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We present a numerical study of the transient acoustophoretic motion of microparticles suspended in

a liquid-filled microchannel and driven by the acoustic forces arising from an imposed standing

ultrasound wave: the acoustic radiation force from the scattering of sound waves on the particles and

the Stokes drag force from the induced acoustic streaming flow. These forces are calculated

numerically in two steps. First, the thermoacoustic equations are solved to first order in the imposed

ultrasound field taking into account the micrometer-thin but crucial thermoviscous boundary layer

near the rigid walls. Second, the products of the resulting first-order fields are used as source terms in

the time-averaged second-order equations, from which the net acoustic forces acting on the particles

are determined. The resulting acoustophoretic particle velocities are quantified for experimentally

relevant parameters using a numerical particle-tracking scheme. The model shows the transition in

the acoustophoretic particle motion from being dominated by streaming-induced drag to being

dominated by radiation forces as a function of particle size, channel geometry, and material

properties.

I Introduction

In the past decade there has been a markedly increasing interest

in applying ultrasound acoustofluidics as a tool for purely

mechanical and label-free manipulation of particle and cell

suspensions in MEMS and biologically oriented lab-on-a-chip

systems. Recent extended reviews of acoustofluidics can be

found in Review of Modern Physics1 and the tutorial series in Lab

on a Chip2 which, among other topics, treats the application of

ultrasound bulk3 and surface4 acoustic waves as well as acoustic

forces on particles from acoustic radiation5 and from streaming-

induced drag.6

When a standing ultrasound wave is established in a

microchannel containing a microparticle suspension, the parti-

cles are subject to two acoustic forces: the acoustic radiation

force from the scattering of sound waves on the particles, and the

Stokes drag force from the induced acoustic streaming flow. The

resulting motion of a given particle is termed acoustophoresis,

migration by sound. Experimental work on acoustophoresis has

mainly dealt with the radiation force, primarily because this

force dominates over the streaming-induced drag force for the

studied aqueous suspensions of polymer particles or biological

cells with diameters larger than 2 mm. Detailed measurements of

the acoustophoretic motion of large 5 mm diameter polystyrene

particles in water7,8 have shown good agreement with the

theoretical predictions9,10 for the radiation force on compressible

particles with a radius a much smaller than the acoustic

wavelength l and neglecting the viscosity of the suspending fluid.

However, as the particle diameter 2a is reduced below 2 mm,

viscous effects are expected to become significant, because this

length corresponds to a few times the viscous penetration depth

or boundary-layer thickness d. Analytical expressions for the

viscous corrections to the radiation force valid in the experi-

mentally relevant limit of long wavelength l, characterized by a

% l and d % l, have been given recently,11 but have not yet been

tested experimentally. In addition to these modifications of the

radiation force, the acoustic streaming flow induced by viscous

stresses in the boundary layers near rigid walls, and depending

critically on the detailed geometry and boundary conditions, also

significantly influences the acoustophoretic particle motion as

the size of the particle or the confining microchannel is

reduced.12,13 The cross-over from radiation-dominated to

streaming-dominated motion has been observed in experi-

ments,14,15 and a scaling analysis of the critical particle diameter

for this cross-over has been provided in the literature16 and will

be restated in Section IV D.

Although acoustic streaming is a well-known phenomenon in

acoustics, it is pointed out in a recent review6 that streaming is

often misunderstood outside the relatively small circles of

acoustics experts due to the many forms in which it may arise

in, e.g., acoustofluidic microsystems. Not only is acoustic

streaming difficult to predict quantitatively due to its sensitivity
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to the detailed geometry and boundary conditions, but part of

the more conceptual difficulties with acoustic streaming in

acoustofluidics may be related to the lack of theoretical analysis

in the experimental relevant limit where the microchannel height

h is equal to one or a few times half the acoustic wavelength l,

i.e. h . l. The classical Rayleigh–Schlichting boundary-layer

theory for acoustic streaming,17–20 see Fig. 1, is valid in the limit

of thin boundary layers in medium-sized channels, d % h % l,

and a later extension13 is valid in the limit of thin boundary

layers in shallow channels, d . h % l. Moreover, in contrast to

rectangular channel cross sections of experimental relevance, the

classical analysis of the parallel-plate channel and recent

numerical studies of it21 do not include the effects of the vertical

side walls. One exception is the special case of gases in shallow,

low-aspect-ratio channels studied by Aktas and Farouk.22

The push within contemporary acoustofluidics for handling

smaller particles like bacteria, viruses, and large biomolecules,

and for doing so with better accuracy, emphasizes the urgency of

performing a numerical analysis of microparticle acoustophor-

esis including acoustic radiation forces, streaming flows, and

boundary layers. Based directly on the governing equations, we

provide such an analysis in this paper for a simple, yet

experimentally relevant microsystem. In Section II we present

the governing thermoacoustic equations to first and second order

in the external ultrasound actuation. In Section III we describe

the model system, the numerical implementation of it, as well as

mesh-convergence analysis. In Section IV this is followed by the

results for first-order fields, time-averaged second-order fields,

and microparticle acoustophoresis as function of particle size

and material properties. We end with a concluding discussion in

Section V.

II Governing equations

The governing perturbation equations for the thermoacoustic

fields are well-known textbook material.23–25 The full acoustic

problem in a fluid, which before the presence of any acoustic

wave is quiescent with constant temperature T0, density r0, and

pressure p0, is described by the four scalar fields pressure p,

temperature T, density r, and entropy s per mass unit as well as

the velocity vector field v. Changes in r and s are given by the

two thermodynamic relations

dr = ck r dp 2 a r dT, (1a)

ds~
Cp

T
dT{

a

r
dp, (1b)

which, besides the specific heat capacity Cp at constant pressure,

also contain the specific heat capacity ratio c, the isentropic

compressibility k, and the isobaric thermal expansion coefficient

a given by

c ~
Cp

CV

, (2a)

k ~
1

r

Lr

Lp

� �
s

, (2b)

a ~{
1

r

Lr

LT

� �
p

: (2c)

Eqn (1) can be used to eliminate r and s, so that we only need to

deal with the acoustic perturbations in temperature T, pressure p,

and velocity v. Taking first and second order (subscript 1 and 2,

respectively) into account, we write the perturbation series

T = T0 + T1 + T2, (3a)

p = p0 + p1 + p2, (3b)

v = v1 + v2. (3c)

We model the external ultrasound actuation through bound-

ary conditions on the first-order velocity v1 while keeping the

temperature constant,

T = T0, on all walls, (4a)

v = 0, on all walls, (4b)

n?v1 = vbc(y,z)e2ivt, added to actuated walls. (4c)

Here n is the outward pointing surface normal vector, and

v is the angular frequency characterizing the harmonic time

dependence.

A First-order equations

To first order in the amplitude of the imposed ultrasound field,

the thermodynamic heat transfer equation for T1, the kinematic

continuity equation expressed in terms of p1, and the dynamic

Navier–Stokes equation for v1, become

LtT1 ~ Dth +2T1 z
aT0

r0Cp

Ltp1, (5a)

Fig. 1 A sketch of the classical Rayleigh-Schlichting streaming pattern

in a liquid-filled gap of height h between two infinite, parallel rigid walls

(black lines). The bulk liquid (light blue) supports a horizontal standing

sinusoidal pressure wave (magenta line) of wavelength l in the horizontal

direction parallel to the walls. In the viscous boundary layers (dark blue)

of sub-micrometer thickness d, large shear stresses appear, which

generate the boundary-layer (Schlichting) streaming rolls (yellow).

These then drive the bulk (Rayleigh) streaming rolls (red). The streaming

pattern is periodic in the horizontal direction with periodicity l/2, and

thus only the top and bottom walls are subject to the no-slip boundary

condition.
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Ltp1 ~
1

ck
aLtT1 {+:v1½ �, (5b)

r0htv1 = 2 +p1 + g+2v1 + bg+(+?v1). (5c)

Here, Dth is the thermal diffusivity, g is the dynamic viscosity,

and b is the viscosity ratio, which has the value 1/3 for simple

liquids.23 A further simplification can be obtained when

assuming that all first-order fields have a harmonic time

dependence e2ivt inherited from the imposed ultrasound field

(eqn (4c)), because then p1 is eliminated by inserting eqn (5b)

with htp1 = 2ivp1 into eqn (5a) and (c). After using the

thermodynamic identity26 T0a2/(r0Cpk) = c 2 1, we arrive at

ivT1 z cDth +2T1 ~
c{1

a
+:v1, (6a)

ivv1 z n+2v1 zn b z i
1

cr0knv

� �
+ +:v1ð Þ~ a

cr0k
+T1, (6b)

where n = g/r0. From eqn (6) arise the thermal and the viscous

penetration depth dth and d, respectively (values for ultrasound

waves at 2 MHz in water at 25 uC),

dth~

ffiffiffiffiffiffiffiffiffiffi
2Dth

v

r
~0:15 mm, and d~

ffiffiffiffiffi
2n

v

r
~0:38 mm: (7)

These are the length scales over which the thermoacoustic fields

change from their bulk values to the boundary conditions of the

rigid walls stated in eqn (4).

B Second-order, time-averaged equations

For water and most other liquids, the thermal effects in the

above first-order equations are minute because of the smallness

of the pre-factor c 2 1 # 1022 and dth/d # 0.3. To simplify the

following treatment, we therefore neglect the coupling in the

second-order equations between the temperature field T2 and

the mechanical variables v2 and p2. Furthermore, the values of g

and b are kept fixed at the ones given at T = T0. The second-

order continuity equation and Navier–Stokes equation are

htr2 = 2r0+?v2 2 +?(r1v1), (8a)

r0htv2 = 2+p2 + g+2v2 + bg+(+?v2)
2 r1htv1 2 r0(v1?+)v1, (8b)

and consequently, thermal effects enter solely through the

temperature-dependent first-order fields r1 and v1.

In a typical experiment on microparticle acoustophoresis, the

microsecond timescale of the ultrasound oscillations is not

resolved. It therefore suffices to treat only the time-averaged

equations. The time average over a full oscillation period,

denoted by the angled brackets S…T, of the second-order

continuity equation and Navier–Stokes equation becomes27

r0+?Sv2T = 2+?Sr1v1T, (9a)

g+2Sv2T + bg+(+?Sv2T) 2 S+p2T
= Sr1htv1T + r0S(v1?+)v1T. (9b)

It is seen that products of first-order fields act as source terms (at

the right-hand sides) for the second-order fields (at the left-hand

sides). We note that for complex-valued fields A(t) and B(t) with

harmonic time-dependence e2ivt, the time average is given by the

real-part rule SA(t)B(t)T~
1

2
Re½A(0)� B(0)�, where the asterisk

represents complex conjugation.

The second-order problem was solved in the case of the

infinite parallel-plate channel by Rayleigh,17,20 see Fig. 1.

Assuming a first-order bulk velocity field with only the

horizontal y-component v1y being non-zero and of the form v1y

= U1cos(2py/l)e2ivt, the resulting y-component Svbnd
2y T of Sv2T

just outside the boundary layers (in our notation at z # ¡[h/2 2

3d]), becomes

Svbnd
2y T~

3

8

U2
1

c0
sin 4p

y

l

� �
, (10)

Relative to the first-order bulk velocity v1y, the second-order

field Svbnd
2y T is phase shifted by p/2, period doubled in space, and

smaller by a factor of U1/c0, where c0 is the speed of sound of the

liquid.

C Time-averaged acoustic forces on a single suspended

microparticle

Once the first- and second-order acoustic fields have been

calculated, it is possible to determine the time-averaged acoustic

forces on a single suspended particle. These are the acoustic

radiation force F rad due to the scattering of acoustic waves on

the particle and the Stokes drag force F drag from the acoustic

streaming.

The time-average acoustic radiation force F rad on a single

small spherical particle of radius a, density rp, and compressi-

bility kp in a viscous fluid is given by11

F rad ~ {pa3 2k0

3
Re f1

�p1
�+p1½ �{ r0Re f2

�v1
�:+v1½ �

� �
, (11)

where k0 = 1/(r0c0
2) is the compressibility of the fluid, and where

the pre-factors f1 and f2 are given by

f1 ~kð Þ~ 1{~k, with ~k ~
kp

k0
, (12a)

f2 ~r,~d
� �

~
2 1{C ~d

� �h i
~r{1ð Þ

2~rz1{3C ~d
� � , with ~r ~

rp

r0

, (12b)

C ~d
� �

~ {
3

2
1zi 1z~d

� �h i
~d, with ~d ~

d

a
, (12c)

For the special case of the horizontal pressure half-wave

resonance, p1 = pasin(qy), with channel width w and wavenumber

q = p/w, the acoustic energy density is Eac~
1

4
k0p2

a~
1

4
r0U2

1 . The

expression for the radiation force then simplifies to
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F rad
1D = 4pW(k̃,r̃,d̃)a3qEacsin(2qy), (13a)

W ~k,~r,~d
� �

~
1

3
f1 ~kð Þz 1

2
Re f2 ~r,~d

� �h i
, (13b)

where W is the so-called acoustic contrast factor.

The time-averaged Stokes drag force F drag on a spherical

particle of radius a moving with velocity u in a fluid having the

streaming velocity Sv2T is given by the usual expression

F drag = 6pga(Sv2T 2 u), (14)

valid for particles sufficiently far from the channel walls.28

III Numerical model

In the following we present the idealized numerical model, and how

we implement and solve the governing equations for this model using

the finite element software COMSOL Multiphysics 4.2a, see ref. 29.

A Model system and computational domain

Given the detailed measurements of the acoustophoretic motion

and the successful comparison with theoretical predictions

presented in ref. 7 and 8, it is natural to use an idealization of

their straight microchannel of length 35 mm and rectangular cross

section as a model system in our numerical study. We neglect the

chip structure and simply represent the silicon–glass chip as hard-

wall boundary conditions. We further neglect any axial dynamics

in the long straight channel, and thus restrict our analysis to the

rectangular cross section V of width w = 0.38 mm and height h =

0.16 mm in the vertical yz-plane, see Fig. 2. Finally, we represent

the ultrasonic piezo transducer by the velocity boundary condition

eqn (4). The particle suspensions are modeled as being mono-

disperse and containing non-interacting, spherical polystyrene

particles with diameters of 0.5, 1.0, 2.0, 3.0, or 5.0 mm, respectively.

The model system has a horizontal half-wave resonance across

the width w given by the frequency f = v/(2p) = c0/(2w), equal to

1.97 MHz for water. To excite this resonance, we let all external

acoustic excitations have a harmonic time dependence of

frequency f = 1.97 MHz. All relevant material parameters are

listed in Table 1 .

B Particle tracing model

In order to study the acoustophoretic motion of N particles

suspended in the microchannel, we apply the COMSOL Particle

Tracing Module, which closely mimics experimental particle

tracing and velocimetry.7,8 This module provides a Lagrangian

description of the motion of the particles, each of which is

treated as a point particle governed by Newton’s law of motion,

and thus involving one ordinary differential equation (ODE) for

each spatial direction. Consequently, in total 2N ODEs are

solved for the particle suspension. The input are the particle

masses mj and all forces Fi(rj) acting on each particle at position

rj. The ODE for the jth particle with velocity vj = drj/dt is

mj

dvj

dt
~
X

i

F i(rj): (15)

Neglecting gravitational effects, the forces acting on a particle in

our model are the radiation force F rad, eqn (11) , and the Stokes

drag force F drag, eqn (14). These forces are calculated

numerically as described in the following sub-section.

C Numerical procedure

We have used the following sequential procedure to solve the

problem numerically in COMSOL:

(i) The first-order acoustic fields of eqn (5), subject to the

boundary conditions of eqn (4), are calculated using the

predefined Thermoacoustic Physics Interface.

Fig. 2 (a) End-view sketch of the acoustophoresis microchip with a

fluidic channel of width w = 0.38 mm and height h = 0.16 mm used in

experiments.7,8 It consists of a silicon chip (dark gray), a pyrex lid (light

gray), water (blue), and a piezo transducer (black). (b) The corresponding

two-dimensional computational domain V (blue) surrounded by rigid

walls hV (black) implemented in our numerical model.

Table 1 Model parameters. The parameters are given at temperature
T = 25u and taken from the COMSOL Material Library unless explicit
stated otherwise.

Polystyrene

Density30 rps 1050 kg m23

Speed of sound31 (at 20 uC) cps 2350 m s21

Poisson’s ratio32 sps 0.35
Compressibilitya kps 249 TPa21

Water

Density r0 998 kg m23

Speed of sound c0 1495 m s21

Compressibilityb k0 448 TPa21

Viscosity g 0.893 mPa s
Visc. boundary layer, 1.97 MHz d 0.38 mm
Thermal conductivity kth 0.603 W m21 K21

Specific heat capacity Cp 4183 Jkg21K21

Specific heat capacity ratioc c 1.014
Thermal diffusivityd Dth 1.43 6 1027 m2 s21

Thermal expansion coeff.e a 2.97 6 1024 K21

50% glycerol-in-water mixture

Density34 r0 1129 kg m23

Speed of sound35 c0 1725 m s21

Compressibilityb k0 298 TPa21

Viscosity34 g 5.00 mPa s
Visc. boundary layer, 2.27 MHz d 0.79 mm
Thermal cond.36 (at 20 uC) kth 0.416 W m21 K21

Specific heat cap.37 (at 1.7 uC) Cp 3360 J kg21 K21

Specific heat capacity ratioc c 1.043
Thermal diffusivityd Dth 1.10 6 1027 m2 s21

Thermal expansion coeff.e a 4.03 6 1024 K21

a Calculated as kps~
3(1{sps)

1zsps

1

(rpsc
2
ps)

from ref. 33.

b Calculated as k0 = 1/(r0c0
2) from eqn (2b).

c Calculated from T0a
2/(r0Cpk) = c 2 1.

d Calculated as Dth = kth/(r0Cp).
e Calculated from eqn (2c).
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(ii) The time-averaged second-order flow Sv2T is calculated by

implementing eqn (9) in the Laminar Flow Physics Interface,

modified to include the addition of the time-averaged first-order

products from step (i) on the right-hand sides: the right-hand

side of eqn (9a) is included as a mass source term by adding a

so-called weak contribution to the governing equations,

{
1

2

ð
V

½LxRe(r1v�1x)zLyRe(r1v�1y)�~p2 dV (p̃2 being the pressure test

function), while the right-hand side of eqn (9b) is added

straightforwardly as a body force term. Furthermore, the fourth-

order non-linear term r0(Sv2T?+)Sv2T is kept in the laminar flow

equations in COMSOL to enhance numerical stability.

(iii) The acoustic radiation forces are determined using eqn

(11) with the first-order fields of step (i).

(iv) Finally, the time-dependent motion of the particles is

determined using the COMSOL Particle Tracing Module only

taking into account the radiation force of step (iii) and the drag

force of eqn (14).

The solution strategy was carried out on a computational

mesh large enough for all dependent variables to reach

convergence, while taking special care to properly resolve the

acoustic boundary layer with an adequate computational mesh,

see Section III E. This fine mesh was used when determining the

first-order fields and the time-averaged second-order fields. In

the subsequent simulation of the time-dependent particle motion,

the flow field and radiation forces were interpolated to a coarser

mesh to speed up the transient solving procedure substantially.

D Computer hardware requirements

The computation was performed on a DELL Precision 7500

workstation running Windows 7 (64-bit) equipped with 48 GB

RAM (1333 MHz) and two hexa-core Intel Xeon X5650

processors of clock frequency 2.66 GHz and 12 MB cache.

When calculating the first-order acoustic fields in step (i), we

used the mesh found by the mesh-convergence analysis described

in the following subsection, and this resulted in about 3 6 106

degrees of freedom, a calculation time of 4.5 min, and a peak

RAM usage of 64% or 31 GB. The calculation of the second-

order acoustic fields in step (ii) required around 5 6 105 degrees

of freedom and took 2 min, while having a peak RAM usage of

19% or 9 GB. The computation time for steps (iii) and (iv) was

less than 15 s for calculation of 144 particle trajectories of

100 time steps and solved on a coarser mesh resulting in about

9 6 104 degrees of freedom.

E Mesh convergence

The computational mesh is generated from a maximum element

size length dmesh at the domain boundaries hV and a maximum

element size in the bulk of the domain V given by 10dmesh. For

illustrative purposes, the computational mesh shown in Fig. 3(a)

is a coarse mesh with 1204 elements and dmesh = 20d, or d/dmesh =

0.05, where d is the boundary layer thickness defined in eqn (7).

In order to verify the correctness of the solution, a mesh-

convergence analysis is required. The solutions are compared for

decreasing mesh element size dmesh to determine the point at

which the solution becomes independent of any further decrease

of dmesh. We define a relative convergence parameter C(g) for a

solution g with respect to a reference solution gref taken to be the

solution for the smallest value of dmesh,

C(g)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ
(g{gref )

2 dy dzÐ
(gref )

2 dy dz

s
: (16)

For gref we have chosen dmesh = 0.3d or d/dmesh = 3.3, which

resulted in 2.6 6 105 triangular mesh elements.

The exponential convergence of both first- and second-order

fields for dmesh , d shows up as straight lines in the semi-

logarithmic plots of Fig. 3(b). The time-averaged second-order

velocity field Sv2T converges considerably slower than the first-

order fields, as it depends on the gradients of the first-order

fields, and thus demands better resolution. In order to obtain a

relative convergence of the second-order velocity field below

0.002 (dashed line), a maximum element size of dmesh = 0.5d or

d/dmesh = 2.0 is needed at the boundaries. This mesh size, which

results in 1.2 6 105 triangular elements, is used for the results

presented in this paper.

IV Results

The following results are aimed at showing the insensitivity of

the horizontal half-wave resonance to the specific form of the

ultrasound actuation, at characterizing the first- and second-

order acoustic fields, and at investigating the dependence of the

acoustophoretic microparticle motion on system geometry and

material parameters.

Fig. 3 (a) The computational mesh for a maximum element size of dmesh

= 20d at the boundaries, resulting in a coarse mesh with only 1204

triangular elements. (b) Semi-logarithmic plot of the relative convergence

parameter C, eqn (16), for the physical fields as the size of the mesh

elements is decreased. The dashed line indicates a threshold of C = 0.002,

chosen as a trade off between accuracy and computational time. For the

second-order velocity field to get below this convergence threshold, a

maximum element size of dmesh = 0.5d or d/dmesh = 2.0 is needed at the

boundaries of the domain (dash-dotted line).
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A Actuation

The ultrasound actuation is modeled using the velocity boundary

condition in eqn (4c) at the frequency 1.97 MHz to excite the

horizontal half-wave resonance in our model system Fig. 2(b).

Using the following three actuation modes for the velocity

boundary condition vbc in eqn (4c),

vA
bc(¡w/2,z) = ¡vA

bc;0, (17a)

vB
bc y,{h=2ð Þ~ vB

bc,0 sin 2p
y

w

� �
, (17b)

vC
bc y,{h=2ð Þ~ vC

bc,0

1

2
{

y

w

� �
1

2
z

y

w

� �2

, (17c)

we show the expected result that this resonance is indeed excited

regardless of the detailed spatial dependence of vbc as long as the

oscillation frequency equals the resonance frequency.

For all three actuation modes, the amplitude of the velocity

boundary conditions is chosen in such a way that the line integral

of the absolute value |vbc| of the velocity along the perimeter hV
of the domain V is given in terms of the angular frequency v and

a characteristic value d0 of the displacement of an actuated

boundary,

þ
LV

jvX
bcj d‘~2hvd0, X~A,B,C: (18)

In particular, the normalization constant 2h is chosen so that

vA
bc;0= vd0, with d0 = 0.1 nm, a typical value of displacements,38

which results in resonance amplitudes in the range of those

measured in typical experiments.7,39–41

The first-order pressure fields resulting from the three different

actuation modes are shown in Fig. 4. It is seen that all of the

actuation modes excite the horizontal half-wave 1.97-MHz

resonance. Although the velocity boundary conditions have

been normalized, the amplitude of the resonance is different for

each of the three actuation modes, i.e. each actuation mode

couples to the resonance mode with its own strength. In the

studies presented in the rest of this paper, we have used the

velocity boundary condition eqn (17a), shown in Fig. 4(a), due to

its simplicity and strong coupling to the resonance mode.

B First-order fields

We now turn to a study of the first-order fields resulting from the

velocity boundary condition eqn (17a) and Fig. 4(a). In Fig. 5,

color plots of the pressure p1, temperature T1, horizontal velocity

Fig. 4 Three different actuation modes vbc (magenta arrows) of the

water-filled cavity. Color plot of the first-order pressure field p1 resulting

from the actuation, eqn (17). In all cases the actuation frequency is

1.97 MHz, corresponding to the lowest resonance frequency of the cavity,

and it is seen that all three actuation modes excite the horizontal half-wave

resonance. The pressure amplitude of the resonance mode is (a) 0.24 MPa

with side-wall actuation, (b) 0.16 MPa with anti-symmetric bottom-wall

actuation, and (c) 0.06 MPa with non-symmetric bottom-wall actuation.

Fig. 5 Color plots of the amplitudes of the oscillating first-order fields

in the water-filled channel at the horizontal standing half-wave 1.97-MHz

resonance excited by velocity boundary condition eqn (17a): (a)

pressure p1, identical to panel (a) in Fig. 4, (b) temperature T1, (c)

horizontal velocity v1y, and (d) vertical velocity v1z. The horizontal

velocity is much larger than the vertical velocity, arising because of

the interaction of the acoustic resonance with the bottom and top

walls. The sub-micrometer thin viscous boundary cannot be seen on

the 100-mm scale of the plot. The dashed white lines indicate the

domain for the line plots in Fig. 6.
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v1y, and vertical velocity v1z are shown. The amplitudes and

structures of p1, T1, and v1y relate to the acoustic resonance,

while v1z arises due to the viscous interaction of the horizontal

half-wave resonance in the bulk with the bottom and top walls.

Consequently, the magnitude of v1z is insignificant compared to

the magnitude of v1y. The amplitudes of p1 and T1 have the same

spatial structure, shifted horizontally by l/4 with respect to the

spatial structure of v1y.

In Fig. 6 the amplitudes of the first-order fields are plotted

along the dashed white lines at y = w/4 shown in Fig. 5. In

Fig. 6(a) we have plotted the relative pressure change, p1/pz¼0
1 2 1,

with respect to the pressure amplitude at the center (y,z) = (w/4,0).

This relative change is in the order of 1024, implying that p1 is

nearly independent of z. In particular, p1 shows no marked

variation on the length scale of the boundary layer thickness d as

opposed to the velocity v1y and temperature T1 of Fig. 6(b)–(c). To

fulfill the boundary conditions in eqn (4), the latter two decrease

from their bulk values to zero at the wall over a few times dth and

d, respectively, which defines the thicknesses of the thermal and

viscous boundary layers, respectively (dashed lines in Fig. 6).

Further, also v1z increases from zero at the wall, but then it

exhibits a slow linear decrease outside the boundary layer,

Fig. 6(d). T1, v1y, and v1z all overshoot slightly before settling at

their respective bulk values, an effect similar to that observed in

the classical problem of a planar wall executing in-plane

oscillations.20 While T1 and v1y show no variations in the height

of the channel outside the boundary layers, p1 and v1z do so, with

p1 being symmetric (nearly parabolic) and v1z being anti-

symmetric (nearly linear). These variations of p1 and v1z result

from the viscous interaction between the horizontal acoustic

resonance and the bottom and top wall, bounding the acoustic

resonance fields.

Fig. 6 Line plots, along the dashed white lines at y = w/4 shown in

Fig. 5, of the amplitudes of the oscillating first-order fields: (a) relative

pressure change p1/pz¼0
1 2 1, (b) temperature T1, (c) horizontal velocity

v1y, and (d) vertical velocity v1z. The main plots (blue curves) show the

field amplitudes close to the bottom wall, while the insets (red curves)

show the field amplitudes along the entire height of the channel. The

characteristic length scales of the thermal and viscous boundary layers,

dth and d, are indicated by the green and magenta dashed lines,

respectively. T1, v1y, and v1z all show marked variations on the length

scale of the boundary layer, while p1 and v1z only show variations across

the full height of the domain.

Fig. 7 Time-averaged second-order fields in the water-filled channel

excited in the horizontal half-wave 1.97-MHz resonance by the side-wall

actuation shown in Fig. 4(a) and driven by the first-order fields plotted in

Fig. 5. (a) Color plot of the time-averaged second-order pressure Sp2T
with a magnitude approximately 2.5 6 1025 times smaller than the

amplitude of the oscillating first-order pressure p1 in Fig. 5(a). (b) Vector

plot (white arrows) of the time-averaged second-order streaming velocity

Sv2T and color plot of its magnitude Sv2T. Four bulk (Rayleigh)

streaming rolls are clearly seen having the maximum speed near the top

and bottom walls. (c) Zoom-in on the 0.4-mm-thick boundary layer near

the bottom wall exhibiting the two boundary (Schlichting) streaming

rolls that drive the bulk (Rayleigh) streaming rolls.
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C Second-order fields and acoustic streaming

As described by eqn (9) the non-linear interactions of the first-

order fields give rise to time-averaged second-order fields,

resulting in a static pressure field and a steady velocity field as

shown in Fig. 7 . The time-averaged second-order fields exhibit a

spatial oscillation in the horizontal y-direction of wave length

l/2. This is reminiscent of the spatial period doubling for the

classical infinite parallel-plate system of Fig. 1 .

The magnitude of the time-averaged second-order pressure

Sp2T in Fig. 7(a) is approximately 2.5 6 1025 times smaller than

the amplitude of the oscillating first-order pressure in Fig. 5(a).

The time-averaged velocity field Sv2T in Fig. 7(b) contains four

bulk (Rayleigh) streaming rolls. The streaming velocity is

maximum close to the top and bottom wall and has two local

maxima on the horizontal center axis z = 0, where opposite pairs

of bulk rolls meet. The solution in Fig. 7(b) is similar to

Rayleigh’s analytical solution17,20 sketched in Fig. 1, but it

deviates on the following two points: (i) as we consider a

rectangular geometry and not parallel plates, the velocity is

forced to be zero at the side walls, which slightly slows down the

rotational flow of the streaming rolls, and (ii) as we are not in the

limit h % l, the strength of the streaming rolls decreases slightly

before meeting in the center of the channel, which results in a

lower magnitude of the streaming velocity in the horizontal

center plane than predicted by Rayleigh.

Fig. 7(c) shows a zoom-in on the 0.4-mm-thick viscous

boundary layer close to the bottom wall containing two

boundary (Schlicting) streaming rolls. These boundary rolls are

very elongated in the horizontal direction; the z-axis in Fig. 7(c)

is stretched nearly a factor 103 relative to the y-axis. It is

important to mention that the boundary streaming rolls are

generated by the non-linear interactions of the first-order fields

inside the boundary layer, whereas the bulk streaming rolls are

driven by the boundary streaming rolls and not by the non-linear

interaction of the first-order fields in the bulk. The time-averaged

second-order velocity Sv2T is zero at the bottom wall, thus

fulfilling the boundary conditions eqn (4b), while the maximum

of its horizontal component v2y
bnd = 6.42 mm s21 is reached at a

distance of approximately 3d from the wall. The maximum bulk

amplitude U1 = 0.162 m s21 of the horizontal first-order velocity

component, v1y shown in Fig. 5(c), is reached at the channel

center y = 0. From this we calculate the characteristic velocity

ratio Y = c0 vbnd
2y /U1

2 = 0.367, which deviates less than 3% from

the value Y = 3/8 = 0.375 of the parallel-plate model eqn (10).

D Particle tracing simulations

In most experimental microfluidic flow visualization techniques,

tracer particles are employed.42 To mimic this and to ease

comparison with experiment, we have performed particle tracing

simulations using the technique described in Section III B. In all

simulations, we have studied the motion of 144 polystyrene

microparticles suspended in water and distributed evenly at the

initial time t = 0 as shown in Fig. 8(a).

In Fig. 8(b)–(f), the particle trajectories after 10 s of

acoustophoretic motion of the 144 microparticles are shown.

Within each panel, all particles have the same diameter 2a, but

the particle size is progressively enlarged from one panel to the

next: (b) 2a = 0.5 mm, (c) 1 mm, (d) 2 mm, (e) 3 mm, and (f) 5 mm.

For the smallest particles, panels (b) and (c), the drag force from

the acoustic streaming dominates the particle motion, and the

characteristic streaming flow rolls are clearly visualized. For the

larger particles, panels (e) and (f), the acoustic radiation force

dominates the particle motion, and the particle velocity u is nearly

horizontal with the sinusoidal spatial dependence given by uy(y) =

F rad
1D (y)/(6pga) found from eqn (13a). This results in a focusing

motion of the particles towards the vertical pressure nodal plane at

y = 0. Panels (d) and (e) show an intermediate regime where drag

and radiation forces are of the same order of magnitude.

At the nodal plane y = 0 the radiation forces are zero, and

consequently for times t larger than 10 s all particles in panel (f)

that have reached y = 0 end up at (y,z) = (0,¡h/2) due to the

weak but non-zero streaming-induced drag forces.

The cross-over from one acoustophoretic behavior to the

other as a function of particle size, with a critical particle

diameter of 2 mm found in Fig. 8(d), is in agreement with the

following scaling argument:16 If we assume a force balance

between the radiation force and the drag force from acoustic

streaming, Frad = 2Fdrag, keeping a given particle fixed (u = 0),

and if we estimate the magnitude of the streaming velocity to be

given by eqn (10) as Sv2T = YU1
2/c0, where Y is a geometry-

dependent factor of order unity, then eqn (13) and (14) lead to

pa3
cq r0U2

1 W&6pgac Y
U2

1

c0
, (19)

where ac is the critical particle radius. Thus, as found in eqn (16),

the critical particle diameter 2ac becomes

2ac~

ffiffiffiffiffiffiffiffiffiffi
12

Y

W

r
d&2:0 mm: (20)

The value is calculated using Y = 0.375, valid for a planar wall

(eqn (10)), and W = 0.165, obtained for polystyrene particles with

diameters between 0.5 mm and 5 mm in water obtained from eqn

(13b) using the parameter values from Table 1. The relation

eqn (20) for the critical cross-over particle diameter is important

for designing experiments relying on specific acoustophoretic

behaviors as function of particle size. Channel geometry enters

through the factor Y, particle and liquid material parameters

through W, and liquid parameters and frequency through the

boundary layer thickness d.

E Streaming for an increased aspect ratio

As an example of how geometry affects the acoustophoretic

motion of polystyrene microparticles, we study here the

consequences of increasing the aspect ratio of the channel

cross-section from h/w = 0.42 to 2 keeping all other parameters

fixed. As illustrated in Fig. 9(a), the streaming velocity field is

only significant close to the top and bottom of the channel for

the large aspect ratio h/w = 2. This happens because given

enough vertical space, the vertical extension D of the streaming

roll is identical to the horizontal one, which is D = l/4. For the

horizontal half-wave resonance in a channel of aspect ratio h/w =

2 we have l = 2w = h, which implies D = h/4, and we therefore

expect a streaming-free region with a vertical extent of h 2 2(h/4)

= h/2 around the center of the channel, which indeed is seen in

Fig. 9(a).
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As a consequence, the acoustophoretic motion of particles in the

center region is controlled by the radiation force. This is illustrated

in Fig. 9(b), where trajectories of small 1-mm-diameter particles are

shown. For 2h/4 , z , h/4 their motion is similar to the radiation-

force dominated motion of the larger 5-mm-diameter particles

moving in the shallow channel with h/w = 0.42 as shown in Fig. 8(f).

Near the top and bottom walls, the 1 mm diameter particles exhibit

the usual small-particle streaming-induced motion.

Clearly, geometry can be used to obtain more control of the

acoustophoretic motion of suspended particles in microchannels.

F Streaming in a high-viscosity buffer

According to eqn (20), the critical particle diameter for cross-

over between radiation-dominated and streaming-dominated

acoustophoretic motion is proportional to the boundary layer

thickness d~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g=(r0v)

q
. Obviously, viscosity can also be used to

control acoustophoresis. We therefore studied the effects of replacing

water (g = 1 mPa s) with glycerol mixtures, in particular the 50%

glycerol-in-water mixture (g = 5 mPa s), for which the relevant

material parameters are listed in Table 1.

First, to ensure comparable conditions, we wanted to excite

the horizontal half-wave resonance in the glycerol-in-water

system. As the speed of sound of the glycerol mixture is 15%

larger than that of water, we found the resonance frequency to be

f = c0/(2w) = 2.27 MHz. This frequency was used in the velocity

boundary condition eqn (17a) to calculate the results shown in

Fig. 10 for the first-order pressure field, the time-averaged

second-order streaming velocity field, and particle trajectories

for 5-mm-diameter polystyrene particles.

The glycerol-in-water and the water system are actuated with

the same boundary velocity given in eqn (18) , but the difference

in viscosity of the two liquids leads to different acoustic

responses. The amplitude of the induced first-order resonance

pressure is reduced by a factor of 2.6 from 0.243 MPa in the low-

viscosity water of Fig. 5(a) to 0.094 MPa in the high-viscosity

glycerol mixture of Fig. 10(a). Likewise, the induced streaming

velocity Svbnd
2y T near the boundary is reduced by a factor of 15

from 6.42 mm s21 in water, Fig. 7(b), to 0.43 mm s21 in glycerol-

in-water, Fig. 10(b). In contrast, given the validity of Rayleigh’s

streaming theory, the velocity ratio Y = c0Svbnd
2y T/U1

2 should be

independent of viscosity. For the glycerol-in-water mixture it is

0.336 deviating 8% from the value in water, see Section IV C, and

10% from the Rayleigh value 3/8 of eqn (10) . The significant

difference in the numerically determined values of Y for water

and glycerol-in-water points to the inadequacy of the Rayleigh

Fig. 8 (a) The starting positions (dots) of 144 evenly distributed particles at t = 0 s in the computational domain at the onset of the horizontal half-

wave 1.97-MHz resonance shown in Fig. 5 and 7. The following five panels show the trajectories (colored lines) and positions (dots) that the particles

have reached by acoustophoresis at t = 10 s for five different particle diameters: (b) 0.5 mm, (c) 1 mm, (d) 2 mm, (e) 3 mm, and (f) 5 mm. The colors

indicate the instantaneous particle velocity u ranging from 0 mm s21 (dark blue) to 44 mm s21 (dark red). The lengths of the trajectories indicate the

distance covered by the particles in 10 s. Streaming-induced drag dominates the motion of the smallest particles, which consequently are being advected

along the acoustic streaming rolls of Fig. 7(b). In contrast, the acoustic radiation force dominates the motion of the larger particles, which therefore are

forced to the vertical nodal plane at y = 0 of the first-order pressure p1 shown in Fig. 5(a).
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theory in a rectangular channel. This is perhaps not a surprise, as

this theory is derived for an infinite parallel-plate channel.

In Fig. 10(c) is shown that the viscous boundary-layer

thickness in the glycerol-in-water mixture at 2.27 MHz is d =

0.79 mm, a factor 2.1 larger than the value d = 0.38 mm in water

at 1.97 MHz shown in Fig. 7(c). As the two resonance

frequencies only differ by 10%, the change in the boundary-

layer thickness is mainly due to the viscosity ratio,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 mPa s
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 mPa s
p

&2:2.

Finally, from eqn (10) using Y = 3/8 and W = 0.031, we calculated

the critical particle diameter to be 2ac = 9.5 mm for the cross-over

from radiation-dominated to streaming-dominated acoustophore-

tic motion in the glycerol-in-water system. This value explains why

the particle trajectories for the 5-mm-diameter polystyrene particles

in Fig. 10(d) appear to be much more influenced by the acoustic

streaming rolls, compared to the same-sized particles in water,

Fig. 8(f). Instead, Fig. 10(d) resembles more the motion of the

1-mm-diameter particles in water, Fig. 8(c). This resemblance can be

quantified by the ratio a/ac: for 5-mm-diameter particles in the

glycerol-in-water mixture it is 0.52, while for 1-mm-diameter

particles in pure water it is 0.50, only 4% lower. Note that because

of the reduction in streaming velocity by the above-mentioned

factor of 15, we have chosen to follow the particles in the glycerol-

in-water mixture for 150 s and in water only for 10 s.

V Concluding discussion

The finite element method was successfully used to model the

acoustophoretic motion of microparticles inside a microchannel

subject to a transverse horizontal half-wave ultrasound resonance.

The motion is due to the combined effect of Stokes drag from the

time-averaged second-order streaming flow and the acoustic

radiation forces. To achieve this, the first-order acoustic field of a

standing wave was determined inside a microchannel cavity by

solving the linearized compressional Navier–Stokes equation, the

continuity equation, and the heat equation, while resolving the

boundary layers near rigid walls. The first-order field was then

used to determine the streaming flow and the acoustic radiation

forces, and from this the time-dependent trajectories of an

ensemble of non-interacting microparticles was calculated.

A main result is the characterization of the cross over from

streaming-dominated to radiation-dominated acoustophoretic

microparticle motion as a function of particle diameter,

geometry, and viscosity. Using a water-filled shallow micro-

channel as the base example, we demonstrated how to get rid of

streaming effects in the center region of a microchannel by

Fig. 9 Acoustophoresis in a high-aspect-ratio channel. The setup is

identical to Fig. 4(a) except that for the fixed width w = 0.38 mm the

channel height h has been increased from 0.16 mm (aspect ratio h/w =

0.42) to 0.76 mm (aspect ratio h/w = 2). (a) Vector plot (white arrows),

similar to Fig. 7(b), of the time-averaged second-order streaming velocity

Sv2T and color plot [from 0 mm s21 (dark blue) to 4.2 mm s21 (dark red)]

of its magnitude. (b) Particle tracing plot for 1-mm-diameter polystyrene

particles corresponding to Fig. 8(c) but for time t = 100 s, aspect ratio

h/w = 2, and velocity ranging from 0 mm s21 (dark blue) to 3.3 mm s21

(dark red). In this high aspect-ratio geometry the acoustic streaming flow

rolls are located near the top and bottom walls leaving the center region

nearly streaming free. Fig. 10 Acoustophoresis in a 50% glycerol-in-water mixture. The setup

is identical to Fig. 4(a) except that the resonance frequency is increased to

f = c0/(2w) = 2.27 MHz. (a) Color plot of the pressure p1 showing the

horizontal half-wave resonance. (b) Vector plot (white arrows) of the

time-averaged second-order streaming velocity Sv2T and color plot of its

magnitude corresponding to Fig. 7(b). (c) Zoom-in on the 0.4-mm-thick

boundary layer near the bottom wall corresponding to Fig. 7(c). (d)

Particle tracing plot for 5-mm-diameter polystyrene particles correspond-

ing to Fig. 8(f) but for 150 s. Contrary to the water-filled channel in

Fig. 8(f), the motion of the 5-mm-particles in the more viscous glycerol-in-

water mixture are dominated by the streaming-induced drag, whereby the

particle trajectories end up looking more like those of the smaller 1-mm-

diameter particles Fig. 8(c).
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increasing the height-to-width ratio. In contrast, by replacing

water by a 50% glycerol-in-water mixture, we demonstrated how

to enhance the streaming effects. The former study may form a

good starting point for designing streaming-free devices for

handling of sub-micrometer particles, such as small cells,

bacteria, and viruses, and thus supporting concurrent experi-

mental efforts to suppress streaming, e.g., through averaging

over alternating actuation frequencies.43 The latter study is

pointing in the direction of developing devices with improved

mixing capabilities by enhancing streaming.44,45 We have thus

shown that our simulation tool has a great potential for enabling

improved design of acoustofluidic devices.

An important next step is to obtain a direct experimental

verification of our numerical simulation. As the relative

uncertainty of measured acoustophoretic particle velocities in

current experimental acoustofluidics is 5% or better,8 it is within

reach to obtain such an experimental verification. A problem is

of course that the streaming fields calculated in this work are in

the vertical plane, which is perpendicular to the usual horizontal

viewing plane, and thus specialized 3-dimensional visualization

techniques are required such as stereoscopic micro particle–

image velocimetry42,46 or astigmatism particle tracking veloci-

metry.47 But even if such 3D-methods are complex to carry out,

it would be worth the effort given the great use of having a well-

verified numerical model of acoustophoretic particle motion.

Given a successful experimental verification, it would clearly be

valuable to extend the numerical model. One obvious step, which

is not conceptually difficult, but which would require significant

computational resources, would be to make a full 3D-model

taking the elastic properties of the chip surrounding the

microchannel into account. The relevance of such an extension

lies in the sensitivity of the acoustic streaming on the boundary

conditions. Only a full acousto-elastic theory would supply

realistic and accurate boundary conditions. Another class of

obvious model extensions deals with the modeling of the particle

suspension. A trivial extension would be to include gravity and

buoyancy, but more importantly and much more difficult would

be the inclusion of particle–particle and particle–wall interactions

that are neglected in the present work. These many-particle effects

include, e.g., the generation of streaming flow in the boundary

layer of each particle48 and not just the boundary layer of the wall.

After such an extension, our model could be used together with

high-precision experiments as a new and better research tool to

study and clarify the many yet unsolved problems with particle–

particle and particle–wall interactions in acoustofluidics.

The above-mentioned applications all demonstrate that our

numerical model is both timely and has a huge potential within

device design and studies of basic physical aspects of acoustophoresis.
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