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The scattering properties of randomly structured antireflective black silicon polymer replica have

been investigated. Using a two-step casting process, the structures can be replicated in Ormocomp

on areas of up to 3 in. in diameter. Fourier analysis of scanning electron microscopy images of the

structures shows that the scattering properties of the surfaces are related to the spatial periods of

the nanostructures. Structures with a dominating spatial period of 160 nm, a height of 200 nm, and

aspect ratio of 1.3 show insignificant scattering of light with wavelength above 500 nm and lower

the reflectance by a factor of two. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4754691]

Antireflective nanostructures have the potential to pro-

vide an alternative to expensive coatings for optical compo-

nents. High aspect ratio structures with periods around

200 nm have been shown to greatly reduce Fresnel reflec-

tions for a broad band of wavelengths.1 Such periodic struc-

tures can be fabricated on large areas by laser interference

lithography2 or by anodized aluminium oxide.3 An important

feature of this kind of structure is that below a certain ratio

between period and wavelength, only zeroth order diffraction

will occur at the surface, and no light will be scattered.4,5

Minimizing scattering is crucial when the antireflective ele-

ment is to remain fully transparent and increase the direct

transmission of light. Only recently, the scattering properties

due to imperfections in periodic structures have been

studied.6

Another method for fabricating antireflective surfaces is

by pattern transferral of the nanostructures in black silicon

(BSi) surfaces. BSi structures are randomly positioned, cone-

shaped formations, formed in silicon by a mask-less etching

process.7 However, due to the random nature of these struc-

tures, such surfaces will inherently scatter incoming light.

Several studies have used this type of structures for antire-

flection,8–10 but the scattering properties of the surfaces have

only recently been addressed.11

In this letter, we present a simple method for replicating

BSi structures into Ormocomp, a transparent organic-

inorganic hybrid polymer (Micro resist technology Gmbh,

Berlin), on areas of up to 3 in. in diameter. The silicon mas-

ters were characterized by scanning electron microscopy

(SEM) and dark field microscopy, and the Ormocomp replica

were characterized by SEM and Fourier analysis, and light

transmission measurements. The structures which showed

increased transmission for light with a wavelength down to

500 nm were used to demonstrate the antireflective effect,

which was significant even for structures with aspect ratio as

low as 1.3.

The BSi substrates were structured by reactive ion etch-

ing (Pegasus DRIE, STS). The structures were formed in a

single etching cycle with an O2=SF6 -based etch.7 By vary-

ing the gas-flows and platen power, different types of BSi

surfaces were fabricated, denoted from hereon as types A-F.

After etching the BSi substrates [See Fig. 1(a1)], the sur-

face can be patterned using conventional photolithography

and dry etching to remove the nanostructures from the

defined areas (a2). Using molecular vapor deposition, the

BSi masters were coated with an anti-stiction layer. Ormo-

comp was poured on the master (a3) and a 1.5 mm thick and

4 in. wide polymethylmethacrylate (PMMA) substrate was

placed on top. The thickness of the Ormocomp film was con-

trolled by placing spacers at the periphery, between the mas-

ter and PMMA back plate. The Ormocomp was cured with

UV light in the wavelength range of 260–320 nm, through

the PMMA (a4). The type of PMMA is Plexiglas XT 20070,

which has a limited but sufficient transmittance in the

260–320 nm range. After UV exposure, the flexibility of the

Ormocomp and PMMA allowed for the gradual releasing of

the Ormocomp film from the BSi master, while the Ormo-

comp remained attached to the PMMA (a5). Finally, the

Ormocomp Mother stamp was coated with an anti-stiction

layer.

Samples with structures on a single face were fabricated

by pouring Ormocomp on the Mother stamp and placing a

PMMA backplate on top. The Ormocomp was again cured

with UV light, through the PMMA, as shown in Figs. 1(b1)

and 1(b2). Two identical Ormocomp Mother stamps were

used to fabricate samples with identical antireflective struc-

tures on the front and back face, see Fig. 1(c). A comparison

of the structures on a BSi master and the final Ormocomp

sample is shown in Figs. 1(d1) and 1(d2).

The silicon masters and the final Ormocomp samples

were characterized by SEM top and side view micrographs.

The relative scattering properties of the structures were char-

acterized with a dark field optical microscope (Nikon Eclipse

L200). The microscope was calibrated with a highlya)Electronic mail: anders.kristensen@nanotech.dtu.dk.
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scattering sample (type F, see Fig. 2), and the exposure set-

tings and white balance were fixed for all recorded images.

Thus, the relative scattering properties of the six types of

surfaces can be characterized.

Power spectral densities of each Ormocomp sample

were calculated from the top view SEM images by azimuthal

averaging of the 2D Fourier spectrum of the surface.12 This

allows for identifying the dominating spatial frequency of

the randomly ordered structures.

For the direct transmission measurements, the samples

were illuminated at normal incidence with white light

(Xenon lamp, HPX-2000, Ocean optics), through a fiber and

a collimator. The samples were aligned perpendicular to the

incident light using a goniometer. The light was then col-

lected in a fiber with a collimator and analyzed in a spec-

trometer (Jaz, Ocean Optics). Thus, only non-scattered,

directly transmitted light was collected by the collimator.

Angle resolved scattering (ARS) measurements were

performed using the same setup, by rotating the collecting

fiber around the axis of the illuminated sample. The scattered

transmitted light was collected at an angle (h) from the nor-

mal, in the range 15� to 90�.
Figures 2(a) and 2(b) show SEM images of the BSi mas-

ters as viewed from the side and top, respectively. Fig. 2(c)

shows dark field microscope images of the BSi masters. Fig.

2(d) shows photographs of the fabricated Ormocomp

samples, when illuminated by an intense white light source

(Xenon lamp). The samples were illuminated at normal inci-

dence and photographed from an oblique angle. The results

shown in Figs. 2(c) and 2(d) offer a simple comparison of

the relative scattering properties of the different BSi masters

and the final Ormocomp samples, respectively.

Figure 3(a1) shows the intensity of transmitted, scattered

light, measured at an angle of h ¼ 30�, for the six different

Ormocomp samples. The intensity of the scattered light

varies within two orders of magnitude when comparing the

different samples. The results show that for all samples, the

shorter wavelengths are scattered significantly stronger than

the longer wavelengths. Figs. 3(a2) and 3(a3) show surface

plots of the full ARS measurements of samples C and A,

respectively.

Figure 3(b) shows the power spectral density of a top

view SEM image of a type A Ormocomp sample. The black

lines show a fit to a power function of the first and last parts

of the data. The intersection of the two lines thus marks the

dominating spatial frequency, q, of the surface structures,

and the error bars represent a 95% confidence interval on q,

based on the uncertainties of the parameters of the two fitted

functions. Power spectra for the other Ormocomp samples

were analyzed in a similar manner, and the intersections are

denoted by squares.

Figure 3(c) shows direct transmission measurements of

planar and structured Ormocomp samples. For clarity, sam-

ple F is not shown as the transmission is below 0.5 through-

out the spectrum. Most samples show antireflective

properties at a wavelength of 900 nm, while only sample A

FIG. 1. (a) Process for fabricating Ormocomp Mother stamps. A black sili-

con master is formed by mask-less reactive ion etching. Selected areas can

be removed using conventional photolithography and dry etching. The mas-

ter is anti-stiction coated and Ormocomp is poured onto the master. A

PMMA plate is placed on top, planarizing the Ormocomp film. The Ormo-

comp is cured with UV light and the Mother stamp is released. (b) The final

Ormocomp sample is formed from the Mother stamp similar to steps (a3)

and (a4). (c) Using two identical Mother stamps, a sample can be formed

with identical nanostructures on each face. (d1) Side view SEM of a black

silicon master. (d2) The final Ormocomp sample which was replicated from

the Mother stamp.

FIG. 2. (a) Side view SEM of BSi. (b) Top view SEM

image of BSi. (c) Dark field optical micrographs of

BSi. (d) Photographs of fabricated Ormocomp samples.

Samples were illuminated by a powerful white light

source under normal incidence, and the scattered light

was photographed at an oblique angle.
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and B show increased transmission down to 500 nm and

550 nm, respectively. Samples C, D, and E show reduced

transmission in the entire visible spectrum due to scattering.

It is evident that the structures of type A, with aspect ratio of

1.3 and height of 200 nm, reduce the reflectance by a factor

of 2, from 4% and down to 2% in the visible spectrum.

The inset in Fig. 3(c) shows the wavelength of the inter-

section of each transmission line with the planar line, denoted

kc, as a function of the dominating structural periods, q�1,

found in Fig. 3(b). The plot thus correlates the spatial fre-

quency of the surface structures to the scattering properties.

This central result shows that larger values of q lower the cut-

off wavelength, kc, at which scattering becomes significant.

This shows that replica of BSi structures are viable for

increasing transmission of light in the visible spectrum, de-

spite the random nature on the structures. Furthermore, the

scattering properties can be estimated simply from a top view

SEM image.

Finally, the type A structures were used to fabricate a

sample with nanostructures on both faces, see Fig. 1(c). The

resulting sample is shown in Fig. 4(a), where the transparent

Ormocomp disc is placed on a sheet of paper with a printed

logo. On the left side, the light from a lamp is reflected spec-

ularly from the planar top and bottom surface of the sample.

On the right side, nanostructures covering both the top and

the bottom faces suppress part of the Fresnel reflections, ren-

dering the underlying surface visible. We note that the scat-

tered blue light is too dim to see in daylight conditions.

In conclusion, we have shown that the spatial frequen-

cies of BSi structures are related to the scattering properties

of the antireflective surfaces. Structures with a dominating

spatial frequency of 160 nm, a height of 200 nm, and aspect

ratio of 1.3 show insignificant scattering of light with wave-

lengths above 500 nm and reduce Fresnel reflections by up to

a factor of 2. Using a simple two-step casting process, the

structures can be fabricated in Ormocomp on areas of up to 3

in. in diameter.
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