig. 1.2. When the data is published it is possible to create a custom view as
shown in Fig. 1.3 to make the results easier accessible for public.

4 Introduction

Figure 1.2: The PHP/HTML interface finds data based on keywords and fields, suggests
related keywords and provides ways to download the data.

Figure 1.3: A customized view of the PHP/HTML interface to present published data
in a heat-map.

5

The focus for the development of CMR was lied on generality, modularity and
extensibility. This leaves a lot of room for performance tuning like using a
compiled language to verify the db-files or only uploading data to the database
that is actually needed.

The Computational Materials Repository is developed in collaboration between
J. Greeley from the Argonne National Laboratory and S. Nestorov from the
University of Chicago and J. S. Hummelshøj, T. Bligaard, J. K. Nørskov from
SUNCAT Center for Interface Science and Catalysis in Standford and us -
Center for Atomic-scale Materials Design. CMR is part of Quantum Materials
Informatics Project[14], which aims at establishing the core technology for
integrated computational materials design.

This thesis begins with an introduction by example to present the capabilities and
usage of CMR followed by a chapter that provides details about the challenges,
the work flows and technical information. The chapter with the case studies
then discusses projects where CMR was used.

6 Introduction

Chapter 2

Introduction and usage of
CMR

This chapter shows what the Computational Materials Repository (CMR) can
do for you with concrete examples and explanations of the user interfaces. The
subsequent chapter focuses on concepts and the inner workings.

We shall first briefly give an overview of all the functionalities of CMR and then
move on to more concrete illustrations of its usage.

All the different components of CMR are depicted in Fig. 2.1. CMR simplifies
the handling of heterogeneous data from electronic structure codes. It provides
the same interface for handling the data independent of the original file format
(and file names). The general interface makes scripting easy and reusable. Users
of electronic structure codes are typically interested in obtaining and saving
quantities like atomic positions, energies, and forces. Often though also code
specific input parameters and results are relevant. For this reason CMR extracts
most of the variables from the original output file and makes use of the ASE[15]
(Atomic Simulation Environment) interface (if applicable) to get the relevant
data in a unified representation in terms of variable names and units.

The extracted data is stored in a file format that we call db-file. db-files can
be read on any linux machine that has Python[16] and CMR installed. The

8 Introduction and usage of CMR

Calculation Design Calculate on
Supercomputer

Native
format

Db-file

db-file
repository

Personal
Directory

Present
Data

Agent

Webserver

Database
Silo

interface

PHP/
HTML
interface

Python
interface

Figure 2.1: Overview over the infrastructure and the workflow of the data in CMR.

command line interface enables simple everyday tasks on these files like
viewing content and performing basic editing. Normally all db-files are moved to
a single directory that we call the db-file repository(3.3.2.a). With the CMR
python interface queries can be run on the database as shown in section 2.2.

The data cannot only be stored in a collection of files. As depicted in figure 2.1
the data from the db-files can be uploaded to a database and queried with the
python interface which will result in faster searches, because the data is indexed.
More elaborate installations can make use of the PHP/HTML interface that
provides a graphical user interface for searching and viewing data while Silo1

features a workbench to analyze data. Last but not least so-called agents may
run in the background – either invisible from the users or under user control –
and perform certain tasks as for example grouping of db-files or preparing data
needed by the user interfaces.

Currently CMR supports the import of GPAW, Dacapo, VASP and ASE tra-
jectory files. Additionally CSV[17] files are supported which can be read and
written by OpenOffice or Microsoft Excel.

1Silo was initiated and is maintained by Jens Strabo Hummelshøj, at the time of writing a
post-doc at SUNCAT Center for Interface Science and Catalysis at Stanford

2.1 Working with CMR 9

2.1 Working with CMR

Working with a database is quite different from the common approach of storing
data in a file system: files and directories are non-existent and therefore the
data has to be identified in an other way. CMR implements an abstraction layer
that simplifies finding of results by keywords or fields. A field is simply a
name/value pair as for example energy/12.0 or program/gpaw.

In this section we discuss how to organize the data to be able to do the same as
with the “old” approach and additionally profit from storing it with CMR in
a database. Please note that the python interface supports to querying the
db-file repository as well as the database (MySQL database) while agents
work only with the database. However this does not change the way the data is
organized.

There are few requirements that need to be identified in order to work efficiently
with the database: First, the results need to be found after putting them
into the database. Keywords replace directory and file names. For instance
the file with the path 211surfaces/Ag211/edge/H.gpw would get the keywords
211surface,Ag211,edge. There is no need to put H as a keyword, for finding
purposes, because we can search/restrict by atom type. However, if the count of
the atoms matters as for N2 then it would make sense to include it. (The reason
is that when looking for N2 we would also get the results with the single atom
N.) The advantage of keywords over directory names is that the order doesn’t
matter and they enable to look at arbitrary subsets. When the two keywords
211surface and edge and the requirement of presence of the atom H are combined
in a query, we find all kinds of 211 surfaces with an H atom at the edge position.
To look for these files in subdirectories would be considerably more cumbersome.
Second, we would like to read the data in a similar way as the native output file.
This is achieved with the python user interface as described later in section 2.4
or with the interface that views the data in a web browser as shown already in
the introduction in Fig. 1.2. Third we profit from the database capability to
search efficiently for the defined keywords and fields. Fourth, the results should
provide more information than just the numbers from the output file. db-files
are capable of storing scripts, in-/or output files, calculation parameters and
custom fields as for example surface=211. Fifth, the results should be traceable.
By creating groups (described later in the section 2.7) that reference the used
data is conserved.

One might wonder what is the difference between the keyword 211surface and
the field surface=211, because both define the same data set. The different
characteristics can be seen when grouping calculations according to criteria

10 Introduction and usage of CMR

specific criteria. The chemisorption energy Echem is calculated as Echem =
EZ − EX − EY , where EX the adsorbate X in the gas-phase, EY the clean
surface with atoms Y and EZ is the total energy of surface with atoms Y with
the adsorbate Z. If we had only the keywords, then we would have to know every
single keyword and loop manually over all possible combinations. In pseudo code
it would look as follows:

f o r s u r f a c e in [1 1 1 , 2 1 1 , . . .] :
f o r adsorbate in [H, O, . . .] :

f i n d r e s u l t with keyword s u r f a c e+adsorbate
E chem = . . .

This is not efficient because every possible combination has to be checked - even
if there is no data in the database and because the actually available surfaces
and adsorbates have to be known. They cannot automatically be determined
from the database.

A better way is to use the keyword to identify a certain type of calculation and
the fields to combine them. This can be written as the following list of rules:

• X.keywords contains adsorbate

• Y.keywords contains surface

• Z.keywords contains surface+adsorbate

• X.ads=Z.ads

• Y.surf=Z.surf

These rules can then be translated to MySQL, the query language for the
database. This approach is more general since the surfaces and adsorbates are
determined automatically; the only thing that needs to be specified is the name
of the fields (ads for the adsorbate and surf, for the surface). CMR provides a
tool called GroupingAgent that translates the list of rules into query language.
Its usage is explained in the next section 2.2.

To summarize: keywords identify a calculations or a certain type of calculation,
while fields enable efficient combination/grouping. Groups show a connection
between individual calculations or explain what calculations were involved to
derive a result. Generally one would add a keyword to identify the type of
calculation and fields for the properties that are needed to make the groups or
to store additional information about the calculation.

2.2 Step by Step 11

2.2 Step by Step

In this section more concrete examples of how to work with CMR are presented.
In order to actually run the presented python code, the user needs to have CMR
installed – or have access to an institute that has deployed it. The CMR wiki
and the installation instructions are available from https://wiki.fysik.dtu.

dk/cmr.

The example takes its offset in a data set acquired as a computational screening
for materials which can use solar light to split water - one potential way of
producing hydrogen fuel. How the calculations are performed is described in
detail in Paper B “Computational Screening of Perovskite Metal Oxides for
Optimal Solar Light Capture”. In the context here the following background
should be sufficient.

For a material to be able to split water based on solar light, a number of
conditions have to be fulfilled. First of all the material of course has to be stable
also when surrounded by water. Furthermore, the electronic energy gap has to
be in the right range (1.5-3 eV) so that the generated electron-hole pairs have
sufficient energy to perform the water splitting (for this a large gap is preferred),
but at the same time the gap should be small to increase the amount of light
absorbed. There are some further conditions related to the positions of the band
edges relative to the redox potentials for water splitting but we do not need to
go into that here. The class of materials which have been investigated are mainly
oxides (and oxynitrides) in the cubic perovskite structure. The interested reader
is referred to more details in Paper B at the end of this thesis.

Here we focus on oxides in the perovskite structure which has the composition
ABO3 with A and B being metals. The above mentioned stability is investigated
by defining the heat of formation (hof) Ehof of the ABO3 compound as

Ehof = EABO3 − EA − EB − 3EO

and we will show how this can be retrieved from the database as a list and also
export it as a csv-file[17] (Comma Separated Values). To get an overview, the
results should be displayed in a heat map with the PHP/HTML interface as
shown in figure 2.2.

However, to begin with the beginning we should first get some data into CMR.
The perovskite calculations have all been done with GPAW and this program is

https://wiki.fysik.dtu.dk/cmr
https://wiki.fysik.dtu.dk/cmr

12 Introduction and usage of CMR

Figure 2.2: A table showing the numeric results and a heatmaps with the heat of
formation for ABO3. The elements are ordered along the axis according to Pettifor’s
stringing of the Periodic Table.

particularly well integrated with CMR so data transfer is easy. GPAW allows the
use of the native GPAW.write function to directly produce a db-file as shown in
figure 2.3. This has the advantage that the result is read directly from memory.
Furthermore, at CAMD the db-file repository is a directory from where the data
is automatically uploaded to the database, but CMR can also be used directly
with the collection of db-files.

As is fairly obvious from the file, the format allows for the definition of a number
of keywords (“ABO3” and “CsZnO3”) as well as script-files and possibly other
files that should be saved with this entry. It is also possible to define new so-called
fields which are name–value pairs. The last field in the example for example has
the name “X” with the value “O3”. Some of the information carried by the fields
or keywords are in this example somehow redundant. It is of course possible just
from the identity of the atoms and their positions to recover which metal atom
is in fact the “A” atom in the perovskite structure, but it may be convenient
sometimes to add the information explicitly for fast and easy retrieval. If other

2.2 Step by Step 13

import cmr . . .
c a l c = GPAW() . . .
cmr params = {

” db keywords ” : [”ABO3” , ”CsZnO3 ”] ,
” d b s c r i p t s ” : [” CsZnO3 . py ”] ,
” d b f i l e s ” : [” CsZnO3 . txt ”] ,
”name ” :”CsZnO3” ,
”A” :” Cs” ,
”B” :” Zn” ,
”X” :”O3”

}
c a l c . wr i t e (” . db” , cmr params=cmr params)

Figure 2.3: A small python script to add an arbitrary result to the db-file repository.
GPAW provides the ability to use its native write function.

programs than GPAW are used or if one wants to “manually” add information
to the db-files this can be done as shown in figure 2.4.

import cmr

cmr params = {
” input ” :”CsZnO3 . xxx ” ,
” output ” : ” . db” ,
” db keywords ” : [”ABO3” , ”CsZnO3” , ” hof ”] ,
” d b s c r i p t s ” : [” CsZnO3 . py ”] ,
” d b f i l e s ” : [” CsZnO3 . txt ”] ,
”name ” :”CsZnKO3” ,
”A” :” Cs” ,
”B” :” Zn” ,
”X” :”O3”

}
cmr . convert (cmr params)

Figure 2.4: A small python script to add an arbitrary result to the db-file repository.

All extra fields and keywords are defined in a python dictionary and passed as
an extra argument to cmr.convert. ”input” specifies the file that should be
imported and ”output” the name of the output file - using ”.db” as a name
signals that we are not interested in a real filename and would like the output
to be written directly to the db-file repository (from where it will be added to
the database). ”db keywords” is a list of keywords that identify this calculation,
db scripts and db files take a list of filenames that will be included - and finally
”A”, ”B” and ”X” are user defined fields.

The calculation of the heats of formation require input from several different

14 Introduction and usage of CMR

GPAW calculations. The link between different calculations in CMR is established
by creating so-called groups of calculations: The resulting calculated energy,
Ehof,CsZnO3

, will be linked to a group containing the calculations for CsZnO3,
Cs, Zn, and O. When loading the data into CMR they have been equipped with
keywords and fields as illustrated in figure 2.3, so the A- and B-metal atoms in a
given perovskite calculation can be referred to using the fields “A” and “B”. The
keywords make finding a result easier - there are no file and directory names in a
database that provide hints. When choosing keywords and fields, it is important
to assure that results can be identified uniquely. The above proposed fields are
sufficient for the presented example, but if there would be reference calculations
for AO2, they could not be distinguished from the calculations of A: looking for
the keyword ”reference” and A=Cu would return both of the results. In that
case one would have to either add another keyword (e.g. bulk, oxide) or add a
new field (e.g. type=”bulk”, type=”oxide”) to distinguish them. Alternatively,
the atoms entering the calculation could be directly analyzed.

The easiest way to visualize the relevant grouping, is to use the PHP/HTML
interface which provides an intuitive way to write queries. A screen shot is shown
in figure 2.5 on page 15. The query that was used is ABO3 A=Cs and shows all
results having the keyword ”ABO3” and containing a field “A” with the value
“Cs”. The rest of the query columns=... in the figure selects the columns and
defines to display the atoms, that should be displayed. These argument are
optional, but convenient when viewing a data set with custom fields.

Now we would like to calculate the heat of formation (hof) by finding matching
calculations. To make the syntax easier we denote in the following ABO3 as
the calculation of ABO3 and ABO3.PotentialEnergy as the potential energy of
ABO3. The hof is evaluated as

Ehof =ABO3.PotentialEnergy −A.PotentialEnergy/A.nA

−B.PotentialEnergy/B.nA−X.PotentialEnergy

where A.nA denotes the number of atoms of type A. We therefore need to find
the four calculations in order to perform the computation.

The combination criteria can be written as three equations and be passed on to
the GroupingAgent.

• ABO3.A = A.A
• ABO3.B = B.A
• ABO3.X = X.A

The items A, B, X and ABO3 are identified by the keywords. We also include
the user name (db user=ivca) to prevent confusions - other users might have

2.2 Step by Step 15

Figure 2.5: The query ”ABO3 A=Cs” in the PHP/HTML interface and its result.
columns= selects the columns that should be shown.

16 Introduction and usage of CMR

used the same keywords and fields for other purposes and we don’t want to mix
results:

A, B and X are identified with

• keyword: reference
• name-value: db user=ivca

ABO3 is identified with

• keyword: ABO3
• name-value: db user=ivca

The GroupingAgent is a tool in the python interface that helps to group calcu-
lations. Normally agents are used to perform expensive queries and tasks in the
background, but we can also make use of them directly. In our case we use one
to calculate the heat of formation. The complete script that is being discussed
here is shown in figure 2.6.

At the beginning, right after the imports, the definitions describe the data sets
(ABO3, A, B, X) that we need to retrieve from the database and the fields that
we would like to see in the output (fields of interest):

ABO3 = {”name ” :”ABO3” ,
” name value ” : {” db user ” : ” ivca ”} ,
”keywords ” : [”ABO3”] ,
” f i e l d s o f i n t e r e s t ” : [” Potent ia lEnergy as e ABO3” ,

”A” ,
”B”]}

. . .

The name value (db user=ivca) and the keywords (ABO3) define how ABO3

calculations are identified. The fields of interest contains information about
fields that we would like to see in the output while the name.field name is used
in the definition of the combination criterion:

comb cr i t = [(”ABO3.A” , ”A.A”) ,
(”ABO3.B” , ”B.A”) ,
(”ABO3.X” , ”X.A”)]

For every quadruple that fits the criteria, we determine the hof by writing it as
an equation:

c a l c = ”ABO3. Potent ia lEnergy ”
c a l c += ”− ABO3.nA∗A. Potent ia lEnergy /A.nA”
c a l c += ”− ABO3. nB∗B. Potent ia lEnergy /B.nA”
c a l c += ”− X. Potent ia lEnergy ”

2.2 Step by Step 17

from cmr . u i . db reader import DBReader
from cmr . p lug in s . agents . group ing agent import GroupingAgent
ha r t r e e = 27.211395655517308

ABO3 = {”name ” :”ABO3” ,
” name value ” : {” db user ” : ” ivca ”} ,
”keywords ” : [”ABO3”] ,
” f i e l d s o f i n t e r e s t ” : [” Potent ia lEnergy as e ABO3” , ”A” , ”B”]}

A = {”name ” :”A” ,
” name value ” : {” db user ” : ” ivca ”} ,
”keywords ” : [” r e f e r e n c e s ”] ,
” f i e l d s o f i n t e r e s t ” : [” Potent ia lEnergy as e A ”]}

B = {”name ” :”B” ,
” name value ” : {” db user ” : ” ivca ”} ,
”keywords ” : [” r e f e r e n c e s ”] ,
” f i e l d s o f i n t e r e s t ” : [” Potent ia lEnergy as e B ”]}

X = {”name ” :”X” ,
” name value ” : {” db user ” : ” ivca ”} ,
”keywords ” : [” r e f e r e n c e s ”] ,
” f i e l d s o f i n t e r e s t ” : [” Potent ia lEnergy as e X ”]}

comb cr i t = [(”ABO3.A” , ”A.A”) , (”ABO3.B” , ”B.A”) , (”ABO3.X” , ”X.A”)]

c a l c = ”ABO3. Potent ia lEnergy − ABO3.nA∗A. Potent ia lEnergy /A.nA − ” ;
c a l c += ”ABO3. nB∗B. Potent ia lEnergy /B.nA − X. Potent ia lEnergy ”

e v a l u a t i o n s = {” e h e a t o f f o r m a t i o n ”:”(% s)∗% f ” % (ca lc , ha r t r e e)}

keywords = [” ABO3 hof ”]

i tems = [ABO3, A, B, X]

c o m b i n a t i o n c r i t e r i o n s = comb cr i t

agent = GroupingAgent (DBReader () ,
items ,
c o m b i n a t i o n c r i t e r i o n s ,
eva luat i ons ,
d b f i l e s =(”” , ”members only ” ,

{” db keywords ” : keywords }))
agent . run ()

Figure 2.6: The calculation of the heat of formation with use of the GroupingAgent.
(Section 2.2)

e v a l u a t i o n s = {” e h e a t o f f o r m a t i o n ”:”(% s)∗% f ” % (ca lc , ha r t r e e)}

keywords = [” ABO3 hof ”]

The last step is to add some keywords to identify the results and create an

18 Introduction and usage of CMR

instance of the GroupingAgent and call its run method. During the run the
created db-files (results) are written directly to the db-file repository.

agent = GroupingAgent (DBReader () ,
[ABO3, A, B, X] ,
c o m b i n a t i o n c r i t e r i o n s ,
eva luat i ons ,
d b f i l e s =(”” , ”members only ” ,

{” db keywords ” : keywords }))

agent . run ()

Instead of writing the data back to the database we can print it as well onto
the screen and create a spreadsheet in the csv format. The following slightly
modified code shows how:

. . .
dc = DataCol l ec t ion ()
agent = GroupingAgent (DBReader () ,

c r i t e r i o n s ,
c o m b i n a t i o n c r i t e r i o n s ,
eva luat i ons ,
d a t a c o l l e c t i o n = dc)

agent . run ()

dc . p r i n t t a b l e (−1 , columns =[”A” , ”B” , ”X” , ” e h e a t o f f o r m a t i o n ”])
open (” a l l . csv ” , ”w”) . wr i t e (dc . g e t c s v ())

After running the agent, the DataCollection object contains the result. Calling
print table prints a table and get csv returns a string in the csv format that
can be written to disk. A further going introduction to the DataCollection

will be given in the next section 2.4.

The earlier created hof results can be found with the keyword ABO3 hof. A
click on the id in the PHP/HTML user interface shows the e heat of formation
along with with links to the calculations that were used to obtain the number.
In order to create the heat map shown in figure 2.2 we open the heat map tab
and choose the parameters as shown in figure 2.14 and click the ”Add” button
which will add the selection to the query. After pressing ”Execute” the heatmap
is shown.

2.3 PHP/HTML Web Interface

The PHP/HTML web interface was already mentioned, but the tool and its
usage shall now be discussed beginning with the creation of a query and followed

2.3 PHP/HTML Web Interface 19

by a description of how to use navigate on the result page.

Query Creation
The whole web page is divided into the query box and the result view below as
already shown in Fig. 2.5. The query box (Fig. 2.7) is again divided into two
parts: the lower with a text box where a query can be written and the upper
that actually helps to create the query. The tabs in the top row are ordered
according to the expected workflow: First the data sets are selected, then the
fields and keywords and atoms are restricted. As a next step the retrieved data
can be enhanced which means something is added to the result. This could be
for example a link or some simple mathematical operation on fields. Then filter
can be applied again. The difference between the db-filters and the filters are
that the db-Filters are executed by the database (which is very fast) and the
filters are applied after the retrieval (slow). The reason for having these filters is
that we might want to perform operations on a calculated field. As a last step
we can decide how to visualize the result.

Figure 2.7: The query box enables to write a query in order to retrieve or search
data.

In the above screenshot two data sets can be chosen: the default one which is
simply all data in the database and the stability and band gap screening which
limits the data set to this specific purpose. For now we choose the default which
means we simply go to tab db-filter. Again we get a few sub-tabs presented: the
first options to restrict by the user, by the type of calculation and by keywords:

In order to select a user we open the dropdown box that is labeled with “User”

20 Introduction and usage of CMR

Figure 2.8: Filters and restrictions that should be applied

2.3 PHP/HTML Web Interface 21

and choose a name. When done, we press “Add to query”, which will add in our
case the text db user=martebjo to the query. We could press “Execute” which
would shows all results that the user martebjo uploaded to the database. The
restriction tab allows in Fig. 2.9 to restrict the value of a field as for example
ase potential energy<0 and the atoms tab enables to add a statement like
atoms=Ag,Cu which would force the results to contain both atoms Ag and Cu.
The last tab labeled ASE Traj provides hints about how to work with ASE
trajectory files: trajectories contain multiple steps of a calculation, but in most
cases we are only interested in the last one. In this tab you find the needed
keyword to select the first or last image.

Figure 2.9: When restricting values possible fields are shown, so that one doesn’t have
to remember or type them.

The enhancement tab as shown in Fig. 2.10 features to add a url field, perform
some simple mathematical operation and Fig. 2.11 to add a small JMol window
(showing the atoms) in the table with the results.

Figure 2.10: The operation sub-tab allows to perform simple mathematical operations
on a field.

As a next step (4) it is possible to restrict calculated or enhanced results. This
is used for instance when restricting the range of the heat of formation which is

22 Introduction and usage of CMR

Figure 2.11: Add Jmol to visualize the atom in the result view.

calculated and not stored in the database. (It is also possible to restrict fields
that are stored in the database but it is far less efficient than using the db-filters.)
The other tab defines how to order the results.

Figure 2.12: Orders the result according to the selected columns.

In the last step (5) the visualization is defined. If nothing is explicitly chosen
the data is shown in a table. The displayed columns can be selected in the table
subtab shown in Fig. 2.13.

The output will look similar to the screenshot in Fig. 2.5.

The Heat map tab allows to create a heat map as shown in Fig. 2.14.

The X/Y axis ticks define the field that is used on the axis and the X/Y sort
order can be given a predefined order. Triangle 1 to 4 are the fields that should
be shown in the heat-map (although if we choose only one field its a actually
shown as a square). The colors for are defined as pairs of value and color names.
e.g. 0-¿yellow defines that the color at 0 is yellow. Values between the defined
colors are interpolated while values outside are extrapolated. The two special

2.3 PHP/HTML Web Interface 23

Figure 2.13: By default a table is shown which can be customized by choosing the
displayed columns.

“values” min and max can be used to denote the minimum and the maximum
values respectively. The possible choices for the color names are shown at the
bottom of the heatmap definition tab. As a last feature, the an URL column
can be defined that is a field that contains a link that the user is transferred to,
when clicking into the heat map. Normally this link would show the details of
the calculation.

The GA tab, Fig. 2.15 allows to define how the the results of a genetic algorithm
run are visualized. The genetic algorithm is discussed in the section 4.2.

The first choice is to define whether to show the best alleles of a certain gen-
eration (best generation) or the alleles that were calculated in that generation
(generation). Then we choose the name of the run. Again it is possible to assign
colors for the different values of the fitness which are assigned to the cell in the
result table as shown in Fig. 2.15. The columns to display are chosen in the
check box list below the other options.

Navigation
By default a table is shown with the result of the created query. The different
elements are marked with numbers in Fig. 2.16 and shall be elaborated.

1 The number of results that were found. The time specifies how long it took
to determine the calculations belonging to the result set. This excludes the
time to actually build the web page. In some cases results are automatically
cached, then the time to read the cached result is displayed.

2 The page navigation. Clicking on three will navigate to page three.

24 Introduction and usage of CMR

Figure 2.14: The settings to create a heat map similar to the one shown in figure 2.2

2.3 PHP/HTML Web Interface 25

Figure 2.15: Defines how to present a run of the Genetic Algorithm

Figure 2.16: Table with the results of the query ABO3 with custom selection of the
displayed columns.

26 Introduction and usage of CMR

3 A list of related keywords that are determined by looking at other keywords
that results have in the result set. These are counted and added in
descending order as suggestions. A click on the keyword will add the
keyword to the query and execute it; a click on the “+” beside a keyword
will add the keyword to the query, but execute it in a new window.

4 The id ref is the id in the database. This mustn’t be confused with the
unique identifier presented in 2.6. A click on it will show all calculation
details.

5 The atoms contained in this calculation. A click on the atom will add the
atom to the query and restrict the results to calculations containing it. If
the query restricts to multiple atoms only results containing all the items
will be shown.

6 The keywords in this calculation. A click on them will add the selected
keyword and execute it.

7 A link to the query that produced this result. It can be used to get quickly
back to the presented view. Note that the query is linked and not the
current results: visiting this url will show always an up to date view of the
data.

8 Download links left to right: A click on the ASE icon will download a script
that opens the calculation with the ASE tool “ag” which is capable of
displaying the atoms and initiate a new calculation. The CMR link provides
a python script template that allows to modify, delete this calculation (an
example is shown in the appendix F.2), and the JSON download provides
the data in JSON[18]. Last but not least an xyz[19] file can be obtained.
The ASE,and xyz download are however only available for GPAW, Dacapo
and ASE created files.

9 JMol view allows to look at the atom in 3D. This third-party tool needs a
java plugin for the web browser.

The navigation for the results of the Genetic Algorithm and the heat map are
basically the same. For example a click on the id ref in Fig. 2.15 will open a
detailed view of the clicked result.

2.4 Querying and Analysis

Combining the strengths of the PHP/HTML interface and the python interface
makes work more efficient: the PHP/HTML interface is good for identifying
and verifying data while the python interface provides the ability to filter, print,
export and conduct further analysis. It is furthermore capable of connecting to
multiple CMR instances, for example a CMR database at CAMD and one at an
other institute in order to combine these results in some way. In this section we

2.4 Querying and Analysis 27

Figure 2.17: Visualization of the result of a Genetic Algorithm run discussed in section
4.2. The displayed fields (fitness, jmol picture, id) are chosen in the GA tab shown in
Fig. 2.15.

28 Introduction and usage of CMR

Figure 2.18: CMR provides a script that executes the same query in the python interface
to enable further analysis of the result and json downloads (to the right) the data in
the JSON format.

look at how to work efficiently with these tools and show how to get the best
performance.

We have already seen how to start a query with the GroupingAgent. Another
way is to use a DBReader object with it’s find method. We have again the
possibility to select by name/value pairs, keywords and atoms. There are also
choices for excluding keywords/atoms from results as can be seen in Fig. 2.19.
All arguments for find are optional, but at least one has to be set. The return
value is a derived DataCollection object which provides functions to create
csv files, print to the screen, derive more restricted sets of data, and append
DataCollection objects to each other.

The most efficient way to query is to make the downloaded results as small
as possible with DBReader.find. Note that if a restriction to specific columns
is omitted, find will download all columns of the resulting db-files. Since the
download is the bottleneck you are advised to select the columns for larger
amounts of data.

Commonly used operations on DataCollection objects are

• DataCollection.select(name, value) e.g.
DataCollection.select("db_user", "ivca") returns a new collection
with only items containing data from the user ”ivca”.

2.5 The Command Line Interface 29

• DataCollection.select(name, value, comparator) e.g.
DataCollection.select("e_heat_of_formation", 0 , comparator=Operator("<"))

returns a new collection with only data that has e heat of formation < 0.
• DataCollection.sort(field_name)e.g.
DataCollection.sort("db_user") sorts the collection by the user names.

• DataCollection.select_if_in_list(name, value) e.g.
DataCollection.select_if_in_list("db_keywords", ["ABO3"]) selects
items from the list db keywords that contain the keyword ”ABO3”.

• DataCollection.add(other) returns a new DataCollection instance with
contains the calling and the data from the other DataCollection.

The way that the we used the DBReader until now just connected to the default
database. In order to connect to a different one we choose a connection name:

#connect to d e f a u l t
r eader = DBReader ()
#connect to th i r d party
other = DBReader (” th i rd−party ”)

If the connection is not yet known, a prompt for credentials will show up. To
query the db-files that are contained in a directory we can use a DirectoryReader

object instead of the DBReader (see Fig. 2.20). The limit of this approach is that
DirectoryReaders cannot be used together with agents.

If the connection is not yet known, we are prompted for the necessary credentials.

To make the process of switching from the PHP/HTML to the python interface
easier the PHP/HTML interface provides for every query a link to a python
interface script that performs the same query if this is possible. (the image link
highlighted in figure 2.18). The script contains also hints about how to perform
common tasks such as adding keywords, fields, or removing results from the
database. The idea is to use it as a starting point to retrieve the desired data
for further analysis.

There are many more examples on the CMR wiki at https://wiki.fysik.dtu.
dk/cmr that show how to work with db-files and DataCollections. The wiki’s
source can also be retrieved from the CMR source.

2.5 The Command Line Interface

In some situations there is need to just quickly create, modify or submit a
db-file. The command line interface (CLI) enables working with db-files in a

https://wiki.fysik.dtu.dk/cmr
https://wiki.fysik.dtu.dk/cmr

30 Introduction and usage of CMR

import cmr
from cmr . u i import DBReader

n a m e o p v a l u e l i s t = [(” Potent ia lEnergy ” ,” <” ,0 .1)]
n a m e v a l u e l i s t = [(” db user ” , ” jdoe ”)]
k e y w o r d l i s t = [” t e s t run ”]
n o t k e y w o r d l i s t = None
n o t a t o m l i s t = None
a t o m l i s t= [”Cu” , ”Ar ”]
columns = [” Potent ia lEnergy ” , ” db user ” , ” db keywords ”]

r eader = DBReader ()

c o l l e c t i o n = reader . f i n d (n a m e v a l u e l i s t=name va lue l i s t ,
n a m e o p v a l u e l i s t=name op va lue l i s t ,
k e y w o r d l i s t=keyword l i s t ,
n o t k e y w o r d l i s t=not keyword l i s t ,
a t o m l i s t=atom l i s t ,
n o t a t o m l i s t=not a tom l i s t ,
columns=columns)

c o l l e c t i o n . p r i n t t a b l e (20)

Figure 2.19: Script to retrieve data from database. The query in the PHP/HTML
interface would be: db user=ivca "test run" atoms=Cu,Ar PotentialEnergy<0.1.

import cmr
from cmr . u i import DirectoryReader

n a m e o p v a l u e l i s t = [(” Potent ia lEnergy ” ,” <” ,0 .1)]
n a m e v a l u e l i s t = [(” db user ” , ” jdoe ”)]
k e y w o r d l i s t = [” t e s t run ”]
n o t k e y w o r d l i s t = None
n o t a t o m l i s t = None
a t o m l i s t= [”Cu” , ”Ar ”]
columns = [” Potent ia lEnergy ” , ” db user ” , ” db keywords ”]

r eader = DirectoryReader (”<path>”)

c o l l e c t i o n = reader . f i n d (n a m e v a l u e l i s t=name va lue l i s t ,
n a m e o p v a l u e l i s t=name op va lue l i s t ,
k e y w o r d l i s t=keyword l i s t ,
n o t k e y w o r d l i s t=not keyword l i s t ,
a t o m l i s t=atom l i s t ,
n o t a t o m l i s t=not a tom l i s t ,
columns=columns)

c o l l e c t i o n . p r i n t t a b l e (20)

Figure 2.20: Script to read data/filter db-files from a directory. The query
in the PHP/HTML interface would be: db user=ivca "test run" atoms=Cu,Ar

PotentialEnergy<0.1

2.5 The Command Line Interface 31

shell. Additionally, the more powerful commands allow to schedule and submit
results to the db-file repository similar to a file versioning tool - however there is
no way to go back to older versions with CMR.

Basic Commands
Show all available commands:

$> cmr −h

To convert any supported file to the db-format --convert can be used:

$ cmr −−convert i n i t a l . t r a j
or
$ cmr −−convert ∗ . t r a j

The first example line in the example produces the file initial.db, the second
converts all *.traj in the current directory. Now the produced db-files can be
enhanced with keywords, fields and attached scripts and files with the modify
command, which will show the available sub commands:

$ cmr −−modify i n i t a l . db
cmr ve r s i on 0 . 3 . 2 . 5 2 3M

What would you l i k e to do?

keywords : ak : add keyword (s)
akr : add keyword (s) r e c u r s i v e l y : a l s o add to group members
rk : remove keyword (s)
rkr : remove keyword (s) r e c u r s i v e l y : a l s o remove keywords

from group members
f i e l d s : av : add f i e l d / v a r i a b l e

avr : add f i e l d / v a r i a b l e r e c u r s i v e l y : a l s o add to group
members

rk : remove f i e l d / v a r i a b l e
rkr : remove f i e l d / v a r i a b l e r e c u r s i v e l y : a l s o remove

keywords from group members
s c r i p t s : as : add s c r i p t (s)

r s : remove s c r i p t (s)
f i l e s : a f : add f i l e (s)

r f : remove f i l e (s)
show : b : browse (db− f i l e s from o f ” i n i t i a l . db”)

s : p r i n t s t a t u s (only scheduled /added f i l e s from
” i n i t i a l . db”)

d : dump : dump the content o f the s e l e c t e d items
da : dump−a l l : dump the content o f the s e l e c t e d items

i n c l u d i n g a l l group members
commit c : commit : wr i t e to r e p o s i t o r y
e x i t e : e x i t

The usage of the commands is intuitive with the exception of browse and print

32 Introduction and usage of CMR

status that need explaining: browse shows all selected db-files while print status
considers only the status of the files scheduled to be uploaded. In our case we
haven’t scheduled anything and choose browse to see the a few selected columns
of what is contained in initial.db:

Your cho i c e : b

. . . | d b c a l c u l a t o r | db user | db keywords | db f i l e name

. . . | group | cmr | NULL | i n i t i a l . db

. . . | a s e t r a j e c t o r y i t e m | cmr | [’ f i r s t ’] | i n i t i a l . db

. . . | a s e t r a j e c t o r y i t e m | cmr | [’ l a s t ’] | i n i t i a l . db
3 columns .

It can be seen that there are three “files”: the items with the db calculator equals
“ase trajectory item” are the steps stored in the original trajectory file while the
“group” is simply the glue that allows to reconstruct the original trajectory file.
There is more information about groups in the section 2.7. In the next step we’d
like to add the keywords “NEB” and “initial” to every item:

Your cho i c e : akr

Enter one or more keywords (comma separated) : NEB, i n i t i a l
Adding keywords done .

The success of the operation can again be checked with b. Choose e to exit.
Back on the command line the db-file can be submitted to the db-file repository
with --commit

$ cmr −−commit i n i t i a l . db

Now that the file is submitted it can be found using the python interface or the
PHP/HTML interface with the keywords NEB and initial.

Scheduling and Submitting

In some scenarios it is necessary to create a dataset offline and when ready
upload it to the database. In case of modifications, the changed part of the
dataset can be resubmitted. The commands needed to work this way are --add

--modify, --status --commit. CMR then creates a subdirectory with the name
.cmr that stores the scheduled files: don’t modify them manually!

The command --add schedules all traj-files in the current directory as to be
added to the database. During the selection the files are automatically converted
to db-files.

2.5 The Command Line Interface 33

$ cmr −add ∗ . t r a j
cmr ve r s i on 0 . 3 . 2 . 5 2 3

A f i n a l . t r a j
A i n i t i a l . t r a j

The status can be checked with --status:

$ cmr −−s t a t u s .
cmr ve r s i on 0 . 3 . 2 . 5 2 3M

s t a t u s | d b o r i g f n | d b l a s t m o d i f i e d | db keywords | db hash
A | i n i t i a l . t r a j | 2011−12−09 2 3 : 1 . . . | NULL | 78169b4 . . .
A | i n i t i a l . t r a j | 2011−12−09 2 3 : 1 . . . | [’ f i r s t ’] | 8 bf505e . . .
A | i n i t i a l . t r a j | 2011−12−09 2 3 : 1 . . . | [’ l a s t ’] | eeb029a . . .
A | f i n a l . t r a j | 2011−12−09 2 3 : 1 . . . | NULL | 5 4 8 2 0 9 . . .
A | f i n a l . t r a j | 2011−12−09 2 3 : 1 . . . | [’ f i r s t ’] | daf1eb2 . . .
A | f i n a l . t r a j | 2011−12−09 2 3 : 1 . . . | [’ l a s t ’] | a2c288e . . .
6 columns .

The “A” in front signals that the files are scheduled to be uploaded. It is now
possible to edit the files with --modify exactly the same way as previously
shown:

$ cmr −−modify i n i t i a l . t r a j

with the exception that --status is used to see the files. When done --commit

is used in order to upload them to the db-file repository:

$ cmr −−commit ∗ . t r a j

As soon as the files are available in the database, using --status shows the
status “DB”

s t a t u s | d b o r i g f n | d b l a s t m o d i f i e d | db keywords | db hash
DB | i n i t i a l . t r a j | 2011−12−09 2 3 : 1 . . . | NULL | 78169b4 . . .

M DB | i n i t i a l . t r a j | 2011−12−09 2 3 : 1 . . . | [’ f i r s t ’] | 8 bf505e . . .
DB | i n i t i a l . t r a j | 2011−12−09 2 3 : 1 . . . | [’ l a s t ’] | eeb029a . . .
DB | f i n a l . t r a j | 2011−12−09 2 3 : 1 . . . | NULL | 5 4 8 2 0 9 . . .
DB | f i n a l . t r a j | 2011−12−09 2 3 : 1 . . . | [’ f i r s t ’] | daf1eb2 . . .
DB | f i n a l . t r a j | 2011−12−09 2 3 : 1 . . . | [’ l a s t ’] | a2c288e . . .

6 columns .

unless the file was modified meanwhile in which case it would be “M DB”.

The CLI has clear advantages when working directly with db-files: the access
is fast and easy, but the drawback is that it is not very flexible: all actions are
based on file names and are not programmable like in the python interface.

34 Introduction and usage of CMR

2.6 Modifying Data in the Database

There are a few important details about duplicates, overwriting and removal of
data from the database. In a file system there can be only one files with a certain
name per directory. CMR works in a similar way, but instead of a file name, a
unique identifier (UI) is calculated using a hash function over the static part
of the included data. The static part is mainly the output of the calculator and
the dynamic part are the user added keywords, fields and attached files. This
means that the UI only changes when something unexpected is modified - and
prevents therefore overwriting of good with false data. There is a big advantage
of having the UI calculated from the data and stored in the db-files and assigned
by the MySQL database: the identifier is globally unique and as a consequence
data exchange with other databases is possible without conflicts. Additionally
the queries written for one database can be used with an other as well.

The right way to update a data in the database is to retrieve it, modify it and
then upload it again. The assumption that converting the original file again
and uploading the new db-file to the database will overwrite the existing one is
wrong. The data is added, but does not overwrite anything because the created
UI is different for every conversion.

In seldom cases we have to upload an “old” file and overwrite a newer one.
Overwriting in the database created by CMR is similar to a file system where
files are overwritten when a file with the same name is added to a directory.
Normally there is an option that prevents newer files to be overwritten by older
ones. This is the default in CMR: only files with a newer last modified time
stamp than the one already in the database can overwrite. As a consequence
when uploading older files the last modified time stamp must be updated and
this happens, when the db-file is changed or if a the file is touched. The easiest
way is to use touch which is available in the command line interface:

cmr −−touch ∗ . db

and also in the python interface:

cmr . touch (‘ ‘ name . db ’ ’)
or i f the f i l e i s in memory or j u s t loaded from the database
data = cmr . read (‘ ‘ name . db ’ ’)
data . touch ()
data . wr i t e (‘ ‘ name . db ’ ’)

After touching the db-files need to be re-uploaded.

2.6 Modifying Data in the Database 35

Using the results of a colleague is easy at CAMD because there is a huge database
deployed that everyone can access. Regularly people don’t like to modify someone
else’s data - and it is also risky to not have full control over the data. In this
case it is easier to own it. Owning means to copy the data and replace the user
name with the own one. The command own does this and is available in the CLI:

cmr −−own ∗ . db
cmr −−commit ∗ . db # upload to database

and also in the python interface:

cmr . own(’ name . db ’)
or i f the f i l e i s in memory or j u s t loaded from the database
data = cmr . read (’ name . db ’)
data . own ()
data . wr i t e (’ . db ’) # wr i t e d i r e c t l y to database

To remove files from the database the command delete can be used with a
string list of UIs:

cmr . d e l e t e ([s t r i n g l i s t o f UIs])

The unique identifiers can be found in different ways depending on the location of
the file. The only thing one has to know is that the unique id is called db hash
in db-files:

1. From a db-file with the command line interface:

$ cmr −−dump O2 . db
cmr ve r s i on 0 . 3 . 2 . 5 2 4

∗∗
Calcu la to r / Ins tance : group/
Hash : 2 f f f9aa2b8faaaf190ab93356cdb4d2b0acba6c3 <−−
Filename : 1 . db
Number o f group members : 4
∗∗
s t a t i c
∗∗∗∗∗∗
d b c a l c u l a t o r : group
d b f i l e v e r s i o n : 0 . 3
db hash : 2 f f f 9aa2b8 faaa f190ab93356cd . . . <−−
d b l a s t m o d i f i e d : 2011−12−12 12 : 45 : 47 . 072049
. . .

2. From random db-files in a directory:

$cmr −b 0 . −−columns db hash , db keywords , db f i l e name
db hash | db keywords | db f i l e name

36 Introduction and usage of CMR

486 f179507a31b7 . . . | NULL | . / group . db
2 f f f 9 a a 2 b 8 f a a a f . . . | [’ N2 ’ , ’EMT’] | . / group . db
9 c05fea0182582e . . . | [’N’ , ’EMT’] | . / group . db
57 e376057e28c7 f . . . | [’ O2 ’ , ’EMT’] | . / group . db
2 f f f 9 a a 2 b 8 f a a a f . . . | [’ N2 ’ , ’EMT’] | . / 1 . db
12882 d67a7e6bf4 . . . | [’ N2 ’ , ’EMT’ , ’ f i r s t ’] | . / 1 . db

Note that the number 0 in the previous command tells to align the columns
automatically and the arguments following --columns define the column
names that should be shown.

3. From a db-file repository:

$cmr −b 0 $CMR REPOSITORY −−columns db hash , db keywords , db f i l e name
. . .

4. From the PHP/HTML interface: a click on id ref will show all data in that
calculation including the unique identifier called db hash. See Fig. 2.16
item four to see where to click.

2.7 Groups

It was already shown that the conversion of an ASE trajectory file results in a
group storing the contained steps and that the GroupingAgent makes groups
for us. It is however often necessary to create groups manually. There are
two options: The first one is to include all group members into a single db-file
(Fig. 2.21) and the second one is to connect them with the UI (Fig. 2.22).

For data exchange the first approach is suitable: Only a single file needs to be
sent, and it contains all data. The second approach is in general recommended
especially if the data is already stored in the database.

Figure 2.21: A group that contains its members in a single db-file.

2.7 Groups 37

Figure 2.22: A group that references it’s members. The group identifies its members
by the UI which is always called db hash (denoted as A,B,C,D) in the db-files.

Storing the complete members into db-files or referencing them is very similar.
The first script stores them:

import cmr
member1 = cmr . read (’ 1 . db ’)
member2 = cmr . read (’ 2 . db ’)
member3 = cmr . read (’ 3 . db ’)

group = cmr . c r ea t e g roup ()
group . add (member1)
group . add (member2)
group . add (member3)
group . wr i t e (’ group . db ’)

and the second one references them:

import cmr
member1 = cmr . read (’ 1 . db ’)
member2 = cmr . read (’ 2 . db ’)
member3 = cmr . read (’ 3 . db ’)

group = cmr . c r ea t e g roup ()
group . add (member1 . get hash ())
group . add (member2 . get hash ())
group . add (member3 . get hash ())
group . wr i t e (’ g r o u p r e f . db ’)

38 Introduction and usage of CMR

2.8 What is actually stored in a db-file?

In this section the content of a db-file shall be discussed. Note however that this
section covers only the information needed by a user to work with the db-files
and more details can be found in 3.3.3.b.

As shown earlier the data contained in a db-file can be viewed with the command-
line interface command -d:

cmr −d N2 . db

The content of the db-files depends on what the type of the original file was.
Nevertheless there are a few fields that are always contained. Their names start
with “db ” in order to prevent conflicts with possible custom fields.

field name sample value
db calculator ase trajectory item
db date 2011-12-12 12:15:54.741326
db last modified 2011-12-12 12:15:54.745658
db hash 356932ea2d6bac7d6433bab8526...
db location CAMD Physics, DTU
db user dlandis
db keywords [’EMT’,’N’]
db description Calculated N2 molecule with ASE.
db script [’N2.py’]
db files [’N2.log’]

Figure 2.23: Fields that are always present in every db-file.

The meaning of the fields in Fig. 2.23 are as follows: the db calculator field
defines the original calculator, other examples besides ase trajectory item are
gpaw, vasp, gaussian or dacapo. db date stores the creation date of the db-file
while db last modified the one of the last applied modification. The unique
identifier is store in the field db hash and the user name in db user. db location
should be filled with the department and is defined when installing CMR. The
more interesting field are the description (db description), a list of keywords
(db keywords), the names of the attached scripts (db scripts) and of other files
(db files).

For programs like gpaw and dacapo and as well ASE trajectory files the infor-
mation that ASE provides is extracted and added as fields. The advantage of
using them is that it we know that the units are always in eV and Angstrom.

2.8 What is actually stored in a db-file? 39

The extracted ASE information from the calculation of a N2 molecule is shown
in Fig. 2.24. This information belonging to each atom is interpreted by aligning
the arrays: Fig. 2.25.

ase atomic numbers [7, 7]
ase cell [[1.0, 0.0, 0.0], [0.0, 1.0...
ase center of mass [0.0, 0.0, 0.0]
ase charges [0.0, 0.0]
ase chemical symbols [’N’, ’N’]
ase forces [[0.0, 0.0, -0.005629824829...
ase initial magnetic moments [0.0, 0.0]
ase kinetic energy 0.0
ase masses [14.0067, 14.0067]
ase momenta [[0.0, 0.0, 0.0], [0.0, 0.0...
ase moments of inertia [6.9777930978192266, 6.9777...
ase name N2
ase number of atoms 2
ase pbc [False, False, False]
ase positions [[0.0, 0.0, 0.4990868562675...
ase potential energy 0.262777484094
ase reciprocal cell [[1.0, 0.0, 0.0], [0.0, 1.0...
ase scaled positions [[0.0, 0.0, 0.4990868562675...
ase tags [0, 0]
ase temperature 0.0
ase total energy 0.262777484094
ase volume 1.0

Figure 2.24: These fields that are extracted with ASE and added to the db-files, if the
program supports ASE.

The easiest was to read this information is actually to open the db-file with ase
directly and use view e.g.

from ase . i o import read
from ase . v i s u a l i z e import view
data = read (’N2 . db ’)
view (data)

or the ASE command line tool ag

ag N2 . db

Most of the discussed content should contain sufficient information for most of
the users. For more advanced usages the db-file stores also most of the fields
available in the original data files with the original variable names (if possible)

40 Introduction and usage of CMR

at
o
m

1

at
om

2

ase chemical symbols N N
ase positions [0.0, 0.0, 0.499..] [0.0, 0.0, -0.499..]
ase masses 14.0067 14.0067
ase tags 0 0
...

Figure 2.25: Aligning the ASE arrays shown in Fig. 2.24 allows to identify the properties
for each individual atom.

and units. In general some of the big matrices are ignored in order to keep the
size of the db-file small. For GPAW all variables are stored except the following
parameters: Projections, AtomicDensityMatrices, NonLocalPartOfHamiltonian,
PseudoElectronDensity, PseudoPotential, PseudoWaveFunctions.

2.9 Advanced Task 41

People often wonder what the name of the extracted data fields are in detail. It
is out of the scope of this work to document these fields that are mostly used by
code developers only, but a list of the currently extracted ones is shown in the
Appendix F.1.

2.9 Advanced Task

2.9.1 Publishing results with CMR

The PHP/HTML interface can be used to share data with the public or collabora-
tors. For certain data sets it is useful to restrict the parameters with the purpose
of providing a view with specially tailored parameter choices. Examples of such a
customization can be found at http://cmr.fysik.dtu.dk. Currently it shows
the dataset of the case study described in chapter 4.1. In order to perform such
a customization some knowledge in PHP and Javascript are required.

2.9.2 Using a Mapping

When working with different codes it is common that some fields have the same
meaning, but a different names. In this case a mapping can be applied to an
individual db-file or to a collection of db-files. (The mapping does currently not
support to custom defined fields.) Fig. 2.26 shows a complete example script
that retrieves some data and maps the name of TotalEnergy to e tot and the
units from eV to hartree. As shown, a dictionary defines the items that should
be mapped. The mapping can then be applied to a DataCollection object.

2.9.3 Supporting a new file format

This section explains how to add support for a new file format and implement
it as a CMR plug-in. Please note that this section is meant for developers and
does not explain all source code in detail. Nevertheless it should be possible to
create a converter by following these instructions.
In order to understand how to create a new file format you have to know that
CMR supports plug-ins (Fig. 2.27). Plug-ins allow to add functionality to CMR
without modifying the CMR source code. In this tutorial we are going to create
a converter and a schema plug-in.

http://cmr.fysik.dtu.dk

42 Introduction and usage of CMR

import os
import cmr
from cmr . u i import DirectoryReader
from cmr . t o o l s . un i t s import Units
from cmr . s t a t i c import CALCULATOR DACAPO
from cmr . u i . db reader import DBReader
from cmr . base . mapping import Mapping

mapping name=”custom”

map = {
’ TotalEnergy : ’ :{

”name ” :” TotalEnergy ” , # the i n t e r n a l name
” un i t ” : Units .EV, # the i n t e r n a l un i t
” type ” :” double ” , # the i n t e r n a l cmr type
” python type ” :” f l o a t ” , # the i n t e r n a l python type
” dest name ” : ’ e to t ’ , # the new name
” d e s t u n i t ” : Units .HARTREE} , # the new uni t

}

mapping = Mapping (ca l cu la to r name=CALCULATOR DACAPO,
c a l c u l a t o r i n s t a n c e =””,
name=mapping name ,
map=map)

cmr . d e f i n i t i o n s . r eg i s t e r mapp ing range (mapping)

#reader = DirectoryReader (d i r e c to ry , ”no mapping ”)
reader = DBReader (” d e f a u l t ”)

columns = [” db user ” , ” e t o t ” , ” TotalEnergy ” , ” atomic numbers ”]

c o l l e c t i o n=reader . f i n d (n a m e v a l u e l i s t =[(” db user ” , ”cmr ”)] ,
columns=columns)

c o l l e c t i o n . set mapping (mapping name) # apply mapping
c o l l e c t i o n . p r i n t t a b l e (0 , columns)

Figure 2.26: Example of applying a custom mapping to a DataCollection. The field
TotalEnergy is mapped to e tot, and the unit is changed from eV to hartree.

2.9 Advanced Task 43

• agent: Agents access the database directly and can perform tasks periodi-
cally (3.3.3.a)

• converter: a converter (3.3.4.a) can read output files of an electronic
structure code and write db-files

• extra parameters: are hooks executed before the db-file is written for
example during a conversion; these could be used to add extra information
about the institute that performed the calculation or add data about the
calculation environment or runtime information.

• sql schema: defines how the data should look in the database (sec-
tion 3.3.2.c CMR Database)

• schema: defines a cmr schema (3.3.3.c Schemas)
• test: a test checks if a specific functionality of CMR works and either

succeeds or fails. Tests are executed after the installation or by developers
to assure that modifications didn’t break parts of the code. It is good
practice to provide a test for every converter.

Figure 2.27: CMR plug-in types.

2.9.3.a Step 1: create a converter

We assume that we would like to create db-files from a file format that stores
atoms, positions and a identifier. We call the file format newc. An example is
shown here:

atoms = [6 , 8 , 8]
p o s i t i o n s = [[0 , 0 , 0] , [0 , 0 , 1 . 17 86 5 8] , [0 , 0 , −1.178658]]
name = CO2

The main task of a converter is to parse foreign file format and store it in a
python dictionary in memory. The dictionary can then easily be written to a
db-file. Fig. 2.28 shows a complete converter for the newc file format. There
are three methods: accept, convert mem and convert. accept returns true, if
the file can be converted with that converter, convert mem returns a db-file as
an object while convert writes a db-file. Please note that the use of the eval
function is not secure (see 3.3.3.b) and use safeeval instead. Another important
remark is that we add the fields ase positions and ase atomic numbers manually.
The reason is that the PHP/HTML user interface (3.3.1.c) is able to show the
atomic structure, if these fields are present.

44 Introduction and usage of CMR

import cmr
from cmr import l o g g e r
from cmr import Log
from cmr import CMRException
from cmr . base . conve r t e r import Converter
from cmr . t o o l s . eva l import s a f e e v a l
from cmr . i o . f l a g s import Flags

c l a s s NewC2Db:
@staticmethod
de f accept (f i l ename) :

””” r e tu rn s true , i f supported by t h i s conve r t e r ”””
re turn f i l ename . endswith (” . newc ”)

@staticmethod
de f convert mem (cmr params ,

c a l c u l a t o r i n s t a n c e =””,
cmr chi ld params=None) :

l o g g e r . l og (” Converting newc− f i l e to db− f i l e . . . ” ,
Log .MSG TYPE INFORMATION)

f i l ename = cmr params [” input ”]

cmr params [” db cmr plugin ”] = ”newc−p lug in v e r s i on 0 .1”

c r e a t e d i c t i o n a r y with data
data = Converter . g e t x m l w r i t e r (ca l cu la to r name=”newc ” ,

c a l c u l a t o r i n s t a n c e =””,
mode=Flags .WRITE MODE CONVERT)

l i n e s = open (f i l ename) . read () . s p l i t (”\n”)
f o r l i n e in l i n e s :

name , va lue = l i n e . s p l i t (”=”)
name = name . s t r i p ()
va lue = value . s t r i p ()
t ry :

va lue = s a f e e v a l (va lue . s t r i p ()) #don ’ t use eva l !
except :

pass
data . s e t u s e r v a r i a b l e (name , va lue)

data . s e t u s e r v a r i a b l e (” ase atomic numbers ” , data [” atoms ”])
data . s e t u s e r v a r i a b l e (” a s e p o s i t i o n s ” , data [” p o s i t i o n s ”])

r e turn data

@staticmethod
de f convert (cmr params ,

c a l c u l a t o r i n s t a n c e =””,
cmr chi ld params=None) :

data = NewC2Db. convert mem (cmr params ,
c a l c u l a t o r i n s t a n c e ,
cmr chi ld params)

data . wr i t e (cmr params)
data . c l o s e ()
re turn [data . get hash ()]

Figure 2.28: newc2db.py: A converter that reads *.newc files.

2.9 Advanced Task 45

2.9.3.b Step 2: create a CMR schema

The next step is to create a schema (3.3.3.c). Since this task is tedious CMR
offers a tool to create the main part of the schema automatically. The only thing
that needs to be provided is an example of the data as a dictionary (Fig. 2.29).
The next step is to create the complete schema which could look as shown in
Fig. 2.30.

from cmr . t o o l s . f u n c t i o n s import make schema

data =
{ ’ p o s i t i o n s ’ : [[0 , 0 , 0] , [0 , 0 , 1 . 1 78 6 58] , [0 , 0 , −1 .178658]] ,

’ a s e p o s i t i o n s ’ : [[0 , 0 , 0] , [0 , 0 , 1 . 17 8 65 8] , [0 , 0 , −1 .178658]] ,
’name ’ : ’CO2’ ,
’ ase atomic numbers ’ : [6 , 8 , 8] ,
’ atoms ’ : [6 , 8 , 8]
}
pr in t make schema (data)

Figure 2.29: Creates the main part for a CMR schema automatically.

2.9.3.c Step 3: declare the plug-ins

CMR searches plug-in directories for the file information.py where it finds the
information about the class names of the available plug-ins. For our example
the file is shown in Fig. 2.31

2.9.3.d Step 4: set environment variables

Add the path of the newc converter to the python path. Also adjust the
environment variable CMR SCHEMA PATH to point to this location because
we’re going to create a XML schema in the next step; then add the plug-path to
the cmr configuration file that is normally located in $HOME/.cmr/cmr-settings-

file e.g.

p lug in paths=/home / . . . / newc

46 Introduction and usage of CMR

import os
from cmr import Units
from cmr . base . schema import Schema
from cmr . base . schema import XML CALCULATOR

c l a s s NewCSchema(Schema) :

de f i n i t (s e l f , name , hash schema=”d e f a u l t ”) :
Schema . i n i t (s e l f , name , hash schema=hash schema)

c a l c u l a t o r = {
” ase atomic numbers ” :{

”cmr name ” :” ase atomic numbers ” ,
” type ” :” l ong a r ray ” ,
” op t i ona l ” : ” True ” ,
” python type ” :” l i s t ” ,
” most inner python type ” :” i n t ” ,
”hash ” : True } ,

” a s e p o s i t i o n s ” :{
”cmr name ” :” a s e p o s i t i o n s ” ,
” type ” :” l o n g x a r r a y ” ,
” op t i ona l ” : ” True ” ,
” python type ” :” l i s t ” ,
” most inner python type ” :” i n t ” ,
”hash ” : True } ,

”atoms ” :{
”cmr name ” :” atoms ” ,
” type ” :” l ong a r ray ” ,
” op t i ona l ” : ” True ” ,
” python type ” :” l i s t ” ,
” most inner python type ” :” i n t ” ,
”hash ” : True } ,

”name ” :{
”cmr name ” :” name” ,
” type ” :” s t r i n g ” ,
” op t i ona l ” : ” True ” ,
” python type ” :” s t r ” ,
”hash ” : True } ,

” p o s i t i o n s ” :{
”cmr name ” :” p o s i t i o n s ” ,
” type ” :” l o n g x a r r a y ” ,
” op t i ona l ” : ” True ” ,
” python type ” :” l i s t ” ,
” most inner python type ” :” i n t ” ,
”hash ” : True } ,

}

s e l f . append (XML CALCULATOR, c a l c u l a t o r)
s e l f . a p p l y d e f a u l t v a l u e s ()
s e l f . apply hash schema ()

de f ge t my f i l e name (s e l f) :
r e turn os . path . basename (f i l e)

Figure 2.30: newc 03 20110523.py: Creates the main part for a CMR schema automat-
ically.

2.9 Advanced Task 47

from cmr import runtime

de f i n f o () :
i n f o = [{” name ” :” newc2db ” , #module name

” author ” :” cmr ” ,
” type ” :” conve r t e r ” ,
” classname ” :”NewC2Db” ,
” ve r s i on ” :” newcalc −0.3−20110523” ,
”module ” : ” newc . newc2db ”} ,
{”name ” :” newc 03 20110523 ” , #module name

” author ” :” cmr ” ,
” type ” :” cmr−schema ” ,
” calc name ” :” newc ” ,
” c a l c i n s t a n c e ” : ”” ,
” classname ” :”NewCSchema” ,
” ve r s i on ” :” newc−0.3−20110523” ,
”module ” : ” newc . newc ”} ,]

r e turn i n f o

Figure 2.31: information.py: declares module, class name and version of plug-ins.

2.9.3.e Step 5: create an XML schema

The xml schema allows to validate the db-file. If you made everything right,
then you can load the CMR schema as follows and create the XML schema.

import cmr
from cmr . d e f i n i t i o n s import g e t c a l c u l a t o r i n f o r m a t i o n

c a l c i n f o = g e t c a l c u l a t o r i n f o r m a t i o n (” newc” ””)
c a l c i n f o . c r e a t e x s d ()

Now your CMR installation supports newc files.

48 Introduction and usage of CMR

Chapter 3

Computational Materials
Repository

3.1 Overview

The previous chapter introduced the usage of the Computational Materials
Repository (CMR) from the users point of view. This chapter provides more
background information about CMR with the focus on how things work and
why certain design decisions were taken.

In order to investigate structures, atomization and binding energies, electron
transport properties and dynamic processes, one needs to design a model that
simulates the behavior at the atomic level. This requires on the one hand a fairly
accurate theory to describe the interactions between the atoms and the electrons,
and on the other hand, tools to place atoms and optimize their positions ac-
cording to their interaction. In terms of electronic structure theory Schrödinger
described in 1926 already a model that allows to determine the interaction
between the atoms accurately. Unfortunately it is far too complex to be solved
even on nowadays computers, because it considers all possible electron-electron
interactions. Even with simplifications that treat the nuclei and the electrons
separately only very small systems can be calculated. An alternative is the

50 Computational Materials Repository

density functional theory (DFT) is based on the Hohenberg-Kohn theorems that
explain that the many body wave function of the Schrödinger equation can be ex-
pressed with the electron density instead. Many of nowadays electronic structure
simulators as for example Dacapo[20], GPAW[21] and VASP[22] are based on
DFT. The most prominent result that DFT simulators provide is the total energy
of a system, and the motion of the atomic positions. Depending on what type of
problem is to be solve there are different ways to find solutions with electronic
structure simulators. When searching for stable ternary metal borohydrides
structures as performed in section 4.3 for hydrogen storage, the compounds were
first tested in different structures to see which ones are potentially stable. This
is done by relaxing the atoms (relaxing means that the positions of the atoms
are optimized so that sum of the forces acting on each atom is minimal). In
order to save computation time, all atoms but the hydrogen ones were fixed
during the relaxation. The best stable compounds were then completely relaxed
in order to see whether the postulated structure was the correct one or if there
was a different one. Finally the compounds that allow to bind hydrogen, but
not too strongly were selected as candidates and the weight percent of hydrogen
was calculated. An other example is to answer the question whether or not an
adsorbate would ”dock” on a surface or not. In this case the surface and a few
layers are modeled and the adsorbate placed on different locations on the surface.
Upon comparing the DFT energies, the most favored position can be identified
and it can be determined whether the adsorbate would stay. There are many
other properties apart from the energy and the updated positions that can be
calculated with modern electronic structure codes. An extensive introduction to
electronic structure calculations and the theory behind is for example provided
by [23].

This chapter starts by explaining the challenges that were faced when designing
CMR. In the next step an overview of the system that we built is presented,
followed by the description of each component. Then possible improvments are
addressed in the outlook and the project is later compared with other implemen-
tations.

Without giving away too much details it may be helpful to know that the core
of CMR is implemented in Python, is able to use a MySQL database and can
provides access to the data with a web server that is programmed in PHP. The
database and web server are optional for a minimal system F.3.1. CMR is usually
used on a Linux system.

3.2 CMR Challenges 51

3.2 CMR Challenges

At the beginning there was the idea to collect data from different electronic
structure simulators, and analyze them with VMDF (paper D) or an other tool.
This was at the very beginning of my PhD. Very soon after, the CAMD Summer
School 2008 took place where the researchers participated in a computational
materials design project. The generated data had to be collected and analyzed.
We were a small team that designed the workflow and I was able to gain invalu-
able experience by implementing the system to collect and analyze the data.
The project and the implementation is outlined in section 4.3.

When designing the Computational Repository I had to find compromises between
ideas, design wishes, features, resources, performance and prospects. In this
section I would like to discuss the faced challenges when building CMR. The first
challenge was to figure out what the expected features would be. Because CMR
should handle many different kinds of problems I decided to create it generic
with a focus on electronic structure simulators. This has the advantage that it
can solve many different problems, but might not be optimal for some of them.

The requirements for CMR were to aggregate, store, monitor, analyze, present
and share data from electronic structure simulators. Every of these requirement
imposes its own challenges: aggregation requires that CMR can read the output
from different codes (3.3.4.a), storing must assure that the collected data can
be read also years later even if the original program is unavailable (3.3.3.b),
monitoring should provide an almost instant view of the collected data, and the
analysis options must satisfy power users that prefer to work with programmable
interfaces (3.3.1.b) and casual users that favor more convenient access methods,
like a web interface (3.3.1.c). Sharing can be performed through the interfaces
(3.3.1) or by sending db-files.

In order to be able to analyze data it was decided that the user should be allowed
to enhance the data with custom fields, keywords, and attach scripts and relevant
files to provide more background information. Another challenge related to the
analysis is the wish to be able to show what data was used to derived results (e.g.
which calculations were involved when calculating the chemisorption energy).
(2.7).

In terms of usability CMR must not depend on not too many third-party products
and provide most of it’s functionality out of the box. For example CMR must
run independently of a database and a web-server which is especially important
when CMR is executed on a computer cluster or on a user’s computer with
limited access to resources or no database access.

52 Computational Materials Repository

More important requirements are to be able to assure data consistency and
prevent data loss, even if processes crash, errors occur or invalid data is tried to
be uploaded (3.3.4.b). Another important issue was to find ways to provide the
data with an acceptable delay.

The biggest challenge though was to provide a system that is complete and
provides the expected functionality - or at least can be extended to provide it.
This might seem trivial, but the way from a concept to a working implementation
requires to handle a lot of technicalities, special cases and technical limitations.

3.3 System Components and Processes

The data flow of an CMR installation for an institute was already briefly pre-
sented in chapter 2. The focus in this section lies on providing more information
about the components, show how they interact and explain their purpose. The
data flow diagram in Fig. 3.1 highlights the three main type of components: the
user interfaces (blue) that are used to interact with the data, the repositories
(purple), that store the data, and the db-files (red font) that are containers for
transferring and storing data. The arrows denote interactions/processes between
the components.

The conversion (3.3.4.a)) to db-files (3.3.3.b) is a basic functionality of the
CMR Python package that is accessible for other components as well. Db-files
generally store the data of a single calculation and are used within CMR as a
container to transfer or store data. Since db-files are identified by their content
and not by their file names and directory locations they are collected in a single
directory, the db-file repository (3.3.2.a). The data in the db-file repository
has normally two purposes: it is kept for long-term storage as a backup and it
should be accessible for further analysis. Since it is not very efficient to query
a db-file repository, the files are uploaded to the (CMR) database (3.3.2.c).
To allow queries to be executed efficiently, the data is rearranged in a better
searchable way during the upload. As a consequence of this scheme the data is
stored twice in the system: in the db-file repository as long-term storage and in
the database for fast access. The figure shows a local repository that is not
connected to a database as well. This is to show that CMR can also perform
basic queries on the db-files as if they were located in a database - although they
are a bit slower.
The user interfaces hide the complexity behind intuitive commands and functions.
There are four user interfaces with different purposes: the command line inter-
face (CLI) (3.3.1.a) is executed in a command shell, is the most basic interface

3.3 System Components and Processes 53

Figure 3.1: Data flow diagram of CMR. Blue: user interface components; purple are
repository components; db-files are denoted with red font; black: diverse. Light blue
color signifies third-party components.

and allows to create and administrate db-files locally as already described in
section 3.3.1.a. The python user interface (PUI) (3.3.1.b) is the most powerful
and provides scriptable access to the local/third-party CMR databases, is able to
retrieve data from the local/third-party PHP/HTML interfaces (3.3.1.c) as well
as providing basic scriptable access to a local db-file repository. The PUI can
also use agent templates 3.3.3.a like the GroupingAgent (2.2), but cannot write
to the database directly due to access restrictions. The most convenient access
to the data is to visit the PHP/HTML interface (PHPUI) (2.3,3.3.1.c) with
a web browser. The user creates a query by selecting criteria. The PHPUI
can be programmed to perform more complex analysis B,3.3.1.c. Because the
PHPUI is not scriptable itself it provides a PUI script that executes the same
query (see Fig. 2.18) if possible. That script includes code that can be used for
further analysis or to modify or download the complete data. The last interface
is the HTML/JavaScript silo user interface (3.3.1.d) and is mentioned for
completeness because it currently works only with the previous version of the
CMR database. It is a workbench to analyze data in a web browser that allows
to create queries visually. It is capable of working offline with the data which is
not possible with the PHPUI. Agents (3.3.3.a) are processes that run in the
background and perform tasks that normally take a little longer than regular
queries. For example some analysis could be performed on all data contained
in the database. Currently the agents are used to prepare data needed by the

54 Computational Materials Repository

PHPUI.

3.3.1 User Interfaces

The user interfaces enable the user to work with data in a convenient way and
hide the complexity of communicating with a repository behind well defined
interfaces. CMR features four user interfaces that access the data in different
ways.

3.3.1.a Command line interface (CLI)

Purpose: This interface enables to work with db-files (3.3.3.b) in a command
shell. It provides functionality to batch process operations like converting files to
db-files, updating content, submitting data to the db-file repository and makes
it thereby unnecessary to write programming code for these tasks.
Usage: The command cmr enables to batch process files in a command shell.
There are two ways to work with this tool. The first one is to use it directly with
db-files to create, modify, touch, validate, dump or submit them to the db-file
repository. The second mode is to use it to work with a dataset of original output
files (e.g. *.traj) that are going to be added to the CMR database. The first step
is to select/schedule the files during which they are converted (transparently) to
db-files. In the next steps they can be attributed with keywords/fields/script
individually or as a group. When the files are ready they can be submitted. If
at any later point more keywords are added they can simply be resubmitted.
Usage example(s): Scheduling all *.traj to be uploaded to the database, add
keyword “adsorption” and send it to the db-file repository:

$> cmr −a ∗ . t r a j
$> cmr −m ∗ . t r a j

. . .
ak (add keywords)
Your cho i c e : ak

Enter one or more keywords (comma separated) : adsorpt ion
$> cmr −c ∗ . t r a j

More examples are presented in section 2.5.
Implementation: The CLI uses the CMR Python package to provide the pre-
sented functionality.
Suggested enhancements: This interface could be extended to perform queries

3.3 System Components and Processes 55

similar to the PHPUI (3.3.1.c) and thereby provide quicker access to results.

3.3.1.b Python User Interface (PUI)

Purpose: The PUI provides scriptable access to the databases and has access to
almost all CMR functionality. This includes but is not limited to query data
from the local and third-party CMR databases, download data from external
CMR web servers running the PHP/HTML interface (3.3.1.c), export db-files
and query data in a local repository (3.3.2.b). Last but not least it is able to use
agent functionality as for example the GroupingAgent (2.2). The only thing it
cannot do is write directly to the database due to access/security restrictions.
Usage: The Python user interface is available, if the CMR Python package is
installed. The access to the CMR databases is provided with a special reader
(DBReader). This reader allows to search and filter data by atoms, keywords
and all other available fields. It is for example possible to retrieve a list of
calculations with an energy smaller 0, with the keyword “adsorbate” and with
the atom “C”. This list can be further processed: one could just print them,
add/remove keywords/fields/scripts, export the data to db-files, create a group
or delete them from the database. As mentioned earlier the PUI is not allowed
to perform modification on the database directly, therefore when modifying data,
it is again sent to the db-file repository. The upload process will detect that
the data in the database needs to be updated and perform the modifications.
Removing data from the database is similar. CMR’s delete function will create
a db-file containing the command to remove that specific data item from the
db-file repository and the database. The PUI and the DBReader can also be used
to retrieve data from the web interface (PHP/HTML interface), however the
unique id (UI: 2.6) must be known. The downloaded data can then be processed
(add/remove keywords/fields/scripts) or exported as a db-file to a directory of
choice.
The access to the third-party databases is only available if the third-party exposes
them to the public, through a VPN or a ssh tunnel. Regularly this is not the
case, but when it is available then the procedure and the options are exactly the
same as with the local CMR database.
Additionally to the other access methods, the PUI can query any local repository
that contains db-files. A special reader named DirectoryReader provides the
exact same interface as the DBReader, and therefore the same functionality. The
difference is that the DirectoryReader is slower because it has to load all db-files
into memory before being able to execute queries.
The last access option for the PUI is to combine an agent and a DBReader.
Agents can be used by regular users, as long as they don’t write to the database.
Usage examples: How to use a DBReader: Fig. 2.19

56 Computational Materials Repository

How to use a DirectoryReader: Fig. 2.20
Agent: How to use a GroupingAgent Fig. 2.6
PHP/HTML interface download: Fig. 2.16, item 8 will retrieve a script that
downloads the selected item from the PHP/HTML interface using the DBReader.

3.3.1.c PHP/HTML User Interface (PHPUI)

Purpose: The purpose of the PHPUI is to provide quick access to the data in
the database, similar to a state of the art search engine. A query is intuitively
written by adding keywords and restrictions on fields. The PHP/HTML interface
allows to download data in various formats (JSON, xyz) and provides as well a
script that performs the current query in the PUI (3.3.1.b).
Usage: The PHPUI is used to find and view data. Special views are available to
visualize runs of the genetic algorithm (section 4.2, Fig. 2.17) or a heat map for
the solar light capture (section 4.1, Fig. 1.3). The strength of this interface is
that queries can be bookmarked, columns of table view chosen according to need
and that the query can be composed manually or with assistance and prefilled
fields as shown in section 2.3.
Usage examples: The PHPUI is accessed with a web browser. Find a keyword in
the list of keywords in the query box (Fig. 2.7) and click execute. The result is
displayed as in Fig. 2.16. Now the interface suggests related keywords in the box
marked with (3) in the figure which can be used to restrict the results further. If
necessary more filters can be added with the help of the tabs in the query box..
When the sought data (set) is found it can download as (8) xyz or JSON file, or
by clicking on the ASE-link a script is provided that opens the calculation with
the ASE[24] tool ag. When the browser is configured to execute the Python
script directly then a click one the ASE icon opens ag1 directly. The CMR
download link provides a script that retrieves the result as a db-file or allows
to modify the content of that db-file. Alternatively, if you’d like to download
the whole result set or process it with the PUI, the highlighted link in Fig. 2.18
provides a PUI script enables to do so. (An example of such a script is shown in
appendix F.2.
Implementation: The PHP/HTML interface runs on a web server and translates
the requests from the web browser into database language and returns them as
HTML back to the web browser. To avoid delays when loading the web page, the
related keywords and pre-filled field names in the query box are updated using
AJAX[25] (Asynchronous JavaScript and XML) a conglomerate of techniques to
send asynchronous requests to the web server and update the web page in the
browser dynamically upon arrival of the answer.
Technology: Special care was taken that the PHPUI uses only technology that is

1ag is an ASE tool to visualize atomic data(-files), can calculate inter-atomic distances and
create new calculations.

3.3 System Components and Processes 57

available on all commonly used web browsers. It is for example possible to access
the web page with an Android2 phone or a tablet computer as well. The drawback
of the later two devices is however that the user interface requires a mouse for
the navigation in the heat map. Security: There are three threats that need to be
prevented: PHP code injection, SQL injection and cross-site scripting (XSS). The
last one endangers the user only, the first two could have serious consequences
for the users and the web server. PHP code injection means that an attacker
is able to execute arbitrary commands on the web server. One way to achieve
this is by exploiting careless evaluation of user input. Potentially dangerous
functions that should not be used with unparsed and escaped input are eval,
preg replace, include or require. CMR does not use these functions. Instead
it uses doubleval to parse double values and strval for strings. Preventing
SQL injection is a bit trickier because the queries that comes from the PHPUI
contain field names and values that are needed in the MySQL query. CMR uses
two measures: input validation and escaping of all user input that goes into
the query with mysql real escape string (escaping means putting extra ‘\’
characters in front of all character that could possibly be understood as a control
character to prevent uncontrolled execution of statements.) The last measure
taken is to only allow read-only access to the MySQL server from the PHPUI.
XSS means to inject a script for example in a form and send it to the server. If
the server does not perform any validation and returns the string unparsed it is
possible for it to break out of its context and execute script code on the users
web browser and thereby for example faking a password field. To prevent XSS
all input that is sent back to the web browser must be encoded. PHP offers for
this purpose the function htmlspecialchars, which is used by CMR. (Reviewed
in [26, 27].)

3.3.1.d Silo Framework, and the SiGUI plug-in

The silo framework is initiated, developed and maintained by Jens Strabo
Hummelshøj, at the time of writing a post-doc at SUNCAT Center for Interface
Science and Catalysis at Stanford. The current implementation state of the
framework and the SiGUI plug-in allows only to communicate with the previous
version of the CMR database and is still in an experimental state. This framework
is discussed because it is closely related to CMR, and because the author of this
thesis has created SiGUI, a plug-in for visual query selection.
Purpose: The Silo web interface runs in a web browser and provides the user
with tools to analyze data on his own computer, even when disconnected from
the Internet. Its design allows to create, use and share plug-ins with third-parties
easily. A screenshot is shown in Fig. 3.2.
Usage: With silo it is possible to administer and browse through calculations,

2Android is a Linux-base operating system that runs on phones and tablet computers.

58 Computational Materials Repository

Figure 3.2: Screenshot of silo and SiGUI. The red parts are created by the SiGUI
plug-in (see below).

work offline, views structures and data in tables in a web browser.
Silo vs. PHPUI: Both interfaces are accessed with a web browser. The difference
is where the user interface runs and in what language they are implemented:
silo runs in the web browser and is mainly programmed in JavaScript while the
PHPUI runs on a web server and is programmed in PHP. In terms of functionality
silo is rather a desktop application while PHPUI is more a search machine.

3.3.1.d.1 SiGUI, a silo plug-in
Purpose: SiGUI (Simple Graphical User Interface) is a plug-in for Silo that was
created by the author of this thesis. Its designation is to work like VMDF E and
allow to create queries visually in the silo environment.
Figure: see Fig. 3.3
Usage: In order to use SiGUI silo needs to be opened in a web browser as shown
in Fig. 3.2. SiGUI provides a few basic filters as for example “select” where
x op y where x is a variable name, op an operation like ><= and y a value.
New higher level filters are created by coupling a few basic filters as shown in
figure 3.3 that shows that a range filter is composed of a a > . . . and a a < . . .
filter.
Limitations: Currently SiGUI works only with the previous of the CMR database,

3.3 System Components and Processes 59

Figure 3.3: SiGUI allows to create queries in a graphical user interface. Series of the
filters like an a > . . . and an a < . . . can be merged into a single filter.

and created filters cannot be exchanged with third parties. The implementation
level is a prototype.
SiGUI vs. VMDF: The main difference between SiGUI and VMDF is that SiGUI
is implemented in JavaScript and that the filters can be composed of other filters.
The main idea is to have a few general filters that can be used as a base for the
creation of more complex filters which then can be used by even higher level
filters. An example is shown in figure 3.3. The depicted range filter is composed
of a a > . . . and a < . . . filter. The missing values min and max will be asked
in the property window of the range-filter.

3.3.2 Repositories

The repositories are used to store data and make them accessible. There are three
different types of repositories: the db-file repository, the (CMR) database
and the local repositories. The db-file repository is the location, where users
deposit the db-files that they would like to access from the CMR database
later. A specially dedicated upload process (3.3.4.b) takes care of validating
and copying the data to the CMR database. The local repositories are just
directories that contain db-files. CMR allows to perform basic queries on the
contained db-files as if they were located in a CMR database. In this section we
will provide some more background information about these repositories, and
how and where they are used.

60 Computational Materials Repository

3.3.2.a db-file repository

Purpose: The db-file repository acts as a data store for data that is to be analyzed
or should be stored long-term.
Usage: The db-file repository is regular directory that hosts db-files and everyone
(on a file system) can write his/her db-files that he/she would like to add to
the CMR database. The location is identified by the environment variable CMR -

REPOSITORY, but regularly db-files are directly written to the db-file repository
by specifying the name ”.db” during conversion. The conversion process is
discussed in section 3.3.4.a.
Technical Details: There a few practical issues that needed to be handled for our
file system. The first one is that people will submit their results with arbitrary
file names and this results in file name conflicts; the second one is that storing
a huge number of files results in a noticeable delay when listing the content
of the directory to check for newly added db-files (100000 files took approx. 3
minutes on our NFS files server). For this reason the uploading process (3.3.4.b)
renames them first and then moves them into the “inbox” which writes the file
into a dedicated subdirectory if the current destination has more than 1000
files. For example the file 100059 01434...db should be copied to the directory
inbox/. If inbox/ contains already 1000 files then these files are distributed
into subdirectories by their first index. Our file would go to inbox/1. When
the directory inbox/1 has more than 1000 files it is split again, but this time
the second character defines the directory. In our case the file would end up
in the directory inbox/1/0. This pattern is followed until a directory is found
with less than 1000 files. This technique is applied for all directories that store
db-files within the db-file repository and assures quick access times.

3.3.2.b local repository

A local repository is a directory that contains db-files.
Purpose: Store db-files locally and perform basic queries on the db-files in that
directory.
Usage: When retrieving data from third-party databases or when creating new
datasets the db-files can be stored in a local repository in order to be updated/-
modified before being uploaded to the database. An other use is to filter db-files
without a database. DirectoryReader enables basic to execute basic queries
and works the same way as DBReader. The performance is however considerably
slower, because the DirectoryReader has to read all db-files into memory before
being able filter the data.
Usage example: An example of how queries are performed on a local repository
with a DirectoryReader is shown in Fig. 2.20.

3.3 System Components and Processes 61

3.3.2.c CMR Database

In this work the CMR database is often referred as database. The technical
correct term would be a MySQL database with the CMR database schema.

Purpose: The CMR database allows data to be uploaded from the db-file reposi-
tory and enables fast queries and downloads of data including attached scripts
and files.
Usage: The upload process (3.3.4.b) loads data from the db-file repository to the
CMR database. The only other component that has write access to the database
is the agent (3.3.3.a). Disallowing write access to casual users ensures that they
cannot break anything and that all data is uploaded consecutively.
Implementation: This section provides more information about the internal or-
ganization of the data in the database. CMR allows to use customized database
schemas, but we concentrate on the default schema that is used by the PHPUI.

The first challenge is to find a database schema that allows storing of hetero-
geneous data in a relational database without knowing exactly what kind of
analysis should be performed. (If we knew the analysis requirements, then we
could derive an optimal table layout with standard database approaches as for
example with the entity relationship model[28].)

We will first show why the the straight forward approach fails and then the CMR
solution. We use a relational MySQL database (see section 3.4.3) that stores
data in tables consisting of named columns and rows. The straight forward
approach of storing all data in a single indexed table will not work because (A)
the row-size is limited to 65535 bytes and the column-count to 4096 columns or
less depending on the data that is stored in it[29] (B) adding a new column to
the table means to add it to every row that is already in the database and is
expensive (C) users can add arbitrary fields of arbitrary types with the same
name, which will eventually result in type conflicts for the same column name.
Fig. 3.4 is used to illustrate the problems.

m columns

n rows

id Ekin Epot valid ...
1 .1 .01 0 ...
2 .2 .02 False ...
n

Figure 3.4: A table with n rows and m columns. The upload of the second piece of
data results in a conflict because there can be only one variable type per column.

62 Computational Materials Repository

(A) The row-size limit is quickly reached especially if strings are stored: if
128 bytes per string were reserved, then there would be space for 512 columns
which is quickly reached considering that data from multiple simulators and
an arbitrary number of custom fields can be added. (B) The set of columns
cannot be determined beforehand because users can create new custom field
names at any time. Every new column will result in a table reorganization that
modifies all n already existing rows. This can result easily result in a delay of
several minutes depending on the size of the table. (C) The above table shows a
type conflict: an earlier version defined valid to be an integer value while the
following uses boolean. In MySQL every column has an fixed type that cannot
be altered. Therefore the upload with the boolean value would fail.

Since we don’t know how the data will be analyzed and we cannot create a huge
sparse table because the fields cannot be identified beforehand, a pragmatic
approach was chosen; the variables are divided by type and written into one
single table. An example is shown in Fig. 3.5. This approach results in a 5 tables,
one for strings, doubles, dates, booleans, and one for arrays.

double
id name value
1 Ekin .1
1 Epot .01
1 valid 0
2 Ekin .2
2 Epot .02

boolean
id name value
2 valid False

Figure 3.5: Example of how variables are stored in the CMR database. The data that
belong together have the same id, denoted by the colors blue and green. The data is
the same as in Fig. 3.4, but organized in a different way.

This schema allows fast querying, but when retrieving a whole db-file with j
fields it would result in j database join operations which are expensive and slow.
Therefore the db-file is uploaded and converted to a text string in the JSON[18]
format which is more efficient then j joins in terms of database CPU usage.
The JSON string is for example used by the PHPUI when showing a whole
calculation or when downloading a whole db-file with the PUI.
Technical Details: The challenge that the processes face when querying a database
schema that is organized as shown in Fig. 3.5 are that the type of the variable
has to be known in order to execute the query on the right table. When the
user writes the query valid=0 how do we know in which table to look? One
option is to determine the type from the input variable and then conclude that
the type that is sought is the same. In this case 0 is an integer therefore the
conclusion is that we look in the numeric value, but this approach fails, if we look
for surface=001. This is because 001 is interpreted as 1 which is an integer, but

3.3 System Components and Processes 63

what is actually meant is the string “001”. The PHPUI considers additionally
the total number of entries of “surface” in the double, string, boolean, ... tables.
Regularly the result would be that “surface” is located in the string table. Since
the statistical guess is weighted more than the user’s input type the choice would
be correct. In some rare cases the type guess is wrong. In this case the user
must either change the name of the variable, or adjust the type.
Disk Memory usage: The database schema’s memory usage is not optimal. It
consumes about five to six times the amount of memory than the db-files use
on disk. The reason is that all data in the db-files is compressed and in the
database it is stored uncompressed. The MySQL database supports compression
of columns, but unfortunately the process is not transparent. (This means the
syntax to access a compressed column is different from accessing an uncompressed
column.) Therefore a migration to compressed columns is difficult and implies
some downtime for all CMR database installations. This issue should probably
be addressed during a bigger restructuring.

3.3.3 Other Components

3.3.3.a Agents

Agents are processes that run periodically on the server and work directly on
database and perform data analysis tasks or prepare information for special
views or customized tables. Since users don’t have write access to the database
they can generally not run agents. However some of the agents don’t write to
the database and these can be used by the user.
Purpose: Agents are used to execute heavy database operations and cache data
for the user interfaces. They can also be used to create customized views or to
update a customized database schema.
Usage: The agents are executed periodically on the server. The frequency is
defined by the developer of the agent. All registered agents (registered as a
plug-in) are executed periodically. By default two agents are enabled: the first
one converts the atomic numbers in the database to atomic names. The second
agent creates a table that shows how often each keywords occurs and another
table with the data items per user. These tables are used by the PHPUI to avoid
executing these expensive queries over and over.
Usage Examples: How to use the GroupingAgent is shown in section 2.2
Background: Software agents can be classified according to autonomy (act
without human interaction), social ability (interaction with other agents), re-
sponsiveness (should perceive their environment and respond to changes) and
proactiveness (take initiative to reach goals) (reviewed in [30]). The CMR agents
are currently only performing tasks autonomously and are therefore the simplest

64 Computational Materials Repository

kind of agents. The interface however doesn’t prevent users from implementing
smarter agents.

3.3.3.b Db-files/cmr-files

The db-files store the data of a single or multiple calculation, user-defined fields
and keywords, and attached scripts and files. The content of db-files is well
defined: every type of calculator gets its own CMR schema (3.3.3.c) that defines
exactly what fields are stored, their type and optionally the unit. Since the
data is stored in XML it is possible to validate the content against a XML
schema(3.3.3.c). It is possible to create new special CMR schemas for specific
purposes. For example one could create a schema for slab calculations that would
ensure the user provides a field containing the number of layers and reject the
db-file if it doesn’t.
At the beginning we named the file(-format) db-files (database files). The choice
of the name is not very advantageous though because many other products use
the same name. Therefore we are about to name them cmr-files.
Purpose: Db-files were designed for data-exchange with third parties and for
long-term storage. The content can be verified against a schema. The content of
a db-file is as close as possible to the original file in terms of field names, types
and units so that people can recognize the data in the usual format.
Usage Examples: Db-files are either created by converters (3.3.4.a), by agents
(3.3.3.a) or by the PUI (3.3.1.b). The content of db-files can be viewed with the
CLI (3.3.1.a) or with the PUI.
Background on long-term storage: Storing data long-term means to be able to
ensure that the data remains readable. When we look at the data collected at
CAMd/DTU, then the data that survived many years was most often stored
in spreadsheets, without information about the original calculation - or in the
the CAMd database that was maintained by H. L. Skriver[8]. Most the binary
output files of calculations that were created over 4 years ago were deleted or
cannot be read any more because the file-format was changed or new methods
are used. Therefore we have decided to store the data in in a human readable
form.

The criteria that db-files must satisfy are as follows: the content should be
human and machine readable, no external libraries should be necessary to read
and write them, the content should be small and verifiable. Human readable
implies that people can extract data intuitively in contrast to machine readable
which means that it is possible to write a preferably simple parser for the given
data structure. Not using third-party software allows to be free in the design and
maintenance of the file-format, enables to implement changes quickly and avoid
thereby being overruled or forced to adapt due to third-party decisions. Cost

3.3 System Components and Processes 65

for disk space is still an issue nowadays, even though the prices are constantly
falling[31]: therefore db-files have to be small. In order to assure that the data
is complete the db-files must be verifiable which implies that schemas can be
created for them that define the content.

We decided to use XML[32, 33] (eXtended Markup Language) to represent
the data and stores it in a single tar.bzip2[34, 35] compressed container. The
compressed container is not only used to make the files smaller, but also because
it allows to add more files as for example the script that performed the calculation
and other output files. Having the script is great, when wondering how the result
was obtained.

XML is human- and machine readable, widely supported and all major program-
ming languages provide source code to parse XML data. XML can be used with
XML schemas that define the content of an XML file. For example one can
specify which variables are mandatory and of what variable type they have to
be (e. g. integer, double, array, string). Validating a XML file against a XML
schema checks if the syntax is correct and checks whether the constraints are
violates. Fig. 3.6 shows an extract of data stored in the XML format.

. . .
<c a l c u l a t o r >

<TotalEnergy><double >−586.442</double></TotalEnergy>
<AtomicNumbers>
<l ong a r ray l ength=”2”>
<long>6</long>
<long>8</long>

</long array>
</AtomicNumbers>

. . .
</c a l c u l a t o r >

. . .

Figure 3.6: The content is intuitively obvious as follows: TotalEnergy is equal −586.442
and AtomicNumbers is an array containing 6 and 8. “double”, “long array” and “long”
are the names of the variable types.

The currently best available alternative to the db-file format is ETFS[36]. It was
designed for electronic structure and crystallographic data. Since it bases on the
NetCDF (Network Common DataForm) library[37, 38] it also capable of storing
fields (variables), keywords and attributes like a name, a unit or even a range to
give the data additional meaning. Since the implementation is in C and Fortran
it is very fast. The current version 4.1.3 is fully backwards compatible according
to the official web page([38]) which needs to be accentuate, because it is not a
given feature. Although this format is attractive it doesn’t fit CMR because it
requires third-party software.

66 Computational Materials Repository

Size of db-files: It is hard to provide an average size of a db-file because users can
add arbitrary data and attach files. Therefore a few examples shall be provided
of three different datasets. They are shown in Fig. 3.3.3.b.

Ternary alkali-transition metal borohydrides with Dacapo:
program Dacapo
number of db-files 5581
total size 285 MB
average db-file size 51 KB
attached files no

Perovskite Metal Oxides
program GPAW
number of db-files 5621
total size 128 MB
average db-file size 20 KB
attached files no

Automatic data collection of a students data
program 237 Dacapo, 1704 trajectory files, 358 GPAW
number of db-files 2299
total size 977 MB
average db-file size 400 KB
attached files yes: *.py, *.traj, *.txt

Figure 3.7: Example of collected data in db-files and their average file sizes.

Security: Because db-files are used for data exchange with third parties it needs
to be assured that they cannot be abused. An attacker could for example try to
inject code. (This means to embed code into a db-file that is executed on the
victims machine when the file is opened.) The goal could be to get passwords,
modify or delete content, install a virus, et cetera. In Python all functions that
interact with the operating system or allow dynamic code execution (e.g. exec,
eval, os.system, os.popen, execfile, input, compile) should not be used with data
from the third-party input files. The only function that CMR uses when parsing
the third-party file is eval. This function is used to convert strings to numbers or
arrays. Although potentially dangerous it is easy to sanitize eval by manually set
the local global environment as unavailable. This prevents eval from executing
any code. The small code below demonstrates the effect: first the dangerous
version and then the sanitized one.

dangerous
eva l (” open (’/ tmp/new ’ , ’w ’) . wr i t e (’ a l e r t ’) ”)
s a n i t i z e d
eva l (” open (’/ tmp/new ’ , ’w ’) . wr i t e (’ a l e r t ’) ” , { ’ b u i l t i n s ’ : None} , {})

3.3 System Components and Processes 67

For more information about eval and python in general see [16].

3.3.3.c Schemas

There are two kinds of schemas: the CMR schema and the XML schema. (The
database schema is of different nature and discussed in section 3.3.2.c.) The
CMR schema is the main schema and defines for every calculator (and calculator
version) the fields, their types and units, if available. The XML schema is
derived from the CMR schema and used in order to perform the db-file validation
(3.3.4.c).
Purpose: The CMR schema is the description of the data in the db-file and is
used during the extraction and during the validation.
Implementation: The CMR schema is implemented in Python and defines all
variables stored in the corresponding db-file. Fig. 3.8 shows an extract of the
GPAW schema. These CMR schemas can be adapted to specific program versions
or they can be designed loose to accept several versions with the same schema.
It is also possible to derive a schema from another one and make it specific for a
certain type of calculation. One could imagine to make one for a chemisorption
calculation where the atoms in the surface have to be put as separate fields.
Example: section 2.9.3

3.3.4 Processes

3.3.4.a Conversion to /writing of a db-file

The conversion process takes an original output file and converts it to a db-file.
Purpose: Create db-files and define keywords/fields and attach scripts/files.
Usage: The creation of the db-files is performed by the user with the CLI
(3.3.1.a)or with the cmr Python package.
Process: First the file type is detected and the correct converter determined. The
converter is responsible to select the correct version of the CMR schema (3.3.3.c)
depending on the version of the input file. When the data is read from the
original output file, all types are mapped to types that CMR supports internally
(see Fig. 3.9 for a list). If an exception occurs during the conversion the partial
db-file is written to disk and an error message shown to the user. The reason for
writing the partial file is that DFT calculations are expensive and data should
not just be lost without being inspected.
Technical Details: The converters were designed as plug-ins (2.9.3). The reason
is to assure that license incompatibilities can be circumvented. CMR uses GPL.
If a converter for a new file format should be created that causes a license conflict

68 Computational Materials Repository

class GPAWSchema(Schema) :

def i n i t (s e l f) :
. . .

c a l c u l a t o r = {
. . .
’ P o i s s o n S t e n c i l ’ :{

” op t i ona l ” : False ,
” type ” : ” s t r i n g ” ,
” python type ” : ” i n t o r s t r ” } ,

’ XCFunctional ’ :{
” op t i ona l ” : False ,
” type ” : ” s t r i n g ” ,
” python type ” : ” s t r ” } ,

’ Epot ’ :{
” op t i ona l ” : False ,
” un i t ” : Units .HARTREE,
” type ” : ” double ” ,
” python type ” : ” f l o a t ” } ,

’ AtomicNumbers ’ :{
” op t i ona l ” : False ,
” desc ” : ”A l i s t o f atomic numbers . ” ,
” type ” : ” l ong a r ray ” ,
” python type ” : ”numpy . array ” ,
” most inner python type ” : ” i n t ” } ,

’ RubidiumFingerprint ’ :{
” op t i ona l ” : True ,
” type ” : ” s t r i n g ” ,
” python type ” : ” s t r ” } ,

. . .

Figure 3.8: Extract of the GPAW’s cmr-schema. PoissonStencil, XCFunctional,
AtomicNumbers and RubidiumFingerprint are variables. type defines the internal
type of the variable, python type the original type, atomic numbers. The field unit

defines that Epot has the unit Hartree and the desc is a descriptive string of what of
the value that the variable holds.

3.3 System Components and Processes 69

Python type Int. type Python Int. Repr.
int long type 1 1
float decimal type 1.2 1.2
complex array 1+2j 1+2j
str string ”john” ”john”
list array [[1,2,3], [4,5,6]] [[1,2,3], [4,5,6]]
tuple array ((1,2,3), (4,5,6)) [[1,2,3], [4,5,6]]
numpy.array array numpy.array([]) []

Figure 3.9: In order to enable CMR to run anywhere without third-party software,
CMR uses only standard python types internally. During the conversion process or
when writing fields to a db-files the types are mapped to the internal ones. The following
data types are supported: boolean, int, float, complex, string, datetime.datetime, list
and arrays of the previously mentioned data types. All other known data types are
mapped to the internal representation.

(because of some dependencies or restrictions), it is possible to distribute the
converter under a different license than GPL. The drawback is just that CMR
cannot distribute this converter and the users have to install it separately.
Conversion examples: Fig. 2.4, 2.2, Fig. 2.4 and Fig. 2.3

3.3.4.b Upload

The upload process consists of three independently executed tasks: (1) moves
files from the db-file repository (3.3.2.a) to an inbox directory, (2) validates the
db-file and (3) uploads the data to the database (3.3.2.c).
Purpose: The upload process copies files from the db-file repository to the
database.
Usage: The upload tasks are scheduled to run periodically (every 10 seconds) to
check, if new files were written to the db-file repository, if so task (1) renames
and moves and the files to an internal “inbox” folder. Task (2) checks the validity
of the new arrivals and moves invalid files to a dedicated folder and the valid
ones to the “valid” folder. Task (3) gets notified and uploads the new data to
the database.
Implementation Details: Task (3) is responsible to check, if the newly arrived
data is new, a duplicate, an updated or outdated data. This is determined with
the unique identifier and the last modified time stamps as explained in section 2.6.

70 Computational Materials Repository

3.3.4.c Validation

Purpose: The validation of db-files assures their completeness, ensures that all
required fields are present and checks the attached files for potentially dangerous
file types.
Usage: The db-files are validated before they are accepted in the db-file repository
(3.3.4.b). It is also possible to initiate a validation by the user. During the
validation the content of the db-file is inspected: first the XML file is checked
against the XML schema (3.3.3.c). It is valid, if the syntax is correct and all
mandatory fields are present with the expected type. The second steps assures
that all attached files are actually contained in the db-file and the last step makes
sure there are no files with potentially malicious file extensions (see security).
Usage Examples: CLI: cmr --validate, PUI: import cmr; cmr.validate("....")

Security: Db-files are normally uploaded to the CMR database and all their
content will be available in the PHPUI. This includes the attached scripts and
files. An attacker could therefore attach a malicious file to a db-file and hope
that someone executes it. To prevent this scenario, the validation rejects db-files
that contain files with the following forbidden file extensions: 386, bin, cmd,
com, crt, dll, exe, fon, html, js, jse, lnk, msi, msp, oxc, pif, reg, scr, sys, vbe, vbs,
vs, wsc, wsf, wsh, xpi.

3.4 Tools

3.4.1 Motivation

CMR relies on a few third-party software products and technologies. In order
to be useful for CMR they must be available for free3, popular (in the sense
of people like to use that product because of its advantages over competitors)
and expected to be maintained and supported for a long time. Especially the
expected lifetime is important because CMR is used as long-term storage for the
data. Because CMR should be maintained and developed by different people,
the software should be well known and commonly used. This section elaborates
why Python, Apache/PHP and MySQL were selected. Products that need to be
licensed for money are not discussed.

3Please note the distinction between free and open-source software[39]: free means there
is no payment involved while open-source allows to study, modify and in some cases also to
redistribute modified code.

3.4 Tools 71

3.4.2 Python

CMR must be able to read output files of different code during data aggregation,
provide a scriptable user interface for finding and analyzing data, access collected
and stored results long-term and communicate with the database. This can only
be achieved with a programming language is popular among scientists, easy to
learn, supports object oriented design, doesn’t cost money and is available on
most platforms and operating systems. Popular languages in science are C/C++,
Java, Python or Fortran[40, 41].

We shall briefly look at the advantages/disadvantages of these languages. The
fastest and most memory efficient code is produced by C/C++ and Fortran
because the code is directly translated into machine language and the memory
allocation/deallocation is performed by the programmer. This implies that the
source code is larger and more complex than with Java and Python where a
garbage collector takes care of the memory and the compiler creates Bytecode.
Bytecode is an intermediate representation of the source code that is computer
architecture independent, but has the drawback that it still has to be compiled
which results in regularly slower execution times than binary programs. Never-
theless Python is popular among scientists due to its attractive extensions like
NumPy (N-dimensional array objects), SciPy (efficient numerical routines) and
matplotlib (2D and 3D plots) that simplify programming more than comparable
libraries in other languages. (Reviewed in [40, 41, 42, 43, 44])

We chose Python because it fulfills the requirements and is a good compromise
between ease of use and efficiency. The mentioned Python extensions are however
not used by the implementation of CMR in order to keep it as independent as
possible.

3.4.3 MySQL

Scalability is important for CMR. It should be able to support projects of small
sizes as well as all data generated by a whole institute. To support the later it uses
a database management systems often just called database. The requirements
for the database software are to be able to store electronic structure calculations,
search efficiently for fields and keywords, provide interfaces for Python and PHP,
be easy to install and maintain and available on the many platforms.

72 Computational Materials Repository

The nowadays most commonly used type is the relational database which was
invented by Edgar F. Codd and published in 1970[45] . The reason of the wide
acceptance until now is that the concept is relatively simple: data is organized
in tables with rows and columns. One row is referred to as a tuple consisting
of attributes (the values in the columns). A collection of tuples with the same
attributes (table) is called a relation, hence the name relational database. There
are two other database types: the NoSQL databases (not only SQL) and the
object oriented database management systems. The latter is capable of storing
complete objects in a database and works therefore hand in hand with object
oriented designed software. The NoSQL databases enjoy increased interest be-
cause they promise to solve mature shortcomings of the relational databases like
the problems of scalability (relational databases are only vertically scalable4),
throughput, high set up and maintenance cost, finding compromises between
reliability and performance are addressed. (Reviewed in [46, 47, 48].)

For CMR we have decided to use MySQL, a relational database. Although the
other database types have very attractive features the choice is difficult, depends
on the exact usage and it is not clear how long they will be maintained which is
a big drawback. The main arguments why MySQL was chosen were availability
and popularity.

3.4.4 Apache/PHP

To visualize results in text and graphics CMR needs a web server, a programming
language that runs on the web server and can use an interface to access/search
a database and create content in HyperText Markup Language (HTML) that is
presented to the user.

One option for the server side programming language is the general-purpose
language Perl which provides a special library for web development and many
other add-ons. Add-ons allow to choose the components that are needed, but
make the installation on different platforms cumbersome. Java, other general-
purpose language enables building a web-servers through its JSP (JavaServer
Pages) and servlets, but requires quite some programming effort. Although Java
and Perl are great languages they have a steeper learning curve compared to
PHP (Hypertext Preprocessor) which is easy to learn, provides many build-in
features such as MySQL database access, can be integrated in many web servers
and widely applied. (Reviewed in [49, 50, 51]).

4By vertical scalable is meant upscaling: a single machine is upgraded with disk, memory,
CPU in contrast to horizontally scalable which would mean adding more machines[46].

3.5 Outlook 73

According to Netcraft survey [52] (in 2011) the Apache server is the most popular
web server since 1996 followed by Microsoft’s IIS server and nginx. nginx does
not support PHP directly which results in lower performance of PHP - although
the web server is generally very fast[53]. Reasons for the popularity of Apache
are its feature richness: secure communication (SSL), support for server side
programming (PHP languages, modules for authentication), availability on many
different platforms, and that it is open-source software[54].

The choice of Apache and PHP is obvious due to their positioning in the market.
They are both feature rich, exist for long, are open-source and actively developed.

3.4.5 Tools Summary

The third-party components for CMR, Python, Apache/PHP and MySQL were
chosen according the requirements, popularity and availability on different
platforms. Because all of these software packages are actively developed and
maintained we expect them to provide a stable foundation for CMR. Since CMR
is modular it would be possible to exchange third-party software and for example
use a different database software.

3.5 Outlook

There are many ideas how to make CMR better in terms of increased performance,
better user interfaces and improved usability. In this section the ones with the
supposedly greatest effect will be shown and elaborated.

3.5.1 Improvements of upload and validation

The upload process (3.3.4.b) and validation (3.3.4.c) can be improved in several
ways. During the validation and the uploading of the db-files, a log is kept about
the performed actions. This log could be extended to store as well the associated
file owner. As a consequence it would be possible to identify the account from
which malicious or fake db-files were submitted. Another improvement that goes
into the same direction is to create a process that notifies users about changes
and problems during the upload process. To improve validation time of the

74 Computational Materials Repository

db-file the current process could be enhanced to allow parallel validation. (Tech-
nical detail: it needs a separate process, Python 2.4 threads are not good enough.)

3.5.2 Improvements of the PHP/HTML user interface

The web interface lacks ways to directly update the data. Often it is desired to
add/remove a keyword or put a description. Currently the user needs to use the
provided PUI script that downloads the data, then it is modified and uploaded
again. A desired solution would be to enhance the PHP/HTML user interface to
permit to change keywords and custom fields directly. Another desired feature is
user authentication. This would enable control of who has access to the database.
Depending on how it is implemented it would also allow to restrict the accessible
data. The last nice improvement would be, to create a custom user interface
more easily, so that the user can adapt the view to his needs.

3.5.3 A submission tool

The public database does not allow direct data upload, and this is good due
to security reasons. Nevertheless there should be a way that allows people to
submit their data when they finished a paper. At CAMd we upload the data to
the local database first. When the paper is published the data is retrieved and
copied to the public database.

External users have however no access to the internal database. Alternative
solutions are: (1) add the upload capability to the PHP/HTML interface, (2)
set up an ftp server (this is a special server allows to upload/download files) and
give access on request (3) implement a custom tool.

The simplest method is to use a ftp server because it allows to handle files
efficiently. The customization of the PHP/HTML interface or a fully customized
tools are nice to have but they are not really necessary.

3.5.4 CMR in the Cloud

Cloud computing is a service that provides resources such as memory, computing
hours, hosting of databases or virtual machines. The name comes from seeing
the components only through the cloud: it is unclear (and unimportant) for the

3.6 Discussion 75

subscriber what hardware is used and how it is organized exactly. Depending on
whether an institute has its own computing resources and an administrator, it
might be cheaper and more scalable to host the CMR database in the cloud.

3.6 Discussion

In the introduction a few projects were mentioned that collect data and present
them in some way to the user. Figure 3.10 tries to categorize these systems
in terms in order to make them comparable with each other. The investigated
properties are briefly outlined in below and then discussed in this section:

• Published specifies the start of the project, if mentioned or otherwise the
date of the first article when it is mentioned.

• Open source answers the question whether the source of the project is
available

• Web interface is there a web interface available to allows to search for
data?

• Web tools determines whether more advanced analysis tools are available
• Accepts diverse file formats declares if multiple file formats are sup-

ported as input format
• Open for submission tells whether users can submit data or whether

the data is only created/added by the owner of the infrastructure
• Installable specifies whether the project be used and installed by anyone
• Purpose defines the main purpose of the project
• Technology (if declared) what is the driving technology behind the

project
• Automatic data creation answers the question whether data is auto-

matically created (by a smart process or if requested by the user)
• Semantic validation elaborates, if the plausibility of the data in some

way checked?
• Keywords/ Annotation are keywords or annotation of data supported?
• Reference provides a reference (link or article)

76 Computational Materials Repository
M

a
te

r
ia

ls
g
e
n

o
m

e
E

S
T

E
S

T
Q

u
ix

o
te

E
n

se
m

b
l

P
D

B
C

M
R

IC
S

D

P
u

b
li

sh
e
d

2
0
1
0
-1

1
2
0
1
0
-1

2
2
0
1
0
-0

9
(fi

rs
t

w
ik

i
en

tr
y
)

1
9
7
1

2
0
0
2

2
0
1
0
-1

0
(w

ik
i)

1
9
9
0

O
p

e
n

so
u

r
c
e

1
2

y
y

n
y

n

W
e
b

T
o
o
ls

y
n

?
y

y
y

A
c
c
e
p

ts
d

iv
e
r
se

fi
le

fo
r
m

a
ts

n
y

y
n

-
y

?

O
p

e
n

fo
r

su
b

m
is

si
o
n

n
y

n
y

y
n

o
t

y
et

n

In
st

a
ll

a
b

le
n

2
y

y
n

y
y

(W
in

d
o
w

s)
W

e
b

in
te

r
-

fa
c
e

y
y

y
y

y
y

y
(n

o
t

fr
ee

)

P
u

r
p

o
se

h
ig

h
-

th
ro

u
g
h

p
u

t
sc

re
en

in
g

fo
r

m
a
te

ri
a
ls

v
er

ifi
ca

ti
o
n

a
n

d
va

li
d

a
ti

o
n

a
g
a
in

st
o
th

er
el

ec
tr

o
n

ic
st

ru
ct

u
re

co
d

es

co
ll
ec

t
a
n

d
a
n

-
a
ly

zi
n

g
q
u

a
n

-
tu

m
ch

em
ic

a
l

co
d

e
d

a
ta

fi
n

d
g
en

e
re

-
la

te
d

in
fo

rm
a
-

ti
o
n

3
D

st
ru

ct
u

re
s

o
f

p
ro

te
in

s
co

ll
ec

t
a
n

d
a
n

a
ly

ze
el

ec
tr

o
n

ic
st

ru
ct

u
re

co
d

es

p
ro

v
id

e
ex

p
er

-
im

en
ta

ll
y

v
a
l-

id
a
te

d
cr

y
st

a
l

st
ru

ct
u

re
in

-
fo

rm
a
ti

o
n

T
e
c
h

n
o
lo

g
y

(i
f

d
e
c
la

r
e
d

)
P

o
st

g
re

sq
,

J
a
v
a
,

P
er

l,
X

M
L

P
y
th

o
n

,
X

M
L

,
C

G
I,

X
Q

u
er

y,
eX

is
t-

d
b

J
a
v
a
,

M
a
v
en

,
M

er
cu

ri
a
l,

A
v
o
g
a
d

ro
,

R
E

S
T

?
?

P
y
th

o
n

,
M

y
S

Q
L

,
X

M
L

?

A
u

to
m

a
ti

c
d

a
ta

c
r
e
-

a
ti

o
n

y
n

n
n

n
n

n

S
e
m

a
n
ti

c
v
a
li

d
a
ti

o
n

?
y

?
d

a
ta

is
cr

o
ss

-
li
n

k
ed

y
n

y

K
e
y
w

o
r
d

s/
A

n
n

o
ta

ti
o
n

?
y

y
n

y
y

y

R
e
fe

r
e
n

c
e

[1
0
]

[9
]

[1
2
,

1
3
]

[5
]

[5
5
]

[1
]

1
o
p

en
so

u
rc

e
jo

b
co

n
tr

o
l

to
h

a
n

d
le

co
n
v
er

g
en

ce
is

su
es

-
b

u
t

n
o
t

o
th

er
co

m
p

o
n

en
ts

2
n

o
t

d
ec

la
ra

ti
o
n

,
b

u
t

p
a
ss

w
o
rd

p
ro

te
ct

ed
d

o
w

n
lo

a
d

li
n

k
a
v
a
il
a
b

le
–

p
ro

b
a
b

ly
n

o
t

?
n

o
t

ex
p

li
ci

tl
y

m
en

ti
o
n

ed

F
ig

u
re

3
.1

0
:

P
ro

p
er

ti
es

o
f

p
ro

je
ct

s
in

so
m

e
w

ay
si

m
il
a
r

to
C

M
R

.

3.6 Discussion 77

A few common properties can be derived from the projects shown in Figure 3.10:
Projects that handle heterogeneous file formats use an internal representation
of the data (similar to the db-files). Most of them also allow to add keywords
or annotations to the data (automatic or by the user), and they generally
use state-of-the-art but not cutting-edge technology. The reason is probably
that cutting-edge technology has a shorter expected lifetime and because of
competing products might push a product out of the market. One can also see
that all projects provide some sort of web interface, but only the focused projects
projects are able to provide more advanced analysis tools (web toolboxes) - and
the focused ones are mostly closed source. Most of the projects do not accept
submissions, unless they perform validation.

There are other facts that can be derived from the above projects (not necessarily
from the table though): In the physics field there are no public frameworks to
analyze data. In the biology field it is possible to upload a file and have it cross-
linked with already existing data. This provides a certain degree of automatic
validation. Reasons why databases are not yet as elaborated for the physicists
as for the biologist are that the processed data is more heterogeneous and that
up to now there were no massive investments as for example for NCBI[56] in the
70s. (NCBI links Ensembl and PDB which are shown in the figure).

Where does CMR stand compared to the other physics related projects? CMR
is open-source and provides a complete framework from the collection of the
data to the presentation. There is no specialization to a certain type of data or
process as in ESTEST, ICSD or Materials Genome. Even though CMR could
possibly perform the same tasks in terms of data collection and presentation
it would naturally perform worse, because of its generic nature. More overlap
is found in handling file formats between Quixote, ESTEST and CMR. They
are all capable of reading foreign file formats and use an internal representation
or file format to store the data. Quixote is very similar to CMR. It addresses
the same problems, but for quantum chemistry codes. One can see in the table,
that the features are almost the same with the exception of the used technology
(e.g. Java instead of Python). Still CMR has some advantages over the Quixote
project: it not only allows to add keywords and fields, it also allows to add
scripts and files and perform queries on the custom fields. Moreover CMR is
able create arbitrary groups of data and in this way link derived data with their
origin. CMR’s user interface moreover allows users to access and modify their
data with Python scripts and a web interface.

One can conclude from this comparison (1) that the biological databases are
further in their development because they are able to link databases (2) that
most of the projects have a very specific purpose and are therefore not really
competing with each other and (3) that Quixote and CMR are very similar,
although CMR has currently a few advantages over Quixote.

78 Computational Materials Repository

3.7 Conclusion

CMR meets the requirements to provide a framework that is able to aggregate,
store, monitor, analyze, present and share data from electronic structure calcula-
tions. In order to perform data exchange, a new file format (db-files/cmr-files)
was created that does not depend on third-party software and enables long-term
data storage. CMR provides different kinds of user interfaces that enable users
with different expertise to access data: the PHP/HTML user interface provides
access within a web browser, the Python user interface allows scriptable access
and the command-line interface makes working with db-files easier. The imple-
mentation works out of the box after the installation, is built from well-known
stable components, is held very general and can therefore handle most of the
desired tasks. However, due to the generality it doesn’t work optimally in all
situations. If the constraints for queries get too complicated, then a custom
arrangement of the involved data in the database is required. This arrangement
could be created with an agent that automatically updates it when new data is
added to the database. (This agent has to be implemented by the user.) The
Computational Materials Repository shows how to solve the problems related to
collection, presentation and analysis of data from electronic structure codes and
proofs that it works by providing a working implementation.

Chapter 4

Case Studies

In the following two sections two applications of the CMR will be discussed.
The first study with a preliminary version of CMR and the second one with the
current one.

80 Case Studies

4.1 Computational Screening of Perovskite Metal
Oxides for Optimal Solar Light Capture

To present the data from the study below to the public and allow users to perform
the analysis up to a certain extend themselves, we have created a customized
version of the PHP/HTML interface (3.3.1.c). A screenshot of the result is shown
in Fig. 4.1. This chapter gives a brief summary of the obtained results and will
then focus on the user interface and how it interacts with the database. The
user interface is accessible on http://cmr.fysik.dtu.dk.

4.1.1 Introduction

For a material to be able to split water based on solar light, a number of
conditions have to be met[57, 58]. First of all the material of course has to
be stable also when surrounded by water. Furthermore, the electronic energy
gap has to be in the right range (1.5-3 eV) so that the generated electron-hole
pairs have sufficient energy to perform the water splitting (for this a large gap
is preferred), but at the same time the gap should be small to increase the
amount of light absorbed. Further conditions are related to the positions of the
band edges relative to the redox potentials for water splitting. More details are
described in paper B.

This study focuses mainly on the search for stable materials with optimal well
positioned bandgaps. The considered oxides and oxynitrides are in the cubic
perovskite structure with the general formula ABO3 and ABO2N respectively,
where A and B are metals. GPAW is used to calculate the DFT energy and the
GLLB-SC functional[59, 60] to predict the conduction and the valence band.

As stated in the supplementary material of the paper a compound is considered
non-stable if the ABO3 energy is 0.2 eV/atom greater than the best outcome of
an adopted linear programming algorithm. For ABO3:

∆E = ABO3(s) +

− min
ci

(c1A (s) + c2B (s) +

+ c3AxOy (s) + c4BxOy (s) + c5O) , (4.1)

where A and B are the bulk metals, AxOy and BxOy are the single metal
oxides included in the references and O is simply obtained from H2O−H2. The
constraints for this problems are:

c1 + c3 = 1 , c2 + c4 = 1 , c3 + c4 + c5 = 3 , (4.2)

http://cmr.fysik.dtu.dk

4.1 Computational Screening of Perovskite Metal Oxides for Optimal Solar
Light Capture 81

∆E [eV/atom] Gap [eV] Band Edges
TlTaO3 0.10 2.0 (2.0)
GaTaO3 −0.03 2.1 (2.2)
SnTiO3 0.10 2.5 (2.7) X
CsNbO3 0.18 2.8 (2.9) X
AgNbO3

a 0.20 2.9 (3.5) X
NaVO3 0.10 1.0 (1.7)
LiVO3 0.17 1.3 (2.0) X
BaSnO3

a −0.08 2.5 X
SrSnO3

b 0.01 2.9 (3.4) X
CaSnO3

b 0.16 3.0 (3.6) X
SrGeO3 0.16 1.2 (1.7) X
CaGeO3 0.16 2.1 (2.7) X
NaSbO3 0.20 1.5 (2.6) X

Table 4.1: Cubic perovskite oxides candidates for solar light capture materials. ∆E:
formation energies per atom; gap: indirect (direct) bandgap; band edges and the check
marks indicate if the band edges match with the water redox potential.

∆E [eV/atom] Gap [eV] Band Edges
BaTaO2N −0.01 2.0 X
SrTaO2N 0.00 2.1 X
CaTaO2N 0.09 2.2 X
MgTaO2N 0.19 2.1 (2.8) X
PbTaO2N 0.19 1.9 (2.1)
LaTiO2N 0.05 2.5 X

Table 4.2: Cubic perovskite oxynitrides candidates for solar light capture materials.
∆E: formation energies per atom; gap: indirect (direct) bandgap; band edges: the
check marks indicate if the band edges match with the water redox potential.

The screening identified ten oxides and five oxynitrides with ∆E < 0.2 eV/atom,
1.5 < bandgap < 3.0 eV and band edges that allow water splitting. The found
candidates are shown in Table 4.1 and Table 4.2. Some have already been
experimentally tested: BaSnO3[61] and AgNbO3[62]. BaSnO3 splits water a
little less well than AgNbO3 which works in the presence of sacrificial reagents,
and for the oxynitrides four of them, BaTaO2N[63], SrTaO2N[63], CaTaO2N[63]
and LaTiO2N[64] perform well for hydrogene evolution.

82 Case Studies

4.1.2 Customization of the PHP/HTML user interface

The PHP/HTML user interface (PHPUI) (3.3.1.c) is a tool to search and admin-
istrate data. The ability to write queries enables flexible searches and various
choices. It requires however, that users know how to create queries and have some
prior knowledge about the data that they look for. When publishing data it is
however better to provide a less complicated, more intuitive and easier accessible
user interface as it was implemented for this solar light capture screening. This
section provides some technical background of how it was integrated into the
PHPUI workflow .

4.1.2.a Views and Query

The customized user interface has three different views: one with the heat map
and two to show the actual numbers of the reference and the actual data in
a table. Changing between the views is done with the buttons on the left (1)
shown in Fig. 4.1. The middle part (2) contains predefined fields that allows
the user to choose the data set, the size, the order of the items on the axis and
even the colors that should be assigned to the numbers in the heat map. When
the user clicks on “Update matrix”, the choices are rewritten as a query for the
PHPUI. The result is then shown on the right side (3). The query is not different
from one that the user could have created with the regular PHPUI and looks as
follows:

db user=ivca
whiskas=”combination=ABO3; r e f s=abn , abox , an , aox , aoxn , bulk ”
heat map=” x a x i s l a b e l=B−i on by E l e c t r o n e g a t i v i t y (Paul ing) ;

y a x i s l a b e l=A−i on by E l e c t r o n e g a t i v i t y (Paul ing) ;
x a t o m f i e l d=B;
y a t o m f i e l d=A;
s o r t o r d e r x=E l e c t r o n e g a t i v i t y (Paul ing) ;
s o r t o r d e r y=E l e c t r o n e g a t i v i t y (Paul ing) ;
c o l o r 1=0−>white ,0.7−>purple ,2.2−> red ,4−>yel low ,8−>blue ;
c o l o r 2=min−>red ,0.3−>white ,4−>blue ;
width =800;
he ight =1200;
t r i a n g l e 1=g l l b s c i n d−gap ;
t r i a n g l e 2=h e a t o f f o r m a t i o n ;
ur l co lumn=band edge l ink ”

It looks more complicated than it is, because most of the fields are predefined.
db user=ivca means to choose data that was create by the user ivca. whiskas
is the name of the module that is responsible to solve the linear programming
problem and calculate the heat of formation. It takes two parameters: the
combination which defines that data set (here ABO3) and a set of reference data

4.1 Computational Screening of Perovskite Metal Oxides for Optimal Solar
Light Capture 83

Figure 4.1: Customized PHPUI view. 1: navigation to other custom pages 2: parameters
3: the result; the arrows indicate what the parameters influence in the result window.

84 Case Studies

(here ABN, ABOx, AN, AOxN and the bulk metals) that should be used to
calculate the heat of formation as shown in equation 4.1. heat map takes many
parameters: x atom field (x atom ticks) defines which field from the db-file is
shown on the x-axis while sort order x defines their order. The available values
for the sort order are always presented in a dropdown list, so the user doesn’t
have to memorize them. triangle1 and triangle2 specify which field is to be
displayed in the top right respectively bottom left triangle of the squares. The
color definitions color1 and color2 configure the color ranges for the values
in the triangles. Values between the definition are interpolated.url column

provides the choice for the user what should be shown when clicking on a square:
either a band edge plot (band edge link) or the raw data. The other names of
the variables are. x axis label defines the label on the x-axis and the width

and height the dimension of the heat map.

4.1.2.b Query Execution

The outline of the query execution is shown in Fig. 4.2. After the query is
received by the PHPUI it is first parsed, which means it is split into the parts
concerning the data selection, processing and visualization. In our example the
data selection would be ABO3 and the user name ivca, the processing selection
of the references that are to be used to determine the heat of formation and the
visualization is the heat map and its paramteres. In the next step the reference
data and the items from the requested data set are identified and compared with
the previous runs to see if they have been calculated before. If found, then the
result is loaded from the cache, otherwise the heat of formation is (re)calculated
and cached before sending the result back to the user.

4.1.2.c Technical Aspects

The creation of new user interfaces can be divided into two categories: (1) query
creation only and (2) query and analysis method creation. The first case is for
example used to show a subset of the data and let the user choose the viewed
columns or a sort order. It is then sufficient to program a user interface with PHP,
HTML and JavaScript that creates a valid query and sends it to the PHPUI.
In the second case when implementing a new analysis method like the linear
programming it is necessary to define input parameters that can be entered in
the form of a query, to process the request and read data from the database
and hand the results to possibly further filters or a visualization tools. To get
the linear programming working we had to retrieve the data from the database,

4.1 Computational Screening of Perovskite Metal Oxides for Optimal Solar
Light Capture 85

Figure 4.2: Simplified flow diagram through the PHP user interface.

write them to files and execute an external Python program puLP[65] to solve
the linear programming problem. The output of puLP then had to be read again.
The design of the caching was very important. The calculation of all the heat of
formations (e.g. ABO3: 2704) takes over 90 seconds, so if the user changes the
colors he/she will not want to wait to see the change.

The option to let users interactively calculate the heat of formation implies
that PHP can delegate the task to solve linear programming problem to the
Python program puLP. It turned out that PHP and Python are not commonly
used together and therefore make the configuration of the server complicated:
SELinux (Security Enhanced Linux) blocks a lot of access and functionality and
had therefore be disabled. Alternative solutions would be a proper configuration
of SELinux, to implement or find an alternative program that solves the linear
programming problem, or to calculate the most common reference sets in advance,
come up with a scheme to store these results and keep them up to date for new
sets of data or references. All of these solutions are in some way cumbersome -
and if possible third-party software should be avoided to be called from within
PHP.

86 Case Studies

4.1.3 Conclusion

In this case study we have presented an attractive user interface that was created
within the PHPUI. The user is enabled to interact with the data by applying
his/her own constraint and can calculate the heat of formations with different
sets of reference data on the fly. It is also explained that it is relatively easy
to create a user interface that just creates a query, but that it takes more
effort to provide new analysis tools. The described interfaces are available at
http://cmr.fysik.dtu.dk.

http://cmr.fysik.dtu.dk

4.2 The Genetic Algorithm with CMR 87

4.2 The Genetic Algorithm with CMR

The Genetic Algorithm (GA) is inspired by natural evolution and is used to solve
optimization problems as for example finding global minima. The technique is
to mimic natural evolution: from a population of individuals the strong ones
are mated with each other (crossed-over) or get a small modification applied
(mutated). From the offspring and their parents only the fittest survive and the
process restarts of mutation and crossover is applied again until the algorithm is
stopped.

When combining DFT with the GA, a number of challenges are faced: DFT
calculations are heavy and should therefore not be repeated. In some cases
they even fail. Generally, when using the GA decision must be made about
how the mutation and crossover operations should be defined. This case study
presents a customizable implementation of the GA that makes use of CMR and
can therefore profit from the PHP/HTML interface to visualize runs as shown
in Fig. 2.17 and in Fig. 2.15. Users can build their algorithm from pre-made
components, but can also add their own or replace existing ones. The features of
this framework are tracing of progress with hooks, full control over the algorithm,
vetoing during the creation of the new alleles and vetoing after the fitness is
determined. Furthermore the calculation of the fitness can be performed in
parallel on a computer cluster.

4.2.1 Introduction

After the initial description of the Genetic Algorithm (GA) by J. Holland 1975[66]
it took a while until the topic gained the popularity that it has today. This is
well mirrored by the number of publications per year. A quick look-up on the
Web Of KnowledgeWOK[67] reveals 11′177 publications alone in 2010 (291 in
physics) and looking farther back shows that the interest has steadily grown
since 1990 as shown in Fig. 4.3. A reason for this interest is certainly the easy
access to increased parallel computing power, but also that the algorithm itself
is not so difficult to implement.

The GA has been previously successfully applied in physics to optimization prob-
lems as for example the prediction of the lowest energy structure of clusters[68],
molecular geometry optimization[69] where they were able to find the C20, C60

and other structures starting from random coordinates, or in the search for stable
materials with specific properties as done in “Combined Electronic Structure
and Evolutionary Search Approach to Materials Design”[70] where quaternary
alloys were screened from 32 transition, noble and simple metals. The number

88 Case Studies

Figure 4.3: Publications with the topic “Genetic Algorithm” on the Web of Knowledge.
The data about physics was retrieved by limiting the results to the subject “Physics”,
2011.08.19

of possible combinations was roughly 190′000 which made it almost impossi-
ble in 2002 to calculate all of them with the accuracy of density functional theory.

A graphical outline of the GA is shown in Fig. 4.4. There are many tunable
options as for example how the individuals for the mating are chosen, how the
mutation and crossovers are performed, how duplicated offspring are handled and
when to stop the algorithm. To elude the algorithm and introduce common terms
and definitions we look at the problem to find the most stable quaternary alloys
in a similar way to the paper “Combined Electronic Structure and Evolutionary
Search Approach to Materials Design”.

Figure 4.4: Outline of the “Genetic Algorithm”.

The first step is to create an initial population consisting of randomly chosen
quaternary alloys. These alloys e.g. AgIrTcTc, TcMoPtCd, ZnTiSiFe, VSiAlAl,
... are called alleles. In order to determine which ones are good the fitness
value must be calculated. In our case we choose the heat of formation: the
lower it is the more stable (better) is the compound. The algorithm checks then
whether it has to stop which is very unlikely because only one generation is

4.2 The Genetic Algorithm with CMR 89

Figure 4.5: Mutation and Crossover. A, B, C, D stand for atomic names. The mutation
replaces one or more atoms randomly with an other. The crossover mates two alleles.
Many patterns are possible and depend on type of problem. Here half of the atoms are
replaced with their pendant of the other allele.

present; instead a new generation is created by mutating and crossing over the
good alleles from the initial population.

A mutation is a small modification of an allele as for example the exchange
of one or more randomly chosen atoms e.g. the third atom in AgIrTcTc could
be replaced with Rh, which would create the new offspring AgIrRhTc. The
crossover chooses two individuals and mates them by exchanging approximately
50% of the atoms. Many different patterns are possible and the choice of how
depends also on the atomic structure. All created offspring form the next
generation. Fig. 4.5 shows an illustration of these processes. At this point the
algorithm restarts the loop by determining the fitness, checking if it should stop
and then again by creating the next generation.

Now that the basics of the algorithms are introduced we can focus on a few
important details as for example the population size. As a rule of thumb[71]
the size should be approximately the number of bits that are needed to represent
an allele. As a simplification we assume to have 32 kinds of atoms, four positions
and that the order of the atoms matters: AgIrRhTc is therefore different from
AgIrTcRh. As a consequence there are 32 ∗ 32 ∗ 32 ∗ 32 = (25)4 = 220 possible
alloys and therefore the population size should be around 20 alleles. The parents
to create new offspring are always taken from the last best generation, which
is in our case the best 20 alloys. In Fig. 4.6 the subtle difference between the
generation and best generation is shown: when talking about the nth generation
we mean the created offspring in that generation, by nth best generation we
mean the best alleles up to and including the nth generation.

As it was shown the offspring are created from the last best generation. There
are a few different ways to select the parents for the mutations and crossovers.
The simplest pattern is to choose them randomly. This has the advantage that

90 Case Studies

Figure 4.6: The n+1 th generation contains the created offspring from the nth best
generation. The nth best generation contains the best alleles from all generations up
to and including the nth generation.

the population remains longer diverse, but often means that it will take long to
converge. A better way is to rank the alleles and assign selection probabilities
by rank. The best allele gets rank 1, the second best 2 and the nth gets rank
n. The implementations that is discussed later provides the option to specify
the selection pressure which means that the selection probabilities can be tuned
to select the best alleles significantly more often than the worst, down to select
all with the same probability. See Fig. 4.7 for a picture of the ranking and the
assigned selection probabilities.

Figure 4.7: A ranking selector. The alleles are ordered according to their fitness (lower
fitness is better). The better the allele, the higher the chance to be selected as a parent
for offspring. In some implementations the probabilities can be tuned by a function
that allows to define the selection pressure.

The last step is to define the convergence criterion. Again there is a vast
number of possibilities. To name a few there might be a lower limit for the fitness
value that has to be reached, the improvements from generation to generation
are not worth the effort to continue, it might be impossible to create new
offspring because the algorithm has converged, or simply because the limit of 50
generations was chosen. In our case we would stop upon convergence or when
the rate of improvement becomes too little.

There are many more interesting topics, especially about mutation, crossover
and selection techniques and how to make the algorithm converge quicker for
example by estimating the distribution algorithm[72]. To get more insight it is
recommended to read Colin R. Reeves more complete introduction to the basics
of the GA in chapter five of his book “Handbook of Metaheuristics”[73].

In the consecutive sections a generic modular object oriented implementation

4.2 The Genetic Algorithm with CMR 91

of the GA in python is described that is tightly bound to CMR and provides
therefore access to all CMR features. Originally it was written to support a
screening for a project that investigated metal-oxides for light harvesting, but
the implementation of the algorithm is generic enough to solve other problems.
This is shown with the examples presented later. The source code is available
from CAMD, DTU and the interested reader can contact Karsten W. Jacobsen
to get the location for the retrieval and the usage conditions.

4.2.2 GA Components

In the previous section we have seen how the genetic algorithm works and what
problems it can solve. Since DFT calculations are expensive it is natural to
keep intermediate results for later data analysis, data-mining and possibly for
identification of trends. We are now going to look into the implementation to
see what features are necessary to solve problems. In order to follow this section
the reader should know the basics of object oriented programming (OOP) - for
example that classes contain fields (variables) and methods and can be derived
from other classes - and that abstract classes define the interfaces and basic
methods necessary to interact with other classes while concrete classes implement
the required interface methods.

This implementation of the GA is generic. This means it is very flexible and can
find solutions for problems formulated with numbers, vectors or atoms - and even
more. In figurative speech the algorithm to solve a specific problem is tailored
together the way one would build a house: one needs rooms, windows, doors,
pipes et cetera. All houses are built from these abstract types of components.
The type of house is defined by the concrete choices: triple glass windows and
security doors are most likely used for a store and not for a family house. Fig. 4.8
shows a (not complete) list of components to build different kinds of houses.

Similar to the house, the presented GA implementation consists of abstract
and concrete components (classes). Depending on which concrete classes are
chosen, the algorithm solves a different kind of problem. Fig. 4.9 shows all
available components in a class diagram[74]. The class names written in bold
are concrete classes while the others are abstract. We shall now describe the
purpose of each the components shown in class diagram of the GA.

92 Case Studies

Figure 4.8: All houses are made of pipes, rooms, doors and windows, but the combination
of many concrete choices define whether it is going to be a store (security door) or
a family house (wooden door). The diagram should be read as follows: Security and
regular metal doors are kinds of metal doors. Metal and wooden doors are a kind of
doors and a door is a component. Or Double glass windows and triple glass windows
are a kind of window and a window is a component. The items in bold writing are
concrete components while the others are just an abstract description.

4.2 The Genetic Algorithm with CMR 93

Figure 4.9: Complete class diagram for the implementation of the genetic algorithm.
Boxes denote a class. Bold names indicate concrete classes while regular print indicates
abstract classes.

94 Case Studies

4.2.2.a GA

GA is the central class that controls the algorithm as shown in Figure 4.18. The
algorithm will be discussed after the components were introduced.

4.2.2.b OffspringCreator

The abstract class OffspringCreator is used to create offspring. The imple-
mentation supports two types of alleles: vector and atom based ones. The vector
mutation class vectors.MutationX creates a new offspring by adding a (small)
number in a specified range to every number in the vector while crossover class
vectors.CrossoverX takes n parents and calculates an average vector. The
classes vectors.Crossover2 and vectors.Crossover3 are convenience classes
with n = 2 respectively n = 3 parents. The mutation class atoms.Mutation and
the crossovers class atoms.Crossover work in the same way as the vectors, but
instead of numbers the atoms are chosen from a predefined pool for the mutation.
New is the class NeighborMutation which mutates a specified number of atoms
with a neighboring atom in the periodic table. A class diagram for the offspring
creation is shown in Fig. 4.10.

Figure 4.10: All classes that create offspring inherit from OffspringCreator. The
vectors.* work with vectors while the atoms.* work with atoms. vector.Crossover2
and vector.Crossover3 are convenient classes that create offspring from 2 respectively
3 parents.

If the user chooses to implement his/her own offspring class he/she would derive
it from OffspringCreator and add the required methods.

Generally one would create a mutation and crossover instance and define a
mutation-crossover ratio. In our case a ration of 1:2 means 1 offspring is created
from a mutation and 2 offspring from the crossover. The process is organized so
that seen on all generations the ratio of offspring created from mutations to the

4.2 The Genetic Algorithm with CMR 95

ones from crossovers is 1:2. This is done when using the class DefaultGenera-

tionCreator. Often though it is desired to be more flexible and perform more
than just one single type of mutation and one single type of crossover. There-
fore the class GeneralGenerationCreator allows to specify a list of mutation
instances and how often then should occur.

4.2.2.c Selector

Selectors choose the parents for the offspring creation. For a mutation one and
for a crossover two or more parents have to selected. The random selection
(RandomSelector) and the ranked selection (RankSelector) have already been
explained earlier. The RouletteWheelSelector can only be used to find maxima:
the selection probabilities are assigned according the fitness of an allele: pi = fi∑

fi
,

where pi is the seletion probability and fi the fitness of ith allele. (See Fig. 4.11)

Figure 4.11: Three different selectors are supported: random selection, the roulette
wheel selection and the ranking selector.

4.2.2.d Veto

For the efficiency of the algorithm it is important to eliminate duplicates as
early as possible. They don’t break the algorithm, but they slow it down if they
occur too frequently. There are two scenarios when duplicate alleles can appear:
during offspring creation or after the fitness calculation. The first case happens
because the selection of the parents is done with selection probabilities and it
is very likely that the same mutation or crossover is performed multiple times.
The second case might shows up after the fitness is calculated. For instance
when working with atoms and two different offspring are relaxed it is possible
that the atoms end up in very similar positions. In both cases the duplicate
alleles need to be removed or marked as duplicate. To identify the alleles two
different hash values (signatures) are created for each allele: the “before” hash
includes information that is available just after creation as for example atomic
names and the positions. The “after” hash includes the information available
after the calculation of the fitness as for example the atomic names and the
relaxed atomic positions.

96 Case Studies

In this implementation the check for duplicates is modeled as veto. The veto
can forbid an allele to be used as an offspring or mark it as invalid/duplicate.
There are three concrete classes that use the “before” and “after” hash to veto
alleles: the DefaultAlleleCreationVeto prevents duplicates offspring creation,
DefaultAlleleAcceptVeto marks duplicate result alleles as failed after the fit-
ness calculation, and DefaultPopulationVeto is a convenience class that checks
a whole population after the determination of the fitness for duplicates at once.
If a user wants to implement a different kind of veto he/she can inherit from the
corresponding abstract class and implement the required methods. The involved
classes are shown in Fig. 4.12.

Figure 4.12: There are three different kinds of concrete veto classes provided that prevent
duplication of alleless: DefaultAlleleCreationVeto, DefaultAlleleAcceptVeto and
DefaultPopulationVeto. If the user wishes to extend the competence of the default
vetoes he/she can inherit from the corresponding abstract classes (PopulationVeto,
AlleleAcceptVeto, AlleleCreationVeto) and implement his/her own veto.

4.2.2.e FitnessCalculator

The InternalFitnessCalculator asks each Allele to calculate its fitness value
consecutively. If the fitness is a DFT energy however it is more efficient to cal-
culate it in parallel by using the ScriptGenerator which adapts a template
calculation by adding the allele’s properties (e.g. atoms) and then submitting
it to the queuing system. The abstract class ExternalFitnessCalculator was
added for consistency and to suspend the algorithm as long as the population is
not complete. Fig. 4.13 shows the class hierarchy.

4.2.2.f PopulationSize

ConstantPopulationSize restricts the size of the best generation to a constant
value. Having multiple criteria e.g. stability and band-gap it might be useful
to allow mutation and crossover on all stable alleles and therefore let the best
generation grow. This can be achieved by using GrowingPopulationSize. (See
Fig. 4.14)

4.2 The Genetic Algorithm with CMR 97

Figure 4.13: The InternalFitnessCalculator is used to calculate the fitness during
the execution of the GA. This means the fitness of the offspring is calculated in a
consecutive manner. If ScriptGenerator is chosen then a (python) script is generated
which is sent to a cluster.

Figure 4.14: Having multiple criteria e.g. stability and band-gap one might want
to keep all stable alleles as parents for mutation and crossovers - otherwise constant
population sizes are chosen.

4.2.2.g Factory

Factory implements the factory pattern method[75]. Factories are used to create
objects like alleles or populations. The reason not to create the instances directly
is to assure that alleles/populations are correctly initialized (with the algorithm
id, how they were created, et cetera) even if they were customized. (See Fig. 4.15)

Figure 4.15: A factory is used to create instances of alleles and populations.

4.2.2.h Hook

Hooks can be used to monitor or access the state and for example print the most
recent populations. Hooks are provided before and after loading the current
state, the creation of the initial or any consecutive generation, replacement of

98 Case Studies

failed alleles and the determination of the fitness of the alleles. Besides printing
they are useful for debugging purposes. An example is given in section 4.2.5.
Visitor Visitor uses the visitor pattern[75] to visits the state, all generations
and alleles. It is used to create statistics (Statistics) create text (TxtPrinter)
or HTML (HTMLPrinter) output. (See Fig. 4.16)

Figure 4.16: Visitors are used to create statistics, print and plot the algorithm’s result.
All processes that need to investigate all alleles or all populations use a visitor.

4.2.2.i ConvergenceControl

Different criteria can be chosen to stop the algorithm: GenerationRepeti-

tionConvergenceControl halts the execution when the best generation doesn’t
change any more for n generations or AvgFitnessConvergenceControl stops
when the average fitness of the best generation remains in a certain range. (See
Fig. 4.17)

Figure 4.17: The algorithm can be stopped based on the average fitness or when no
new offspring are found any more.

4.2.2.j GenerationCreator

With problems using DFT calculations it is quite common that the fitness cal-
culation fails or that the allele is vetoed. In some situations it is acceptable to
just ignore these individuals, in others the calculations have to be fixed and
resubmitted or simply replaced with a different one - the user has to choose

4.2 The Genetic Algorithm with CMR 99

the appropriate behavior. To support the automatic replacement of alleles, all
classes that inherit from GenerationCreator implement a method that replaces
the allele with a compatible one. This means if the failed allele was be created by
a crossover, the replacement will as well created by a crossover. How to enable
or disable replacing failed alleles is demonstrated later in the example discussed
in section 4.2.5.

4.2.2.k The Refined Algorithm

The important components of the refined algorithm have now been introduced
and we can follow now the execution of the algorithm as shown in Figure 4.18.
The labels of the processes (the green boxes) denote the names of the involved
classes.

Figure 4.18: A detailed flow diagram of the implementation of the GA. The identifiers
in the boxes denote the name of the involved (abstract) classes. This makes it easier to
connect the implementation with this diagram.

While stepping through the algorithm the involved abstract class instances are
explicitly mentioned. When considered helpful a possible concrete class is used to

100 Case Studies

make the example easier to read. In this case the notation abstract/concrete

class is used.

First an initial population is created by the InitialGenerationCreator in-
stance. Each of the created alleles is then checked to see if it is vetoed by
the AlleleCreationVeto/DefaultAlleleCreationVeto instance to assure that
there are no duplicates. Vetoed alleles are replaced right away. Then the fit-
ness calculation of the initial generation is started by the FitnessCalculator

instance. If there are failed alleles and it was chosen to replace them, the loop
starts again - but this time the InitialGenerationCreator only replaces the
failed alleles. Fixing the failed alleles and calculation of the fitness is repeated
until the population is complete. Then the creation of the next generation
starts: the GenerationCreator/DefaultGenerationCreator instance creates
mutations and crossovers. We assume that the mutation class instance is of
type vectors.MutationX, and the crossover vectors.Crossover2. We start
with the crossovers: the Selector chooses two parents from the current best
generation, crosses them and creates the offspring and checks if the AlleleCre-

ationVeto/DefaultAlleleCreationVeto accepts it. The same is performed
for the vectors.MutationX. When the number of offspring has reached the
population size, the fitness is calculated. The next steps are to check for du-
plicates with the DefaultPopulationVeto/PopulationVeto, checked for failed
calculations and replace them, if the user requested to replace the failed alleles.
Once the generation is complete the ConvergenceCtrl/GenerationRepetition-
ConvergenceControl stops the algorithm if there is no improvement for three
generations, otherwise another cycle of crossovers and mutations is started.

One simplification was made in the flow diagram: When the fitness is calculated
externally on a computer cluster, the algorithm exits. After restart the new
fitnesses of the alleles are updated and the algorithm continues where it stopped.

4.2.3 GA and CMR

The GA can profit from a combination with CMR in many ways: the GA
gets database access to its results, can add keywords, scripts, other calculated
properties. CMR also allows to store and group arbitrary data and makes it
therefore possible to serialize the internal state of the GA as well. Storing the
internal state allows the algorithm to stop while the fitness of the alleles is
externally calculated (on a computer cluster for example). Upon restart, the
algorithm loads the state, updates the alleles with the new results and then
continues where it stopped. Since the state is stored with CMR as db-files and
can be submitted to the CMR database, the PHP/HTML interface can be used
to visualize a run as shown earlier in Fig. 2.17 and in Fig. 2.15.

4.2 The Genetic Algorithm with CMR 101

The state of the algorithm is defined by a name of the run and it’s history, which
is all ever calculated alleles. This is enough to determine the best generation that
is needed to create the next generation - but not sufficient for the PHP/HTML
interface that does not know how to determine a best generation. Therefore
the generations and best generation are serialized explicitly. The state of the
GA is stored hierarchically as illustrated in Fig. 4.19: state has references to
generations which maintains a list of previous generations and to best generations
that maintains a list of best generations. The same applies the other boxes e.g.
generation 1 (the initial population) has a reference to the alleles 1-4 and the
best generation 2 (the best alleles up to and including the second generation)
references the alleles 2,3,6 and 7. Every box is a CMR group. As we remember
groups contain fields and references to their group members. The arrows visualize
the references to the group members which may themselves have members.

Figure 4.19: The data structure of the GA. Every box is a CMR group. The lines are
references (links): e.g. State is a group and references the groups Generations and
Best generations. Generations contains Generation 1, Generation 2, Gen-
eration 3. Every allele is a group member of exactly one generation, but can be
member of multiple best generations(Fig. 4.6) if it has a good fitness value. For example
Allele 2 was created in the first generations and is among the best alleles in the best
generation 1 and best generation 2

The state, generations, best generations, generation n and best generation n store
only references to their members. The allele n however are more interesting: they
contain all user defined variables, the state of the allele (successful, failed, vetoed,
submitted), the name of the parents, the way they were created (mutation,
crossover), the before and after hash, the name of the output file and most
important: the fitness. During the determination of the fitness the state of the
allele is constantly updated - later it is only accessed for statistical purposes or
when printing.

The classes that are involved in the serialization of the state are shown in

102 Case Studies

Fig. 4.20. All objects that store data in db-files inherit from CMRObject. The
most prominent is the CMRAllele that contains information about an allele and
the custom alleles inherit from. CMRDirState stores the state on disk and is able
to send a copy to the CMR database as well. The advantage of storing the state
on disk is that all data is immediately available, a submission to the database
takes always a bit longer and the time depends on how heavy the CMR database
is used. Finally GenericCMRObject enables storing of data as db-file directly
and is used internally for example to write the list of the generations and best
generations.

Figure 4.20: The classes involved in the serialization of the state. All classes that store
state or state related information inherit from CMRObject. CMRDirState stores the state
on the disk and optionally sends a copy to the CMR database. The GenericCMRObject

enables storing any kind of data to a db-file; it is used for example for writing the
list of generations and best generations. CMRAllele serializes itself upon changes (e.g.
updated fitness) and is used as a base class for customized allele implementations.

Suggested improvement
When the total number of alleles starts to become large the check for duplicates
begins to be expensive because all alleles are loaded to memory. A solution to
this problem is to use a CMR query to retrieve a list of all before and after
hashes and then compare the new offspring’s hashes with the items in the list.

4.2.4 Example 1: Prediction of Stable Electro-catalytic
Nanoparticles with the Genetic Algorithm

Energy conversion processes as they are used in batteries depend on efficient
catalysts. Often a substrate on a bulk material is used, but it has been shown
that under certain conditions nanoparticles are more reactive[76, 77]. A possible
reason is that they expose more or different sites which can accelerate the
catalytic process. The structure and sites of the nanoparticle are influenced by

4.2 The Genetic Algorithm with CMR 103

its composition and is neither easy to predict nor can it be reliably extrapolated.
Another problem is that nanoparticles are inherently metastable especially under
reaction conditions with high pressure and temperature as used in ammonia
production[78, 79]. For this reason different methods are used to predict the
structure and stability in a first step and in a second the reactivity. Steen
Lysgaard a PhD student at CAMD at the time of writing conducts a study with
the goal to predict stable electro-catalytic nanoparticles for reactive conditions for
ammonia, methanol and higher alcohol production from N2 and CO2 respectively.
Because there is no known gradient method to find these catalysts the Genetic
Algorithm (GA) is used. Fig. 2.17 shows the couple of generations of a run
of the GA with a copper and nickel nano-particle that could be efficient for
CO2 fixation. In this case the GA starts with a population of m randomly
initialized unit cells with copper and nickel atoms. The fitness value is the total
energy and the mutation operation moves the atom positions a tiny distance in
a random direction. The crossover operates on two alleles, cuts them in halves
and combines them with the halves of the other allele. This example uses the
AlleleAcceptVeto to detect duplicates after the calculation of the fitness. (The
relaxation moves the atoms to physically more favorable positions, therefore
there is a high chance to get duplicates.) The project is still in its starting phase
therefore no conclusions or more details about actual runs can be presented yet.

4.2.5 Example 2: Function Minimization

This example shows how the classes are combined to get a running GA that
minimizes a function f(x, y). To make it more interesting we calculate the
fitness in script and submit it to a computer cluster for evaluation. The only
components that need to be implemented is a template script that calculates
the fitness, a script that defines the components, a custom allele and a class to
create the initial alleles. The full code is available in the example directory of
the implementation.

The class MyAllele (Fig. 4.21) is derived from CMRAllele and allocates the field
coord which stores the coordinate. As seen before there are two hash values
used to detect duplicates: one just after the allele is created and the other
after the fitness was calculated. In our case the coordinates don’t change with
the calculation therefore the before and after hash defined in the constructor
init are the same.

get name returns a human readable expression that is used when printing inter-
mediate or final results.

104 Case Studies

from ga . base . c m r a l l e l e import CMRAllele

class MyAllele (CMRAllele) :
def i n i t (s e l f) :

hash de f = {” be fo r e hash ” : [” coord ”] , ” a f t e r h a s h ” : [” coord ”]}
CMRAllele . i n i t (s e l f , hash def , 4)

def get name (s e l f) :
””” re turns the name of t h i s a l l e l e . ”””
r e s = ”%.5 e %.5e” % (s e l f [” coord ”] [0] , s e l f [” coord ”] [1])
return r e s . r e p l a c e (”+” , ””) . r e p l a c e (”−” , ””)

Figure 4.21: MyAllele.py

To create the first generation we need alleles initialized with random coordinates.
These are provided by the class MyInitialAlleleCreator (Fig. 4.22) which is
derived from OffspringCreator. The member function create returns a new
allele. Every allele knows which class created it. The function get description

returns a string that describes the creator which is just the name of the class.

import random
from ga . base . o f f s p r i n g c r e a t o r import Of f spr ingCreato r

class M y I n i t i a l A l l e l e C r e a t o r (Of f sp r ingCreato r) :

def c r e a t e (s e l f , generat ion number =0):
a l l e l e = s e l f . n e w a l l e l e (0 , [])

a l l e l e [” coord ”] = [random . rand int (−900 , 400) , \
random . rand int (−300 , 80 0)]

return [a l l e l e]

def g e t d e s c r i p t i o n (s e l f) :
return ” M y I n i t i a l A l l e l e C r e a t o r ”

Figure 4.22: MyInitialAlleleCreator.py

The script template needs to implement the method run (shown in Fig. 4.23)
that calculates the fitness and updates the fitness and the state of the allele.
The allele variables are accessible with the dictionary parameters. Updating is
done by calling write spreadsheet which will write the result to a db-file and
updates the allele as well. The full script with more explanations is available in
the appendix F.4.

4.2 The Genetic Algorithm with CMR 105

. . .
def run () :

from ga examples . f e e x t c a l c . f u n c t i o n s import f unc t i on1

x = parameters [” coord ”] [0]
y = parameters [” coord ”] [1]

ca l c u l a t e the func t ion ’ s r e s u l t :
r e s u l t = func t i on1 (x , y)

cmr params = d i c t (parameters . i tems ())
cmr params [” f i t n e s s ”] = r e s u l t

w r i t e s p r e a d s h e e t (cmr params)
. . .

Figure 4.23: An extract from script template.py. The full script is available in the
appendix F.4.

The only thing left is to build the algorithm. This file is generally called main.py.
We will now step through it. The variable and function names are generally of
intuitive nature and reflect the usage. First we define the imports:

import os

from ga . base . runtime import Runtime
. . .

Next the runtime instance that stores settings and the name of the run are
defined. It is common to run a genetic algorithm multiple times to see if it
converges to the same result. Therefore is is important to use a different name
for every run.

setup = Runtime ()
setup [”name”] = ” funct i on example run 1 ”

Then we define the location where to store the state, the generations, alleles and
the results of the calculations, ...

the d i r e c t o r y where a l l g ene t i c a lgor i thm r e s u l t s are s to red
g e n e t i c a l g o d i r = os . path . j o i n (os . env i ron [ENV HOME] , ” ga runs ”)
#the name of t h i s f i l e
setup [” m a i n f i l e ”] = ”main . py”
#di r e c t o r y where the s t a t e i s s to red
setup [” s t a t e d i r ”] = os . path . j o i n (g e n e t i c a l g o d i r , setup [”name”])
setup [” output d i r ”] = os . path . j o i n (setup [” s t a t e d i r ”] , ” output ”)
setup [” c a l c d i r ”] = os . path . j o i n (setup [” s t a t e d i r ”] , ” c a l c s ”)

106 Case Studies

i f not os . path . e x i s t s (setup [” output d i r ”]) :
os . makedirs (setup [” output d i r ”])

... the population size and that we look for the minimum (and not for a maximum)
fitness value, ...

setup [” p o p u l a t i o n s i z e ”] = 6
setup [” h i g h e r f i t n e s s i s b e t t e r ”] = False

... that we request a constant size of the best generations ...

setup [” p o p u l a t i o n s i z e c o n t r o l i n s t a n c e ”] = ConstantPopulat ionSize ()

... and then set the file name for the log file and create an instance. The
arguments in the constructor are all optional and have the following meaning:
output sets whether the log messages are printed to the screen while running,
the file handle points to the log file, store sets whether to store the log file
and prefix is a string prepended to every log message:

setup [” l o g f i l e n a m e ”] = os . path . j o i n (setup [” output d i r ”] , ” l og . txt ”)
l og = open (setup [” l o g f i l e n a m e ”] , ”a”)
setup [” l o g i n s t a n c e ”] = Log (output=False ,

f i l e h a n d l e=log ,
s t o r e=False ,
p r e f i x=”GA”)

The convergence control regulates when to stop the algorithm. In this case we
stop, if the top five alleles are the same for three consecutive generations:

setup [” c o n v e r g e n c e c o n t r o l i n s t a n c e ”]
= Generat ionRepet i t ionConvergenceContro l ()

setup [” conv c t r l num gene ra t i on s ”]=3
setup [” c o n v c t r l n u m a l l e l e s ”]=5

The state shall be stored on disk and with db set to True a copy is sent to the
CMR database as well ...

setup [” s t a t e i n s t a n c e ”] = CMRDirState ()
setup [”db”] = True

... and the fitness shall be calculated by the ScriptGenerator. submit -

instance defines that the script must submitted to the queuing system (qsub).
Then there are two templates: the python template that was already shown and
the shell script template that is used to define the environment variables before
the created script will be run.

4.2 The Genetic Algorithm with CMR 107

setup [” f i t n e s s c a l c u l a t o r i n s t a n c e ”] = Scr iptGenerator ()

setup [” submit in s tance ”] = Submit ([”qsub” , ”−q” , ” smal l ” , ”− l ” ,
” nodes =1:ppn=1” , ”−me”])

setup [” p y s c r i p t t e m p l a t e ”] = ” s c r i p t t e m p l a t e . py”
setup [” s h s c r i p t t e m p l a t e ”] = ”env . sh”

An example of the shell script template is given in Fig. 4.24. #<FILL_START>

and #<FILL_END> are going to be replaced with the call to the python script
when the template is applied.

#!/ bin /sh

echo ” Star t time : ‘ date ‘ ”
#<FILL START>
#<FILL END>
echo ”End time : ‘ date ‘ ”

Figure 4.24: A minimal shell script template env.sh that defines the environment
variables that should be used on the computer cluster.

We want to use the default algorithm, ...

setup [” g a i n s t a n c e ”] = GA()

... default factories for the population, alleles and vetoes, but our own allele
MyAllele ...

setup [” p o p u l a t i o n f a c t o r y i n s t a n c e ”] = Defau l tPopulat ionFactory ()

setup [” p o p u l a t i o n v e t o i n s t a n c e ”] = DefaultPopulat ionVeto ()
setup [” a l l e l e c r e a t i o n v e t o i n s t a n c e ”] = De fau l tA l l e l eCrea t i onVeto ()
setup [” a l l e l e a c c e p t v e t o i n s t a n c e ”] = Defau l tAl l e l eAcceptVeto ()

setup [” a l l e l e f a c t o r y i n s t a n c e ”] = Al l e l eFac to ry (MyAllele)

... a ranking selector with a selection pressure of 1.5 (range is 1-2) ...

setup [” s e l e c t i o n i n s t a n c e ”] = RankSelector (1 . 5)

... create the initial population using the just defined initial allele creator ...

setup [” i n i t i a l a l l e l e c r e a t o r i n s t a n c e ”] = M y I n i t i a l A l l e l e C r e a t o r ()

108 Case Studies

... define a crossover of three alleles (triangulation), three mutations that mod-
ify the coordinate randomly in the ranges [−200, 200], [−10, 10] and [−.1, .1].
offspring creator instance ratio defines how often the crossovers and muta-
tions should be applied and max try offspring creation defines that it should
be tried 20 times to create an offspring before the algorithm is stopped. The
reason for the limit is that if the population is not diverse any more it can
happen that all crossovers result in already calculated alleles and the algorithm
cannot continue any more.

setup [” vector name ”] = ” coord ”
EITHER
setup [” g ene ra t i on c r ea t o r i n s t anc e ”]=Defaul tGenerat ionCreator ()
setup [” c ro s so v e r in s t ance ”]=CrossoverX (3)
setup [” muta t ion ins tance ”]=MutationX(−10, 10)
setup [” muta t i on cro s sove r ra t i on ”]=(1 , 1)
OR
setup [” g e n e r a t i o n c r e a t o r i n s t a n c e ”] = Genera lGenerat ionCreator ()
setup [” o f f s p r i n g c r e a t o r i n s t a n c e s ”] = [CrossoverX (3) ,

MutationX(−200 , 200) ,
MutationX(−10 , 10) ,
MutationX (− .1 , . 1)]

setup [” o f f s p r i n g c r e a t o r i n s t a n c e r a t i o ”] = [1 , 1 , 1 , 1]
setup [” m a x t r y o f f s p r i n g c r e a t i o n ”] = 20

Now we define whether alleles should be replaced if they fail. This is chosen
separately for the first and for all the following alleles.

−1: s top on f a i l e d a l l e l e s
0: ignore f a i l e d a l l e l e s and cont inue
1: r ep l a ce the f a i l e d a l l e l e s
setup [” r e p l a c e f i r s t g e n f a i l e d a l l e l e s ”] = 1
setup [” r e p l a c e f a i l e d a l l e l e s ”] = 1

During the execution summary containing some statistical information are written
as txt and HTML files:

setup [” t x t p r i n t e r i n s t a n c e ”] = t x t p r i n t e r = TxtPrinter ()
setup [” h t m l p r i n t e r i n s t a n c e ”] = html p r in t e r = HTMLPrinter ()

setup [” s t a t i s t i c s i n s t a n c e ”] = S t a t i s t i c s ()

Then the hook instance and the message that should appear when exiting is
defined followed by the registration of the on exit hooks.

reg i s t e r , when to p r in t :
setup [” hook ins tance ”] = hook = Hook ()

def end message () :
print ” Locat ions : ”

4.2 The Genetic Algorithm with CMR 109

print ”Main f i l e − %s ” % setup [” m a i n f i l e ”]
print ”Log f i l e − %s ” % setup [” l o g f i l e n a m e ”]
print ” State d i r e c t o r y − %s ” % setup [” s t a t e d i r ”]
print ” F i l e r e p o s i t o r y d i r e c t o r y : − %s ” % setup [” c a l c d i r ”]
print ”Output d i r e c t o r y : − %s ” % setup [” output d i r ”]
print ” Al l g ene ra t i on s : − %s ” % txt output
print ” Best f o r every gene ra t i on s : − %s ” % t x t b e s t o u t p u t
print ” Al l g ene ra t i on s : − %s ” % html output
print ” Best f o r every gene ra t i on s : − %s ” % html best output
print ”Log f i l e − %s ” % setup [” l o g f i l e n a m e ”]

html output = os . path . j o i n (setup [” output d i r ”] ,
” g ene ra t i on s . html”)

html best output = os . path . j o i n (setup [” output d i r ”] ,
” b e s t g e n e r a t i o n s . html”)

hook . r e g i s t e r (” o n e x i t ” ,
h tm l p r in t e r . w r i t e g e n e r a t i o n s ,
{” f i l e ” : html output })

hook . r e g i s t e r (” o n e x i t ” ,
h tm l p r in t e r . w r i t e b e s t g e n e r a t i o n s ,
{” f i l e ” : html best output })

hook . r e g i s t e r (” o n e x i t ” ,
end message)

Finally everything is defined an the algorithm can be started.

run (setup)

When main.py is called the first time it will create the initial population and
send the scripts to calculate the fitness to the computer cluster. Any subsequent
execution will load the state and if all fitnesses are available continue.

To get started with a customized GA it is best to use one of the examples that
comes along with the source code. The alternative is to create a minimal script
Fig. 4.25 and follow the instructions.

110 Case Studies

import os

from cmr . s t a t i c import ENV HOME
from ga . base . runtime import Runtime
from ga . base . run import run

g e n e t i c a l g o d i r = os . path . j o i n (os . env i ron [ENV HOME] , ” ga runs ”)

setup = Runtime ()
setup [”name”] = ” f e e x t c a l c 2 ”
setup [” s t a t e d i r ”] = os . path . j o i n (g e n e t i c a l g o d i r , setup [”name”])

run (setup)

Output:

Exception : Undefined items found :
Undefined in s t ance found : ’ g a i n s t a n c e ’ .
Undefined in s t ance found : ’ hook ins tance ’ .
Undefined in s t ance found : ’ s t a t e i n s t a n c e ’ .
Undefined in s t ance found : ’ c o n v e r g e n c e c o n t r o l i n s t a n c e ’ .

Figure 4.25: A minimal main.py file. The selected components are are evaluated during
execution and the missing ones will be pointed out.

4.2.6 Discussion

The reason for us to use Python is that it supports object oriented design, is
easy to learn, available for free, does not need an external compiler and Python
programs are distributed with the source which makes it accessible to all users.
There are not so many GA frameworks available in Python. There is only one
paper[80] that provides basic hints about how to get started, other references
note only that they used Python, but don’t provide the framework. A search on
the Internet reveals a couple of generic GA implementations. First: Pyevolve
0.5[81] is the best documented one and offers a modular design, nice statistics
plots, a few selection, mutation and crossovers methods, is easy to install and is
available with a license compatible to GPL. The drawback of this framework is
that it is tricky to specify more than one mutation or crossover type and that
the determination of the fitnesses of the alleles cannot be executed in parallel.
An adaption of this code to work with CMR would have resulted in a consid-
erable amount of recoding. Second: Distributed Evolutionary Algorithms
in Python (DEAP)DEAP[82] is available under the GNU Lesser GPL, and
supports parallel execution since version 0.7 as well. The approach of DEAP
is similar to our framework: the algorithm is first set up by choosing pre-made
components and then it is executed. The project was started at approximately

4.2 The Genetic Algorithm with CMR 111

the same time as the presented implementation. If it had been available earlier
we might have used that project as a base for the present implementation of the
GA with CMR.

We have presented a very flexible implementation of the genetic algorithm
consisting of many pre-made components that can be combined to build a
customized genetic algorithm. Advantages over other frameworks are traceability
with hooks, full control over the algorithm, vetoing during the creation of the new
alleles and vetoing after the fitness is determined. Furthermore the calculation
of the fitness for a whole generation can be performed in parallel and special
customized crossover or selection operators can easily be added. The tight
coupling with CMR is an advantage when the results are added to the CMR
database and the calculation of the fitness is expensive. The framework is
however not suitable for a problem with a simple fitness function, thousands of
generations and many runs because it cannot compete with an implementation
that was coded in a compiled language as c++ for example.

112 Case Studies

4.3 DFT based screening of ternary alkali-transition
metal borohydrides - a computational mate-
rials design project

The development of ecological energy carrier that produce little or no CO2

emission is interesting for the transportation sector and other industries storing
or converting energy. In order to be competitive with fossil fuels such a carrier
must be thermodynamically stable, efficiently convertible and comparably safe.
Hydrogen being lightweight and able to be generated from renewable energy
sources is a good candidate, but occupies roughly 11 liters of volume per gram.
Instead of storing it in pure form, metal borohydrides[83] have been proposed
for reversible chemical storage. The alkali based binary metal borohydrides
(e.g. LiBH4) turn out to be too thermodynamically stable[84, 85, 86] while the
alkaline earth based ones are kinetically too slow[87] and the transition metal
ones are either unstable or hardly reversible[88]. The hope is that more complex
alloy of these different borohydrides might provide better results.

The performed screening on ternary metal borohydrides for reversible hydrogen
storage investigates the stability and decomposition of compounds in the form
of 1 alkali metal atom (Li, Na, K) and an alkaline earth or 3d/4d transition
metal atom with two to five (BH4)− groups with different structures (trigonal,
tetrahedral, octahedral or free coordination). Most of the calculations were
done during the CAMD Summer School 2008 on density functional theory as a
materials design project where over 100 PhD student and postdocs contributed.
Only a few calculations were subsequently performed based on the gained in-
sight. In order to get useful comparable results, all calculations were performed
with unified parameters where possible: we used the software package Dacapo
with the RPBE exchange-correlation functional[89] and the same values for the
cutoffs (energy and density grid), k-points for all the calculations and the all
relaxations were performed with a quasi-Newton method[90]. Dacapo (which
is based on DFT) was chosen because DFT allows to estimate the result for
complex borohydrides based on simple model structures[91].

Possible candidates for reversible hydrogen storage were identified with respect to
the stability against phase separation (∆Ealloy) and the decomposition pathway
(∆Edecomp).

For LiSc(BH4)4 the stability against phase separation looks as follows:

∆Ealloy = ELiSc(BH4)4 − (ELiBH4 + ESc(BH4)3). (4.3)

4.3 DFT based screening of ternary alkali-transition metal borohydrides - a
computational materials design project 113

Since most of the true decomposition pathways are unknown or if known, very
different from each other, one was chosen that decomposes the alloy into an
alkali – or alakli earth hydride, the transition metals, the boron atoms and H2.
For LiSc(BH4)4 this looks as follows:

∆Edecomp = ELiMn(BH4)4 − (ELiH + EMn + 4EB + 7.5EH2
). (4.4)

Values between -0.5 and 0 were considered interesting for ∆Edecomp < 0 and for
∆Ealloy values smaller than 0. The reference energies for ELiH, EMn, EB and
EH2

were calculated beforehand. From a total of over 700 structures and over
5000 calculations, we found 22 potentially stable alloys with good decomposition
energies shown in Fig. 4.26 and Fig. 4.27.

A few of the identified candidates have been synthesized before and confirm
the trends: this are LiFe(BH)3,[92] LiAl(BH4)4,[93] (Li/Na)Mn(BH)3,4[94] and
(Li/Na)Zn(BH4)3,[95].

The components that made this screening possible are: soft and hardware
infrastructure, templates for the calculations with initial guesses for the positions,
and the collection and analysis of the results. In the following we will discuss
the parts that provided us with insight for the later development of CMR. The
details about the template creation and the numeric parameters can be found in
paper C.

4.3.1 Requirements, Infrastructure and Organization

The requirements for the presented framework were that the participating
researchers must be able to work and submit their resulting data files concurrently
to a repository. The results should be stored in a traceable and modifiable way
and the design should prevent technical problems like accidental overwriting of
already present results. The researchers would be divided into 32 groups and each
group would investigate two borohydride alloys each in 8 different structures, for
example LiSc(BH4)3 and 4 in trigonal, tetrahedral, tetra/octahedral (Li in tetra,
Sc in octahedral coordination) and octa/tetrahedral structure. Each structure
relaxed the hydrogene position and the unit cell volume. The best structures
were then relaxed with no fixed atoms which resulted in a slightly distorted
structure that we called “other”. The submitted results should then be displayed
on a web page after checking their validity. No new infrastructure should be
set up, instead the Niflheim[96] cluster, a file server, a web server, python, a

114 Case Studies

wt.%
[kg H2/kg
material]

∆Ealloy

[eV/f.u.]
∆Edecomp

[eV/H2]

LiNa(BH4)2 13.5 -0.020 -0.581
KZn(BH4)3 8.1 -0.349 -0.423
KAl(BH4)4 12.9 -0.138 -0.416
NaAl(BH4)4 14.7 -0.279 -0.373
KCd(BH4)3 6.2 -0.005 -0.352
NaZn(BH4)3 9.1 -0.358 -0.344
LiAl(BH4)4 17.3 -0.391 -0.311
KFe(BH4)3 8.7 -0.116 -0.282
LiZn(BH4)3 10.4 -0.362 -0.243
NaFe(BH4)3 9.8 -0.141 -0.206
KMn(BH4)4 10.5 -0.148 -0.174
NaNb(BH4)4 9.2 -0.128 -0.165
KCo(BH4)3 8.5 -0.089 -0.161
NaMn(BH4)4 11.7 -0.284 -0.131
KNi(BH4)3 8.5 -0.120 -0.116
LiFe(BH4)3 11.3 -0.141 -0.104
LiNb(BH4)4 10.1 -0.194 -0.097
NaCo(BH4)3 9.6 -0.143 -0.090
KRh(BH4)4 8.0 -0.058 -0.079
LiMn(BH4)4 13.3 -0.358 -0.063
NaNi(BH4)3 9.6 -0.164 -0.043
NaRh(BH4)4 8.7 -0.033 -0.016

Figure 4.26: Candidate structures for reversible hydrogen storage with alloying energies
∆Ealloy < 0.0 eV/f.u. (formula unit) and decomposition energies ∆Edecomp < 0.0
eV/H2.

programming language, subversion[97], a file versioning tool and cron[98], a job
scheduler should be combined in a workflow to be able to meet the requirements.

4.3.2 Workflow

This paragraph describes how the given infrastructure components were joined to
enable the collection of the data and later the analysis. An illustration showing
the organization and the flow of the data is shown in Fig. 4.28.

In order to avoid possible naming conflicts and enable traceability, every group

4.3 DFT based screening of ternary alkali-transition metal borohydrides - a
computational materials design project 115

0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.1
∆Edecomp (eV/H2)

40

50

60

70

80

90

100

ρ
H

(k
g

of
H

2
/m

3
) LiAl(BH4)4

LiMn(BH4)4

LiZn(BH4)3

LiNb(BH4)4

LiNa(BH4)2

LiFe(BH4)3

NaAl(BH4)4

NaMn(BH4)4

NaNb(BH4)4

NaRh(BH4)4

NaFe(BH4)3

NaCo(BH4)3

NaNi(BH4)3

NaZn(BH4)3

KRh(BH4)4

KAl(BH4)4
KMn(BH4)4

KFe(BH4)3

KCo(BH4)3

KNi(BH4)3KZn(BH4)3

KCd(BH4)3

Figure 4.27: The hydrogen density (kg H2 m−3) as a function of the decomposition
energy for the 22 alloys with ∆Ealloy ≤ 0.0 eV/f.u. and ∆Edecomp ≤ 0.0 eV/H2;
Colors: Li (red), Na (blue) and K (green).
local coordination: tetra (�), octa (◦), octa-tetra (4), tetra-octa (+), tetra-tri (�),
other (/) .

got a name and a directory in the subversion repository assigned (camd001,
camd002, ...). For every structure that the group members calculated they created
a subdirectory that contained the script. Subversion assigns a (unique) revision
number for every change. For now we assume that we added the subdirectory
LiMnB4 octa and subversion assigned the revision number 505. The output
files from Dacapo were then as a consequence named LiMnB4 octa.nc.505. If
the the script was modified later it would get a new revision number and so
would the output files. This guaranteed that the results remained traceable
and prevented accidental overwriting. When satisfied with the result file the
researchers would move the Dacapo output file to the calculation repository.
(The Dacapo output file were not added to the subversion repository because
of their size, which can easily exceed 40 MB and the fact that versioning is not
needed, because they will never be modified.)

To make efficient searches possible all needed information was extracted from
the Dacapo output file, enhanced with a few calculated properties and written
as a python pickle file. Python pickle files are used in the python programming

116 Case Studies

Figure 4.28: Organization and flow of the data. The scripts for the calculations are
stored in the subversion repository while the Dacapo output files are moved to the
calculation repository. For efficiency reason the interesting data is extracted from the
Dacapo output files, new fields like the weight percent of H, the decomposition and
alloy energy are calculated with the help of the reference energies and then written to
the pickle repository. The analysis framework then reads the pickle files, applies the
search/selection criteria to create plots and files for a static web page which is then
accessible for the participants on the Internet.

language to write objects like dictionaries to a file. This avoided parsing the
Dacapo file and recalculating the properties for every run. These files were
written to pickle repository. The information stored in the pickle files were
the name of the structure, the formula, the weight percent of H, the decomposition
and alloy energies and a few parameters of the calculation. The analysis tool
allowed to write queries that search the pickle repository. For example it is
possible to select all results that contain lithium and display their decomposition
energies.

4.3.3 Analysis Tool

To analyze, plot and show the data on the Internet a simple python analysis tool
was built that runs every few minutes and updates the current results. When run,
the tool would first load the data from the pickle repository into memory and
then execute the queries to select the requested data. The queries are performed
in a very similar way as with CMR that is described in the section 2.4. To
create the data in Fig. 4.27 for example, all results with ∆Ealloy ≤ 0.0 eV/f.u.
and ∆Edecomp ≤ 0.0 eV/H2 would be selected and then passed on to a specially

4.3 DFT based screening of ternary alkali-transition metal borohydrides - a
computational materials design project 117

tailored module that creates the plot and assigns the correct symbols and colors.
All plots were created with matplotlib[99], a graphics tool available for python.
The content of the static web pages was selected in the same way, but then
written as HTML.

4.3.4 CAMD Summer School Conclusion

The CAMD Summer School project was a big success: we found about 20
potentially stable alloys with good decomposition energies and were able to
collect results performed by many researchers concurrently, could trace and
correct errors and create a system to show and analyze the data almost just-in-
time on the Internet. This project laid the foundation for the future development
of CMR and inspired us especially in the way the analysis was performed and
data was collected.

118 Case Studies

Chapter 5

Summary and Outlook

We have created CMR, a modular and extensible framework to aggregate, store,
monitor, analyze, present and share data from electronic structure calculations.
The framework is scalable and can be deployed as a single user system without
any database software or as multi user system to serve a whole institute (requires
database software). The user interfaces satisfy the needs of casual users as well
as power users: CMR provides an intuitive web interface and a programmable
interface. The problem of storing results from different codes is solved by
converting all data to a newly developed file format, the db-files. Db-files have
the advantage that the content can be validated and the data are accessible
without third-party software. To make analysis and finding results easier, they can
be attributed with custom keywords and variables. The concept of (calculation)
groups enables data to keep their natural connection also in the database. A
group could for example contain all calculations that were needed to determine
a chemisorption energy or all calculations belonging to a project. Agents,
autonomous background processes are used to create tables for the user interfaces,
but can also be assigned to perform automatic data analysis.

The data collection part of CMR is implemented in Python, and therefore some
of the processes would run faster, if a different implementation language had
been chosen. This is noticed when parsing or validating many files, however we
think that the advantage of having an easy to learn powerful implementation
language is a big advantage in terms of maintainability and ease of use. We show

120 Summary and Outlook

with the presented case studies that our approach is versatile and that it works.
CMR is deployed at CAMd in two instances: one is the internal database that
can used by all researchers, and the other is the public database where we put
high-quality data of published articles.

Based on the current CMR infrastructure the next layer of abstraction can be
built: For typical tasks such as calculating reaction, atomization or adsorption
energies, calculation templates should be created. They reduce user errors and by
using standardized keywords and field names makes it easier to trigger automated
categorization and data analysis. These templates are a first towards letting
researchers focus on data-mining instead of writing scripts for calculations.

CMR is part of Quantum Materials Informatics Project[14], which aims at
establishing the core technology for integrated computational materials design.

CMR is available under GPL from http://wiki.fysik.dtu.dk/.
The high-quality CMR database can accessed at http://cmr.fysik.dtu.dk/

http://wiki.fysik.dtu.dk/
http://cmr.fysik.dtu.dk/

Appendix A

The Computational Materials
Repository

D. D. Landis, J. S. Hummelshøj, S. Nestorov, J. Greeley, M. Du lak, T. Bligaard,
J. K. Nørskov and K. W. Jacobsen
Accepted by Comput. Sci. Eng., 2012

122 Appendix A

The Computational Materials Repository

D. D. Landis1, J. S. Hummelshøj2, S. Nestorov3, J. Greeley4, M.
Dułak1, T. Bligaard2, J. K. Nørskov2 and K. W. Jacobsen1

1Technical University Denmark, Center for Atomic-scale Materials
Design, DK-2800 Lyngby, Denmark

2SLAC National Accelerator Laboratory, SUNCAT Center for Interface
Science and Catalysis, Menlo Pk, CA 94025 USA

3University of Chicago, Department of Computer Science, Chicago, IL
60637 USA

4Argonne National Laboratory, Center for Nanoscale Materials,
Argonne, IL 60439 USA

January 20, 2012

Abstract

The possibilities for designing new materials based on quantum physics calculations are
rapidly growing, but this leads to a significant increase in the amount of computational data cre-
ated in relation to such design efforts. The Computational Materials Repository (CMR) addresses
this data challenge and provides a software infrastructure that supports the collection, storage,
retrieval, analysis and sharing of data produced by a number of modern electronic-structure sim-
ulators.

Keywords: H.3.2.d Storage/repositories < H.3.2 Information Storage < H.3 In-
formation Storage and Retrieval < H Information Technology and Systems,
H.3.3.b Information filtering < H.3.3 Information Search and Retrieval < H.3 Infor-
mation Storage and Retrieval < H Information Technology and Systems,
J.2.i Physics < J.2 Physical Sciences and Engineering < J Computer Application

1 Introduction
The design of novel and versatile materials is an issue of central importance for so-
ciety. This is exemplified by a significant current focus on discovering new materials
for energy conversion and storage to provide a sustainable alternative to the fossil-
based fuel economy. Atomic-scale calculations are becoming increasingly important
in strengthening our ability to meet this challenge, as they over time have provided an

1

ever-improving alternative to expensive experiments. One common aspect of conduct-
ing computational atomic-scale materials design is the need for carrying out calcula-
tions on a large number of materials. This poses a challenge in terms of systematic stor-
age of the calculations, enabling easy retrieval, comparison, and analysis. We present a
software infrastructure named the Computational Materials Repository (CMR), which
addresses this problem by implementing a modular framework in python, providing
tools for collecting, storing, grouping, searching, retrieving, and analyzing data gener-
ated by a number of modern electronic-structure simulators. The focus is in particular
on Density Functional Theory (DFT) which represents a favorable trade-off between
speed and accuracy for the treatment of “few-hundred-atom” systems highly relevant
for understanding physical and chemical properties of materials. CMR can be used
for single user projects, but can also make user of a MySQL database1 which enables
inter-group collaborations and allows to process significantly more data.
CMR is currently in use in our groups, and we provide it under the open source GPL
license to any group or individual who may find it useful.

2 The Computational Materials Repository
From experience with the Atomistic Simulation Environment (ASE)2, 3 and its inter-
faces to legacy as well as state-of-the-art electronic structure codes, we’ve learned that
python4 is well suited for our purpose; it is a high-level programming language used
in research and industry due to its intuitive and powerful syntax, that fits the needs of
newcomers as well as expert programmers. As with the ASE we would like users to
be able to benefit from CMR at several levels of complexity. At the simplest level the
CMR can be used by a single user with his/her data in an ordinary file system without
installing a database. Power-users who want to access data faster and with more flex-
ibility will install a MySQL database and use one or more of the CMR interfaces to
benefit fully from the system.

The database system that we describe here is tailored to store, retrieve, and analyze
data related to properties of matter at atomic scale. A fairly large number of so-called
electronic structure codes exist today,5 and it is the ambition of CMR to work broadly
with many of these codes. The different codes can, however, have quite different out-
put file formats, even though the output might contain relatively similar information.
Our solution to the issue of different file formats is to initially convert the data to in-
termediate db-files (also called cmr-files). The variable names used in the db-file are
whenever possible the same as in the original file format, which allows users to be-
come quickly familiar with the use of the database. The reasons for using intermediate
db-files are that they permit to verify contents , collect data without direct access to
the database, and to exchange data with other parties. The CMR thereby introduces
more flexibility in storing different types of calculations, new possibilities for intra-
and inter-group collaboration, and better support for third party analysis tools than the
stand-alone Java-based VMDF package.6

2

2.1 Accessing the database
Communication with a database is done by writing so called queries. For example
SELECT * FROM db.tbl would return all data from a table named tbl that is
contained in a database called db. This is not very user-friendly since queries tend to
become long and complicated; moreover, queries depend on the structure of the un-
derlying database; so when the database structure changes, previously written queries
become invalid. CMR handles this burden of writing queries by providing three inter-
faces: a python, a PHP, and a HTML/JavaScript interface.

The most powerful interface is the python interface. It allows users to retrieve a
subset of the data by selecting keywords, atomic numbers or ranges of data and then
do further processing. This interface is flexible with respect to the location of the
data and can query a database as well as a db-file repository. This assures that people
starting with a db-file repository can easily switch to using a database later on. Using
python enables the user to perform advanced operations like grouping results based on
keywords and writing results back to the database.

PHP is a general-purpose scripting language that runs on a web-server. The PHP
interface makes it possible to visit a CMR server with a web-browser and provides ac-
cess to the database in a manner similar to a state of the art search-engine; searches are
performed by entering keywords, atom names and data ranges for variables. Addition-
ally atomic structures and all files (like calculation scripts and graphics) included in a
db-file can be viewed, which turns out to be very useful, especially if the keywords are
not accurate or it is not clear how the data were calculated. Results can be downloaded,
further analyzed, grouped and re-uploaded with the python interface.

Although the python interface offers a lot of functionality, it is in many cases con-
venient to use a graphical user interface where for example atomic structures can be
visualized as in the HTML/JavaScript interface silo. Silo runs in state-of-the-
art browsers such as Chrome, Opera, Safari or Firefox (the local caching of data in a
sqlite database is not supported in Firefox). SiGUI (Simple Graphical User Interface),
a plug-in for silo enables users to create queries visually without the need to know
a database query language. In Fig. 1 we show a query that retrieves data from a user
named ”strabo”, selects results that contain the atom ”Li”, and finally picks the results
that contain the keywords ”halide”. The results are presented in a cover flow showing
the atomic structures above a table with the corresponding values.

3

Figure 1: The silo plugin SiGUI enables users to create queries in a graphical user
interface.

2.2 Analyzing data
Analyzing the data is one of the most important aspects of CMR. Without analysis the
database would just present an overwhelming amount of strings and numbers of little
use . It is therefore important that the analysis be both thorough and flexible.

The first feature to use for analysis is the taxonomy which consists of system gen-
erated tags/keywords which describe the data. Some of these are quite obvious like the
identity of an atom being “Nitrogen” and the numbers which describe the position of
a given atom in space. These are the kinds of keywords which are already identified
with the initial upload of data. However, there are also other keywords which can be
automatically deduced. If a particular system contains a nitrogen atom surrounded by
3 hydrogen atoms at typical bond distances, this is an indication that the system con-
tains an ammonia molecule. It may therefore be appropriate to tag the system with the
keyword “ammonia” so that later searches can easily find the calculations involving
this molecule. Such automatic assignments of keywords are generally complex and are
therefore left to the users.

Another feature for analysis purposes is the use of folksonomy. This term from
the internet lingo describes “a system of classification derived from the practices and
methods of collaboratively creating and managing tags to annotate and categorize con-
tent”.7 In other words, the database should take advantage of all the useful knowledge
available from its users in classifying the content. One user might for example carry
out studies related to how small molecules bind to a nickel surface and therefore decide
to add a keyword “chemisorption” to a set of calculations. This is very useful later on

4

for other users who might want to study the same subject and who with a simple search
can identify relevant calculations, which have already been carried out.

The taxonomy and folksonomy tagging becomes even more dynamic by introduc-
ing agents. By an “agent” we mean a program or process running in the background
(or in some cases executed by the user manually) to query the database using taxon-
omy and folksonomy classification to retrieve data, perform operations, group results,
or create tables. An example of a simple agent could be a piece of code identifying
ammonia molecules as described above. This code could run automatically every time
new data are uploaded to the database and ensure that there would be an up-to-date list
of ammonia molecules entering calculations in the database.

An agent which has the purpose of calculating chemisorption energies is a little
more involved. The calculation of a chemisorption energy requires three electronic
total energy calculations:

• The adsorbate in the gas-phase (X)

• The clean surface (Y)

• The surface with the adsorbate (i.e. a molecule bound to the surface) (Z)

The chemisorption energy, Echem, is then calculated as Echem = EZ −EX −EY .
The agent first finds all solutions for X, Y, and Z that satisfy the following criteria:

• X.keywords contains adsorbate

• Y.keywords contains surface

• Z.keywords contains surface+adsorbate

• X.ads=Z.ads

• Y.surface=Z.surface

This list can be supplied with more conditions to for example make sure that the three
calculations in question are compatible in terms of system size, convergence, and other
parameters. Based on all the discovered triplets of calculations, the agent builds a
new table in the database with the chemisorption information. This agent could run
periodically and create a table which is accessible to all users.

An additional available feature for the analysis is the possibility of grouping cal-
culations together. This could for example connect the three calculations involved in
a calculation of the chemisorption energy permanently. In the section ”Grouping and
Generation of Unique IDs” we shall describe how this works in more detail.

To illustrate the combined functionality of the CMR system, we show in Fig. 2 an
overview of the system. The data may come from different electronic structure codes
to be uploaded in the repository using the intermediate db-file format. During and after
the upload, the data are analyzed by a set of agents based on the available taxonomy
and folksonomy classification. The raw data and high-level data generated in tables
can be accessed using the python, PHP, or the HTML/JavaScript interface.

5

Figure 2: An overview of the CMR system. The main steps are the creation of the
db-files, the uploading to the database, and the automatic analysis performed by the
agents.

3 The inner workings
In the following we shall discuss some of the important details of the implementation
of CMR. Most of the material here is not necessary to know about for the general or
“casual” user of CMR, but is essential for the superuser who would like to tweak the
system performance.

3.1 db-files and cmr-schemas
Db-files are stored in XML format. We chose XML8 for several reasons: XML files
can be easily extended and verified, the content can be read by humans, the structure
is to a high degree self-explanatory, and there are xml-parsers available in almost any
programming language. Anyone can therefore read db-files and might relatively easily
create an application utilizing them independently of CMR.

Here is an extract of an XML file that contains the output from a GPAW9 calcula-
tion:

6

...
<calculator>

<TotalEnergy><double>-586.442</double></TotalEnergy>
<AtomicNumbers>
<long_array length="2">
<long>6</long>
<long>8</long>

</long_array>
</AtomicNumbers>

...
</calculator>

...

The content is intuitively obvious as follows: TotalEnergy is equal −586.442 and
AtomicNumbers is an array containing 6 and 8. “double”, “long array” and “long”
are the names of the variable types.

The difference between a db-file containing data from a GPAW calculation and one
containing data from a different code, e.g. a Dacapo calculation, is defined by the
schema. The schema declares the names of the variables, the types and whether they
are optional or mandatory. The CMR schemas are used to validate the contents of the
db-files. This enables early detection of possible problems with the data; if a field is
expected to be an integer, but is a string, it would fail to be uploaded to the database.

3.2 Grouping and Generation of Unique IDs
The db-files are not only used to store converted information from programs. They are
also used to store information about groups of calculations. The difference is only the
schema. Using db-files, we are not only able to identify the members of a group but are
also able to add keywords, a description, and user defined fields. An example would be
the calculation of a chemisorption energy that needs three calculations. When creating
this group, we add a field chemisorption energy with the calculated result and
also fields with the name of the surface atoms and the name of the adsorbate.

In a database, it is easy to know which items belong to a group, because every item
has an automatically assigned unique id - but is it possible to transfer the data to a third
party’s database and keep the same id? No, because the third party has different data in
the database, and hence the ids are most likely already used. To circumvent this issue,
we create a hash value (unique identifier) from the content of the calculation. We use
SHA110 with a key length of 160 bits, which is sufficiently long to be almost certain
that no collisions will happen.

The hash and the ability to add user defined fields to groups open more options for
exchanging data. The above described group containing the chemisorption energy can
be transferred to the third party without including the db-files that were used to actually
determine the chemisorption energy. This saves memory and since the group retains
the reference (the unique ids of its members) it is at any time possible for the third party
to identify the omitted parts and request them if necessary.

7

4 Software Design and Application of CMR
People using CMR have different needs: some want to use CMR to query their data,
others would like to use the system to collect the data, but upload them to a database
that arranges the data in a very specific way, while developers want to implement other
readers for using their codes with CMR. To cope with these requirements CMR is built
in a modular way and supports various groups of plug-ins that can easily be extended:

• converters: readers of foreign file formats that convert to db-files
• mappings: define mappings of names, types and units
• agents: autonomous or manually started processes that analyze data
• cmr-schemas: define exactly what data are to be collected from a reader and the

types of the variables
• tests: tests a plug-in or any other functionality in CMR
Converting a supported output file (e.g. from Dacapo, Gaussian, GPAW and

VASP) to a db-file is simple. Arguments, keywords and extra fields are placed in a
python dictionary and passed as an argument to the convert function:

import cmr

params = {"input": "example.gpw",
"db" True,
"keywords": ["gpaw",

"example",
"test"],

"files": ["log.txt"],
"description": "Vacuum convergence test",
"vacuum": 12.5

}

cmr.convert(params)

The flag "db":True means that the output should be written directly to the db-
file repository. Every plug-in is expected to provide one or more tests. Tests are run
when a release version is created or on demand by the user.

4.1 Screening example
During the CAMd Summer School 2008 at the Technical University of Denmark (DTU),
a project was carried out with the aim of identifying ternary alkali-transition metal
borohydrides for hydrogen storage.11 During the school about 100 participants com-
pleted more than 5000 electronic structure calculations which were stored in an early
version of CMR. The results are presented in Fig. 3 where the green box indicates the
region of alloy stability and a decomposition energy which is advantageous for hy-
drogen storage.11 All the data are available in our CMR at https://cmr.fysik.
dtu.dk/ together with data compiled in a project on solar-induced splitting of wa-
ter.12

8

Figure 3: Energetic properties (alloy stability (∆Ealloy) and decomposition energy
(∆Edecomp)) of (Li, Na, or K)-transition metal borohydrides calculated during the
CAMd Summer School 2008.11 The most promising candidates for reversible hydro-
gen storage are inside the box.

4.2 Competing Software and Availability
Recently a number of projects have shown up that go in a similar direction as CMR.6, 14, 15

Quixote16 for example is a system to organize, share and query data for computational
chemistry codes. Like CMR it is distributed as open-source software, and implements
a similar workflow to process data. The main advantages of CMR over Quixote are
scriptable database access, possibility to add data to the database without a converter
and being able to create groups of calculation with custom fields and keywords. An-
other example is the Materials Genome Project13 that has the goal to provide a public
database of electronic structure calculations for materials screening, structure predic-
tion, analysis, and data mining. The unique feature of its closed source data generation
framework is the combination of known existing compounds, automated DFT calcula-
tions, and analysis in order to predict novel materials.

CMR results from a collaboration under the Quantum Materials Informatics Project,17

which aims at establishing the core technology for integrated computational materials
design. Extensive information on CMR is available at https://wiki.fysik.
dtu.dk/cmr.

9

5 Acknowledgments
We acknowledge financial support from the Danish Center for Scientific Computing
and NABIIT. The Center for Atomic-scale Materials Design (CAMD) is funded by the
Lundbeck Foundation. The SUNCAT Center for Interface Science and Catalysis is
funded by the U.S. Department of Energy (DOE). J. G. acknowledges support from the
Department of Energy, Office of Science, Office of Basic Energy Sciences, through the
Early Career Research Program.

References
1. “MySQL.” http://www.mysql.com/.

2. S. R. Bahn and K. W. Jacobsen, “An Object-Oriented Scripting Interface to a
Legacy Electronic Structure Code,” Computing in Science and Engineering, vol. 4,
pp. 56–66, 2002.

3. “Atomic Simulation Environment (ASE).” https://wiki.fysik.dtu.dk/
ase/.

4. “Python.” http://www.python.org/.

5. “Electronic Structure Codes.” http://www.psi-k.org/codes.shtml.

6. T. R. Munter, D. D. Landis, F. Abild-Pedersen, G. Jones, S. Wang, and T. Bli-
gaard, “Virtual materials design using databases of calculated materials proper-
ties,” Computational Science & Discovery, vol. 2, p. 015006, 2009.

7. “Wikipedia, the free encyclopedia.” http://en.wikipedia.org/wiki/
Folksonomy.

8. “Extensible Markup Language (XML).” http://www.w3.org/
standards/xml/.

9. “Grid-based Projector-Augmented Wave method (GPAW).” https://wiki.
fysik.dtu.dk/gpaw/.

10. “sha1.” http://en.wikipedia.org/wiki/SHA-1.

11. J. S. Hummelshøj, “Density functional theory based screening of ternary
alkali-transition metal borohydrides: A computational material design project,”
J. Chem. Phys., vol. 131, 2009.

12. I. E. Castelli, T. Olsen, S. Datta, D. D. Landis, S. Dahl, K. S. Thygesen, K. W.
Jacobsen, “Computational screening of perovskite metal oxides for optimal solar
light capture”, Energy Environ. Sci., 2012, DOI: 10.1039/C1EE02717D

13. “A high-throughput infrastructure for density functional theory calculations,”
Comp. Mat. Sci vol. 50, pp. 2295-2310, 2011

14. “AflowLib.” http://www.aflowlib.org/.

15. “ESTEST.” http://estest.ucdavis.edu/.

10

16. S Adams P. de Castro P. Echenique, J. Estrada, M. Hanwell, P. Murray-Rust,
P. Sherwood, J. Thomas, J. Townsend, The Quixote project: Collaborative and
Open Quantum Chemistry data management in the Internet age, J. Cheminf.,
vol. 3, no. 1, p. 38, 2011.

17. “Quantum Materials Informatics Project.” http://www.qmip.org/.

11

134

Appendix B

Computational Screening of
Perovskite Metal Oxides for

Optimal Solar Light Capture

I. E. Castelli, T. Olsen, S. Datta, D. D. Landis, K. S. Thygesen, S. Dahl, K. W.
Jacobsen
Energy Environ. Sci., vol. 5, 2012

136 Appendix B

Computational screening of perovskite metal oxides for optimal solar light
capture†

Ivano E. Castelli,a Thomas Olsen,a Soumendu Datta,a David D. Landis,a Søren Dahl,b Kristian S. Thygesena

and Karsten W. Jacobsen*a

Received 20th September 2011, Accepted 17th November 2011

DOI: 10.1039/c1ee02717d

One of the possible solutions to the world’s rapidly increasing energy demand is the development of

new photoelectrochemical cells with improved light absorption. This requires development of

semiconductor materials which have appropriate bandgaps to absorb a large part of the solar spectrum

at the same time as being stable in aqueous environments. Here we demonstrate an efficient,

computational screening of relevant oxide and oxynitride materials based on electronic structure

calculations resulting in the reduction of a vast space of 5400 different materials to only 15 promising

candidates. The screening is based on an efficient and reliable way of calculating semiconductor band

gaps. The outcome of the screening includes all already known successful materials of the types

investigated plus some new ones which warrant further experimental investigation.

Introduction

The high living standard created in the world during the last

century is to a large extent due to easy access to cheap fossil fuels.

These resources are limited, and the ever increasing energy

demands, together with the CO2 related climate problems, make

the development of sustainable energy technology one of the

most important problems of today.1 Direct harvesting and

conversion of solar light to electrical energy in photovoltaic (PV)

cells or to chemical energy by photoelectrochemical (PEC)

reactions are the most obvious technologies to address this

problem. Conventionally, both technologies rely on light

collection in semiconductor (SC) materials with appropriate

bandgaps that match the solar spectrum in order to obtain high

energy conversion efficiency.2–4 Here, we demonstrate an effi-

cient, computational screening of relevant oxide and oxynitride

materials based on electronic structure calculations showing that

less than 1 out of 350 materials are realistic candidates for light-

induced splitting of water.

The tremendous increase of computational power over the last

couple of decades, in combination with methodological

improvements, has made it possible to guide the development of

new materials using first principles quantum mechanical calcu-

lations. Examples include the development of battery cathodes,5

the construction of semiconductor superlattices,6 searching for

high stability alloys,7 and, very recently, screening for high-

performance piezoelectrics,8 for organic photovoltaics9,10 and for

inorganic scintillator materials.11 Here, we show that a newly

aCenter for Atomic-scale Materials Design, Department of Physics,
Technical University of Denmark, DK - 2800 Kongens Lyngby,
Denmark. E-mail: kwj@fysik.dtu.dk
bCenter for Individual Nanoparticle Functionality, Department of Physics,
Technical University of Denmark, DK - 2800 Kongens Lyngby, Denmark

† Electronic supplementary information (ESI) available: Methods, Cubic
Perovskite Oxides and Cubic Perovskite Oxinitrides sections; Table 1, 2,
3; Fig. 1, 2. See DOI: 10.1039/c1ee02717d

Broader context

For almost 40 years, researchers have tried to identify semiconductors suitable for photoelectrochemical water splitting under solar

light. Investigations have focused on oxides and, more recently, on oxynitrides, due to their good properties with respect to stability.

Inspired by this, we have performed a comprehensive computational screening of more than 5400 oxide/oxynitride compounds in the

cubic perovskite structure covering 52 metals. The screening is based on criteria for stability and for the size and position of the

bandgap. The material should allow for collecting a significant part of the solar photons and be able to drive the uphill water splitting

reaction. The calculations of the bandgaps go beyond standard (semi-)local DFT and take into account explicitly the derivative

discontinuity providing realistic estimates of the gaps. We end up with 10 oxides and 5 oxynitrides as candidates for light harvesting

materials including AgNbO3, BaSnO3, BaTaO2N, CaTaO2N, SrTaO2N, and LaTiO2N, which are well known in the water splitting

community. We suggest 9 new combinations for further experimental investigation.

5814 | Energy Environ. Sci., 2012, 5, 5814–5819 This journal is ª The Royal Society of Chemistry 2012

Dynamic Article LinksC<Energy &
Environmental Science

Cite this: Energy Environ. Sci., 2012, 5, 5814

www.rsc.org/ees PAPER

implemented density functional method allows for completely

new possibilities of screening material properties involving their

band gaps.

The properties determining the usefulness of a SC material as

light harvester in a PEC cell include12,13 (i) a band gap allowing

the utilization of a significant fraction of the solar spectrum; (ii)

well positioned band edges relative to the water redox levels; (iii)

high mobilities, allowing electrons and holes to reach the surface

and reduce/oxidize the targets before recombining, and (iv)

chemical/structural stability under irradiation. In addition, low

cost and non-toxicity are necessary properties. Numerous efforts

have been made to find an efficient material for splitting water

into H2 and O2 under visible light irradiation going more than 40

years back to Honda and Fujishima’s report on electrochemical

photolysis using TiO2,
14 but so far the ideal material has not been

found.3

Here, we focus mainly on aspects (i), (ii) and (iv) mentioned

above, namely the search for stable materials with optimal, well

positioned, bandgaps. We consider metal oxides and oxynitrides,

due to their high stability, and we concentrate on the cubic

perovskite structure with general formula ABO3 (space group

Pm�3m), due to the large variety of properties and applications of

materials in this structure.15 We first consider the binary oxides

where much experimental information is already available. The

screening method is then applied to binary oxynitrides which

generally have better positioning of the bandgap for water

splitting compared to the oxides, but where much less experi-

mental information is available, making theoretical screening

necessary. Our study points to six new oxides and one oxynitride

candidate for water splitting which should warrant experimental

investigation.

Results and discussion

The first step is to find and validate an appropriate method for

calculation of oxide and oxynitride stabilities and bandgaps.

With respect to the stability, we use a standard DFT-GGA in the

form of the RPBE-functional.16 (Details of the methods used in

this paper can be found in the Methods section in the ESI †).

Reliable calculations of the bandgaps require a density func-

tional beyond GGA. We use the so-called GLLB-SC func-

tional17,18 which is demonstrated in Fig. 1 to predict the

magnitudes of the bandgaps of a selection of non-magnetic metal

oxides with different equilibrium structures19 within an absolute

deviation of 0.5 eV—an accuracy sufficient for the present

screening study. The computational cost of DFT-GLLB-SC is

significantly lower than for many-body perturbation techniques

such as the GW approximation and is crucial for the success of

the screening. We use the GPAW code20,21 for all calculations

presented in the following.

A cubic perovskite (see structure in Fig. 2C) consists of large

12-coordinated cations at the so-called A sites and small 6-

coordinated cations at the B sites. Compounds with different

combinations of cation charges in the A and B sites, e.g. 1 + 5,

2 + 4, and 3 + 3, have been found in nature. We consider all the

possible combinations of perovskites obtained starting from the

non-radioactive metals of the periodic table.

We define the formation energy, DE, of the perovskite metal

oxides as the energy difference in the following reaction:

A(s) + B(s) + 3H2O(g) / ABO3(s) + 3H2(g). (1)

We use water and H2 as reference for O2 instead of molecular

oxygen, because the material we are looking for has to work in an

aqueous environment. This choice is conservative with respect to

O2 because water is more stable than molecular oxygen and

hydrogen by 2.46 eV per water molecule. The reaction energy is

calculated directly from the DFT total energies of the partici-

pating molecules and solids. We estimate the Gibbs free energy of

the reaction with water in the liquid phase following Nørskov

et al.22 to be within 0.1 eV of the calculated DFT total energy

difference. We therefore simply use DE for the perovskite oxide

to estimate the stability relative to the two metals in their most

stable structures.

Fig. 2A summarizes the results for the formation energies per

atom and bandgaps for the 2704 investigated oxides in the

perovskite structure. In the figure, the square corresponding to

a given oxide containing two metals is split into two parts with

the lower, left triangle indicating the stability (from red to blue

with decreasing stability) and the upper, right triangle the

bandgap (Fig. 2B). The data are available in the database

Computational Materials Repository,23 developed at CAMD, at

the web address http://cmr.fysik.dtu.dk/.

The stability of a compound can be seen to be the result of

three factors: (i) the sum of the possible oxidation numbers of the

two metals has to be equal to 6 since the three oxygen atoms in

the unit cell require 2 electrons each in order to form a compound

without free charge; (ii) the radii of the A and B ions have to be in

reasonable proportions and (iii) elements with low electronega-

tivity are preferable for forming bonds with oxygen. The last

Fig. 1 DFT calculated bandgaps of selected oxides. Comparison

between the theoretical and experimental bandgap of non-magnetic metal

oxides in their most stable structure. The gaps are calculated using both

the standard PBEsol (blue triangles) and the GLLB-SC functional (red

circles). The dashed line represents the perfect matching between

experiments and theory. (Details of the calculations with a list of the

calculated oxides can be found in Table 1 of the ESI†).

This journal is ª The Royal Society of Chemistry 2012 Energy Environ. Sci., 2012, 5, 5814–5819 | 5815

factor is more relevant for the atoms in the A site due to the

nonequivalence of the A and B ion positions.

The second design criterion we focus on is the size of the

bandgap which we require to be in the range 1.5 eV to 3 eV. The

lower limit comes about as the water-splitting threshold of

1.23 eV plus �0.25 eV to account for the electrochemical

overpotentials.3 A more realistic limit may be even higher since

the splitting of the quasi-Fermi level is smaller than the gap when

the SC is under illumination.24 However, for tandem cells the

lower bandgap limit is relevant.3 Beyond the higher limit of

3.0 eV too little of the solar spectrum is left to be of interest.

Depending on construction of the solar cell device, the light

Fig. 2 (A) DFT calculated heat of formations per atom and bandgaps of perovskite binary metal oxides. (B) Each square represents an oxide with the

lower, left triangle showing the formation energy with red indicating stability (and blue instability) while the upper, right triangle showing the bandgap

with red indicating an advantageous bandgap in the range 1.5–3.0 eV. White indicates zero bandgap, purple indicates too small a gap, while yellow or

blue indicates bandgaps larger than 3 eV. The pure chemical elements are sorted for increasing electronegativity. (C) reports the unit cell of the cubic

perovskite structure. Data available at the web address: http://cmr.fysik.dtu.dk/.

5816 | Energy Environ. Sci., 2012, 5, 5814–5819 This journal is ª The Royal Society of Chemistry 2012

capture in a cell may be thin or thick and we therefore perform

the search for either the direct or the indirect gap. The color scale

applied for the bandgap in Fig. 2 is chosen so that red indicates

a gap in the design window. Compounds with good stabilities

and gaps can thus be spotted as red squares.

We note that in accordance with Aguiar et al.,25 the bandgap is

seen to decrease when increasing the electronegativity of the B

ion or when increasing the crystallographic symmetry by

adjusting the size of the A ion.

The stabilities and the bandgaps are somewhat correlated as

can be seen in Fig. 3, where the pale orange area indicates the

region we are interested in. It is a challenge to combine a small

gap with a high stability. However, quite a few of the compounds

with very small or zero bandgap also exhibit high stability. To

this group belong all the perovskites with an odd number of

electrons for which the bands at the Fermi level are not

completely filled or empty even if considering the possibility of

a spin up and spin down occupation.

At this stage the screening identifies 43 binary oxides which

fulfill the two design criteria: DE < 0.2 eV/atom and 1.5 <

bandgap < 3.0 eV where we allow for a small positive energy of

0.2 eV/atom to allow for mildly metastable compounds. Many of

the resulting candidates are in fact unstable towards a combina-

tion of restructuring and decomposition and we therefore expand

our pool of reference systems used to assess stability to include

not only the bulk metals but also the most stable single- and bi-

metal oxides in their equilibrium structures as listed in the

ICSD19 and the Materials Genome26,27 databases.

An additional criteria to stability and bandgap is the position

of the band edges: for evolving both hydrogen and oxygen, the

calculated gap should straddle both the hydrogen and oxygen

evolution potentials (horizontal lines in Fig. 4). To estimate the

band edges, we use an empirical method suggested and investi-

gated by Butler and Ginley28 and validated by Xu and

Schoonen.29 The scheme proceeds by positioning the middle of

the gap at E0 + (cAcBc
3
O)

1/5, where E0 is the difference between

the normal hydrogen electrode level and vacuum (E0 ¼ �4.5 eV)

and cM denotes the electronegativity of the neutral atom M in

the Mulliken scale, and the two edges are obtained by adding or

subtracting half of the gap.

After considering the more stringent stability criterion and the

positions of the band edges the procedure results in only 10

binary oxides as candidate materials as indicated in the left part

of Fig. 4. (A more detailed list is found in Table 2 and Fig. 1 of

the ESI†). Some of these compounds are actually known to exist

in other periodic structures, but including those in the pool of

references does not change the list of candidates. However, two

of the materials (SrSnO3 and CaSnO3) undergo lattice distortions

and thereby obtain larger gaps beyond the visible light absorp-

tion limit. Two compounds are already known in the cubic

perovskite structure: AgNbO3 and BaSnO3. Of these, AgNbO3 is

well-known to split water in visible light in the presence of

sacrificial reagents,30 while BaSnO3 performs less well because of

defect-assisted recombination.31 It can be noted that if we relax

the criterion on the bandgap we find oxides which can split water

in UV light. 10 materials, like AgTaO3 and SrTiO3, which are

well known to split water in UV light,12 have a gap in a range

between 3 and 4 eV. To our knowledge no other cubic perov-

skites that can split water in visible light have been identified, and

we therefore conclude that the screening procedure performs well

and we turn our attention to the more unexplored territory of

oxynitrides.

The oxynitrides are especially interesting from the point of

view of the gap position relative to the energy levels for hydrogen

and oxygen evolution. This is because the valence band (VB)

edge is usually dominated by N p-orbitals which are higher in

energy than the O p-orbitals, that mainly compose the VB of the

oxides.

Using the same approach as for the oxides, we screen the

possible combinations of two metals in the oxynitride cubic

perovskite structure (ABO2N) using the same three design

criteria as for the oxides, where we now also include the most

stable single- and bi-metal nitrides (MxNy and M1
xM

2
yNz) and the

single-metal oxynitrides (MxNyOz) in the pool of reference

systems. The chemical potential of a nitrogen atom is taken from

the nitrogen molecule.

Fig. 5 reports the results for the formation energies per atom

and bandgaps for the 2704 oxynitrides with the cubic perovskite

structure. As also shown in Fig. 3, the oxygen substitution is

followed by a general reduction in the size of the bandgap. The

Fig. 3 Correlation between the heat of formation per atom and the

bandgap for the oxide (black circles) and oxynitride (red squares)

compounds. The region for candidates for solar light harvesting corre-

sponds to the orange area.

Fig. 4 The identified oxides and oxynitrides in the cubic perovskite

structure with potential for splitting water in visible light. The figure

shows the calculated band edges for both the direct (red) and indirect

(black) gaps. The levels for hydrogen and oxygen evolution are also

indicated.

This journal is ª The Royal Society of Chemistry 2012 Energy Environ. Sci., 2012, 5, 5814–5819 | 5817

effect of more general anion substitution especially in relation to

the size and the position of the bandgap is relevant for the design

of new materials able to split water. An investigation of those

effects will be performed in the future.

The resulting five best candidates are shown in Fig. 4 and in

more detail in Table 3 and Fig. 2 of the ESI.† Four of these

combinations are already known (BaTaO2N, SrTaO2N,

CaTaO2N and LaTiO2N) and perform well for hydrogen

evolution.32 In fact, these compounds are, to our knowledge, the

only cubic perovskite oxynitrides which have been shown

experimentally to split water. We take this as a strong validation

of our approach. The last compound, MgTaO2N, has not yet

been investigated experimentally.

Conclusions

In summary we have demonstrated that fast computational

screening with respect to stability and bandgap is an efficient way

to discover new light harvesting materials for water splitting. The

method is based on a special exchange-correlation functional

that produces sufficiently reliable bandgaps at low

computational cost. The method is verified by screening 2704

oxides with the cubic perovskite structure in order to find the best

candidate for photoelectrolytic hydrogen production by water

splitting. Ten materials, of which two are already known, fulfilled

the requirements set up in the screening. This remarkable result

shows the strength of the screening approach. We have continued

with screening of oxynitrides in the same structure and found five

possible candidates of which four are already known. To the best

of our knowledge, the set of 15 candidates coming out from our

screening includes all the compounds in the cubic perovskite

structure that are known to be suitable for water splitting. It

seems natural to move forward with the method for other

materials that are relevant for photocatalytic water splitting or

other related technologies, like thin film solar cells.

Acknowledgements

The authors acknowledge support from the Danish Center for

Scientific Computing through grant HDW-1103-06, from the

Catalysis for Sustainable Energy initiative funded by the Danish

Ministry of Science, Technology and Innovation, and from the

Fig. 5 DFT calculated heat of formations per atom and bandgaps of perovskite binary metal oxynitrides. The color bars are the same as used in Fig. 2.

5818 | Energy Environ. Sci., 2012, 5, 5814–5819 This journal is ª The Royal Society of Chemistry 2012

Danish Council for Strategic Research’s Programme Commis-

sion on Strategic Growth-Technologies (NABIIT). The Center

for Atomic-scale Materials Design is sponsored by the Lundbeck

Foundation.

References

1 N. Lewis and D. Nocera, Proc. Natl. Acad. Sci. U. S. A., 2006, 103,
15729–15735.

2 W. Shockley and H. J. Queisser, J. Appl. Phys., 1961, 32, 510–519.
3 M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi,
E. A. Santori and N. S. Lewis, Chem. Rev., 2010, 110, 6446–6473.

4 M. Gratzel, Nature, 2001, 414, 338–344.
5 G. Ceder, Y.-M. Chiang, D. R. Sadoway, M. K. Aydinol, Y.-I. Jang
and B. Huang, Nature, 1998, 392, 694.

6 A. Franceschetti and A. Zunger, Nature, 1999, 402, 60.
7 G. H. Johannesson, T. Bligaard, A. V. Ruban, H. L. Skriver,
K.W. Jacobsen and J. K. Nørskov, Phys. Rev. Lett., 2002, 88, 255506.

8 R. Armiento, B. Kozinsky, M. Fornari and G. Ceder, Phys. Rev. B:
Condens. Matter Mater. Phys., 2011, 84, 014103.

9 J. Hachmann, R. Olivares-Amaya, S. Atahan-Evrenk, C. Amador-
Bedolla, R. S. Sanchez-Carrera, A. Gold-Parker, L. Vogt,
A. M. Brockway and A. Aspuru-Guzik, J. Phys. Chem. Lett., 2011,
2, 2241–2251.

10 N.M. O’Boyle, C. M. Campbell and G. R. Hutchison, J. Phys. Chem.
C, 2011, 115, 16200–16210.

11 W. Setyawan, R. M. Gaume, S. Lam, R. S. Feigelson and
S. Curtarolo, ACS Comb. Sci., 2011, 13, 382–390.

12 A. Kudo and Y. Miseki, Chem. Soc. Rev., 2009, 38, 253–278.
13 X. Chen, S. Shen, L. Guo and S. S.Mao,Chem. Rev., 2010, 110, 6503–

6570.
14 A. Fujishima and K. Honda, Nature, 1972, 238, 37–38.
15 T. Ishihara, Perovskite Oxide for Solid Oxide Fuel Cells, Springer

Verlag, 2009.
16 B. Hammer, L. B. Hansen and J. K. Nørskov, Phys. Rev. B: Condens.

Matter, 1999, 59, 7413–7421.

17 O. Gritsenko, R. van Leeuwen, E. van Lenthe and E. J. Baerends,
Phys. Rev. A: At., Mol., Opt. Phys., 1995, 51, 1944.

18 M. Kuisma, J. Ojanen, J. Enkovaara and T. T. Rantala, Phys. Rev. B:
Condens. Matter Mater. Phys., 2010, 82, 115106.

19 ICSDWeb, http://www.fiz-karlsruhe.de/icsd_web.html.
20 J. J. Mortensen, L. B. Hansen and K. W. Jacobsen, Phys. Rev. B:

Condens. Matter Mater. Phys., 2005, 71, 35109.
21 J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dulak,

L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen,
H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara,
M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen,
T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller,
M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer,
H. Hakkinen, G. K. H. Madsen, R. M. Nieminen, J. K. Nørskov,
M. Puska, T. T. Rantala, J. Schiotz, K. S. Thygesen and
K. W. Jacobsen, J. Phys.: Condens. Matter, 2010, 22, 253202.

22 J. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. Kitchin,
T. Bligaard and H. Jonsson, J. Phys. Chem. B, 2004, 108, 17886–
17892.

23 Computational Materials Repository, https://wiki.fysik.dtu.dk/cmr/
(software), and https://cmr.fysik.dtu.dk/ (database).

24 M. F. Weber and M. J. Dignam, Int. J. Hydrogen Energy, 1986, 11,
225–232.

25 R. Aguiar, D. Logvinovich, A. Weidenkaff, A. Rachel, A. Reller and
S. G. Ebbinghaus, Dyes Pigm., 2008, 76, 70–75.

26 Materials Genome, http://www.materialsgenome.org/.
27 A. Jain, G. Hautier, C. J. Moore, S. P. Ong, C. C. Fischer, T. Mueller,

K. A. Persson and G. Ceder, Comput. Mater. Sci., 2011, 50, 2295–
2310.

28 M. A. Butler and D. S. Ginley, J. Electrochem. Soc., 1978, 125, 228–
232.

29 Y. Xu and M. A. Schoonen, American Mineralogist, 2000, 85, 543–
556.

30 H. Kato, H. Kobayashi and A. Kudo, J. Phys. Chem. B, 2002, 106,
12441–12447.

31 W. Zhang, J. Tang and J. Ye, J. Mater. Res., 2007, 22, 1859–1871.
32 D. Yamasita, T. Takata, M. Hara, J. Kondo and K. Domen, Solid

State Ionics, 2004, 172, 591–595.

This journal is ª The Royal Society of Chemistry 2012 Energy Environ. Sci., 2012, 5, 5814–5819 | 5819

Appendix C

Density functional theory
based screening of ternary

alkali-transition metal
borohydrides: A

computational material design
project

Hummelshøj, J. S. and Landis, D. D. and Voss, J. and Jiang, T. and Tekin, A.
and Bork, N. and Du lak, M. and Mortensen, J. J. and Adamska, L. and Andersin,
J. and Baran, J. D. and Barmparis, G. D. and Bell, F. and Bezanilla, A. L. and
Bjork, J. and Björketun, M. E. and Bleken, F. and Buchter, F. and Bürkle, M.
and Burton, P. D. and Buus, B. B. and Calborean, A. and Calle-Vallejo, F. and
Casolo, S. and Chandler, B. D. and Chi, D. H. and Czekaj, I. and Datta, S. and
Datye, A. and Delariva, A. and Despoja, V. and Dobrin, S. and Engelund, M.
and Ferrighi, L. and Frondelius, P. and Fu, Q. and Fuentes, A. and Fürst, J.
and Garćıa-Fuente, A. and Gavnholt, J. and Goeke, R. and Gudmundsdottir,
S. and Hammond, K. D. and Hansen, H. A. and Hibbitts, D. and Hobi, E. and

144 Appendix C

Howalt, J. G. and Hruby, S. L. and Huth, A. and Isaeva, L. and Jelic, J. and
Jensen, I. J. T. and Kacprzak, K. A. and Kelkkanen, A. and Kelsey, D. and
Kesanakurthi, D. S. and Kleis, J. and Klüpfel, P. J. and Konstantinov, I. and
Korytar, R. and Koskinen, P. and Krishna, C. and Kunkes, E. and Larsen, A. H.
and Lastra, J. M. G. and Lin, H. and Lopez-Acevedo, O. and Mantega, M. and
Mart́ınez, J. I. and Mesa, I. N. and Mowbray, D. J. and Mýrdal, J. S. G. and
Natanzon, Y. and Nistor, A. and Olsen, T. and Park, H. and Pedroza, L. S.
and Petzold, V. and Plaisance, C. and Rasmussen, J. A. and Ren, H. and Rizzi,
M. and Ronco, A. S. and Rostgaard, C. and Saadi, S. and Salguero, L. A. and
Santos, E. J. G. and Schoenhalz, A. L. and Shen, J. and Smedemand, M. and
Stausholm-Møller, O. J. and Stibius, M. and Strange, M. and Su, H. B. and
Temel, B. and Toftelund, A. and Tripkovic, V. and Vanin, M. and Viswanathan,
V. and Vojvodic, A. and Wang, S. and Wellendorff, J. and Thygesen, K. S. and
Rossmeisl, J. and Bligaard, T. and Jacobsen, K. W. and Nørskov, J. K. and
Vegge, T.

J. Chem. Phys., vol. 131, Jul7 2009

Density functional theory based screening of ternary alkali-transition metal
borohydrides: A computational material design project 145

Density functional theory based screening of ternary alkali-transition metal
borohydrides: A computational material design project

J. S. Hummelshøj, D. D. Landis, J. Voss, T. Jiang, A. Tekin, N. Bork, M. Dułak,
J. J. Mortensen, L. Adamska, J. Andersin, J. D. Baran, G. D. Barmparis, F. Bell,
A. L. Bezanilla, J. Bjork, M. E. Björketun, F. Bleken, F. Buchter, M. Bürkle, P. D. Burton,
B. B. Buus, A. Calborean, F. Calle-Vallejo, S. Casolo, B. D. Chandler, D. H. Chi,
I Czekaj, S. Datta, A. Datye, A. DeLaRiva, V Despoja, S. Dobrin, M. Engelund, L. Ferrighi,
P. Frondelius, Q. Fu, A. Fuentes, J. Fürst, A. García-Fuente, J. Gavnholt, R. Goeke,
S. Gudmundsdottir, K. D. Hammond, H. A. Hansen, D. Hibbitts, E. Hobi, Jr., J. G. Howalt,
S. L. Hruby, A. Huth, L. Isaeva, J. Jelic, I. J. T. Jensen, K. A. Kacprzak, A. Kelkkanen,
D. Kelsey, D. S. Kesanakurthi, J. Kleis, P. J. Klüpfel, I Konstantinov, R. Korytar,
P. Koskinen, C. Krishna, E. Kunkes, A. H. Larsen, J. M. G. Lastra, H. Lin,
O. Lopez-Acevedo, M. Mantega, J. I. Martínez, I. N. Mesa, D. J. Mowbray, J. S. G. Mýrdal,
Y. Natanzon, A. Nistor, T. Olsen, H. Park, L. S. Pedroza, V Petzold, C. Plaisance,
J. A. Rasmussen, H. Ren, M. Rizzi, A. S. Ronco, C. Rostgaard, S. Saadi, L. A. Salguero,
E. J. G. Santos, A. L. Schoenhalz, J. Shen, M. Smedemand, O. J. Stausholm-Møller,
M. Stibius, M. Strange, H. B. Su, B. Temel, A. Toftelund, V Tripkovic, M. Vanin,
V Viswanathan, A. Vojvodic, S. Wang, J. Wellendorff, K. S. Thygesen, J. Rossmeisl,
T. Bligaard, K. W. Jacobsen, J. K. Nørskov, and T. Veggea�

The 2008 CAMD Summer School in Electronic Structure Theory and Materials Design, Center
for Atomic-scale Materials Design, Department of Physics, Technical University of Denmark,
DK-2800 Kgs. Lyngby, Denmarkb�

�Received 20 November 2008; accepted 8 May 2009; published online 1 July 2009�

We present a computational screening study of ternary metal borohydrides for reversible hydrogen
storage based on density functional theory. We investigate the stability and decomposition of alloys
containing 1 alkali metal atom, Li, Na, or K �M1�; and 1 alkali, alkaline earth or 3d /4d transition
metal atom �M2� plus two to five �BH4�− groups, i.e., M1M2�BH4�2–5, using a number of model
structures with trigonal, tetrahedral, octahedral, and free coordination of the metal borohydride
complexes. Of the over 700 investigated structures, about 20 were predicted to form potentially
stable alloys with promising decomposition energies. The M1�Al /Mn /Fe��BH4�4,
�Li /Na�Zn�BH4�3, and �Na /K��Ni /Co��BH4�3 alloys are found to be the most promising, followed
by selected M1�Nb /Rh��BH4�4 alloys. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3148892�

I. INTRODUCTION

The development of sustainable energy solutions for the
future requires new and improved materials. Specifically de-
signed material properties are needed to solve the grand chal-
lenges in energy production, storage, and conversion. Within
energy storage, hydrogen has been investigated extensively
over the past decade1 as one of the few promising energy
carriers which can provide a high energy density without
resulting in CO2 emission by the end user. Finding materials
for efficient, reversible hydrogen storage, however, remains
challenging. Here, the specific requirements of the rapidly
growing transportation sector coupled with complex engi-
neering challenges2 have directed research toward complex
materials with extreme hydrogen storage capacities3 such as
metal borohydrides4 and metal ammines.5 Finding materials
with high reversible hydrogen content and optimal thermo-
dynamic stability is essential if hydrogen is going to be used

as a commercial fuel in the transport sector. The binary metal
borohydrides have been studied extensively: the alkali based
compounds, e.g., LiBH4,6–8 are too thermodynamically
stable, the alkaline earth compounds are kinetically too slow
and practically irreversible,9 and the transition metal borohy-
drides are either unstable or irreversible.10 This leaves hope
that mixed metal �“alloyed”� systems might provide new
opportunities.

The use of computational screening techniques has
proved a valuable tool in narrowing the phase space of po-
tential candidate materials for hydrogen storage.11,12 Recent
density functional theory �DFT� calculations have shown that
the thermodynamic properties of even highly complex boro-
hydride superstructures can be estimated by DFT using
simple model structures, if the primary coordination polyhe-
dra are correctly accounted for.13 These findings enable faster
screening studies of thermodynamic stability and decompo-
sition temperatures for, e.g., ternary and quaternary borohy-
dride systems; not only in terms of reduced computational
effort due to smaller system sizes but also with the advantage
that the exact space group does not need to be known

a�Electronic mail: teve@risoe.dtu.dk.
b�For a full list of affiliations, see Ref. 41.

THE JOURNAL OF CHEMICAL PHYSICS 131, 014101 �2009�

0021-9606/2009/131�1�/014101/9/$25.00 © 2009 American Institute of Physics131, 014101-1

Downloaded 18 Aug 2011 to 192.38.67.112. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

a priori.
In the present paper, we apply a “local coordination

screening” �LCS� approach to search for novel metal boro-
hydrides. The vast majority of the calculations were per-
formed as part of the 2008 CAMD summer school in elec-
tronic structure theory and materials design, where more than
100 scientists combined DFT calculations, database methods,
and screening techniques to investigate the structure and sta-
bility of promising ternary borohydrides. A few additional
calculations were subsequently performed based on the in-
sight gained from the initial screening.

Out of 757 investigated M1M2�BH4�2–5 �M1=alkali
metal and M2=alkali, alkaline earth or 3d /4d transition
metal� compositions and structures, a total of 22 were found
to form potentially stable alloys with promising decomposi-
tion energies, which should subsequently be subjected to
more detailed theoretical and experimental verification.

II. COMPUTATIONAL SETUP

Groups of alloy compositions and structures were di-
vided among different groups of scientists, each of which
was responsible for its own subset of the alloy configuration
space. A number of predefined structural templates and opti-
mization procedures had been prepared to assist the groups
in setting up structures and calculations for the initial opti-
mization �see Sec. II B�. This was done to ensure a sufficient
accuracy in all calculations �i.e., convergence with respect to
plane wave cutoff, k-point sampling, etc.�.

To ensure reliability of the generated results, an auto-
mated checking procedure was enforced before a result could
be included in the database �see Sec. III� to ensure the pres-
ence of the required output �total energies, lattice constants,
etc.�.

A. Computational parameters

The total energies and gradients were calculated within
density functional theory14 as implemented by the software
package Dacapo.15 A plane wave basis set with a cutoff en-
ergy of 350 eV �density grid cutoff of 700 eV� and the RPBE
exchange-correlation functional15 were used for all calcula-
tions. Dacapo uses ultrasoft pseudopotentials16 for a descrip-
tion of the ionic cores. The coordinate optimization was
implemented and performed within the atomic simulation
environment.17 The electronic Brillouin zones were sampled
with �4�4�4� k-points �spacings of �0.05 Å−1�. A quasi-
Newton method18 was used for all relaxations.

B. Configuration space and template structures

The alloys which were initially screened have the gen-
eral formula M1M2�BH4�x, where M1� �Li,Na,K� and
x=2–4. The x=2 alloys were investigated for
M2� �Li,Na,K�, and x=3,4 for M2� �Li,Na,K,Mg,
Al,Ca,Sc–Zn,Y–Mo,Ru–Cd�.

In order to limit the total number of calculations, only
template structures with tetrahedral and octahedral coordina-
tion of the �BH4�− groups to the metal atoms were used.
Most metals prefer an octahedral coordination of their
ligands, but for the metal borohydrides the ligand-ligand re-

pulsion between the relatively large �BH4�− ions often forces
a lower coordination number. The primary structures ob-
served and reported in literature for the alkali and alkaline
earth borohydrides are either tetrahedral �for the smallest Li
and Mg� or octahedral �for the larger Na, K, and Ca�, while
a trigonal planar ligand arrangement is observed for
Al�BH4�3. However, Al can also have a tetrahedral coordina-
tion as is the case of the LiAl�BH4�4 alloy obtained here �see
Sec. V�, and since the radii of the considered ions lie be-
tween the radius for K and the radius for Al, the tetrahedral
and octahedral primary structures are expected to be
representative.

For each alloy composition, four different template
structures were used to sample the tetrahedral and octahedral
primary structures in the combinations: tetrahedral/
tetrahedral, octahedral/octahedral, tetrahedral/octahedral, and
octahedral/tetrahedral, referring to the coordination of the
�BH4�− groups to the M1 and M2 atoms, respectively. The
coordination polyhedra were either corner sharing, edge
sharing, or a combination to yield the required stoichiometric
ratio of �BH4�− groups �see Fig. 1�. All structures were de-
signed to have a unit cell containing only one formula unit
�see Sec. II D�. It has previously been shown that these
simple template structures can be within �0.1 eV �10 kJ/
mol H2� of the true ground state energy if the local coordi-
nation is correctly accounted for; e.g., M1M2�BH4�2-tetra for
LiBH4,7 M1M2�BH4�4-octa for Ca�BH4�2,19 and even
M1M2�BH4�4-tetra for the free energy of Mg�BH4�2

superstructures.13

The initial optimization of the structures only relaxed the
hydrogen positions and the unit cell volume while keeping
the metal-boron coordination polyhedra fixed. For a given set
of �M1 ,M2�, the most stable structure was then used as the
starting point for a calculation in which all atomic positions
and the unit cell were relaxed. Even though many of the
structures did not change significantly during the final relax-
ation, it added, in principle, an additional structure to the
phase space for each set of �M1 ,M2�. These are included as
“other” structures in the results �Figs. 3–12� to distinguish
them from the structures with fixed metal-boron coordination
polyhedra, even though the original coordination polyhedra
are only slightly distorted in many of them.

A number of structures were subsequently added based
on the knowledge gained from the initial screening and the
reference binary borohydride structures �see Secs. IV and
VI�. In some of these structures, the metal ions had the same
valence as in the reference structures, which meant that
the four x=2 templates were also applied to
M2� �Ni,Pd,Cu,Ag�, while a new template for x=5 was
investigated for M2� �Ti,Zr� in the two combinations
tetrahedral/octahedral and octahedral/tetrahedral. An alterna-
tive x=3 tetragonal/trigonal template was applied to
M2� �Mg,Al,Ca,Sc–Zn,Y–Mo,Ru–Cd� to investigate
possible size effects. In this structure, the M1 ion has a tet-
rahedral coordination while the M2 atom is surrounded by
three �BH4�− groups in a trigonal planar arrangement �see
Fig. 2�. This enabled the metal-boron distances for the two
metals to be optimized independently, which was not pos-

014101-2 Hummelshøj et al. J. Chem. Phys. 131, 014101 �2009�

Downloaded 18 Aug 2011 to 192.38.67.112. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

sible in the original x=3 templates, but found to be required
to obtain the preferred local coordination of certain alloys.

In total, 757 structures have been simulated and are re-
ported herein.

C. Group calculations

The 69 sets of �M1 ,M2� combinations investigated in
this study were divided among 32 groups of scientists for the
initial screening. Each group followed step I of the calcula-
tional procedure outlined below for each alloy containing M1

and M2 and step II for the most stable resulting structure.

D. Calculational procedure

1. Step I

An initial structure was set up by calling a function that
populates one of the four template structures with two sup-
plied metal ions, e.g., Li and Sc. The function utilizes the

ionic radii obtained from the calculations of binary reference
borohydrides, i.e., individual metal atom borohydrides, to
calculate metal-boron distances, where the ionic radius used
for a �BH4�− group depends on whether a face, edge or cor-
ner of the H-tetrahedron points toward the metal atom. In
general, this ensured that the effective lattice constant and
the c /a ratio were close to the optimum. The initial structure
was used as the initial guess for the first iteration of the
following procedure.

All hydrogen positions were relaxed until the maximum
force on the atoms reached 0.05 eV/Å or, alternatively, a
maximum of 50 quasi-Newton steps had been performed.
The resulting structure was then contracted and expanded to
90%, 95%, 105%, and 110% of the unit cell volume by a
proportional scaling of the unit cell, while keeping the B–H
distances in each �BH4�− group fixed; a single total energy
calculation was performed for each volume. A Murnaghan
equation-of-state was fitted to the calculated five points to
estimate the optimal unit cell volume, to which the unit cell
was then scaled �again while conserving B–H distances�, fol-
lowed by a relaxation of the hydrogen positions to a force
convergence of 0.05 eV/Å.

After each iteration, an energy versus unit cell volume
plot was inspected visually to decide whether the minimum
had been sufficiently sampled or an additional iteration of the
procedure should be performed; in the latter case, a structure
resulting from the first iteration was used as the starting
guess for the next iteration.

TABLE I. The calculated reference energies for the binary borohydrides in
their most stable template structures �see Fig. 2�.

wt %
�kg H2 /kg material�

�Edecomp

�eV /H2�

K�BH4� 7.5 �0.968
Na�BH4� 10.7 �0.729
Li�BH4� 18.5 �0.422
Ag�BH4� 3.3 0.278
Cu�BH4� 5.1 0.352
Pd�BH4� 3.3 0.661
Ni�BH4� 5.5 0.680
Ca�BH4�2 11.6 �0.636
Mg�BH4�2 14.9 �0.467
Zn�BH4�2 8.5 �0.063
Cd�BH4�2 5.7 �0.043
V�BH4�2 10.0 �0.031
Nb�BH4�2 6.6 0.066
Fe�BH4�2 9.4 0.090
Cr�BH4�2 9.9 0.162
Mn�BH4�2 9.5 0.174
Co�BH4�2 9.1 0.264
Mo�BH4�2 6.4 0.280
Rh�BH4�2 6.1 0.340
Ru�BH4�2 6.2 0.351
Y�BH4�3 9.1 �0.676
Sc�BH4�3 13.5 �0.595
Al�BH4�3 16.9 �0.209
Zr�BH4�4 10.7 �0.429
Ti�BH4�4 15.0 �0.252

M1M2(BH4)2-tetra M1M2(BH4)2-octa M1M2(BH4)2-tetra/octa

M1M2(BH4)3-tetra M1M2(BH4)3-octa M1M2(BH4)3-tetra/octa

M1M2(BH4)4-tetra M1M2(BH4)4-octa M1M2(BH4)4-tetra/octa

M1M2(BH4)3-tetra/tri M1M2(BH4)5-tetra/octa

FIG. 1. The template structures of M1M2�BH4�2–5. Red and yellow polyhe-
dra show the coordination of the B atoms around the M1 and M2 atoms,
respectively; blue tetrahedra represent the �BH4�− groups. The octa/tetra
structures are obtained by switching M1 and M2 in the tetra/octa structures.

014101-3 DFT screening of ternary metal borohydrides J. Chem. Phys. 131, 014101 �2009�

Downloaded 18 Aug 2011 to 192.38.67.112. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

2. Step II

When all template structures for each of the �M1 ,M2�
alloys had been optimized in step I, the most stable structure
was relaxed without constraints by repeating the procedure
that first relaxes all atomic positions for a fixed cell and then
the unit cell for fixed internal positions. To limit the compu-
tational time used by this algorithm, the number of iterations
was limited to 5, and the number of steps per iteration was
limited to 12 for the internal relaxation and 5 for the unit cell
relaxation.

3. Procedure for the additional structures

For the structures calculated later, the x=2 structures
�monovalent transition metals� followed the same procedure
mentioned above, whereas only a single free optimization
was performed on the extra x=3 and x=5 structures, in
which all atoms were allowed to relax.

III. DATA COLLECTION AND STORAGE

Every group executed the calculation procedures for
steps I and II. After each step, the validity of the results was
checked by the group and the results were checked in �stored
in a global location for indexing� to the common database.

A. Front end

A Python20 script took care of checking in all relevant
files that were needed for subsequent checking. This in-
cluded the calculation script and the output files containing
the atoms, energies and the calculational parameters. A sub-
version �svn� version control system21 assisted to manage
groups and users, storing results and assuring transaction
consistency.

B. Back end

A second Python script was used to extract the relevant
parameters, i.e., the total energy, unit cell volume, chemical
symbols, structure, and the calculational parameters such as
k-points, number of bands, density wave cutoff, and to select
the best structure �at any given time� for every borohydride
to create/update the intermediate result plots, which were
accessible to all participants. Python, in combination with
Matplotlib,22 was used to ensure a flexible user interface and
to generate the plots. A special Python class managed the
resulting data, consisting of approximately 5500 calcula-
tions. This class provided basic database operations such as
selecting, sorting, and filtering of data and facilitated the
creation of the plots considerably.

The overall construction of the database and data re-
trieval procedures will also facilitate screening for possible
correlations between combinations of a number of different
values in future projects.

IV. DATA ANALYSIS

The initial screening procedure presented here is per-
formed to reduce the number of potential alloys for further
investigation, and two simple selection criteria were set up to
assess the stability of the investigated alloy structures against
phase separation/disproportionation and decomposition. The
stabilities were first analyzed against phase separation into
the original binary borohydrides as illustrated for
LiSc�BH4�4:

�Ealloy = ELiSc�BH4�4
− �ELiBH4

+ ESc�BH4�3
� . �1�

Reference energies for the 3 alkali, 2 alkaline earth,
Al�BH4�3 plus 19 transition metal borohydrides were ob-

Cr,Mo Mn Fe,Ru,Co Rh Li,Ni,Pd,Cu,Ag

Na,K Mg,Ca,V,Nb,Zn,Cd Al Sc,Y Ti,Zr

FIG. 2. The structures used for calculating the binary reference energies. For Cr, Mo, Mn, Fe, Ru, Co, Rh, Li, Ni, Pd, Cu, and Ag, the polyhedra show the
coordination of the H atoms; the coordination of the �BH4�− groups are tetrahedral in these structures. For the remaining metals the coordination polyhedra
show the coordination of the �BH4�− groups.

014101-4 Hummelshøj et al. J. Chem. Phys. 131, 014101 �2009�

Downloaded 18 Aug 2011 to 192.38.67.112. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

tained using the most stable structures among the applied
M2�BH4�1–4 model templates �see Table I�. Due to computa-
tional constraints, the performed calculations are not spin
polarized, which causes certain reference structures, e.g.,
Mn�BH4�2, to become unstable. In order not to exclude po-
tentially stable candidates, the assessment in Eq. �1� was
used for all reference structures �see Table I�.

For assessing the stability of alloys with a potentially
less favorable stoichiometry, like LiSc�BH4�3, an effective
reference value for ESc�BH4�2

was determined from the stable
ESc�BH4�3

as ESc�BH4�2
� =ESc�BH4�3

−2EH2
−EB. Using

1 /2�B2H6+H2� as a reference only shifts the energy by
0.07 eV/H2 and does not result in a new preferred coordina-
tion for any of the stable alloys.

The decomposition pathways of binary and ternary metal
borohydrides are often highly complex and differ signifi-
cantly from one system to the next, e.g., LiBH4,23

Mg�BH4�2,24 and LiZn�BH4�3,25 and the formed products can
even depend on the details of the desorption conditions. Cer-
tain compounds form transition metal hydrides,26 others form
transition metal borides,27 di-,10 or dodeca-boranes,28 and
others again, e.g., Cr, Cd, Mn, and Zn�BH4�2 decompose to
the elements.29,30 Given the inclusive nature of this initial
screening study and the fact that the true decomposition
pathways in most of the investigated alloys are not well
known, a simple and generic decomposition pathway was
selected, which all interesting mixed borohydrides must be
stable against �as a minimum�. Here, the alloys decompose
into the highly stable alkali- and alkaline earth hydrides,
transition metals, boron and H2, e.g.:

�Edecomp = ELiMn�BH4�3
− �ELiH + EMn + 3EB + 5.5EH2

� .

�2�

In this definition, �Edecomp estimates the stability of the alloy
against decomposition. Transition metal hydrides, metal
borides, higher order boranates and diborane, which may po-
tentially form, are thus not taken into consideration in this
first screening.

The analysis is based on the ground state energies only.
Although the difference in vibrational entropy between hy-
drogen in an alkali metal borohydride and in the gas phase is
often significantly smaller than in conventional metal
hydrides,31 the contributions to the free energy from the vi-
brational entropy may be significant.

A stability range of �Ealloy�0.0 eV / f.u. �formula unit�
and �Edecomp� �−0.5;0.0� eV /H2 is used to select the most
interesting alloys with �Edecomp=−0.2 eV /H2 as the target
value �see Table II�, but given the idealized screening criteria
in Eqs. �1� and �2�, alloys with only small instabilities, i.e.,
�Ealloy�0.2 eV / f.u and �Edecomp�0.0 eV /H2 should not
be discarded a priori �see Table III�.

V. RESULTS

As the first step of the stability screening, we have plot-
ted the alloying energy against the decomposition energy of
the 757 investigated alloys �see Fig. 3�. Most of the alloys
are found to be stable against decomposition, but the major-
ity are found to be unstable against separation into their bi-
nary components ��Ealloy�0.0 eV / f.u.�. Many are still
within the 0.2 eV/f.u. boundary regime. The lithium-
containing alloys �red� are less stable against decomposition
than those containing sodium �blue� and potassium �green�.
Restricting the plot to only the most stable structure for each

TABLE II. Structures with alloying energies �Ealloy�0.0 eV / f.u. �formula
unit� and decomposition energies �Edecomp�0.0 eV /H2.

wt %
�kg H2 /kg material�

�Ealloy

�eV/f.u.�
�Edecomp

�eV /H2�

LiNa�BH4�2 13.5 �0.020 �0.581
KZn�BH4�3 8.1 �0.349 �0.423
KAl�BH4�4 12.9 �0.138 �0.416
NaAl�BH4�4 14.7 �0.279 �0.373
KCd�BH4�3 6.2 �0.005 �0.352
NaZn�BH4�3 9.1 �0.358 �0.344
LiAl�BH4�4 17.3 �0.391 �0.311
KFe�BH4�3 8.7 �0.116 �0.282
LiZn�BH4�3 10.4 �0.362 �0.243
NaFe�BH4�3 9.8 �0.141 �0.206
KMn�BH4�4 10.5 �0.148 �0.174
NaNb�BH4�4 9.2 �0.128 �0.165
KCo�BH4�3 8.5 �0.089 �0.161
NaMn�BH4�4 11.7 �0.284 �0.131
KNi�BH4�3 8.5 �0.120 �0.116
LiFe�BH4�3 11.3 �0.141 �0.104
LiNb�BH4�4 10.1 �0.194 �0.097
NaCo�BH4�3 9.6 �0.143 �0.090
KRh�BH4�4 8.0 �0.058 �0.079
LiMn�BH4�4 13.3 �0.358 �0.063
NaNi�BH4�3 9.6 �0.164 �0.043
NaRh�BH4�4 8.7 �0.033 �0.016

TABLE III. Structures with alloying energies 0��Ealloy�0.2 eV / f.u. �for-
mula unit� with decomposition energies �Edecomp�0.0 eV /H2.

wt %
�kg H2 /kg material�

�Ealloy

�eV/f.u.�
�Edecomp

�eV /H2�

KNa�BH4�2 8.8 0.095 �0.825
NaY�BH4�4 9.4 0.115 �0.675
NaCa�BH4�3 11.2 0.129 �0.645
LiY�BH4�4 10.4 0.033 �0.609
LiCa�BH4�3 13.2 0.052 �0.556
LiSc�BH4�4 14.5 0.143 �0.534
NaCd�BH4�3 6.7 0.003 �0.271
KNb�BH4�4 8.4 0.016 �0.207
NaV�BH4�4 12.1 0.076 �0.188
NaAg�BH4�2 5.0 0.193 �0.177
LiCd�BH4�3 7.4 0.102 �0.152
KCr�BH4�4 10.7 0.199 �0.136
LiV�BH4�4 13.8 0.061 �0.113
NaCr�BH4�4 12.0 0.050 �0.095
KPd�BH4�3 6.4 0.047 �0.095
KMo�BH4�4 8.3 0.185 �0.079
KRu�BH4�3 6.5 0.168 �0.061
NaMo�BH4�4 9.0 0.056 �0.035
LiCr�BH4�4 13.6 0.029 �0.021
NaPd�BH4�3 7.0 0.052 �0.014

014101-5 DFT screening of ternary metal borohydrides J. Chem. Phys. 131, 014101 �2009�

Downloaded 18 Aug 2011 to 192.38.67.112. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

M1M2 system �see Fig. 4� seems to support this observation,
and yields a total of 22 stable alloys �see Table II�. Figure 4
is dominated by alloys where �a� both metal atoms are tetra-
hedrally coordinated to the borohydride groups ���, �b� one
is tetrahedral the other trigonal �丫�, and �c� so-called other
�� �, where all constraints have been lifted. Some octa-tetra
��� and tetra-octa �+� are also observed.

Plotting the hydrogen density of the stable alloys,
�Ealloy�0.0 eV / f.u. and �Edecomp�0.0 eV /H2, Fig. 5
shows that alloys containing potassium �in green� are found
to have the lowest density, followed by sodium �in blue� and
lithium �in red�, as expected. The overall density is found to
be around that of liquid hydrogen, which is largely due to the
choice of simple template structures; higher densities are ex-
pected for real systems as previously observed for
Mg�BH4�2.9 Alloys containing Al, Mn, Fe, and Zn are found
to be stable for all alkali metals screened, whereas those

based on Co, Ni, Nb, and Rh are stable for two out of three
alkali metals. The only other stable alloys are KCd�BH4�3

and LiNa�BH4�2 �see Table II�.
The storage capacity �wt % hydrogen� of the stable al-

loys is plotted as a function of the decomposition energy,
�Edecomp, in Fig. 6. Here, the data from the binary reference
structures have also been included, and it is clearly seen that
the stability has been reduced significantly compared to
the highly stable binary borohydrides. Most alloys have stor-
age capacities above the DOE 2015 system target of 9 wt %
�Ref. 3� and several also have favorable stabilities. A number
of these ternary borohydrides have been synthesized either

- 1 . 0 - 0 . 5 0 . 0 0 . 5 1 . 0 1 . 5

∆ E
d e c o m p

(e V / H
2
)

0

2

4

6

8

∆
E

a
ll
o
y
(e
V
/
f.
u
.)

FIG. 3. The alloying energy, �Ealloy, as a function of the decomposition
energy, �Edecomp, for all alloy compositions. Colors: Li �red�, Na �blue�, and
K �green�. Investigated coordinations: tetra ���, octa ���, octa-tetra ���,
tetra-octa �+�, tetra-tri �丫�, other �� �. Total number of structures: 757.

- 0 . 8 - 0 . 6 - 0 . 4 - 0 . 2 0 . 0 0 . 2

∆ E
d e c o m p

(e V / H
2
)

- 0 . 4

- 0 . 2

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

∆
E

a
ll
o
y
(e
V
/
f.
u
.)

FIG. 4. The alloying energy, �Ealloy, as a function of the decomposition
energy, �Edecomp, for all preferred alloy systems. Colors: Li �red�, Na �blue�
and K �green�. Preferred local coordination: tetra ���, octa ���, octa-tetra
���, tetra-octa �+�, tetra-tri �丫�, other �� �.

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1
40

50

60

70

80

90

100

LiAl(BH
4
)
4

LiMn(BH
4
)
4

LiZn(BH
4
)
3

LiNb(BH
4
)
4

LiNa(BH
4
)
2

LiFe(BH
4
)
3

NaAl(BH
4
)
4

NaMn(BH
4
)
4

NaNb(BH
4
)
4

NaRh(BH
4
)
4

NaFe(BH
4
)
3

NaCo(BH
4
)
3

NaNi(BH
4
)
3

NaZn(BH
4
)
3

KRh(BH
4
)
4

KAl(BH
4
)
4

KMn(BH
4
)
4

KFe(BH
4
)
3
KCo(BH

4
)
3

KNi(BH
4
)
3

KZn(BH
4
)
3

KCd(BH
4
)
3

*

*

&

&

@

!

FIG. 5. The hydrogen density �kg H2 m−3 as a function of the decomposi-
tion energy for the 22 alloys with �Ealloy�0.0 eV / f.u. and �Edecomp

�0.0 eV /H2. References to experimental observations: !: Ref. 25, @: Ref.
37, &: Ref. 38, *: Ref. 39. Colors: Li �red�, Na �blue�, and K �green�.
Preferred local coordination: tetra ���, octa ���, octa-tetra ���, tetra-octa
�+�, tetra-tri �丫�, other �� �.

-1.0 -0.8 -0.6 -0.4 -0.2 0.0
4

6

8

10

12

14

16

18

20

w
t.
%

H

LiAlB
4

LiMnB
4

LiZnB
3 LiNbB

4

LiNaB
2

LiFeB
3

NaAlB
4

NaMnB
4

NaNbB
4 NaRhB

4

NaFeB
3

NaCoB
3 NaNiB

3
NaZnB

3

KRhB
4

KAlB
4

KMnB
4

KFeB
3
KCoB

3KNiB
3

KZnB
3

KCdB
3

Na
2
B
2

K
2
B
2

Mg
2
B
4

Ca
2
B
4

Sc
2
B
6

V
2
B
4

Zn
2
B
4

Y
2
B
6

Cd
2
B
4

Li
2
B
2

Al
4
B
12

TiB
4

ZrB
4

*

*

&

&
@

!

FIG. 6. The weight percent of hydrogen �wt. %� as a function of the decom-
position energy, �Edecomp �Eq. �2��, for all 22 stable alloys and 13 binary
reference structures ��Edecomp�0.0 eV /H2 and �Ealloy�0.0 eV / f.u.�. Ref-
erences to experimental observations: !: Ref. 25, @: Ref. 37, &: Ref. 38, *:
Ref. 39. Colors: Li �red�, Na �blue�, K �green�, and reference structures
�black�. Labels: “MBx” refers to “M�BH4�x.” Preferred local coordination:
tetra ���, octa ���, octa-tetra ���, tetra-octa �+�, tetra-tri �丫�, other �� �.

014101-6 Hummelshøj et al. J. Chem. Phys. 131, 014101 �2009�

Downloaded 18 Aug 2011 to 192.38.67.112. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

very recently or historically �circled in Figs. 5 and 6�. Of the
experimentally observed stable/metastable structures,
LiSc�BH4�4,10 KNa�BH4�2,32 and Li2Cd�BH4�4 �Ref. 30�
show a weak preference for phase separation, but are all
found to be potentially stable �see Table III�; only LiK�BH4�2

�Ref. 33� ��Ealloy=0.202 eV / f.u. and �Edecomp=
−0.645 eV /H2� and LiNi�BH4�3 �Ref. 30� ��Ealloy=
−0.104 eV / f.u. and �Edecomp=0.069 eV /H2� fall margin-
ally outside the selection criteria. Furthermore, LiMn�BH4�3

and NaMn�BH4�3 are found experimentally to decompose at
�100 and 110 °C,34 and LiZn�BH4�3 and LiAl�BH4�4 are
found to disproportionate at �130 °C.25 These are all struc-
tures that are located near the optimal stability in the figure
�the nonshaded region�.

VI. TRENDS

Given the systematic approach to the screening study it
is also possible to extract information from the database
about possible trends and correlations, in order to search for
predictors and descriptors35 for the design of future quater-
nary alloys or alloys with different cation stoichiometries.

A. 3d and 4d transition metals

The stability of the alloys, as produced by the most
stable x=3 and x=4 initial template structures before the free
relaxation, is presented for all 3d transition metals �plus Mg,
Ca, and Al� in Fig. 7, and for the 4d transition metals in Fig.
8. A clear preference for the M1M2�BH4�4-tetra template is
observed, which is somewhat surprising, because many of
the transition metals have an oxidation state of II in the ref-
erence calculations �see Table I�. This apparent discrepancy
could result from partially non-ionic bonding in these struc-
tures, meaning that the coordination of the hydrogen atoms
to the metal is the determining factor, not whether the metal
has the “correct” valence. For instance, we find no significant
energy difference between Fe2�BH4�3 and Fe�BH4�2 as long
as the H atoms are octahedrally coordinated to the Fe atom.

Size effects also become apparent here since the
M1M2�BH4�4-tetra template is the only template structure
that allows the coordination polyhedra of M1 and M2 to be
relaxed independently. This is supported by the larger spac-
ing between most of the Li, Na, and K alloy energies pro-
duced by the other template structures �see Figs. 7 and 8�.

To investigate this further, the M1M2�BH4�3-
tetra/tri-template was applied to all alloys, and in Figs. 9 and
10, the final alloy stabilities are presented; these also include
the free relaxation and the additional x=2 and x=5 calcula-
tions. It is seen that the M1M2�BH4�3-tetra/tri-structures now
become the most stable for a number of alloys and that the
Li, Na, and K points lie closer indicating a reduction in the
size effects.

There is a general agreement between valencies in the
reference calculations and the alloys; divalent metals are

M g A l C a S c T i V C r M n F e C o N i C u Z n
- 0 . 5

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

3 . 0

3 . 5

4 . 0

∆
E

a
ll
o
y
(e
V
/
f.
u
.)

I I

I I

I I

I I
I I

I I I I
I I

I I

I I

I I

I I

I I I

I I I

I I I

I I I

I I I

I I I I I I

I I I

I I I

I I I

I I I

I I I

I I

I I

I I

I I I I

I I

I I

I I

I I

I I

I I
I I

I I I

I I I

I I I

I I I

I I I

I I I I I I

I I I

I I I

I I I

I I I

I I I

I I

I I
I I

I I
I I

I I I I

I I

I I

I I

I I

I I

I I I

I I I

I I I

I I I

I I I

I I I I I I

I I I

I I I

I I I

I I

I I I

I I

I I I

I I

I I I

I I I

I I I

FIG. 7. The alloying energy, �Ealloy, for the 3d-metals �plus Mg, Al, and Ca�
in their preferred M1M2�BH4�x template structures with M1, M2, and B fixed
for both x=3 and x=4. Colors: Li �red�, Na �blue�, and K �green�. Preferred
local coordination: tetra ���, octa ���, octa-tetra ���, tetra-octa �+�. The
labels indicate the oxidation state of M2.

Y Z r N b M o T c R u R h P d A g C d
- 1

0

1

2

3

4

5

∆
E

a
ll
o
y
(e
V
/
f.
u
.)

I I

I I I I I I

I I

I I

I I

I I

I I

I I I

I I I

I I I
I I I

I I I

I I I

I I I

I I I

I I I

I I I I
I I

I I

I I

I I

I I

I I

I I

I I I

I I I

I I I
I I I

I I I

I I I

I I I

I I I

I I I
I I

I I

I I

I I

I I

I I

I I

I I
I I

I I I

I I I

I I I

I I I
I I I

I I I

I I I

I I I

I I I

FIG. 8. The alloying energy, �Ealloy, for the 4d-metals in their preferred
M1M2�BH4�x template structures with M1, M2, and B fixed for both x=3 and
4. Colors: Li �red�, Na �blue�, and K �green�. Preferred local coordination:
tetra ���, octa ���, octa-tetra ���, tetra-octa �+�. The labels indicate the
oxidation state of M2.

M g A l C a S c T i V C r M n F e C o N i C u Z n

- 0 . 4

- 0 . 2

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

∆
E

a
ll
o
y
(e
V
/
f.
u
.)

I I I

I I I

I I II I
I I I

I I I

I

I I

I I

I I
I I I I

I I I

I I I

I I I
I I I

I I

I I I

I

I I

I I I I
I I

I I

I I I
I I I

I I II V
I V

I I I

I I

I I I

I I I

I

I I

I I
I I

I I

I I

FIG. 9. The alloying energy, �Ealloy, for the 3d-metals using only the energy
of the preferred M1M2�BH4�x, x=2–5 structure. Colors: Li �red�, Na �blue�,
and K �green�. Preferred local coordination: tetra ���, octa ���, octa-tetra
���, tetra-octa �+�, tetra-tri �丫�, other �� �. The labels indicate the oxida-
tion state of M2.

014101-7 DFT screening of ternary metal borohydrides J. Chem. Phys. 131, 014101 �2009�

Downloaded 18 Aug 2011 to 192.38.67.112. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

found to prefer a M1M2�BH4�3 configuration, whereas triva-
lent metals prefer M1M2�BH4�4, tetravalent metals prefer
M1M2�BH4�5 and the monovalent Cu and Ag prefer
M1M2�BH4�2. Some deviations are found, but given the
simple model structures used for both alloys and reference
calculations, and given the fact that some of the metals are
found by experiments to form ternary borohydrides in differ-
ent oxidation states, the agreement is good.

The most stable alloys are found for the half-filled
d-bands, but interesting alloys are also found for the empty
and fully occupied d-bands with the addition of Al, where the
M1Al�BH4�4 are found to be promising �see Figs. 9 and 10�.

Lithium-based alloys �red� are generally found to be the
most stable, followed by sodium �blue� and potassium
�green�, although significant deviations are observed. This
follows the observed trend for the storage capacities.

B. Stability versus electronegativity

A number of recent publications33,36 have shown an ap-
parent linear correlation between the decomposition tem-
perature and the average cation Pauling electronegativity. Al-
though this might be expected, given the definition of
Pauling’s electronegativity, it also indicates that the kinetic
barriers—if any—do not appear to be particularly system
dependent.

Plotting the calculated decomposition energy as a func-
tion of the average cation electronegativity for all alloys in
their most stable local coordination �see Fig. 11� appears to
support this observation. The scatter of the data points
around the “line” �which would have a slope that agrees with
Ref. 36 to within 10%–15%� is, however, significant and
deviations of �0.1 eV /H2 can be sufficient to shift a mate-
rial from interesting to irrelevant for storage applications, or
vice versa.

The stable alloys ��Ealloy�0.0 eV / f.u.� are seen to
cluster around certain average electronegativities of 1.3–1.4
and 1.6 �see Fig. 12�. The cluster around 1.3–1.4 is highly

promising with �Edecomp�−0.1 eV /H2 for Mn and Nb and
particularly promising for Al, Zn, and Fe with �Edecomp�
−0.3 eV /H2. The Mo and Rh alloys at electronegativities
around 1.6 are found to border on decomposition, but experi-
mental work by Nikels et al.33 estimates the decomposition
temperature of such compounds to be around 150 °C.

VII. CONCLUSIONS

We have analyzed the thermodynamic properties of pos-
sible alkali-transition metal borohydride systems, finding a
number of candidates showing favorable properties.

The M1�Al /Mn /Fe��BH4�4, �Li /Na�Zn�BH4�3, and
�Na /K��Ni /Co��BH4�3 alloys are found to be the most prom-
ising, followed by selected M1�Nb /Rh��BH4�4 alloys. These
findings are in good agreement with experimental observa-
tions for LiFe�BH�3,37 LiAl�BH4�4,25 �Li /Na�Mn�BH�3,4,38

Y Z r N b M o T c R u R h P d A g C d
- 0 . 2

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

∆
E

a
ll
o
y
(e
V
/
f.
u
.)

I I I

I I I

I V

I I I

I I I

I

I I

I I

I I

I V

I I I

I I I

I I I

I I I

I

I I

I I

I II I I

I I I

I V

I I I

I I I

I

I I

I I

I I

FIG. 10. The alloying energy, �Ealloy, for the 4d-metals using only the
energy of the preferred M1M2�BH4�x, x=2–5 structure. Colors: Li �red�, Na
�blue�, and K �green�. Preferred local coordination: tetra ���, octa ���,
octa-tetra ���, tetra-octa �+�, tetra-tri �丫�, other �� �. The labels indicate
the oxidation state of M2.

0 . 8 1 . 0 1 . 2 1 . 4 1 . 6

E l e c t r o n e g a t i v i t y

- 1 . 0

- 0 . 8

- 0 . 6

- 0 . 4

- 0 . 2

0 . 0

0 . 2

∆
E

d
ec
o
m
p
(e
V
/
H

2
)

FIG. 11. The decomposition energy, �Edecomp, as a function of the average
Pauling electronegativity for all alloys in their preferred M1M2�BH4�x coor-
dination: tetra ���, octa ���, octa-tetra ���, tetra-octa �+�, tetra-tri �丫�,
other �� �. Colors: Li �red�, Na �blue�, and K �green�.

0.8 1.0 1.2 1.4 1.6
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

LiAl(BH
4
)
4

LiMo(BH
4
)
4

LiMn(BH
4
)
4

LiZn(BH
4
)
3

LiNb(BH
4
)
4

LiRh(BH
4
)
4

LiNa(BH
4
)
2

LiFe(BH
4
)
3

LiCo(BH
4
)
3

LiNi(BH
4
)
3

NaAl(BH
4
)
4

NaMn(BH
4
)
4

NaNb(BH
4
)
4

NaRh(BH
4
)
4

NaFe(BH
4
)
3

NaCo(BH
4
)
3

NaNi(BH
4
)
3

NaZn(BH
4
)
3

KRh(BH
4
)
4

KAl(BH
4
)
4

KMn(BH
4
)
4

KFe(BH
4
)
3

KCo(BH
4
)
3

KNi(BH
4
)
3

KZn(BH
4
)
3

KCd(BH
4
)
3

FIG. 12. The decomposition energy, �Edecomp, as a function of the average
Pauling electronegativity for alloys with �Ealloy�0.0 eV /H2. Colors: Li
�red�, Na �blue�, and K �green�. Preferred M1M2�BH4�x, x=2–5, coordina-
tion: tetra ���, octa ���, octa-tetra ���, tetra-octa �+�, tetra-tri �丫�, other
�� �.

014101-8 Hummelshøj et al. J. Chem. Phys. 131, 014101 �2009�

Downloaded 18 Aug 2011 to 192.38.67.112. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

and �Li /Na�Zn�BH4�3,39 whereas the Co, Cd, Nb, and Rh
and alloys still remain to be synthesized and tested. Although
some structures can be observed experimentally in different
metal-metal stoichiometries than those used in the screening
study, e.g., the Li–Zn system,39 the alloy systems were still
identified as promising candidates in this screening study.
Some of the nearly stable compounds in Table III, e.g.,
LiSc�BH4�4 �Ref. 10� and KNa�BH4�2 �Ref. 32� have re-
cently been found to be metastable, while LiNi�BH4�3

�Ref. 30� was found to be marginally unstable here. The LCS
approach was found to limit the 757 potential alloys to 22
promising candidates of which �10 are highly promising.
These structures can now be pursued further, analyzing their
detailed decomposition pathways, both theoretically40 and
experimentally.

ACKNOWLEDGMENTS

The authors acknowledge financial support by the Euro-
pean Commission DG Research �Contract No. SES6-2006-
51827/NESSHy�, the Nordic Energy Research Council �Con-
tract No. 06-HYDRO-C15� and the Danish Center for
Scientific Computing �DCSC� for computer time �Grant No.
HDW-1103-06�. The Center for Atomic-Scale Materials De-
sign is funded by the Lundbeck Foundation.

1 L. Schlapbach and A. Züttel, Nature 414, 353 �2001�.
2 D. Mosher, X. Tang, and S. Arsenault, DoE Hydrogen Program, FY 2006
Annual Progress Report, 2006, pp. 281–284.

3 See http://www1.eere.energy.gov/vehiclesandfuels/about/partnerships/
freedomcar/fc_goals.html for FreedomCAR and Fuel Technical Partner-
ship Technical Goals.

4 S. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel, and C. M. Jensen, Chem.
Rev. 107, 4111 �2007�.

5 R. Z. Sørensen, J. S. Hummelshøj, A. Klerke, J. B. Reves, T. Vegge, J. K.
Nørskov, and C. H. Christensen, J. Am. Chem. Soc. 130, 8660 �2008�.

6 A. Züttel, S. Rentsch, P. Fischer, P. Wenger, P. Sudan, P. Mauron, and C.
Emmenegger, J. Alloys Compd. 356–357, 515 �2003�.

7 Z. Łodziana and T. Vegge, Phys. Rev. Lett. 93, 145501 �2004�.
8 Z. Łodziana and T. Vegge, Phys. Rev. Lett. 97, 119602 �2006�.
9 K. Chłopek, C. Frommen, A. Léon, O. Zabara, and M. Fichtner, J. Mater.
Chem. 17, 3496 �2007�.

10 H. Hagemann, M. Longhini, J. W. Kaminski, T. A. Wesolowski, R.
Cerný, N. Penin, M. H. Sørby, B. C. Hauback, G. Severa, and C. M.
Jensen, J. Phys. Chem. A 112, 7551 �2008�.

11 S. V. Alapati, J. K. Johnson, and D. S. Sholl, J. Phys. Chem. C 112, 5258
�2008�.

12 V. Ozolins, E. H. Majzoub, and C. Wolverton, Phys. Rev. Lett. 100,
135501 �2008�.

13 J. Voss, J. S. Hummelshøj, Z. Łodziana, and T. Vegge, J. Phys.: Condens.
Matter 21, 012203 �2009�.

14 P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 �1964�.

15 B. Hammer, L. B. Hansen, and J. K. Nørskov, Phys. Rev. B 59, 7413
�1999�.

16 D. Vanderbilt, Phys. Rev. B 41, 7892 �1990�.
17 S. R. Bahn and K. W. Jacobsen, Comput. Sci. Eng. 4, 56 �2002�.
18 D. F. Shanno, Math. Comput. 24, 647 �1970�.
19 F. Buchter, Z. Łodziana, A. Remhof, O. Friedrichs, A. Borgschulte, Ph.

Mauron, A. Züttel, D. Sheptyakov, G. Barkhordarian, R. Bormann, K.
Chłopek, M. Fichtner, M. Sørby, M. Riktor, B. Hauback, and S. Orimo, J.
Phys. Chem. B 112, 8042 �2008�.

20 See http://www.python.org for Python Programming Language.
21 See http://subversion.tigris.org for Subversion version control system.
22 See http://matplotlib.sourceforge.net for Matplotlib 2D plotting library

for Python.
23 J.-H. Her, M. Yousufuddin, W. Zhou, S. S. Jalisatgi, J. G. Kulleck, J. A.

Zan, S.-J. Hwang, R. C. Bowman, Jr., and T. J. Udovic, Inorg. Chem. 47,
9757 �2008�.

24 N. Hanada, K. Chłopek, C. Frommen, W. Lohstroh, and M. Fichtner, J.
Mater. Chem. 18, 2611 �2008�.

25 H.-W. Li, S. Orimo, Y. Nakamori, K. Miwa, N. Ohba, S. Towata, and A.
Züttel, J. Alloys Compd. 446–447, 315 �2007�.

26 E. Wiberg, Angew. Chem. 65, 16 �1953�.
27 X. B. Yu, D. M. Grant, and G. S. Walker, Chem. Commun. �Cambridge�

37, 3906 �2006�.
28 S.-J. Hwang, R. C. Bowman, Jr., J. W. Reiter, J. Rijssenbeek, G. L.

Soloveichik, J.-C. Zhao, H. Kabbour, and C. C. Ahn, J. Phys. Chem. C
112, 3164 �2008�.

29 Y. Nakamori, H.-W. Li, M. Matsuo, K. Miwa, S. Towata, and S. Orimo,
J. Phys. Chem. Solids 69, 2292 �2008�.

30 Y. Nakamori and S. Orimo, in Solid-state Hydrogen Storage—Materials
and Chemistry, edited by G. Walker �Woodhead, Cambridge, 2008�, pp.
420–449.

31 P. Mauron, F. Buchter, O. Friedrichs, A. Remhof, M. Bielmann, C. N.
Zwicky, and A. Züttel, J. Phys. Chem. B 112, 906 �2008�.

32 L. Seballos, J. Z. Zhang, E. Ronnebro, J. L. Herberg, and E. H. Majzoub,
J. Alloys Compd. 476, 446 �2009�.

33 E. A. Nickels, M. O. Jones, W. I. F. David, S. R. Johnson, R. L. Lowton,
M. Sommariva, and P. P. Edwards, Angew. Chem., Int. Ed. 47, 2817
�2008�.

34 See http://www.docstoc.com/docs/922287/Fundamental-Studies-of-
Advanced-High-Capacity-Reversible-Metal-Hydrides for “Fundamental
Studies of Advanced High-Capacity, Reversible Metal Hydrides,” presen-
tation by C. M. Jensen, DOE Hydrogen Program, 13 May 2007.

35 F. Studt, F. Abild-Pedersen, T. Bligaard, R. Z. Sørensen, C. H. Chris-
tensen, and J. K. Nørskov, Science 320, 1320 �2008�.

36 Y. Nakamori, K. Miwa, A. Ninomiya, H. Li, N. Ohba, S. Towata, A.
Züttel, and S. Orimo, Phys. Rev. B 74, 045126 �2006�.

37 H. Nöth and P. Fritz, Angew. Chem. 73, 408 �1961�.
38 See http://www.hydrogen.energy.gov/pdfs/review08/st_0_satyapal.pdf for

“Hydrogen Storage,” presentation by S. Satyapal, 2008 DOE Hydrogen
Program, Merit Review and Peer Evaluation Meeting, 9 June 2008.

39 H. Nöth, E. Wiberg, and L. Winter, Z. Anorg. Allg. Chem. 386, 73
�1971�.

40 V. Ozolins, E. H. Majzoub, and C. Wolverton, J. Am. Chem. Soc. 131,
230 �2009�.

41 See EPAPS Document No. E-JCPSA6-130-043923 for a listing of the
authors’ affiliations. For more information on EPAPS, see http://
www.aip.org/pubservs/epaps.html.

014101-9 DFT screening of ternary metal borohydrides J. Chem. Phys. 131, 014101 �2009�

Downloaded 18 Aug 2011 to 192.38.67.112. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

Appendix D

Virtual Materials Design using
Databases of Calculated

Materials Properties

T. R. Munter, D. D. Landis,F. Abild Pedersen, G. Jones, S. Wang and T. Bligaard
Computational Science & Discovery 2 (2009) 015006 (27pp)

156 Appendix D

Virtual materials design using databases of calculated
materials properties

T R Munter1, D D Landis1, F Abild-Pedersen1,2, G Jones1, S Wang1

and T Bligaard1

1 Center for Atomic-scale Materials Design (CAMD), Department of Physics,
Technical University of Denmark, Building 307, DK-2800 Kgs. Lyngby, Denmark
2 Computational Materials Design ApS, Fysikvej Building 307, DK-2800 Kgs. Lyngby,
Denmark
E-mail: bligaard@fysik.dtu.dk

Received 27 December 2007, in final form 28 October 2009
Published 26 November 2009
Computational Science & Discovery 2 (2009) 015006 (27pp)
doi:10.1088/1749-4699/2/1/015006

Abstract. Materials design is most commonly carried out by experimental trial and error
techniques. Current trends indicate that the increased complexity of newly developed
materials, the exponential growth of the available computational power, and the constantly
improving algorithms for solving the electronic structure problem, will continue to increase
the relative importance of computational methods in the design of new materials. One
possibility for utilizing electronic structure theory in the design of new materials is to create
large databases of materials properties, and subsequently screen these for new potential
candidates satisfying given design criteria. We utilize a database of more than 81 000
electronic structure calculations. This alloy database is combined with other published
materials properties to form the foundation of a virtual materials design framework (VMDF).
The VMDF offers a flexible collection of materials databases, filters, analysis tools and
visualization methods, which are particularly useful in the design of new functional materials
and surface structures. The applicability of the VMDF is illustrated by two examples. One is
the determination of the Pareto-optimal set of binary alloy methanation catalysts with respect
to catalytic activity and alloy stability; the other is the search for new alloy mercury absorbers.

Computational Science & Discovery 2 (2009) 015006 www.iop.org/journals/csd
© 2009 IOP Publishing Ltd 1749-4699/09/015006+27$30.00

Computational Science & Discovery 2 (2009) 015006 T R Munter et al

Contents

1. Introduction 2

2. Overview 3

3. A portfolio of databases 5

4. Program structure 8

5. Example 1. Screening for mercury absorbing materials 15
5.1. Screening for potential candidates . 15
5.2. Reaction conditions . 16
5.3. Critical formation energy . 16
5.4. Stability against oxidation . 17
5.5. Candidates . 19
5.6. Discussion . 19

6. Example 2. The methanation reaction 20

7. Summary. conclusion 23

Acknowledgments 24

References 25

1. Introduction

During the last century, materials science was subject to an enormous transformation. Based on the
development of the quantum theory of physics, the human control over matter saw a number of successes
leading up to the materials technology of today, where the human genome has been mapped [1] and
measurements with, e.g., scanning probe microscopes and transmission electron microscopes are used to create
images of surfaces with sub-nanometer resolution [2, 3]. The subsequent influence on the development of new
materials is dramatic. One area where the development of simple models from quantum mechanical principles
has had a profound effect is organic synthesis, where chemists today almost routinely create molecules with
the exact atomic configurations they seek.

However, there are still many problems facing the materials scientists who are attempting to design
new materials with predefined design objectives. One fundamental problem is the large number of different
possible atomic arrangements that can be envisioned for even a very limited number of atoms. This leads
to an intractable number of design possibilities for materials, each with significantly varying properties, and
among these perhaps only a few have the desired properties or are practically realizable. Despite the cost of
discovering new materials with specific properties continuously decreasing due to the introduction of high-
throughput parallel synthesis and screening techniques, the cost for developing new materials is still high.

The modern implementations of electronic structure theory provide hope that better solutions to this
problem are getting closer. Methodological improvements continuously appear, which increase the accuracy
as well as the speed of the computation of materials properties. The cost for computational power is in parallel
to the methodological improvements decreasing exponentially, and has been so since perhaps the early 1960s
following Moore’s law (stating that a doubling in the number of transistors that can be integrated on a single
circuit can be expected every two years) [4]. This has led to the situation that we today, in some fortunate cases,
can perform computer simulations to obtain the relevant materials properties faster, more reliably, and at lower
cost than the traditional synthesis and testing procedure. As an example of this, we shall in this paper use a
database of more than 81 000 density functional theory (DFT) calculations for various materials and properties
to screen for stable methanation catalysts and mercury absorbers. An accurate experimental determination of
the materials properties for such a large number of compounds might be difficult to obtain in a lifetime of work
effort. The computational work load, however, is large but not excessive.

Extrapolating the advances of the recent past suggests that electronic structure theory might in the
relatively near future become a highly competitive tool in the materials design process for a much wider
range of materials.

2

Computational Science & Discovery 2 (2009) 015006 T R Munter et al

When intending to calculate materials properties or mechanisms for chemical reactions at the atomic
scale, resolving the electronic structure is necessary. Presently, DFT [5–7] is the method of choice for
calculating electronic structure to a reasonably high degree of accuracy with reasonably limited computational
effort, when the system size is from a few atoms up to a few hundred atoms. DFT is versatile in the sense that by
solving the electronic structure problem using DFT, one can determine a wide range of atomic-scale properties
for a given atomic-scale structure. One can even predict the properties for materials which have not yet been
synthesized [8, 9], or for which the relevant synthesis and testing might be too expensive or even dangerous.
The otherwise clear goal of predicting new materials with improved properties based on computational tools
immediately raises a series of important questions, which do not have any obvious answers: how does one
obtain the materials properties, which are observed at larger length and time scales from the calculations at
the atomic scale? Is it already possible today to establish large databases of materials properties calculated by
these theoretical tools? How do we efficiently use such databases for materials optimization when multiple
criteria need to be optimized simultaneously?

These questions are perhaps too difficult to answer in general within just one short paper. However, an
attempt will be made here to create the foundation on which the detailed answers for these questions in specific
cases can subsequently be developed. The focus throughout the paper will be on catalysis and ordered inter-
metallic alloys and on the absorption of heavy metals in alloys. We discuss a practical implementation of
the data analysis with the purpose of facilitating various aspects of the prediction of materials properties and
chemical reactions using calculated materials properties.

Within the pharmaceutical industry virtual screening methods have for a long time been used for drug
discovery. There, large libraries of chemical compounds or biological molecules are evaluated automatically
for desired functionality using computers. For drug discovery virtual screening is used for estimating among
others: the absorption of drugs in the body, metabolism, toxicity and evaluation of drug activity of chemical
compounds [10–12]. Virtual screening is a relatively new concept in the heterogeneous catalysis field [13].
Whereas medical companies have big databases of well-characterized compounds and their properties, it
has proven more difficult to determine the active surface sites at the atomic scale under conditions that are
relevant to catalytic processes. This has in turn slowed down the progress of high-throughput theoretical
design of new catalysts. Computational methods have been useful for understanding trends in the properties
of catalysts across the Periodic Table, and have been used widely within the field of theoretical catalysis. The
atomic-level understanding of ammonia synthesis [14–16], methanation [17], ethylene epoxidation [18], the
oxygen reduction reaction [19], CO oxidation [20, 21], the hydrogen evolution reaction [22] and methanol
decomposition [23] among others was facilitated by the use of computational methods.

Progress has recently been made with respect to actual theoretical design [24–36]. Direct atomic-scale
computational design is difficult due to the lack of databases with chemical properties relevant for catalyst
development.

In this paper, we present the implementation of a program tailored to carrying out virtual screening
for the design of catalysts for heterogeneous and electrochemical processes. The implemented approach to
virtual screening is an example of what has previously been called data pipelining and been used for drug
discovery [37], and is simultaneously inspired by the ‘Cambridge Engineering Selector’ and related works by
Professor M F Ashby [38].

Catalysis of commodity chemicals is economically important for society. It has been estimated that 20%
of the World’s GNP is directly related to catalytic processes [39]. In this paper, we therefore use catalysis as
an example, although the virtual materials design framework (VMDF) we present is more generally applicable
for computational materials design.

2. Overview

The virtual screening program VMDF that we present is implemented in Java, and can therefore run on most
hardware platforms. The program provides easy access to an extensive embedded database of computationally
obtained physical and chemical properties for bulk materials and interaction of molecules with surfaces
relevant in catalysis and electrochemistry. The filters and analysis tools, which are provided have been

3

Computational Science & Discovery 2 (2009) 015006 T R Munter et al

Alloy formation
Energies (LMTO)

Binary (3473)
Pure (333)

Binary (8278)

Trinary (17563)

Quatenary (43081)

Alloy formation
Energies (EMTO)

Segregation
energies (1203)

Adsorption
energies (7641)

Figure 1. Schematic overview over the sizes of the databases produced at the Center for Atomic-scale
Materials Design (CAMD) at the Technical University of Denmark over the past 20 years. The data sets
represent theoretical data such as formation energies and segregation energies for bulk alloy systems,
adsorption energies and theoretical relations for many catalytically relevant quantities.

developed to simplify the process of searching and correlating data from multiple databases, in order to find
the best leads for new catalysts.

Currently, the database contains electronic structure calculations for more than 81 500 atomic-scale
structures. Figure 1 shows in schematic form the size of each part of the database. As computers become
increasingly powerful, the process of generating data of chemical properties for adsorbates and surfaces
becomes faster. In the near future, we will thus see increasingly large data sets published for increasingly
more complex materials properties.

A graphical user-interface (GUI) is used to create a flowchart for the virtual screening. Data sets flow from
data sources, through filters to visualization tools, which can present the resulting data sets as, for example,
graphs or show them in spreadsheets.

Figure 2 shows a typical screenshot from a virtual screening. To the left is a list of the available filters and
a button to show the visualization tools. The model-view window contains a flow-chart model containing
one data source, two filters and four visualization tools. The data set containing adsorption energies of
hydrogen on binary surface alloys [33], is shown in tables both before and after it was filtered through the
PropertyInRangeFilter. This filter can be used to selectively allow data elements to pass for which a
chosen property has a numerical value in the predefined range. The two corresponding tables can be seen in
the upper-right and middle-right windows. The data set is also piped through the NumberOfElementsFilter
which is set to only let adsorption energies pass for surfaces of pure elements. The data are then plotted in
a color-coded Periodic Table, see the lower-middle window. The data set is also piped to a visualization tool
that plots the data in a graph. Here the binding energy of H sitting in a face-centered cubic (fcc)-like three-fold
adsorption site on the (111) surface of the alloys having a fcc-like crystal structure, is shown as a function of
the binding energy of H sitting in a hexagonal close-packed (hcp)-like three-fold adsorption site on the same
surface. As one would expect there is a clear linear correlation between the adsorption energy of H in the two
adsorption sites.

In section 3 of this paper, the data sets included in our database are presented. In section 4, the underlying
architecture of the virtual screening program is described. Section 5 gives an example of how virtual screening
can be used to search for metals that can potentially absorb mercury from a gas stream, and bind the mercury
in an alloy. Finally, in section 6 we present an example of how physical knowledge about a reaction can be
used together with virtual screening to find new leads in the search for a catalyst suitable for the classical
methanation reaction.

4

Computational Science & Discovery 2 (2009) 015006 T R Munter et al

Figure 2. Screenshot of VMDF showing a more advanced model containing one data source, two filters
and four visualization tools. Four output windows are shown. The scatter graph (bottom right) shows
the adsorption energy of H on two different threefold adsorption sites on binary alloys as a function of
each other.

3. A portfolio of databases

Since the introduction of computers in theoretical physics and chemistry, vast amounts of data have been
generated. These are often calculated using varying accuracy and are stored in a format suitable for the specific
project they were generated for. This makes it a nontrivial task to directly combine results from multiple
sources and use them in subsequent projects.

In this paper, we describe one way that data from different sources can be put in a homogeneous form
so that different studies can be more easily combined and used to conduct a screening study. One difficulty is
often that data from different studies must be put in a consistent form having, for example, the same reference
values. Evidently, it would be a more satisfactory solution if one could build the database up on total energies,
since the addition of extra materials properties might be simpler. One would in this case, however, need to take
much greater care that the reference energies produced and included in the past were of the same computational
quality and level as the subsequently included total energies. In the studies presented here, we do not propose
a general solution for the problem of mutual reference values. Rather we use a number of data sets that
have already been published separately. This means, for example, that whereas the calculations of adsorption
energies and alloy formation energies were done with different electronic structure codes, the full calculation
of each property is done using energy differences within only one code at one consistent level of accuracy.

Over the past 20 years, the research group which we are part of, at the Technical University of Denmark,
has carried out numerous theoretical studies, thereby generating vast amounts of data. Especially, in the last few
years the amount of theoretically calculated accurate materials properties has increased tremendously. Among
the systems studied are ammonia synthesis [14, 15], the methanation reaction [31], adsorption energies for
molecules on transition metal surfaces [17, 40, 41], activation energies for many molecules on transition metal

5

Computational Science & Discovery 2 (2009) 015006 T R Munter et al

Figure 3. The CAMD database contains many theoretically calculated adsorption energies of
adsorbates on the close-packed (111) surface of pure elements. Here is shown a small subset.
(a) Adsorption energies for carbon. (b) Adsorption energies for nitrogen. (c) Adsorption energies for
oxygen.

surfaces [42] and compounds [43], and the formation energy of quaternary alloys having body-centered cubic
(bcc)- or fcc-like crystal structures [26, 44]. Bringing these data into a homogeneous form that can be used in
conjunction provides a versatile database.

A fundamental chemical property in catalysis is the energy change when a molecule adsorbs on a
surface, the adsorption energy. Figure 3 presents theoretical adsorption energies for carbon-, nitrogen- and
oxygen atoms adsorbed on close-packed metal surfaces obtained using DFT. Calculated adsorption energies
as presented here can be used for predicting chemical properties for many different alloys. This is sometimes

6

Computational Science & Discovery 2 (2009) 015006 T R Munter et al

Figure 4. The adsorption energy of hydrogen on a supported overlayer. Horizontally, the element of
the substrate is shown. Vertically, the nature of the overlayer is shown. The data are adapted from [33].

facilitated by means of simple interpolation or more advanced schemes that generate approximate materials
data, which can subsequently be screened for specific properties. This approach was used successfully when
proposing new catalysts for, e.g., the methanation reaction [31].

Chemical properties like adsorption energies can also be tuned by forming a monolayer of one element
or a multi-component alloy on a substrate of another metal [45–47]. The change in adsorption energy can
primarily be attributed to two effects that govern the position of the material’s d-band. The first could be
considered an intrinsic property of the chemical elements present and is a result of the different number of
valence electrons. The second is a geometric influence brought about by a mismatch in lattice constants of the
overlayer and the substrate, which for transition metals changes the width and the position of the d-band [48].
How the adsorption energy of atomic H changes when adsorbed on a surface with a one atomic-layer thick
overlayer of one element on a substrate of another element can be seen in figure 4. The diagonal elements in
figure 4 provide the adsorption energies of H on the surface of the pure elements.

In earlier works, properties such as adsorption energies, barriers to dissociate and other relevant properties
were only calculated for adsorbates on the surfaces of metals relevant to the chemical reaction in question. So
when data sets are collected the data for adsorbates will be incomplete with respect to the elements of the
surfaces. Figure 5 shows a histogram of the number of different adsorbates for which there exists adsorption
energies on a given transition metal surface. Here selected adsorption data on close-packed surfaces which for
metals having the fcc crystal structure (the (111)-surface) are shown.

In the present study of methanation catalysts, we used a database of DFT calculations in the full charge
density EMTO implementation [49–52] of formation energies for 8611 binary alloys [53]. These binary alloys
are those binary combinations of Li, Na, Be, Mg, Ca, Sr, Al, Zn, Ge, Si and the 3d, 4d and 5d transition
metals (except La) which sit in the structures shown in figure 6. It was not possible to converge every single
combination, since the implementation is not fully automated, but by far the most combinations have been
calculated. It will indeed most often be the case, that when working with theoretically calculated materials
properties, the databases are not necessarily complete, and subsequent screening studies will be carried out
utilizing incomplete data sets. An example of the contents (data for one crystal structure) of this database is
shown in figure 7. Here the binary alloys in the L12 structure are shown with a color-code illustrating their

7

Computational Science & Discovery 2 (2009) 015006 T R Munter et al

La Hf Ta W Re Os Ir Pt Au Hg

Y Zr Nb Mo Tc Ru Rh Pd Ag Cd

Sc Ti V Cr Mn Fe Co Ni Cu Zn

Figure 5. The number of distinct adsorbates for which adsorption energies in the CAMD database exist
shown for all the 3d, 4d and 5d transition metals.

formation energies. Those combinations, which have not yet been possible to converge are shown in white.
The database was obtained from Professor H L Skriver through its web interface [53].

The database also includes formation energies for over 64 000 alloys containing up to four different
elements in simple fcc- or bcc-like crystal structures [44]. These values are calculated using the faster, but
somewhat less accurate linear muffin tin orbitals-method (LMTO) [54] except for alloys involving Zn, Cd, Hg,
Lu and Si, where the Korringa–Kohn–Rostocker (KKR) method [55] was used to give an accurate description
of the low-lying valence or semi-core states. These data can be used to test alloys for stability and phase
segregation effects leading to a more accurate estimate of whether or not a given alloy phase can be formed.
Figure 8 shows which elements were chosen as components in the combinatorial screening of formation energy
for quaternary alloys.

4. Program structure

The VMDF presented here is designed to enable materials researchers or engineers to perform virtual screening
of functional materials having a particular combination of physical or chemical properties which should

8

Computational Science & Discovery 2 (2009) 015006 T R Munter et al

(a) B1 (NaCl) (b) B2 (CsCl) (c) B11 (γ-CuTi)

(d) B20 (FeSi) (e) B27 (FeB) (f) C15 (Cu2Mg)

(g) D03 (AlFe3) (h) D022 (Al3Ti)

(i) L10 (AuCu) (j) L11 (CuPt) (k) L12 (Cu3Au)

Figure 6. The 11 different crystal structures that the binary alloys have in the presented database of
alloy formation energies. The structure names are given in the Strukturbericht nomenclature [69].

be optimized. Furthermore, it enables a user to perform detailed analysis of larger data sets that cannot be
analyzed manually or, only with difficulty, analyzed using computer programs that are not specially designed
for the problem in question. More extensive analysis of chemical properties and materials design might require
programming of additional analysis modules, but these are easy to implement in the presented framework.
In this section, the framework that speeds up the development process is presented.

9

Computational Science & Discovery 2 (2009) 015006 T R Munter et al

Figure 7. Formation energy for binary alloys having the composition AB3. All alloys have the
Strukturbericht crystal structure L12. The stability is calculated using EMTO with a GGA xc-functional
and is given in mRy atom−1. The chemical elements are ordered accordingly to the Pettifor stringing
of the elements [70].

The program for carrying out virtual screening for materials design consists of two parts: the materials
design framework (MDF) that abstracts how data sets are stored physically on the disc and provides an
application programming interface (API) in which filters, analysis tools and visualization tools can use to
perform the screening process. Virtual screening models can be built in a GUI, which provides the means to
modify and run the model interactively. The different layers in the program are shown in figure 9 and will be
described in more detail in the following discussion.

The MDF enables the user to combine data from multiple data sources, which could be, for example,
databases containing theoretical values of chemical properties, databases with experimental data and model-
data derived from models based on parameterizations of chemical or thermodynamic properties.

The framework operates with three different types of objects.

Data sources. Objects that feed data sets into the model. Data sources come in two different flavors:
data sources that provide enumerated data, e.g., existing data sets loaded from a database, and generators

10

Computational Science & Discovery 2 (2009) 015006 T R Munter et al

Figure 8. The four components of the quaternary alloys in the database containing LMTO formation
energy energies for quaternary alloys [44] are selected from the set of elements colored on this Periodic
Table.

JavaBeans-based GUI

Materials Design Framework (MDF) layer

DataElementReader SQLDataElementReader

Filters

Virtual Materials Design

Analysis
tools

Flat
data file

Other
data source

Local
RDBMS

Remote
RDBMS

Visualization
tools

Figure 9. Schematic view of the program structure. The program has a layered structure with the
storage layer on the bottom and then more and more data-abstract layers upwards to the top-layer
which the user interacts with.

that have to be inquired in order to access information about certain materials because no enumeration
is possible. An example of a generator is one which gives the formation energy for oxides of a chemical
element at a given temperature calculated from the parameterization of the formation energy as a function
of temperature.

Filters. Objects that take the output of a data source (or of another filter if they are linked) and evaluate
each element in the data set against predefined criteria. Only data elements that meet the criteria are
allowed to pass and there is the further option to add more data fields about the material in question.

11

Computational Science & Discovery 2 (2009) 015006 T R Munter et al

ABC 55
xxyyzz

A
B

C
 55 123 123

xxyyzz

1 2 3 4

1 2

3

HAdsorptionEnergies

XYScatterGraph

PropertyInRangeFilter

Table

Figure 10. Simple example of a virtual screening. The data set ‘HAdsorptionEnergies’ containing
theoretical values for H adsorption energies on binary alloys is loaded and passed to a visualizing tool
that plots the data set in a scatter graph and to a filter named PropertyInRangeFilter that only
accepts data elements which have a certain property in the selected range. The data elements that pass
the filter are then presented in a table.

In general, data elements of a data set are fed to filters in a non-deterministic order so filters have no
information available to them about the current position in the data set. In special cases a filter can store
a local copy of the data set in order to perform certain tasks, for example, sorting a data set.

Visualization tools. Objects of this type can be connected to the output of a chain of filters or directly to a
data source to visualize the data set. A multitude of different ways to visualize a data set can be imagined,
such as the data set presented in a table, shown as a scatter-graph or as a histogram. The illustrations in
the first part of this paper are examples of ways to visualize data sets.

As previously mentioned, data elements in a data set are in non-deterministic order, this is because
ordering a data set according to the value of a property does not make sense except when presenting the
data set in a table for the user. Due to the fact that filters can add or remove fields in individual data elements,
care is taken to make sure that filters cannot change instances of the data sets seen by objects upstream in the
model. This makes it easy to run the evaluation of the model in parallel since a data element, as soon as it has
passed one object, can be fed into the next object in the chain. The downside is the extra cost of memory. It
also makes it easy to implement one-to-many relationships: the output from one data source or filter is fed to
one or many filters. Figure 10 illustrates this.

The virtual screening program is implemented in Java running on Sun’s JavaSE 5 SDK [56]. The decision
to use Java was made to make the program portable. Java offers a versatile program library containing packages
to build advanced user-interfaces, and a multitude of packages offers functionalities such as embedded database
systems; and molecule visualization is also available from other sources.

The GUI takes care of the user interaction, the editing of models and the display of plots. For the editing
of object properties, Java’s built-in functionality for reflection is used to discover the properties of data sources,
filters and visualization tools. Reflection enables a program to discover properties about classes at run-time,
thereby not requiring any hardcoded information about classes.

Reflection works best when the JavaBeans design pattern [57] is applied in the class-design, therefore the
classes in the MDF are designed following the JavaBean design-pattern.

The only configuration the program needs is an XML file containing the names of the classes of the
data sources, filters and visualization tools. Everything after this point can be discovered at run-time using
reflection.

12

Computational Science & Discovery 2 (2009) 015006 T R Munter et al

Figure 11. Schematic illustration of how a subset of the data is organized in tables in the relational
database.

Most data sets are stored in the embedded SQL database server, a relational database management system
(RDBMS). For the embedded RDBMS the Apache Derby database version 10.3 is used [58]. It offers a
fast Java RDBMS that implements a large part of the SQL standard. The RDBMS can be embedded into
an application and the data files can be packed in a JAR-archive and be distributed along the main application.
Access to the database is provided through JDBC which is Java’s mechanism for accessing relational database
systems.

Creation of connections to the embedded RDBMS is handled by a separate class. This pattern allows one
to switch to the back-end RDBMS easily, as long as data sources and other classes only use standard SQL.
Unfortunately, database systems do not always implement the whole SQL standard and therefore database-
specific dependencies can still be found in the modules.

As illustrated in figure 9 data sets can be stored in many different ways, e.g., in the embedded RDBMS,
in a local text file or in an off-site database server. The data set is loaded using a derivative of either
SQLDataElementReader or DataElementReader, depending upon whether access to a SQL database server
is needed or not. After loading, access to data sets happens in a uniform way defined by the MDF, independent
of the data origin.

Due to the fact that information stored in different data sets is often very heterogeneous, it is necessary to
store each data set in an individual table in the embedded RDBMS. An example of which columns a data set
contains on-disc is shown in figure 11. Relationships between tables are used to find additional information
about a particular property, e.g., relationships implemented using foreign keys are used to find information
about computational setup and references to where the data originates for the row containing the actual material
property. This is important because one data set can contain data coming from multiple sources, therefore
it is vital that the origin of a data element can be traced back to where it was published and how it was
obtained.

Each data element is wrapped in an instance of the DataElement class. This class inherits from the
MaterialTemplate class which offers basic functionality to store values associated with keys and to be able
to retrieve the value associated with the given key. Instances of the MaterialTemplate class are also used
when searching for data elements matching an incomplete description of a material, this could be all alloys
having a certain crystal structure. DataElement imposes some constraints on the information stored, the data
element must, for example, contain a reference to where the data comes from, a name to be presented to the
user and a list of the elements that the material contains.

The full class diagram can be seen in figure 12. Data sources are implemented as instances of either
MaterialList or as derived classes of MaterialGenerator. Sources where the data can be enumerated are
instances of MaterialList and we can therefore iterate through all elements, data sources that can only be

13

Computational Science & Discovery 2 (2009) 015006 T R Munter et al

Figure 12. UML class diagram of the MDF-package.

Figure 13. UML class diagram of the filters-subpackage of the MDF.

queried for data about a certain material or class of materials inherit from MaterialGenerator. An instance
of MaterialList can either be constructed using an instance of a class inheriting from DataElementReader
or be initialized to contain the output from a filter. Classes derived from DataElementReader are used to read
data sets from files or over the internet, where the more specialized class SQLDataElementReader is used
when loading data sets from a RDBMS.

Data sources, filters and visualization tools built on the MDF must also implement either the
DatasourceInputInterface and/or the DatasourceOutputInterface. By inheriting from these
interfaces the modelbuilder knows which modules can be connected. The class diagram for data sources,
filters and visualization tools is shown in figure 13.

A filter or analysis tool which is iterating over the data set one element at a time, can inherit from the
class SingleSourceFilter and get a lot of functionality by inheritance. In this way it becomes possible to
implement a new filter by just overriding one method concentrating on the new functionality, thereby using the
methods inherited from SingleSourceFilter to handle all the tasks common to all filters. Filters combining
input from multiple data sources can inherit from the class MultipleSourcesFilter. Multiple data sources
are handled though this filter by iterating over elements in the primary data source and using these elements in
queries to the secondary data sources. In this way, a data element from one MaterialList can get additional
information added from other iterable MaterialLists or from a MaterialGenerator.

Figure 14 shows a more realistic virtual screening model, where three filters are applied to the data set
coming from the data source. The resulting data set is then plotted as a checkerboard plot and in a table.

14

Computational Science & Discovery 2 (2009) 015006 T R Munter et al

1 2

3

ABC 55
xxyyzz

A
B

C
 55 123 123

xxyyzz

QuaternaryAlloys StringMatchFilter

CheckerBoard

A
B

C
 55 123 123

xxyyzz

A
B

C
 55 123 123

xxyyzz

NumberOfElementsFilter

HighConcentrationFilter

1 2 3 4

Table

Figure 14. Example of a virtual screening. The data set comes from a data source named
‘QuaternaryAlloys’ contain the data presented in [44]. After being loaded the data elements are filtered,
so only those having a fcc-like crystal structure pass, then only binary alloys are allowed to pass, the
last filter is one that selects binary alloys containing elements with the ratio 0.25 and 0.75, respectively.
Finally, the data are plotted in a checkerboard graph and shown in a table.

5. Example 1. Screening for mercury absorbing materials

In this example, it will be shown how the proposed framework for performing virtual screening in a materials
design context can be applied. The methodology is applied to the problem of searching for a material that
potentially can absorb gaseous Hg from a gas stream.

Hg is naturally present in coal and crude oil in minute amounts. Given the large quantities of hydrocarbons
that pass through the chemical plants treating these chemicals, even traces of Hg will add up. It is estimated
that the largest aggregate source of Hg pollution in the US are coal-fired power plants, which in 1999 were
responsible for 40% of the total Hg emission [59].

Hg and other heavy metals are toxic to humans and animals and cause severe pollution of the environment.
Furthermore, Hg will poison the active sites of a number of catalysts used in reactions, where trace amounts
of Hg can be found in the feed-gas stream. These processes include, for example, the methanation process and
the production of synthetic natural gas. The ability to remove Hg from the feed-gas stream of a chemical plant
or from exhaust gas from combustion of coal or crude oil is therefore crucial for the environment and to the
operators of chemical plants alike.

A solution for the removal of gaseous Hg is proposed by which a regenerable absorber material will
absorb the Hg from a gas stream when it is passed over the material, forming an alloy in the process. In the
following section 5.1, some key properties that such a material should have will be described. We shall now
turn our attention to describing, in more detail, how these criteria are defined.

5.1. Screening for potential candidates

Candidate materials that can absorb Hg and, at the same time, are stable are required to fulfill a long list
of constraints. Several of these constraints are not known exactly, and must therefore be established from
experience. The constraints that we chose for the candidate alloys are listed below.

(i) Candidate has a negative formation energy.

(ii) Candidate contains Hg.

(iii) Candidate is stable to oxidation at the given reaction conditions.

(iv) Candidate must have a more negative formation energy than the critical formation energy at the partial
pressure of Hg at the entrance of the absorber.

(v) Candidate must have a more negative formation energy than the critical formation energy at the partial
pressure of Hg at the exit of the absorber (1/100 of the Hg pressure at the entrance).

(vi) If candidates in the result set are polymorphic only the most stable phase passes.

15

Computational Science & Discovery 2 (2009) 015006 T R Munter et al

Table 1. Fractional gas composition of the gas stream coming from a gasifier at a temperature of
T = 473 K and a total pressure of p = 3 MPa.

X i

H2 0.27
CO 0.62
CO2 0.02
H2O 0.04
H2S <1 ppm

The choice of absorbing 99% of the Hg in (v) is somewhat arbitrary, but appears to be an
reasonable design goal. In the following, we describe in more detail how these criteria are defined and
implemented.

5.2. Reaction conditions

The presented thermodynamic calculations are for a system with a total pressure, ptotal, of 3 MPa, a
temperature, T , of 473 K and a gas composition as shown in table 1.

5.3. Critical formation energy

In order for the alloy to be able to absorb gaseous Hg from a gas stream, the alloy after absorption (which
contains Hg) must be more stable than the alloy without. In order for the alloy to be able to absorb Hg the
stability of the alloy containing Hg must be higher by an amount here called the critical formation energy,
Ecritical

F , with respect to the alloy without. The critical formation energy can be found by asserting that the
absorption of Hg(g) happens in the following reaction:

xHg(g) + yM(s)� Hgx My(s) . (1)

The change in enthalpy during reaction, 1H(1), is

1H(1) ≈ 1E = EHgx My(s) − (x EHg(s) + yEM(s))︸ ︷︷ ︸
EF(Hgx My(s))

+ (x EHg(s) − x EHg(g))︸ ︷︷ ︸
−x Ecohesive(Hg)

= EF (Hgx My(s)) − x Ecohesive(Hg),

and the change in entropy is:

1S(1) = SHgx My(s) − (x SHg(g) + ySM(s)),

where SHgx M y(s) = Svib + Smixing. Svib is assumed to cancel the vibrational contribution to SM(s). The error
introduced by neglecting vibrational entropy for the metal and the alloy is difficult to estimate, but it can be
noted that the entropic contributions to the Gibbs free energy at room temperature in, e.g., Cu, Ag and Au
are 0.05, 0.07 and 0.08 eV atom−1, respectively, and that the property we aim for is obtained as the difference
between two such terms. Although the vibrational contribution to the thermodynamic properties of different
alloys can, in principle, vary quite a bit, the error thus appears relatively bounded. The mixing entropy, Smixing,
we (conservatively) assume to be 0.0 eV. Presumably there will be some mixing entropy contribution, at least
at low concentrations of Hg in the absorber. In this case, we are underestimating the actual ability of the
potential absorber materials. However, if we focus on the relevant regime of alloys with a relatively high
concentration of Hg corresponding to the point when the material has to be recycled, the differential mixing
entropy contribution for an alloy with 25% Hg is maximally of the order of kT ln3, which is 0.043 eV atom−1

under reaction conditions. We thus estimate the omitted entropy terms to be an order of magnitude smaller
than the variations in formation energies between the different alloys, an order of magnitude smaller than
the possible variations of the oxygen chemical potential, smaller than the error introduced by only looking at

16

Computational Science & Discovery 2 (2009) 015006 T R Munter et al

structures with small unit cells, and smaller than the errors introduced by the limited accuracy of the employed
exchange-correlation functional. We therefore do not expect the omitted entropy terms to significantly change
our conclusions. The change in entropy for reaction (1) thereby reduces to

1S(1) ≈ −x SHg(g),

where SHg(g) is the entropy of Hg in the gas phase at standard conditions corrected for the changed temperature
and pressure. The Gibbs free energy is then given by

1G ≈ EF(Hgx My(s)) − x Ecohesive(Hg) + x T

(
S◦

Hg(g) − k ln
pHg

p◦

)
.

For alloys that can be formed EF(Hgx My(s)) is negative. The cohesive energy of Hg, Ecohesive, is found
to be 0.67 eV atom−1 [60].

The critical formation energy is the alloy formation energy (per Hg atom and from pure solid metals
at 0 K) at which Hg is equally stable in the gas phase and absorbed in the alloy at the given temperature. This
means that 1G = 0 eV. Assuming the specific heat capacities of the alloys cancel the specific heat capacities
of the pure metals, the critical formation energy can thus be determined as

Ecritical
F (Hgx My) = x Ecohesive(Hg) − xT

(
S◦

Hg(g) − k ln
pHg

p◦

)
. (2)

At 473 K the entropy contribution, −T S, from Hg at a partial pressure at the inlet, pHg, of 0.03 Pa is
−1.52 eV. Assuming that the partial pressure of Hg(g) after passing the absorbing alloy is 1/100 of the partial
pressure at the inlet, then the entropy contribution from Hg is −1.69 eV.

In a unit cell containing four atoms of which one atom is a Hg atom (x = 1, y = 3 in reaction (1)) the
critical formation energy of the alloy at the start of the absorber is

Ecritical
F (inlet) = −0.85 eVN−1

Hg .

After 99% of the Hg has been absorbed the critical formation energy is

Ecritical
F (outlet) = −1.04 eVN−1

Hg ,

where NHg is the number of Hg atoms in the alloy unit cell. Figure 15 shows a contour plot of 1G at a partial
pressure of Hg of 0.0003 Pa as a function of temperature and Ecritical

F . The contour line for 1G = 0.0 eV can
be used to find the critical formation energy of Hg-containing alloys at different temperatures at the partial
pressure at the end of the absorber. For increasing temperatures the critical formation energy also increases
meaning that the Hg-containing alloy must be increasingly stable in order to absorb Hg as the temperature is
increased.

5.4. Stability against oxidation

At the gas composition described in table 1 the following reactions could occur:

H2O + CO
 CO2 + H2 (WGS) (3)

H2O + M
 MO + H2 (4)

CO2 + M
 MO + CO (5)

H2O
 1
2 O2 + H2 (6)

CO2

1
2 O2 + CO (7)

1
2 O2 + M
 MO (8)

M denotes either a pure metal or an alloy, ‘WGS’ indicates that this reaction is the water gas shift reaction.
Reactions (6) and (7) are considered because they define a range for the chemical potential of oxygen that can
be used directly with reaction (8). This simplifies the description of the most likely oxidation process, which
is likely to be (4) and (5).

17

Computational Science & Discovery 2 (2009) 015006 T R Munter et al

−3

−3

−2

−2

−2

−2

−1

−1

−1

−1

1

1

1

1

2

2

0

0

0

0

E
F
 (

eV
)

T (K)
300 350 400 450 500 550 600

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Figure 15. Contour plot of 1G as a function of temperature, T , and formation energy of the alloy,
EF for alloys contains 1 Hg atom per unit cell. The alloys are thus of the form M3Hg. The contour at
1G = 0.0 kJ

mol shows the critical formation energy at a partial pressure of Hg of pHg(out) = 0.0003 Pa
for alloys as a function of temperature.

5.4.1. Chemical potential of oxygen in the gas phase. To analyze whether the absorbing material will oxidize
when the gas stream is led over it, it is useful to find the chemical potential of free oxygen in the system.
We do this by calculating the O2 pressure at equilibrium of reactions (6) and (7), respectively, using

p1/2
O2

(6) =
pH2O

pH2

exp
[
−1G◦

(6)/(kBT)
]
,

p1/2
O2

(7) =
pCO2

pCO
exp

[
−1G◦

(7)/(kBT)
]
,

where 1G◦

6 and 1G◦
7 are the standard Gibbs free energies of reactions (6) and (7) and kB is Boltzmann’s

constant. Subsequently, the chemical potential is determined as

µO2 = kBT ln

(
pO2

p◦

)
,

Two different partial pressures are obtained due to the inequlibrium of the gas composition. At the partial
pressures from reactions (6) and (7), the chemical potential (µO2) of oxygen in the gas stream at a temperature
of 473 K is in range of −5.28 to −4.75 eV.

5.4.2. Formation energies of oxides. To test for stability of an alloy with respect to oxidation the formation
energies of the corresponding oxides are needed. We separate the oxidation of alloys into two steps:
decomposition of the alloy into pure elements and then the oxidation of pure elements, in order to obtain
the formation energies of oxides from the data in the database. We first look at the formation energies of the
oxides of the pure elements, then the decomposition energies of alloys (minus their formation energies) are
considered to connect pure elements with alloys. For the formation energies of the oxides of the pure elements,
we consider the reaction

yM + xO2
 MyO2x

18

Computational Science & Discovery 2 (2009) 015006 T R Munter et al

Table 2. Summary of the number of candidate alloys that pass each additional screening criterion as
described in section 5.1.

Criterion Candidates

Database 64 117
Stable alloys 31 041
Contains Hg 1319
Stable to oxidation 122 or 116
Formation energy less than −0.85 eV 32
Formation energy less than −1.04 eV 24
Polymorfic alloys discarded 14

then 1FGoxide is the formation free energy of the oxide of the pure chemical element M . Under the given
reaction condition the free energy of formation is given by

1FG
µO2
oxide = 1FG◦

oxide − x µO2 .

The free energies of formation for pure metal oxides as a function of temperature have been parameterized
in [61].

For all metals their oxides becomes less stable when the temperature increases. It is desirable for the alloys
we are searching for that they are more stable in the alloy-form than as an oxide. Therefore, one might expect
that the reaction temperature should be raised. However, as shown in section 5.3, an increased temperature
gives an increased critical formation energy, and one therefore has to balance the two effects when choosing
the reaction temperature.

Considering the second step of oxidation of an alloy, after a quaternary alloy decompose into four pure
elements, there are 15 possible oxidation events. The reaction energies of these events could be calculated by
linear combination of the formation energies of oxides of the four elements. We then select the reaction energy
1Goxidation of the most energetically favorable event in the subsequent calculation. The formation energy of
oxides from an alloy is then calculated by summing up the decomposition energies and 1Goxidation.

5.5. Candidates

A screening with the criteria described in section 5.1 was performed on the database containing the formation
energies for 64 117 binary, tertiary and quaternary alloys [26, 44] described in section 3. The database contains
alloys having five different fcc- and bcc-like crystal structures. Table 2 summarizes the number of alloys
passing each criterion described in section 5.1. The two numbers given for the number of alloys that are
stable against oxidation are for the two extrema of the interval of the chemical potential of oxygen. It is
observed that even the relatively large change in the oxygen chemical potential does not drastically change
the number of available alloys. In fact, after the critical formation energy is taken into account, the number of
available candidates is independent of which of the two chemical potentials were used in the oxide stability
part of the screening. In table 3, the 14 candidates that are able to absorb Hg and are stable to oxidation are
presented.

5.6. Discussion

The steps necessary to carry out a virtual screening for candidate materials that can absorb gaseous Hg from
a gas stream have been described. By applying the described criteria it was possible to reduce the number of
Hg-containing candidates from 5581 down to 14.

When the list of criteria described in section 5.1 are applied only candidates pass that:

• Do not oxidize under the given reaction conditions.

• Have a formation energy that is more negative than the critical formation energy. This insures that the
alloy containing Hg is stable both at the partial pressure of Hg found at the beginning of the absorber and
at 1/100 of this pressure, which we assert is the partial pressure at the exit of the absorber.

19

Computational Science & Discovery 2 (2009) 015006 T R Munter et al

Table 3. The alloy candidates that pass all the criteria described in the text.

Candidate Struct. Formation energy (eV)

HfPt2Hg BCC −3.27
HfPdPtHg BCC −3.05
HfPdRhHg BCC −2.59
HfIrPdHg BCC −2.33
HfIrRhHg BCC −2.29
HfIr2Hg BCC −1.89
Hf2IrHg BCC −1.80
CdHfPtHg BCC −1.70
Hf2PtHg FCC −1.54
HfPtRhHg FCC −1.50
HfNi2Hg BCC −1.42
Pd2ZnHg FCC −1.14
HfPtRuHg FCC −1.12
CdPdPtHg BCC −1.05

Table 3 summarizes the result of applying the described ‘filters’ to a database of quaternary alloys. Only
14 candidates satisfies the proposed criteria for stability and ability to absorb Hg. They are possible candidates
for absorbtion of Hg from a gas stream and could be tested experimentally.

The scanned alloy database contains quaternary alloys in only five different bcc- and fcc-like crystal
structures (see [26]). Because of this it can be expected that some of the alloys exist in structures that are more
stable than those tested. The most stable candidates are given in table 3, they are the most likely to pass the
described criteria.

The reaction conditions described in table 1 are used for the screening. If the temperature is lowered the
alloys ability to absorb Hg increases but an opposite effect also plays a role, as the temperature is lowered the
oxides becomes more stable, so the absorber will be more likely to oxidize.

The above analysis is meant primarily as a demonstration of the capabilities of the VMDF. Indeed a
number of improvements are important to consider in order to find new realistic transition metal alloy Hg
absorbers. It would, for example, be very interesting to look at whether the Hg adsorbs more strongly on
surfaces [62] than in the bulk which we have implicitly assumed here. It would likewise be interesting
to address in more detail the kinetics of the Hg absorption. In the present study we analyze only the
thermodynamics, and it is of course a prerequisite that the thermodynamics are favorable in order for the
absorber to work. An additional prerequisite is whether the kinetics at the given reaction temperature are
favorable enough for the reaction to occur. The limited number of alloys and the very simple crystal structures
in the database give some constraints to the applicability of the results, and it would very much be worth while
to include more metals, structures and complexity.

Finally, it could be argued that in order to keep the Hg in the absorber, the Hg-containing alloy should
actually have a segregation energy (into metallic Hg and the most stable linear combination of pure metals
and binary and ternary alloys of the other constituents) of the order of the critical formation energy. This
segregation energy is shown in table 4 for the three candidate Hg-alloys, which are stable against segregation.
If this criterion was to be enforced, we could conclude that no relevant combination of transition metals in our
database would be able to absorb Hg under the given conditions.

6. Example 2. The methanation reaction

To illustrate another use of the VMDF we have applied it to the methanation reaction:

CO + 3H2 � CH4 + H2O

20

Computational Science & Discovery 2 (2009) 015006 T R Munter et al

Table 4. Candidates sorted according to the stability of the alloy relative to the most stable linear
combination of alloys and pure elements excluding Hg (1EF). The three alloys are those alloys from
table 3 that are most stable with respect to segregation.

Candidate Struct. Formation 1EF

energy
(eV) (eV)

HfPdPtHg BCC −3.05 −0.10
CdPdPtHg BCC −1.05 −0.07
HfPdRhHg BCC −2.59 −0.02

–2 –1 0 1 2 3

EDiss (eV)

0.01

0.1

1

10

100

A
ct

iv
ity

 a
t 5

50
 K

 [m
m

ol
 (

m
ol

*s
)–1

]

Re

Fe

Co

Ru

Ni
Rh

Ir

Pd Pt

Figure 16. The activity of transition metals for the CO methanation reaction plotted as a function of
the dissociative adsorption energy of CO relative to adsorbed CO on the metal. Adapted from [31].

This is one of the classic reactions in heterogeneous catalysis [63], and it is used, for example, to
remove CO from the hydrogen feed gas in ammonia plants. The reaction has been studied intensely both
experimentally [64, 65] and theoretically [17, 66, 67].

The rate limiting elementary reaction step in methanation is the dissociation of the strongly bound CO
molecule. The dissociation energy of CO on a stepped surface, Ediss, has proven to be an excellent descriptor
for the reactivity of a methanation catalyst [17, 31]. Figure 16 shows the experimentally measured CO
methanation activity of a number of transition metals plotted as a function of the calculated CO dissociation
energy.

Screening for methanation catalysts has previously been carried out [17, 31] and promising candidates
were identified and subsequently tested experimentally [68]. In this section, we describe how the VMDF can
be applied to the problem of finding new methanation catalysts. The virtual screening presented here correlates
data from two sources in order to find the most promising candidates.

To generate the set of methanation-catalyst candidates to be investigated, the descriptor is generated for
binary alloys of the form

A1−c Bc, where c ∈
{
0, 1

4 , 1
3 , 2

4

}
. (9)

The descriptor is generated as the weighted average of the value of Ediss for the pure elements going into
the alloys. The descriptor used is the dissociative adsorption energy of CO relative to the adsorption energy of
molecular CO as used in [31]. The descriptor for the alloys is thus calculated as [31]

E A1−c Bc
diss = (1 − c) E A

diss + c E B
diss .

21

Computational Science & Discovery 2 (2009) 015006 T R Munter et al

Table 5. Table summarizing the number of candidate materials that pass each screening criterion for
the methanation reaction.

Criterion Candidates

Initial set 153
Activity 39
Stability 10

The descriptor is generated for all alloys that can be formed of the form in (9) where A and B are taken
from

A, B ∈ {Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru, Re}

To screen the set of candidates for good leads, both activity and stability criteria are now defined. The following
two criteria are implemented in this particular screening:

• the candidate alloys must be reactive for the methanation reaction;

• the candidate alloys must be stable in the specific composition.

We shall now examine the two criteria in more detail. The maximal activity for methanation catalysts
is found to be around Ediss = 0.06 eV, therefore the top of the activity ‘volcano’ is in the vicinity of where
Co and Ru are found [31].

As descriptor for catalyst activity the absolute distance to the optimal point on the experimental volcano
is chosen. Because the accuracy of the interpolated values for the descriptor is lower than the accuracy of the
full DFT calculations, the screening for quality has to be reasonably lax in order not to throw away candidates
that could be active. In this study, the acceptable quality criterion is defined to be:∣∣∣Ecandidate

diss − Eoptimal
diss

∣∣∣ 6 0.30 eV .

This corresponds to approximately half the distance between neighboring elements in the Periodic Table.
Only candidates with an activity descriptor within this interval pass the screening. Several different tests can
be thought of for testing the stability of a catalytic material. Particularly important for alloy catalysts is the
question of whether or not it will segregate into its pure metal constituents.

In this study of candidates for the methanation reaction only the alloy formation energy is considered.
This is a basic quantity describing whether the alloy can be formed or not. Other stability criteria such as
stability against formation of oxides and carbides could easily be implemented, as demonstrated for the Hg
absorber case.

To test for stability at the current composition, each alloy is tested against the database containing
theoretical values for the formation energy of binary alloys calculated using EMTO. For each candidate the
database is queried for the most stable crystal structure found for the given candidate’s composition. The
formation energy for the most stable encountered phase is associated with the given candidate and is used
later.

The database contains formation energies of binary alloys in 11 different crystal structures. It is not
guaranteed that the physically most stable phase is found in the database, but correlating candidates with the
database gives an indication of whether the alloy can be found in the tested phase.

Using the above-mentioned criteria in a virtual screening candidates for the methanation reaction are
found. Table 5 summarizes the number of candidates passing each of the proposed quality and stability
criteria.

Candidates that pass the activity criterion are only useful if the phase can be synthesized. Table 6
summarizes the candidates that pass both the activity and the stability criteria. In figure 17, the candidates
are plotted as a function of the activity and stability descriptors. The interesting candidates are found in the
lower left corner of the graph.

22

Computational Science & Discovery 2 (2009) 015006 T R Munter et al

Table 6. The 10 candidates that pass both the activity and the stability criterion. Candidates which are
pareto-optimal are written in bold.

Candidate Most stable phase Ediss Quality Formation energy
(eV) (eV) (eV atom−1)

Fe2Ir2 FeIr (B2) 0.06 0.005 −0.07
FeNi3 FeNi3 (L12) 0.11 0.04 −0.09
Co Co (hcp) 0.01 0.05 0.00
Ru Ru (hcp) 0.13 0.07 0.00
Fe3Pt PtFe3 (DO3) −0.06 0.12 −0.12
FeRh3 FeRh3 (L12) 0.18 0.12 −0.08
ReRh3 ReRh3 (DO22) −0.06 0.12 −0.04
Fe2Rh2 FeRh (B2) −0.16 0.22 −0.12
ReIr3 ReIr3 (DO22) 0.28 0.22 −0.08
Fe2Ni2 FeNi (L10) −0.21 0.27 −0.06

0 0.5 1 1.5 2 2.5
|E

alloy
(C*+O*-CO*) – E

optimal
(C*+O*-CO*)| (eV)

-0.4

-0.2

0

0.2

0.4

0.6

A
llo

y
fo

rm
at

io
n

en
er

gy
 (

eV
 a

to
m

–1
)

FeIr (B2)

PtFe
3
 (DO

3
)

FePt (L1
0
)

IrFe PtPdReRh
NiRu

Co

FeNi
3
 (L1

2
)

Figure 17. Methanation catalyst candidates plotted as functions of the activity descriptor, the distance
in CO dissociation energy to the top of the experimental volcano-curve, and the stability descriptor, the
alloy formation energy of the most stable alloy of the right composition in the database. The Pareto-
optimal set is shown and the alloys are labeled with their composition and most stable structure.

Andersson et al [31] conducted a screening study of the methanation reaction, there candidates were
plotted as a function of activity and cost of the alloy components. Comparing the candidates from table 6 with
the Pareto-optimal candidates proposed in that study it is seen that both IrFe and FeNi3 are found to have
favorable qualities in both studies. The Pareto-optimal candidates CoRu and Co3Ru, also found when using
cost as a descriptor, are not found to be stable in the present study (see figure 18). An interesting new finding
here is thus that the proposed FeNi3 catalyst is a relatively very stable alloy. This could seem to indicate, that
high alloy stability is one of the reasons why the computationally discovered FeNi3 methanation catalyst could
be turned into a technical catalyst [68].

7. Summary. conclusion

We have here presented an application framework for performing virtual screening in materials science. The
framework was designed with flexibility and extensibility in mind. At present only a limited number of filters

23

Computational Science & Discovery 2 (2009) 015006 T R Munter et al

0 0.5 1
–0.5

0

0.5

1

1.5

Fo
rm

at
io

n
en

er
gy

 (
eV

 a
to

m
–1

)

0 0.5 1
–0.5

0

0.5

1

1.5

0 0.5 1
–0.5

0

0.5

1

1.5

Fo
rm

at
io

n
en

er
gy

 (
eV

 a
to

m
–1

)

0 0.5 1
–0.5

0

0.5

1

1.5

Fe Ni

FeNi

Fe

Fe Co

Ir

Pt Ru

CoRu

FeIr

FePt

Figure 18. Stability of binary alloys with different compositions in a number of different crystal
structures.

and analysis tools have been implemented in the described framework. However, as the framework was created
with extensibility in mind, it should be a simple task to create new filters and analysis tools as the need arises.
We believe that because of this, we will see it applied to a number of other applications in the future, beyond
those presented here.

The process of collecting calculated materials properties has just begun. This issue constitutes an
important challenge, particularly because of problematic issues relating to the consistency and compatibility
between different datasets. We have presented here a database of materials properties containing more than
81 500 data points. If the process of describing a calculation could be automated, large and versatile databases
could be created more easily than at present. The automatization could be done by making the documentation
of the calculation an integrated part of the used simulation environment. This is, however, by no means a
simple task, as care must be taken that all relevant types of calculations are describable. Effort might also need
to be done to introduce some kind of a quality measure, such that calculations are marked as trustworthy only
after the data has achieved a reasonable and well-defined level of quality.

Combining theoretical data obtained from, for example DFT calculations with knowledge of trends and
qualitative models is now possible and will be used for studies much more frequently in the future.

Acknowledgments

We thank Professor Jens K Nørskov for encouraging the construction of the VMDF and for his constant support
and inspiration. We thank Professor Hans L Skriver for many helpful discussions, and for providing us with
his database of 8611 formation energies for binary alloys that were calculated with the EMTO method. We
also thank Aneta Fronczek for her assistance with many of the illustrations in the paper.

The Center for Atomic-scale Materials Design is funded by the Lundbeck Foundation. We acknowledge
support from the Danish Center for Scientific Computation through grant number HDW-0107-07 and from the
Danish Council for Strategic Research through grant number 2106-07-0028.

24

Computational Science & Discovery 2 (2009) 015006 T R Munter et al

References

[1] International Human Genome Sequencing Consortium 2001 Initial sequencing and analysis of the human genome
Nature 409 860

[2] Binnig G, Rohrer H, Gerber C and Weibel E 1982 Surface studies by scanning tunneling microscopy Phys. Rev.
Lett. 49 57

[3] Spence J C H and Cowley J M 1978 Lattice imaging in stem Optik 50 129
[4] Moore G E 1965 Cramming more components onto integrated circuits Electronics 38 114
[5] Hohenberg P and Kohn W 1964 Inhomogeneous electron gas Phys. Rev. 136 B864
[6] Kohn W and Sham L J 1965 Self-consistent equations including exchange and correlation effects Phys. Rev. 140

A1133
[7] Nørskov J K, Scheffler M and Toulhoat H 2006 Density functional theory in surface science and heterogeneous

catalysis MRS Bull. 31 669
[8] Holmblad P M, Larsen J H, Chorkendorff I, Nielsen L P, Besenbacher F, Stensgaard I, Lægsgaard E, Kratzer P and

Nørskov J K 1996 Designing surface alloys with specific active sites Catal. Lett. 40 131
[9] Besenbacher F, Chorkendorff I, Clausen B S, Hammer B, Molenbroek A M, Nørskov J K and Stensgaard I 1998

Design of a surface alloy catalyst for steam reforming Science 279 1913
[10] Richards W G (ed) 1989 Computer-Aided Molecular Design (London: IBC Press)
[11] Walters W P, Stahl M T and Murcko M A 1998 Virtual screening—an overview Drug Discov. Today 3 160
[12] Glick M, Grant G H and Richards W G 2002 Pinpointing anthrax-toxin inhibitors Nat. Biotechnol. 20 118–9
[13] Greeley J and Mavrikakis M 2004 Alloy catalysts designed from first principles Nat. Mater. 3 810
[14] Logadottir A and Nørskov J K 2003 Ammonia synthesis over a Ru(0001) surface studied by density functional

calculations J. Catal. 220 273
[15] Honkala K, Hellman A, Remediakis I N, Logadottir A, Carlsson A, Dahl S, Christensen C H and Nørskov J K 2005

Ammonia synthesis from first-principles calculations Science 307 555
[16] Hellman A et al 2006 Predicting catalysis: understanding ammonia synthesis from first-principles calculations

J. Phys. Chem. B 110 17719
[17] Bligaard T, Nørskov J K, Dahl S, Matthiesen J, Christensen C H and Sehested J 2004 The Brønsted–Evans–Polanyi

relation and the volcano curve in heterogeneous catalysis J. Catal. 224 206
[18] Linic S, Jankowiak J and Barteau M A 2004 Selectivity driven design of bimetallic ethylene epoxidation catalysts

from first principles J. Catal. 224 489
[19] Nørskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T and Jonsson H 2004 The origin of

the overpotential for oxygen reduction at a fuel cell cathode J. Phys. Chem. B 108 17886
[20] Lopez N, Janssen T V W, Clausen B S, Xu Y, Mavrikakis M, Bligaard T and Nørskov J K 2004 On the origin of

the catalytic activity of gold nanoparticles for low temperature co oxidation J. Catal. 223 232
[21] Falsig H, Hvolbæk B, Kristensen I S, Jiang T, Bligaard T, Christensen C H and Nørskov J K 2008 Trends in the

catalytic co oxidation activity of nanoparticles Angew. Chem. Int. Ed. Engl. 47 4835
[22] Nørskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S and Stimming U 2005 Trends in the

exchange current for hydrogen evolution J. Electrochem. Soc. 152 J23–6
[23] Kandoi S, Greeley J, Sanchez-Castillo M A, Evans S T, Gokhale A A, Dumesic J A and Mavrikakis M 2006

Prediction of experimental methanol decomposition rates on platinum from first principles Top. Catal. 37 17
[24] Ceder G, Chiang Y M, Sadoway D R, Aydinol M K, Jang Y I and Huang B 1998 Identification of cathode materials

for lithium batteries guided by first-principles calculations Nature 392 694
[25] Franceschetti A and Zunger A 1999 The inverse band-structure problem of finding an atomic configuration with

given electronic properties Nature 402 60
[26] Johannesson G H, Bligaard T, Ruban A V, Skriver H L, Jacobsen K W and Nørskov J K 2002 Combined electronic

structure and evolutionary search approach to materials design Phys. Rev. Lett. 88 255506
[27] Curtarolo S, Morgan D, Persson K, Rodgers J and Ceder G 2003 Predicting crystal structures with data mining of

quantum calculations Phys. Rev. Lett. 91 135503
[28] Morgan D, Ceder G and Curtarolo S 2005 High-throughput and data mining with ab initio methods Meas. Sci.

Technol. 16 296
[29] Hafner J, Wolverton C and Ceder G 2006 Toward computational materials design: the impact of density functional

theory on materials research MRS Bull. 31 659
[30] Fischer C C, Tibbetts K J, Morgan D and Ceder G 2006 Predicting crystal structure by merging data mining with

quantum mechanics Nat. Mater. 5 641

25

Computational Science & Discovery 2 (2009) 015006 T R Munter et al

[31] Andersson M P, Bligaard T, Kustov A, Larsen K E, Greeley J, Johannessen T, Christensen C H and Nørskov J K
2006 Toward computational screening in heterogeneous catalysis: pareto-optimal methanation catalysts J. Catal.
239 501

[32] Bligaard T, Andersson M P, Jacobsen K W, Skriver H L, Christensen C H and Nørskov J K 2006 Computational
materials design from first principles MRS Bull. 31 986

[33] Greeley J, Jaramillo T F, Bonde J, Chorkendorff I B and Nørskov J K 2006 Computational high-throughput
screening of electrocatalytic materialsfor hydrogen evolution Nat. Mater. 5 909

[34] Studt F, Abild-Pedersen F, Bligaard T, Sørensen R Z, Christensen C H and Nørskov J K 2008 Rational catalyst
design applied to the selective hydrogenation of acetylene Science 320 1320

[35] Alayoglu S, Nilekar A U, Mavrikakis M and Eichhorn B 2008 Ru-Pt core–shell nanoparticles for preferential
oxidation of carbon monoxide in hydrogen Nat. Mater. 7 333

[36] Nørskov J K, Bligaard T, Rossmeisl J and Christensen C H 2009 Towards the computational design of solid catalysts
Nat. Chem. 1 37

[37] Brown R D, Varma-O’Brien S and Rogers D 2006 Data pipelines and virtual screening: automating the process
QSAR Comb. Sci. 25 1181

[38] Ashby M F (ed) 1999 Materials Selection in Mechanical Design (Oxford: Butterworth Heinemann)
[39] Microsoft Encarta Online Encyclopedia2007 http://encarta.msn.com ‘Catalysis’
[40] Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter T R, Moses P G, Skúlason E, Bligaard T and Nørskov

J K 2007 Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal
surfaces Phys. Rev. Lett. 99 016105

[41] Abild-Pedersen F and Andersson M P 2007 Co adsorption energies on metals with correction for high coordination
adsorption sites—a density functional study Surf. Sci. 601 1747

[42] Nørskov J K et al 2002 Universality in heterogeneous catalysis J. Catal. 209 275
[43] Fernandez E M et al 2008 Scaling relations for adsorption energies on transition metal oxide, sulfide and nitride

surfaces Angew. Chem. Int. Ed. Engl. 47 4683
[44] Bligaard T, Johannesson G H, Ruban A V, Skriver H L, Jacobsen K W and Nørskov J K 2003 Pareto-optimal alloys

Appl. Phys. Lett. 83 4527
[45] Ruban A, Hammer B, Stoltze P, Skriver H L and Nørskov J K 1997 Surface electronic structure and reactivity of

transition and noble metals J. Mol. Catal. A 115 421
[46] Mavrikakis M, Hammer B and Nørskov J K 1998 Effect of strain on the reactivity of metal surfaces Phys. Rev. Lett.

81 2819
[47] Greeley J and Nørskov J K 2005 A general scheme for the estimation of oxygen binding energies on binary transition

metal surface alloys Surf. Sci. 592 104
[48] Hammer B and Nørskov J K 1995 Electronic factors determining the reactivity of metal surfaces Surf. Sci. 343 211
[49] Andersen O K, Jepsen O and Krier G 1994 Lectures on Methods of Electronic Structure Calculations chapter Exact

muffin–tin orbital theory (Singapore: World Scientific) pp 63–124
[50] Andersen O K and Saha-Dasgupta T 2000 Muffin–tin orbitals of arbitrary order Phys. Rev. B 62 16219
[51] Vitos L, Skriver H L, Johansson B and Kollar J 2000 Application of the exact muffin–tin orbitals theory: the

spherical cell approximation Comput. Mater. Sci. 18 24
[52] Vitos L 2001 Total-energy method based on the exact muffin–tin orbitals theory Phys. Rev. B 6401 014107
[53] The CAMD databases www.camd.dtu.dk/English/Research/Databases.aspx
[54] Andersen O K, Jepsen O and Glotzel D 1985 Canonical description of the band structure of metals Highlights of

Condensed Matter Theory ed F Bassani, F Fumi and M P Tosi (New York: North-Holland) p 59
[55] Ruban A V and Skriver H L 1999 Calculated surface segregation in transition metal alloys Comput. Mater. Sci. 15

119
[56] Java website http://java.sun.com/
[57] Hamilton G (ed) 1997 JavaBeans API Specification version 1.01 (Sun Microsystems)
[58] Apache Derby website http://db.apache.org/derby/
[59] 1999 National Emission Inventory Documentation and Data www.epa.gov/ttn/chief/net/1999inventory.html.

(US Environmental Protection Agency, 2001)
[60] Kittel C 1996 Introduction to Solid State Physics 7th edn (New York: Wiley)
[61] Weast R C (ed) 1968 CRC Handbook of Chemistry and Physics 49th edn (Cleveland: CRC)
[62] Padak B, Brunetti M, Lewis A and Wilcox J 2006 Mercury adsorption on activated carbon Environ. Prog. 25 319
[63] Sabatier P and Senderens J B 1902 New methane synthesis C. R. Hebd. Seances Acad. Sci. 134 514
[64] Goodman D W, Kelley R D, Madey T E and Yates J T 1980 Kinetics of the hydrogenation of co over a single crystal

nickel-catalyst J. Catal. 63 226

26

Computational Science & Discovery 2 (2009) 015006 T R Munter et al

[65] Zubkov T, Morgan G A, Yates J T, Kuhlert O, Lisowski M, Schillinger R, Fick D and Jansch H J 2003 The effect
of atomic steps on adsorption and desorption of co on Ru(109) Surf. Sci. 526 57

[66] van Santen R A, de Koster A and Koerts T 1991 The quantum chemical basis of the Fischer-Tropsch reaction Catal.
Lett. 7 1

[67] Mavrikakis M, Baumer M, Freund H J and Nørskov J K 2002 Structure sensitivity of CO dissociation on rh surfaces
Catal. Lett. 81 153

[68] Sehested J, Larsen K E, Kustov A L, Frey A M, Johannessen T, Bligaard T, Andersson M P, Nørskov J K and
Christensen C H 2007 Discovery of technical methanation catalysts based on computational screening Top. Catal.
45 9

[69] Crystal Lattice Structures Web page Strukturbericht Designation Center for Computational Materials Science of
the United States Naval Research Laboratory http://cst-www.nrl.navy.mil/lattice/

[70] Pettifor D G 1988 Structure maps for pseudobinary and ternary phases Mater. Sci. Technol. 4 675

27

184

Appendix E

VMDF

The Virtual Materials Design Framework (VMDF) initiated and designed by
Ture R. Munter. The new ideas introduced in the VMDF were a complete
framework that not only presented data, but was also able to evaluate and query
them in a user friendly way.

Collaborations with companies that support the research at CAMD is an im-
portant symbioses: the companies need access to early research results and
collaborations to implement new methods while the university profits from the
exchange of knowledge, the closeness to the market and financially as well. Re-
sults are normally exchanged by creating spreadsheets which is a bit cumbersome.
To improve the situation results can be put in a database that allows to quickly
find things - but requires researchers to know how to write database queries -
which they might have known once but to look up a few results they prefer to
stay with the spreadsheet. This is where VMDF comes into play: instead of
handing over only data the whole visual query enabling framework including the
data is exchanged. Visual query execution means that the complexity of a query
language is hidden and that all operations are done in a user friendly graphical
interface (figure E.1).

Besides the visual queries this framework features different views of the data:
tables, plots, checker board plot and even a periodic table view. All views can
be exported to different formats as for example png, eps and pdf.

186 VMDF

Figure E.1: A screenshot of VMDF. In the top left corner, the available databases are
listed. To the right of it is the visual query shown and around it the different output
windows. The bottom right windows shows the correlation between the binding of the
hcp and fcc adsorption site for H on different surfaces.

Since the whole framework is implemented in Java[100][42] it is possible to run
it on almost any operating system.

With VMDF not only the raw data, but also the analysis can be exchanged with
the collaborators.

E.1 Work in Progress?

A few new features where added since the first release of VMDF: A filter that
is able to join results with a certain criterion, access to external databases and
result output to text or csv files. A complete restructuring of the internal data
handling and caching reduced memory consumption and made queries faster. A

E.1 Work in Progress? 187

few early access features that can still be improved in stability are also present,
like a filter that performs mathematical operations and more complex filters that
perform multiple operations at once. Currently there is no ongoing development
but the project is available the the CAMD subversion repository.

VMDF is a strong product with many convincing arguments that make it
attractive to users - not only that it can be run everywhere but it’s also very
intuitive. Why was the development paused?

The first reason for pausing was that VMDF did not support collecting data. This
means when a user wanted to add new data he/she had to create a spreadsheet
and install the development environment or ask a developer to add them. VMDF
then had to be re-released to include the new data. Later a new database
connector was added to VMDF which allowed to connect to external databases
which fixed that shortcoming. Still the amount of data that is in the database
now cannot be handled with VMDF. The second reason was that people prefer to
use methodologies that they are acquainted with rather than learning something
new. Although the programming of the filters is not very difficult, one needs to
install the Java Development Kit and know how to program in Java. The third
reason is that the user interface code and the serialization code should be made
more flexible to cope with future needs as for example the design of recursive
filters and to be able to open older versions of the file format used to store the
visual query.

The technical shortcomings can be fixed with manpower. The problem of using
too much memory for example can be solved by performing prior query-analysis
and determining what fields should actually be retrieved or much more efficient
translate the query straight into an SQL statement. This would reduce the
amount of data enough so that it can be handled by VMDF. The file format
for the user-interface can be designed more flexible and future versions would
be backwards compatible. Java was a good choice for companies that wanted
to profit from WORA (write once, run anywhere) and have people appointed
for maintaining and updating a software package. It’s much harder to build a
community of researchers that work on Java program because of the barriers.
Even this problem can be solved by building a meta layer between the users and
Java: A filter creator could allow people to put together a few low level filters to
create a high level filter.

The technical arguments and the barrier of learning a new programming language
can be defeated. The only issue that cannot be fixed is that Java has lost
popularity to more flexible script languages that have reached a maturity level
that enables applications to run in a web browser without the need to install
any software. They run on all platforms and even on cellular phones and use
less resources.

188 VMDF

E.2 Conclusion

VMDF is a very good product with a big potential, but in order to be able to
compete, it needs appointed staff that maintains close contact with the researchers
in order to keep the product up to date and attractive. The integrated database
that contains pre-filtered and indexed data could be used to sell the data to
companies and the other part could be available for free and used to connect to
other databases.

VMDF was a framework that enables average users to perform more complex
materials design queries visually in a database and display the results in a useful
way and enabling exports in different file formats. It is written in Java which
enables it to run on almost any platform, but at the same time Java is a barrier
because the language is not as popular as it used to be. In order to continue
the development of VMDF the internal query engine should be improved, a
new meta-level for the creation of new filters should be created an some staff
for the maintenance should be appointed. In this way at the product could at
least compete with the newer developed interfaces to the database. The SiGUI
interface to the database is inspired by the visualization of the VMDF queries
and implemented in javascript (see 3.3.1.d.1 SiGUI, a silo plug-in).

Appendix F

Appendix

F.1 Extracted Values from Codes

The following lists shows the parameters that are extracted and stored in the db-
files. Note that not all output files contain always all variables. The parameters
are ordered by capitalization and then alphabetically.

Dacapo
AtomicNumbers, BZKpoints, ChargeMixing, ConvergenceControl, Date, Den-
sity WaveCutoff, DynamicAtomAttributes, DynamicAtomForces, DynamicAtom-
Positions, DynamicAtomSpecies, DynamicAtomVelocities, EigenValues, Electron-
icBands, ElectronicMinimization, EnsembleXCEnergies, EvalFunctionalOfDen-
sity XC, EvaluateCorrelationEnergy, EvaluateExchangeEnergy, EvaluateTotal-
Energy, ExcFunctional, FermiLevel, IBZKpoints, InitialAtomicMagneticMoment,
Keywords, KpointWeight, MagneticMoment, NetCDFOutputControl, Occupa-
tionNumbers, PlaneWaveCutoff, StructureFactor, SymmetryGeneratorOrder, To-
talEnergy, TotalFreeEnergy, TotalStress, TypeNLProjectorl, TypeNLProjectorm,
UnitCell, UseSymmetry, User, ase atomic numbers, ase cell, ase center of mass,
ase charges, ase chemical symbols, ase dipole moment, ase forces, ase initial
magnetic moments, ase kinetic energy, ase magnetic moment, ase magnetic mo-

ments, ase masses, ase momenta, ase moments of inertia, ase name, ase num-
ber of atoms, ase pbc, ase positions, ase potential energy, ase reciprocal cell,

190 Appendix

ase scaled positions, ase tags, ase temperature, ase total energy, ase version,
ase volume, atomdos angular channels, atomdos energygrid size, atomdos pro-
jections, atomdos radial orbs, hardgrid dim1, hardgrid dim2, hardgrid dim3,
longstring, max projectors per atom, number BZ kpoints, number IBZ kpoints,
number ionic steps, number of bands, number of dynamic atoms, number of -
spin, number of symm gen, number plane waves, real complex, softgrid dim1,
softgrid dim2, softgrid dim3

Gaussian
Atomic numbers, Basis set, Charge, Chemical formula, Compact data, Com-
puter system, Date, HF, Method, Multiplicity, Person, Positions, Sequence num-
ber, Title, Type of run

GPAW
ActiniumFingerprint, AluminiumFingerprint, AmericiumFingerprint, AntimonyFin-
gerprint, ArgonFingerprint, ArsenicFingerprint, AstatineFingerprint, Atomic-
Numbers, BZKPoints, BariumFingerprint, BasisSet, BerkeliumFingerprint, Beryl-
liumFingerprint, BismuthFingerprint, BoronFingerprint, BoundaryConditions,
BromineFingerprint, CadmiumFingerprint, CaesiumFingerprint, CalciumFinger-
print, CaliforniumFingerprint, CarbonFingerprint, CartesianForces, Cartesian-
Positions, CeriumFingerprint, Charge, ChlorineFingerprint, ChromiumFinger-
print, CobaltFingerprint, Converged, CopperFingerprint, CuriumFingerprint,
DataType, DensityConvergenceCriterion, DensityError, DysprosiumFingerprint,
Ebar, Eext, EigenstateError, EigenstatesConvergenceCriterion, Eigenvalues, Ein-
steiniumFingerprint, Ekin, EnergyConvergenceCriterion, EnergyError, Epot,
ErbiumFingerprint, EuropiumFingerprint, Exc, FermiLevel, FermiWidth, Fer-
miumFingerprint, FixDensity, FixMagneticMoment, FluorineFingerprint, For-
Transport, FranciumFingerprint, GadoliniumFingerprint, GalliumFingerprint,
GermaniumFingerprint, GoldFingerprint, GridSpacing, HafniumFingerprint, He-
liumFingerprint, HolmiumFingerprint, HydrogenFingerprint, IBZKPointWeights,
IBZKPoints, IndiumFingerprint, InterpolationStencil, IodineFingerprint, Iridi-
umFingerprint, IronFingerprint, KohnShamStencil, KryptonFingerprint, Lan-
thanumFingerprint, LawrenciumFingerprint, LeadFingerprint, LithiumFinger-
print, LutetiumFingerprint, MagnesiumFingerprint, MagneticMoments, Man-
ganeseFingerprint, MaximumAngularMomentum, MendeleviumFingerprint, Mer-
curyFingerprint, MixBeta, MixClass, MixMetric, MixOld, MixWeight, Mode,
MolybdenumFingerprint, NeodymiumFingerprint, NeonFingerprint, Neptuni-
umFingerprint, NickelFingerprint, NiobiumFingerprint, NitrogenFingerprint,
NobeliumFingerprint, NumberOfBandsToConverge, OccupationNumbers, Osmi-
umFingerprint, OxygenFingerprint, PalladiumFingerprint, PhosphorusFinger-
print, PlatinumFingerprint, PlutoniumFingerprint, PoissonStencil, PoloniumFin-
gerprint, PotassiumFingerprint, PotentialEnergy, PraseodymiumFingerprint,

F.1 Extracted Values from Codes 191

Promethium-Fingerprint, ProtactiniumFingerprint, RadiumFingerprint, Radon-
Fingerprint, RheniumFingerprint, RhodiumFingerprint, RubidiumFingerprint,
RutheniumFingerprint, S, SamariumFingerprint, ScandiumFingerprint, Seleni-
umFingerprint, SetupTypes, SiliconFingerprint, SilverFingerprint, SodiumFinger-
print, SoftGauss, StrontiumFingerprint, SulfurFingerprint, Tags, TantalumFin-
gerprint, TechnetiumFingerprint, TelluriumFingerprint, TerbiumFingerprint,
ThalliumFingerprint, ThoriumFingerprint, ThuliumFingerprint, Time, TinFin-
gerprint, TitaniumFingerprint, TungstenFingerprint, UnitCell, UnnilhexiumFin-
gerprint, UnnilpentiumFingerprint, UnnilquadiumFingerprint, UraniumFinger-
print, UseSymmetry, VanadiumFingerprint, XCFunctional, XenonFingerprint,
YtterbiumFingerprint, YttriumFingerprint, ZincFingerprint, ZirconiumFinger-
print, architecture, ase atomic numbers, ase cell, ase center of mass, ase charges,
ase chemical symbols, ase dipole moment, ase dir, ase forces, ase initial mag-
netic moments, ase kinetic energy, ase magnetic moment, ase magnetic mo-
ments, ase masses, ase momenta, ase moments of inertia, ase name, ase num-
ber of atoms, ase pbc, ase positions, ase potential energy, ase reciprocal cell,
ase scaled positions, ase tags, ase temperature, ase total energy, ase version,
ase volume, energyunit, gpaw dir, history, lengthunit, nadm, natoms, nbands,
nbzkpts, nfinegptsx, nfinegptsy, nfinegptsz, ngptsx, ngptsy, ngptsz, nibzkpts,
norbitals, nproj, nspins, pid, pid, units, version

VASP
EDIFF, EDIFFG, EMAX, EMIN, ENAUG, ENMAX, IALGO, IBRION, ICHARG,
ISIF, ISMEAR, ISPIN, ISTART, LORBIT, MAGMOM, NBANDS, NELECT,
NELM, NELMDL, NELMIN, NPAR, NSW, POTIM, PREC, SIGMA, SYSTEM,
VOSKOWN, atomic numbers, atoms, cellf, date, divisions, e 0 energy, e fr -
energy, e wo entrp, elementnames, forces, kscheme, location, mass, platform,
program, pseudo, stress, subversion, types, user, valence, volf, voli

192 Appendix

F.2 PHPUI script to continue analysis in the
PUI

This section presents a script downloaded a CMR web server from the PH-
P/HTML interface. The query in the web-interface was db user=ivca atoms=Cu

ABO3 and the same query is run when the script is.

This data was downloaded from CMR
Link to whole da ta s e t : h t t p ://cmr . f y s i k . dtu . dk / . . .
∗∗
I f you use data from other s don ’ t f o r g e t to c i t e !
∗∗

from cmr . u i import DBReader
from cmr . t o o l s . t y p e c o n v e r t e r s import DateConverterBase

def date conver t (s t r i n g) :
try :

return DateConverterBase . convert (s t r i n g)
except :

return s t r i n g

connection name=” d e f a u l t ”
reader = DBReader (connection name , d b p r e f i x=” ivca ”)

Converting atomic names to atomic numbers
from cmr . s t a t i c import atomic numbers
atom name l i s t =[”Cu”]
atoms = [atomic numbers [atom name] for atom name in atom name l i s t]

add here the columns tha t shou ld be downloaded and shown :
p l ea s e note t ha t you shou ld never use i d r e f − use db hash in s t ead
columns = [” d b c a l c u l a t o r ”]
c o l l e c t i o n = reader . f i n d (k e y w o r d l i s t =[”ABO3”] ,

a t o m l i s t=atoms ,
n a m e o p v a l u e l i s t =[(’ db user ’ , ’= ’ , ’ i v ca ’)] ,
columns=columns)

c o l l e c t i o n . p r i n t t a b l e (columns=columns)

################
Add keywords and f i e l d s to s e l e c t e d items and submit
i t to the database again
################
add keywords and other f i e l d s :
r e s u l t d i c t = c o l l e c t i o n . g e t a s d i c t (columns=[” db hash ”])
h a s h l i s t = r e s u l t d i c t [” db hash ”]
fo r hash in h a s h l i s t :
data = reader . r e t r i e v e (hash)
#add a keyword to a l l
data . ge t (” db keywords ” , []) . append (”my new keyword ”)

F.2 PHPUI script to continue analysis in the PUI 193

#add a use r de f i n ed f i e l d v e r i f i e d
data . s e t u s e r v a r i a b l e (” v e r i f i e d ” , True)
#wr i t e i t to the database
data . wr i t e (” . db ”)

################
CREATE a group with s e l e c ed item
################
r e s u l t d i c t = c o l l e c t i o n . g e t a s d i c t (columns=[” db hash ”])
h a s h l i s t = r e s u l t d i c t [” db hash ”]
c o l l e c t i o n . c rea te group (cmr params={”db keywords ” : [” new group ”]})

################
DELETE s e l e c t e d data from database
################
import cmr
r e s u l t d i c t = c o l l e c t i o n . g e t a s d i c t (columns=[” db hash ”])
h a s h l i s t = r e s u l t d i c t [” db hash ”]
cmr . d e l e t e (h a s h l i s t)

194 Appendix

F.3 Deployment Examples and Dependencies

Depending on the available resources and the size of the project, CMR can be
installed differently. Three examples are going to be presented.

In order to create db-files, often the original calculator and all its dependencies
must be installed as well. Currently this applies to Dacapo, GPAW and ASE
trajectory files.

Here is a list with the explanation what the comonents are for. More information
on how to install these components can be found in the CMR wiki https:

//wiki.fysik.dtu.dk/cmr in the Server Setup section.

• Python 2.4.3 or newer
The Python interpreter is needed because CMR is implemented in Python
• (python-simplejson extension - included in Python 2.6 and newer)

When db-files are uploaded to the database also a representation in json is
created that is retrieved upon querying and needs to be parsed - which is
slower if Python-simplejson is not installed

• CMR
CMR can be installed from the repository or from the RPMS created by
Marcin Dulak. More information can be found in the CMR wiki.

• CMR database upload scripts, available from the CMR wiki
Scripts that check the db-file repository for new files, perform the validation
and the upload to the database

• MySQL 5.0.77
The MySQL database - for user systems the MySQL client is enough, for
server the MySQL server needs to be installed.

• MySQL-python or PyMySQLPyMySQL[101]
Python cannot natively connect to the MySQL database and needs one of
the above extensions to do so.

• Apache server (httpd)
The webserver.
• PHP

Needed to create the web-pages.
• PHP json extension

Needed to parse the json representation.
• cron

If the data should be automatically uploaded to the database a cron job
executes the upload script in a certain interval.

• xmllint
Xmllint is used to perform the XML validation. CMR can also validate
db-files without it, but this is not automatically supported, therefore it is

https://wiki.fysik.dtu.dk/cmr
https://wiki.fysik.dtu.dk/cmr

F.3 Deployment Examples and Dependencies 195

required when uploading data to the database

F.3.1 Minimal

A minimal environment can handle up to a couple of thousand calculations.
The limiting factor is the time it takes to read the db-files or the db-file cache
from the repository to memory and may vary from machine to machine. The
simplejson extension is optional but strongly recommended to install .

• Python 2.4.3 or newer
• (python-simplejson - included in Python 2.6 and newer)
• CMR
• (xmllint - if files should be XML-validated)

F.3.2 Medium

A medium size environment can handle many calculations as long as the query
is performed by the database; the bottleneck is the download of the db-files
from the MySQL database. Because of the redundancy in the MySQL database
of the uploaded data there is considerable amount of extra disk space needed -
approximately a factor five of the disk size of the db-files.

• Python 2.4.3 or newer
• (python-simplejson - included in Python 2.6 and newer)
• CMR
• CMR database upload scripts, available from the CMR wiki
• MySQL 5.0.77
• MySQL-python or PyMySQLPyMySQL[101]
• (cron - if data should be automatically uploaded to the MySQL database)
• xmllint

F.3.3 Institute or high quality database

The deployment for an institute or for the high quality database is the same.

• Python 2.4.3 or newer
• (python-simplejson extension - included in Python 2.6 and newer)
• CMR

196 Appendix

• CMR database upload scripts, available from the CMR wiki
• MySQL 5.0.77
• MySQL-python or PyMySQL
• Apache server (httpd)
• PHP
• PHP json extension
• cron

F.4 GA minimization script template 197

F.4 GA minimization script template

The example in section 4.2.5 shows a partial script template used in the GA
to minimize a function. The script template is used to create a scripts for
every allele that is then updated with the fitness upon termination. Listing F.1
shows the full script template for the discussed example. The special tags
#<XXX_START> and #<XXX_END> are used to mark sections of the script. All
content between #<FILL_START> and #<FILL_END> is for example replaced with
actual information about the allele in our case with the coordinate, the parents,
the creator, the hashes, where to write the result to et cetera. The information
that is shown in the template is actually real data. It is accessed by the
run method (within #<RUN_START> and #<RUN_END>) and must be customized
by the user. run determines the fitness, and writes a db-file with the result
(write spreadsheet). This result db-file is added as a member to the allele
(add to group), so that it is possible to trace where the data came from. If
the calculation of the fitness had been a GPAW calculation, we would have
used write gpaw result instead of write spreadsheet. Finally the functions
get info print info get and print information about the state of the allele.
This can be used for debugging or checking the status without actually running
the GA.

import os
import sys
import cmr
from cmr . base . conve r t e r import Converter
import random

#<FILL START>
ALL CONTENT HERE WILL AUTOMATICALLY BE REPLACED
EVERYTHING IN parameters IS ALSO WRITTEN TO THE
OUTPUT AND THE GROUP FILES !
parameters = {}
parameters [’ d b s c r i p t s ’] = [’ 8 .55741 e02 8 .48785 e02 . py ’]
parameters [’ p a r e n t s o i d s ’] = [2 9]
parameters [’ parents names ’] = [’ 9 .50768 e02 7 .82576 e02 ’]
parameters [’ g ene ra t i on ’] = 5
parameters [’ g r o u p d b f i l e ’] = ’ 8 .55741 e02 8 .48785 e02 group . db ’
parameters [’ o id ’] = 39
parameters [’ db ’] = Fal se
parameters [’ coord ’] = [−855.74062349082124 , 848 .78462159332571]
parameters [’ b e f o r e hash ’] = ’ . . . ’
parameters [’ ga hash ’] = ’ . . . ’
parameters [’ ga name ’] = ’ . . . ’
parameters [’ parents ’] = [’ . . . ’]
parameters [’ c a l c d b f i l e ’] = ’ 8 .55741 e02 8 .48785 e 0 2 c a l c . db ’
parameters [’ c r e a t o r ’] = ’ v e c t o r s . MutationX (−2.00 e+02, 2 .00 e+02) ’
parameters [’ a f t e r h a s h ’] = ’ . . . ’ ’
#<FILL END>

198 Appendix

de f add to group (cmr params) :
””” adds a r e f e r e n c e to the group to the g iven c a l c u l a t i o n

and update the f i t n e s s va lue .
”””
group = cmr . read (parameters [” g r o u p d b f i l e ”])
data = cmr . read (parameters [” c a l c d b f i l e ”])
group . add (data . get hash ())
p = cmr params . copy ()
p [” output ”] = parameters [” g r o u p d b f i l e ”]
p [” s t a t e ”] = ” s u c c e s s f u l ”
group . wr i t e (p) # wr i t e t h i s group f i l e

de f w r i t e g p a w r e s u l t (ca l c , cmr params) :
i f parameters . has key (” gpaw output ”) :

c a l c . wr i t e (parameters [” gpaw output ”])
c a l c . wr i t e (parameters [” c a l c d b f i l e ”] , cmr params=cmr params)
add to group (cmr params)

de f w r i t e s p r e a d s h e e t (cmr params) :
from cmr . s t a t i c import CALCULATOR SPREADSHEET
data = Converter . g e t x m l w r i t e r (CALCULATOR SPREADSHEET)
f o r key , va lue in cmr params . i tems () :

data . s e t u s e r v a r i a b l e (key , va lue)
data . wr i t e (parameters [” c a l c d b f i l e ”] , db=parameters [” db ”])
add to group (cmr params)

#<RUN START>
de f run () :

from ga examples . f e e x t c a l c . f u n c t i o n s import func t i on1

i f random . rand int (0 , 10) == 1 :
r a i s e Exception (”Random f a i l u r e ”)

r e s u l t = func t i on1 (parameters [” coord ”] [0] , parameters [” coord ”] [1])

cmr params = d i c t (parameters . i tems ())
cmr params [” f i t n e s s ”] = r e s u l t
#add more r e s u l t s here , i f d e s i r e d :
#cmr params [” . . . ”] = . . .

w r i t e s p r e a d s h e e t (cmr params)
#<RUN END>

de f g e t i n f o () :
””” r e tu rn s the in fo rmat ion about t h i s a l l e l e ”””
i n f o = {}
f o r k , v in parameters . i tems () :

i n f o [k] = v
#check , i f s c r i p t has f i n i s h e d
i f not os . path . e x i s t s (parameters [” c a l c d b f i l e ”]) :

(f i l e b a s e , ext) = os . path . s p l i t e x t (f i l e)
e r r f i l e = f i l e b a s e + ” . e r r ”
queued = f i l e b a s e + ” . py . queued”

F.4 GA minimization script template 199

i f os . path . e x i s t s (e r r f i l e) :
i f os . s t a t (e r r f i l e) . s t s i z e > 0 :

i n f o [” s t a t e ”] = ” execut ion f a i l e d ”
e l s e :

i n f o [” s t a t e ”] = ” running ”
e l i f os . path . e x i s t s (queued) :

i n f o [” s t a t e ”] = ”queued”
e l s e :

i n f o [” s t a t e ”] = ” not queued”
e l s e :

i n f o [” s t a t e ”] = ”done”
re turn i n f o

de f p r i n t i n f o () :
””” p r i n t s a l l s t a t i c in fo rmat ion about t h i s s c r i p t
a lgor i thm as a python d i c t i o n a r y
”””
p r in t g e t i n f o () . r e p r ()

i f name == ” main ” :
i f l en (sys . argv) > 1 and sys . argv [1] == ”− i n f o ” :

p r i n t i n f o ()
e l i f l en (sys . argv) > 1 :

p r i n t ”Unknown arguments ” , sys . argv [1 :]
e l s e :

run ()

Listing F.1: script template.py

200 Appendix

F.5 Inside a db-file

A minimal db-file is a compressed tar.bz2 container containing a file named
”info.xml”. ”info.xml” contains the data of either a calculation or the definition
for a group of calculations. Figure F.1 shows an example of XML code to
demonstrate how the data is stored in ”info.xml”:

. . .
<c a l c u l a t o r >

<TotalEnergy><double >−586.442477162</ double>
</TotalEnergy>
<AtomicNumbers>
<l ong a r ray l ength=”2”>
<long>6</long>
<long>8</long>

</long array>
</AtomicNumbers>

. . .
</c a l c u l a t o r >
. . .

Figure F.1: XML extract from a GPAW calculation as it is stored within ”info.xml”
in a db-file. The content is as follows: TotalEnergy = −586.442477162 and
AtomicNumbers = [6, 8]. ”double”, ”long array” and ”long” are the names of the
internal type.

The XML-file is divided into seven paragraphs as illustrated in F.5:

• static: data that is present in every db-file like the date and the user name

• extras: information that describe the calculation like keywords and a
description

• calculator: all data from the original calculator output that was selected
to go into the db-file

• user: custom data that the user can chosen freely

• ASE: data from retrieved from the ASE interface; only available, if ASE
is used with this file format; this will contain some duplicate data that is
already present in the calculator paragraph - but the units will be eV and
the coordinate absolute and not relative.

• history: when db-files are modified and the hash value changes the
previous hash value should be kept as a backup; in the future there might
be ability to search also for older hash values

F.5 Inside a db-file 201

• runtime: information about how the calculation was run. Currently none
of the converter collects this information automatically

Figure F.2: Detailed content of a db-file. The shown variable names are of descriptive
nature to show what goes where. The ASE data seems to be duplicate - but it actually
presents the data in a way that the users are used to see it in terms of units and
absolute coordiantes.

202 Appendix

Bibliography

[1] Alec Belsky, Mariette Hellenbrandt, Vicky Lynn Karen, and Peter Luksch.
New developments in the Inorganic Crystal Structure Database (ICSD):
accessibility in support of materials research and design. Acta Crystallogr.,
Sect. B, 58(3 Part 1):364–369, Jun 2002.

[2] Inorganic Crystal Structure Database (ICSD). http://www.

fiz-karlsruhe.de, 2012-01-31.

[3] AflowLib: Ab-initio Electronic Structure Library. http://www.aflowlib.
org/, 2012-01-31.

[4] National Center for Biotechnical Information (NCBI). http://www.ncbi.
nlm.nih.gov/, 2012-01-31.

[5] T Hubbard, D Barker, E Birney, G Cameron, Y Chen, L Clark, T Cox,
J Cuff, V Curwen, T Down, R Durbin, E Eyras, J Gilbert, M Hammond,
L Huminiecki, A Kasprzyk, H Lehvaslaiho, P Lijnzaad, C Melsopp, E Mon-
gin, R Pettett, M Pocock, S Potter, A Rust, E Schmidt, S Searle, G Slater,
J Smith, W Spooner, A Stabenau, J Stalker, E Stupka, A Ureta-Vidal,
I Vastrik, and M Clamp. The Ensembl genome database project. Nucleic
Acids Res. , 30(1):38–41, JAN 1 2002.

[6] Protein Data Bank (PDB). http://www.pdb.org/, 2012-01-31.

[7] Human Genome Project. http://www.ornl.gov/sci/techresources/

Human_Genome/home.shtml, , 2012-01-31.

[8] CAMd Database. http://www.camd.dtu.dk/Forskning/Databases.

aspx, 2012-01-31.

http://www.fiz-karlsruhe.de
http://www.fiz-karlsruhe.de
http://www.aflowlib.org/
http://www.aflowlib.org/
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://www.pdb.org/
http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml
http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml
http://www.camd.dtu.dk/Forskning/Databases.aspx
http://www.camd.dtu.dk/Forskning/Databases.aspx

204 BIBLIOGRAPHY

[9] Gary Yuan and François Gygi. ESTEST: a framework for the validation
and verification of electronic structure codes. Comput. Sci. Discovery,
3(1):015004, 2010.

[10] Anubhav Jain, Geoffroy Hautier, Charles J. Moore, Shyue Ping Ong,
Christopher C. Fischer, Tim Mueller, Kristin A. Persson, and Gerbrand
Ceder. A high-throughput infrastructure for density functional theory
calculations. Comp. Mater. Sci, 50(8):2295 – 2310, 2011.

[11] MaterialsGenome. http://www.materialsgenome.org/, 2012-01-31.

[12] Quixote. http://quixote.wikispot.org/, 2012-01-31.

[13] Sam Adams, Pablo de Castro, Pablo Echenique, Jorge Estrada, Mar-
cus Hanwell, Peter Murray-Rust, Paul Sherwood, Jens Thomas, and Joe
Townsend. The Quixote project: Collaborative and Open Quantum Chem-
istry data management in the Internet age. Journal of Cheminformatics,
3(1):38, 2011.

[14] Quantum Materials Informatics Project. http://www.qmip.org/.

[15] S. R. Bahn and K. W. Jacobsen. An object-oriented scripting interface
to a legacy electronic structure code. Comput. Sci. Eng., 4(3):56–66, may
2002.

[16] Python. http://python.org/, 2012-01-31.

[17] Comma-separated values. http://en.wikipedia.org/wiki/

Comma-separated_values, 2012-01-31.

[18] F.P. Miller, A.F. Vandome, and J. McBrewster. JSON: Computer, Human-
readable Medium, Data Structure, Associative Array, Douglas Crockford,
Internet Media Type, Serialization, Ajax (programming), XML, JavaScript,
Ecma International. VDM Publishing House Ltd., 2009.

[19] XYZ file format. http://openbabel.sourceforge.net/wiki/XYZ, 2012-
01-31.

[20] B. Hammer, L. B. Hansen, and J. K. Nørskov. Improved adsorption
energetics within density-functional theory using revised Perdew-Burke-
Ernzerhof functionals. Phys. Rev. B, 59(11):7413–7421, Mar 1999.

[21] J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen. Real-space grid
implementation of the projector augmented wave method. Phys. Rev. B,
71:035109, Jan 2005.

[22] G. Kresse and J. Furthmüller. Efficiency of ab-initio total energy calcula-
tions for metals and semiconductors using a plane-wave basis set. Comp.
Mater. Sci, 6(1):15 – 50, 1996.

http://www.materialsgenome.org/
http://quixote.wikispot.org/
http://www.qmip.org/
http://python.org/
http://en.wikipedia.org/wiki/Comma-separated_values
http://en.wikipedia.org/wiki/Comma-separated_values
http://openbabel.sourceforge.net/wiki/XYZ

BIBLIOGRAPHY 205

[23] R.M. Martin. Electronic structure: basic theory and practical methods.
Cambridge University Press, 2004.

[24] Atomic Simulation Environment (ASE). https://wiki.fysik.dtu.dk/

ase/, 2012-01-31.

[25] A.T. Holdener. Ajax: the definitive guide. Definitive Guide Series. O’Reilly,
2008.

[26] C. Snyder, T. Myer, and M. Southwell. Pro PHP Security: From Applica-
tion Security Principles to the Implementation of XSS Defenses. Apress
Series. Apress, 2010.

[27] M. Nystrom. SQL Injection Defenses. O’Reilly shortcuts. O’Reilly, 2007.

[28] Peter Pin shan Chen. The Entity-Relationship Model: Toward a Unified
View of Data. ACM T. Database Syst., 1:9–36, 1976.

[29] MySQL 5.0 Reference Manual. 01 2012.

[30] Nick Jennings and Michael Wooldridge. Software Agents. In IEE Review,
pages 17–20, 1996.

[31] Cost of Hard Drive Storage Space. http://ns1758.ca/winch/winchest.
html, 2012-01-31.

[32] XML Technology. http://www.w3.org/standards/xml/, 2012-01-31.

[33] Extensible Markup Language (XML) 1.1 (Second Edition). http://www.
w3.org/TR/2006/REC-xml11-20060816/, 2012-01-31.

[34] Tar. http://www.gnu.org/software/tar/, 2012-01-31.

[35] bzip2. http://bzip.org/, 2012-01-31.

[36] Xavier Gonze, C.-O. Almbladh, A. Cucca, D. Caliste, C. Freysoldt, M. A. L.
Marques, V. Olevano, Yann Pouillon, and M. J. Verstraete. Specification
of an extensible and portable file format for electronic structure and
crystallographic data. CoRR, abs/0805.0192, 2008.

[37] R. Rew and G. Davis. NetCDF: an interface for scientific data access.
IEEE Comput. Graphics Appl., 10(4):76–82, jul 1990.

[38] NetCDF. http://www.unidata.ucar.edu/software/netcdf/, 2012-01-
31.

[39] M.R. Overly, Pike, and Inc Fischer. The open source handbook. Pike &
Fischer, 2003.

https://wiki.fysik.dtu.dk/ase/
https://wiki.fysik.dtu.dk/ase/
http://ns1758.ca/winch/winchest.html
http://ns1758.ca/winch/winchest.html
http://www.w3.org/standards/xml/
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.gnu.org/software/tar/
http://bzip.org/
http://www.unidata.ucar.edu/software/netcdf/

206 BIBLIOGRAPHY

[40] A. Tveito, H.P. Langtangen, B.F. Nielsen, and X. Cai. Elements of
Scientific Computing. Texts in Computational Science and Engineering.
Springer, 2010.

[41] Mathieu Fourment and Michael Gillings. A comparison of common pro-
gramming languages used in bioinformatics. BMC Bioinf., 9(1):82, 2008.

[42] H. Schildt. Java The Complete Reference, 8th Edition. The Complete
Reference. McGraw-Hill Companies,Inc., 2011.

[43] M. Gregoire, N.A. Solter, and S.J. Kleper. Professional C++. John Wiley
& Sons, 2011.

[44] Fernando Perez, Brian E. Granger, and John D. Hunter. Python: An
Ecosystem for Scientific Computing. Comput. Sci. Eng., 13:13–21, 2011.

[45] E. F. Codd. A relational model of data for large shared data banks.
Commun. ACM, 13:377–387, June 1970.

[46] S. Tiwari. Professional NoSQL. John Wiley & Sons, 2011.

[47] S.W. Dietrich and S.D. Urban. Fundamentals of Object Databases: Object-
Oriented and Object-Relational Design. Synthesis Lectures on Data Man-
agement. Morgan & Claypool, 2011.

[48] Rick Cattell. Scalable SQL and NoSQL data stores. SIGMOD Rec.,
39:12–27, May 2011.

[49] M. Doyle. Beginning PHP 5.3. John Wiley & Sons, 2011.

[50] J. Gerner, E. Naramore, M. Owens, and M. Warden. Professional LAMP:
Linux, Apache, MySQL and PHP5 Web Development. John Wiley & Sons,
2006.

[51] T. Butzon. PHP by example. By Example. Que Pub., 2002.

[52] Web Server Survey. http://news.netcraft.com/survey/, 2012-01-31.

[53] T. Tomlinson and J. VanDyk. Pro Drupal 7 Development, Third Edition.
Apress Series. Apress, 2010.

[54] The Apache Software Foundation. Apache HTTP Server 2.2 Official
Documentation - Volume III. Modules (A-H). Fultus Corporation, 2010.

[55] Helen M. Berman, John D. Westbrook, Zukang Feng, Gary Gilliland, T. N.
Bhat, Helge Weissig, Ilya N. Shindyalov, and Philip E. Bourne. The Protein
Data Bank. Nucleic Acids Res., 28(1):235–242, 2000.

[56] NCBI. http://www.ncbi.nlm.nih.gov/, 2012-01-31.

http://news.netcraft.com/survey/
http://www.ncbi.nlm.nih.gov/

BIBLIOGRAPHY 207

[57] Akihiko Kudo and Yugo Miseki. Heterogeneous photocatalyst materials
for water splitting. Chem. Soc. Rev., 38:253–278, 2009.

[58] Xiaobo Chen, Shaohua Shen, Liejin Guo, and Samuel S. Mao.
Semiconductor-based Photocatalytic Hydrogen Generation. Chem. Rev.,
110(11):6503–6570, 2010.

[59] Oleg Gritsenko, Robert van Leeuwen, Erik van Lenthe, and Evert Jan
Baerends. Self-consistent approximation to the Kohn-Sham exchange
potential. Phys. Rev. A, 51:1944–1954, Mar 1995.

[60] M. Kuisma, J. Ojanen, J. Enkovaara, and T. T. Rantala. Kohn-Sham po-
tential with discontinuity for band gap materials. Phys. Rev. B, 82:115106,
Sep 2010.

[61] Hiroshi Mizoguchi, Hank W Eng, and Patrick M Woodward. Probing the
electronic structures of ternary perovskite and pyrochlore oxides containing
Sn(4+) or Sb(5+). Inorg. Chem., 43(5):1667–1680, March 2004.

[62] Hideki Kato, Hisayoshi Kobayashi, and Akihiko Kudo. Role of Ag+ in the
Band Structures and Photocatalytic Properties of AgMO3 (M: Ta and Nb)
with the Perovskite Structure. J. Phys. Chem. B, 106(48):12441–12447,
2002.

[63] D Yamasita, T Takata, M Hara, JN Kondo, and Kazunari Domen. Recent
progress of visible-light-driven heterogeneous photocatalysts for overall
water splitting. Solid State Ionics, 172:591–595, 2004.

[64] Huashun Zhang, Yaogang Li, Qinghong Zhang, and Hongzhi Wang. Prepa-
ration of high surface area LaTiO2N photocatalyst. Mater. Lett., (17-
18):2729–2732, June 2008.

[65] pulp-or. http://code.google.com/p/pulp-or/, 2012-01-31.

[66] John H. Holland. Adaptation in natural and artificial systems. MIT Press,
Cambridge, MA, USA, 1992.

[67] Web of Knowledge. http://wokinfo.com/, 2012-01-31.

[68] Yehuda Zeiri. Prediction of the lowest energy structure of clusters using a
genetic algorithm. Phys. Rev. E, 51:R2769–R2772, Apr 1995.

[69] D. M. Deaven and K. M. Ho. Molecular Geometry Optimization with a
Genetic Algorithm. Phys. Rev. Lett., 75(2):288–291, Jul 1995.

[70] G. H. Jóhannesson, T. Bligaard, A. V. Ruban, H. L. Skriver, K. W. Jacob-
sen, and J. K. Nørskov. Combined Electronic Structure and Evolutionary
Search Approach to Materials Design. Phys. Rev. Lett., 88:255506, Jun
2002.

http://code.google.com/p/pulp-or/
http://wokinfo.com/

208 BIBLIOGRAPHY

[71] D.G. Mayer. Evolutionary algorithms and agricultural systems. The Kluwer
international series in engineering and computer science. Kluwer Academic
Publishers, 2002.

[72] JM Pena, V Robles, P Larranaga, V Herves, F Rosales, and MS Perez.
GA-EDA: Hybrid evolutionary algorithm using genetic and estimation of
distribution algorithms. In Orchard, B and Yang, C and Ali, M, editor,
Innovations in applied Artificial Intelligence, volume 3029 of Lecture notes
in computer science, pages 361–371, 2004.

[73] Michel Gendreau and Jean-Yves Potvin. Handbook of Metaheuristics.
Springer; 2nd ed. edition (September 30, 2010), 2010.

[74] M. Fowler. UML distilled: a brief guide to the standard object modeling
language. Addison-Wesley object technology series. Addison-Wesley, 2004.

[75] E. Gamma. Design patterns: elements of reusable object-oriented software.
Addison-Wesley professional computing series. Addison-Wesley, 1995.

[76] A. M. Molenbroek, S. Haukka, and B. S. Clausen. Alloying in Cu/Pd
Nanoparticle Catalysts. J. Phys. Chem. B, 102(52):10680–10689, 1998.

[77] Min-Hua Shao, Kotaro Sasaki, and Radoslav R. Adzic. PdFe Nanopar-
ticles as Electrocatalysts for Oxygen Reduction. J. Amer. Chem. Soc.,
128(11):3526–3527, 2006. PMID: 16536519.

[78] Asbjorn Klerke, Claus Hviid Christensen, Jens K. Norskov, and Tejs Vegge.
Ammonia for hydrogen storage: challenges and opportunities. J. Mater.
Chem., 18:2304–2310, 2008.

[79] Egill Skulason, Thomas Bligaard, Sigridur Gudmundsdottir, Felix Studt,
Jan Rossmeisl, Frank Abild-Pedersen, Tejs Vegge, Hannes Jonsson, and
Jens K. Norskov. A theoretical evaluation of possible transition metal
electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys., 14:1235–1245,
2012.

[80] Wonjae Lee and Hak-Young Kim. Genetic algorithm implementation in
Python. In Computer and Information Science, 2005. Fourth Annual ACIS
International Conference on, pages 8 – 11, 2005.

[81] Pyevolve 0.5. http://pypi.python.org/pypi/Pyevolve, 2012-01-31.

[82] Distributed Evolutionary Algorithms in Python (DEAP) 0.6. http://

code.google.com/p/deap/, 2012-01-31.

[83] Shin-ichi Orimo, Yuko Nakamori, Jennifer R. Eliseo, Andreas Züttel, and
Craig M. Jensen. Complex Hydrides for Hydrogen Storage. Chem. Rev.,
107(10):4111–4132, 2007.

http://pypi.python.org/pypi/Pyevolve
http://code.google.com/p/deap/
http://code.google.com/p/deap/

BIBLIOGRAPHY 209

[84] A. Züttel, S. Rentsch, P. Fischer, P. Wenger, P. Sudan, Ph. Mauron,
and Ch. Emmenegger. Hydrogen storage properties of LiBH4. J. Alloys
Compd., 356-357(0):515–520, 2003. Proceedings of the Eighth International
Symposium on Metal-Hydrogen Systems, Fundamentals and Applications
(MH2002).

[85] Zbigniew Lodziana and Tejs Vegge. Structural Stability of Complex Hy-
drides: LiBH4 Revisited. Phys. Rev. Lett., 93:145501, Sep 2004.

[86] Zbigniew Lodziana and Tejs Vegge. Lodziana and Vegge Reply:. Phys.
Rev. Lett., 97:119602, Sep 2006.

[87] Krzysztof Chlopek, Christoph Frommen, Aline Leon, Oleg Zabara, and
Maximilian Fichtner. Synthesis and properties of magnesium tetrahydrob-
orate, Mg(BH4)2. J. Mater. Chem., 17:3496–3503, 2007.

[88] Hans Hagemann, Möıse Longhini, Jakub W. Kaminski, Tomasz A.
Wesolowski, Radovan Černyý, Nicolas Penin, Magnus H. Sørby, Bjørn C.
Hauback, Godwin Severa, and Craig M. Jensen. LiSc(BH4)4: A Novel
Salt of Li+ and Discrete Sc(BH4)4 Complex Anions. J. Phys. Chem. A,
112(33):7551–7555, 2008. PMID: 18665574.

[89] B. Hammer, L. B. Hansen, and J. K. Nørskov. Improved adsorption
energetics within density-functional theory using revised Perdew-Burke-
Ernzerhof functionals. Phys. Rev. B, 59:7413–7421, Mar 1999.

[90] D. F. Shanno. Conditioning of Quasi-Newton Methods for Function Mini-
mization. Mathematics of Computation, 24(111):647–656, July 1970.

[91] J. Voss, J. S. Hummelshøj, Lodziana Z., and T. Vegge. Structural stability
and decomposition of Mg(BH4)2 isomorphs an ab initio free energy study.
Journal of Physics: Condensed Matter, 21(1):012203, 2009.

[92] H. Nöth and P. Fritz. Neue Dibor-Verbindungen. Angew. Chem., 73(11):408–
408, 1961.

[93] H.-W. Li, S. Orimo, Y. Nakamori, K. Miwa, N. Ohba, S. Towata, and
A. Züttel. Materials designing of metal borohydrides: Viewpoints from
thermodynamical stabilities. J. Alloys Compd., 446-447(0):315 – 318, 2007.

[94] ”Hydrogen Storage” presentation by S. Satyapal, 2008 DOE Hydrogen Pro-
gram, Merit Review and Peer Evaluation Meeting, 9 June 2008. http://
www.hydrogen.energy.gov/pdfs/review08/st_0_satyapal.pdf, 2012-
01-31.

[95] Heinrich Nöth, Egon Wiberg, and Ludwig P. Winter. Boranate und
Boranato-metallate. III. Boranatozinkate der Alkalimetalle. Z. Anorg. Allg.
Chem., 386(1):73–86, 1971.

http://www.hydrogen.energy.gov/pdfs/review08/st_0_satyapal.pdf
http://www.hydrogen.energy.gov/pdfs/review08/st_0_satyapal.pdf

210 BIBLIOGRAPHY

[96] Niflheim. https://wiki.fysik.dtu.dk/niflheim/niflheim, 2012-01-
31.

[97] Subversion. http://subversion.tigris.org, 2012-01-31.

[98] Cron. http://en.wikipedia.org/wiki/Cron, 2012-01-31.

[99] matplotlib. http://matplotlib.sourceforge.net, 2012-01-31.

[100] Java. ”http://java.com/, 2012-01-31”,.

[101] PyMySQL. https://github.com/petehunt/PyMySQL/, 2012-01-31.

https://wiki.fysik.dtu.dk/niflheim/niflheim
http://subversion.tigris.org
http://en.wikipedia.org/wiki/Cron
http://matplotlib.sourceforge.net
http://java.com/
https://github.com/petehunt/PyMySQL/

	Abstract
	Resumé
	Preface
	Papers included in the thesis
	Acronyms, Terms and Definitions
	1 Introduction
	2 Introduction and usage of CMR
	2.1 Working with CMR
	2.2 Step by Step
	2.3 PHP/HTML Web Interface
	2.4 Querying and Analysis
	2.5 The Command Line Interface
	2.6 Modifying Data in the Database
	2.7 Groups
	2.8 What is actually stored in a db-file?
	2.9 Advanced Task

	3 Computational Materials Repository
	3.1 Overview
	3.2 CMR Challenges
	3.3 System Components and Processes
	3.4 Tools
	3.5 Outlook
	3.6 Discussion
	3.7 Conclusion

	4 Case Studies
	4.1 Computational Screening of Perovskite Metal Oxides for Optimal Solar Light Capture
	4.2 The Genetic Algorithm with CMR
	4.3 DFT based screening of ternary alkali-transition metal borohydrides - a computational materials design project

	5 Summary and Outlook
	A The Computational Materials Repository
	B Computational Screening of Perovskite Metal Oxides for Optimal Solar Light Capture
	C Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project
	D Virtual Materials Design using Databases of Calculated Materials Properties
	E VMDF
	E.1 Work in Progress?
	E.2 Conclusion

	F Appendix
	F.1 Extracted Values from Codes
	F.2 PHPUI script to continue analysis in the PUI
	F.3 Deployment Examples and Dependencies
	F.4 GA minimization script template
	F.5 Inside a db-file

