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Abstract 
This paper presents the latest research results of a project that focuses on normal behavior 
models for condition monitoring of wind turbine components and the turbine itself, via ordinary 
Supervisory Control And Data Acquisition (SCADA) data. In this machine learning approach 
Adaptive Neuro-Fuzzy Interference System (ANFIS) models are employed to learn the normal 
behavior in a training phase, where the component condition can be considered healthy. In the 
application phase the trained models are applied to predict the target signals, e.g. temperatures, 
pressures, currents, etc.  
The behavior of the prediction error is used as an indicator, whether the monitored signal 
behaves normal or abnormal, with respect to the learned behavior.  
For classification of the component condition Fuzzy Interference System (FIS) structures are 
used. Based on rules that are established with the prediction error behavior during previously 
experienced faults and generic rules the FIS structures output the component condition (green, 
yellow and red). Furthermore a first diagnosis of the root cause is given. First results of a field 
test show the applicability of the approach to closely monitor a large variety of signals, identify 
anomalies and classify the component condition correctly. Within this paper two examples of 
real measured faults are given that show the capabilities of the proposed method. The method 
can be applied both to existing and new built turbines without additional hardware installation.  
 

Introduction  
With wind turbines built in remote locations, reliable turbine and component condition 
statements become increasingly important. Especially offshore a break down maintenance 
strategy can result in high costs due to turbine downtimes and non-availability of large 
components and specialized vessels like crane ships. Condition Monitoring Systems (CMS) aim 
to provide operators with information regarding the “health” of their machines, which in turn, can 
help them improve operational efficiency by allowing more informed decisions regarding 
maintenance [1-7]. There is a large variety of CMS developed during the past years that focus 
on vibration diagnosis of wind turbines. On the other hand the ordinary SCADA data have long 
been used only for backward fault analysis after fault occurrence. The available CMS mostly 
require high level knowledge about the system to be monitored. This knowledge is difficult to 
access and does often not exist. Physical models of the system, to monitor its condition and 
predict failures can thus seldom be built with high accuracy due to its complex interaction 
among several dynamical subsystems.  
However, there is a large amount of operational data available in data bases, which can be 
used to give an indication on the turbine condition. In [1,6,8-10] it is shown that by use of 
artificial intelligence approaches information can be extracted that allows diagnosis of incipient 
fault days, weeks and in some cases even months in advance. In the aforementioned works 
artificial neural networks are employed to develop Normal Behaviour Models (NBM) at a state, 
where the component or turbine can be considered healthy. Usually this state is assumed to be 
at the beginning of the turbine or component lifetime. The learned normal behaviour can then be 
used in the application phase to examine deviations from the normal behavior (in terms of the 
prediction error). The great advantage of this approach is that the prediction error is widely 
decoupled from the typical fluctuations of the SCADA data caused by the different turbine 
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operational modes.   
In this paper it is described a CMS for wind turbines that takes advantage of Adaptive Neuro 
Fuzzy Interference Systems (ANFIS) to develop the NBM. ANFIS models can learn nonlinear 
signal relations by setting up a set of fuzzy rules and tuning the membership function 
parameters in a training phase. The application of ANFIS models for CMS purposes presents a 
novelty. The approach is applied to a broad variety of SCADA signals coming from an onshore 
wind farm consisting of 18 turbines of the 2MW class.  
When monitoring a broad variety of SCADA signals of a turbine, it can be realized that certain 
patterns and interactions establish within the prediction errors of the different models. For 
example in case of unexpected low turbine power output, not only the power output prediction 
error will indicate this anomaly, but also the generator current. These patterns can be used to 
diagnose the root cause of a problem. The rules that apply in diagnosing the patterns can be 
built with fuzzy logic. Fuzzy logic allows implementation of human intuition in terms of rules in a 
straight forward manner. Furthermore it allows solutions between the hard boundaries true or 
false when applying a rule. This characteristic let the fuzzy logic structure even output a solution 
if a rule only partially applies. In the CMS fuzzy logic is used to link the prediction error of 
different signals to arrive at a condition statement.  
In the following the general CMS concept is described and two application examples as well as 
a list of processed signals are given.  

Description of the general CMS concept  
The CMS aims to detect trends and patterns in SCADA data in order to identify incipient faults 
at an early stage. This stage should leave the operator enough time to adapt the maintenance 
schedule or take further measures to prevent unexpected system downtime. The CMS 
processes and monitors 10 minute average values such as temperatures, currents or the power 
output. This is done by taking advantage of the dependencies between the signals and set up 
NBM. A simple example showing the working principle of NBM development is the relation 
between the generator bearing and the generator stator temperature. The bearing temperature 
is mostly determined by external influences and can thus be expressed by the stator 
temperature, the shaft speed, the power output and the nacelle temperature. Taking these four 
signals, the generator bearing temperature can be reconstructed (see Figure 1) by training a 
model the relation between the input and the target signal. However, the dependency between 
the signals is often nonlinear and thus well suited to be learned by ANFIS models.  
 
 
 
 
 
 

 

Figure 1: Model working principle 

The reconstructed signal or expectation can be compared with the real measured signal and the 
prediction error calculated and monitored. It is worth noting that the CMS uses offline data and 
hence real time analysis of the SCADA data is not covered in this research. The ability to 
analyze faults in real time is limited by the fact that there exists a signal response delay that can 
be up to 60 min. An example for such a delay is the gearbox oil temperature; if the power output 
of the turbine increases, the gearbox oil temperature follows this increase but with a delay of up 
to 60 min., due to the large heat capacity of the component. Furthermore, real time SCADA data 
are currently seldom available to operators due to both technical and historical reasons.   
Taking into account the restrictions on data availability, the monitoring methods developed in 
this research use 10 min. average values that are usually available. Often these data are 
submitted sequentially with some time delay, e.g. 4 h, which limits the possibility of detecting 
very fast propagating faults. In earlier work of the authors [10] it was found that averaging the 
prediction error to one day average values not only decreases the variance of the prediction 
error, it also increases the fault sensitivity. It means that by averaging to one day averages 
faults are easier and earlier to identify. For this reason the CMS outputs a single prediction error 
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per signal per day that is used for further analysis.    

  
The general system architecture of the CMS developed is shown in Figure 2. 
 

 

Figure 2: CMS overview 

In the following, the function of the different CMS modules (see Figure 2) is briefly described.  
Training module: Within the training module the NBM is trained if a model is not yet available 
or new training is required. The latter is true if a component is replaced and the signal relations 
change as a consequence. Before training the model, the data are preprocessed according to 
the methodology proposed in [10] which includes: 1) a validity check, 2) data range check, 3) 
missing data processing and 4) lag removal.  
In the training module different training levels are implemented to allow early monitoring. A first 
model training is performed after one month of operational data collection. Further trainings are 
performed when three, six and nine months of data are available. The output of the training 
module is the trained ANFIS model and the standard thresholds marking the normal range of 
the prediction error.  
Prediction module: The prediction module is active once a trained model of the processed 
signal is available in the model base. The developed NBM is applied and the prediction error 
calculated and stored.  
Anomaly detection module:  In this module the anomalies in the prediction errors are 
identified. This is done on the basis of the determined normal-behavior thresholds by the 
training module or expert defined values. The output is an anomaly matrix containing 
information about the frequency and date of occurrence, as well as the duration of the current 
anomaly in days.   
Fuzzy expert initialization module: Here the FIS structure used for diagnosis of the anomalies 
and component condition statements are initialized. Each FIS structure has the following 
outputs:  

 diagnosis (information about the abnormal behaving signal)  

 condition (classification in green, yellow and red color code) (grey if no diagnosis is 
possible)  

 diagnosis certainty 

 potential root cause  

Fuzzy expert application module: Within this module the initialized FIS structure is evaluated, 
given the prediction errors and the information about present anomalies. The output is stored in 
text format and is visualized to give the analyst a comprehensive summery of the turbine 



condition.  
 

List of monitored SCADA signals 
The 18 turbines in the field test supply the following signals that are used to monitor the turbine 
and components condition (the location of the sensors is visualized in Figure 3).  
 

  
 
Figure 3: Wind turbine schematic: a) Sensor positions; b) Components or subsystems in the 
considered wind turbines  

 Spinner temperature (pos.1)  Power output (pos. 6) 

 Hub controller temperature (pos.1)  Reactive power (pos. 6) 

 Pitch angle (pos.1)  Grid inverter phase1 temperature (pos. 6) 

 Hydraulic oil temperature (pos.10)  Grid rotor inverter phase1 temperature 
(pos.6)  Rotor speed (pos.2) 

 Gear bearing temperature (HSS) (pos.3)  Grid rotor inverter phase2 temperature 
(pos.6)  Gear oil temperature (pos.3) 

 Generator speed (pos.4)  Grid rotor inverter phase3 temperature 
(pos.6)  Generator bearing temperature1 (pos.5) 

 Generator bearing temperature 2 (pos.5)  Converter cooling water temperature (pos.6) 

 Generator slip ring temperature (pos.5)  Converter choke coil temperature (pos.6) 

 Generator phase1 temperature (pos.5)  Converter controller temperature (pos.6) 

 Generator phase2 temperature (pos.5)  Top controller temperature (pos.6) 

 Generator phase3 temperature (pos.5)  Grid busbar temperature (pos.8) 

 Generator current phase1 (pos.6)  HV transformer phase1 temperature (pos.8) 

 Generator current phase2 (pos.6)  HV transformer phase2 temperature (pos.8) 

 Generator current phase3 (pos.6)  HV transformer phase3 temperature (pos.8) 

 Nacelle temperature (pos.7)  Wind speed (pos.9) 

Example 1  
In this example an anomaly in hydraulic oil temperature is highlighted by the CMS developed. In 
addition to this it is emphasized how information about the anomaly root cause can be 
implemented in the CMS in order to ease the analysis of future faults. Figure 4 shows a 2D 
waterfall plot of the normalized averaged percentage prediction errors of the hydraulic oil 
temperature and the related inputs of the NBM over time. In this plot the colors indicate the 
prediction error amplitude. White areas mark periods where no prediction is available, e.g. due 
to missing data or non-operational periods.   
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Figure 4: Normalized prediction errors of the hydraulic oil temperature and related inputs   

It is clearly visible that beginning on 16.07.2011 an anomaly with rising amplitude occurs in the 
prediction error of the hydraulic oil temperature. Figure 5 shows the prediction error and the raw 
time series of the hydraulic oil temperature during fault occurrence over time to point out the 
amplitude height of the prediction error during fault occurrence.    

 
 

 
Figure 5: Hydraulic oil temperature prediction error and anomaly limits (left); hydraulic oil 
temperature raw time series (right) 

The trend in the prediction error is clearly visible. Although the raw time series also indicates a 
trend, its visibility is dependent on the operational mode of the turbine.   
The anomaly pattern of the normalized prediction error is analyzed by the FIS and a high 
hydraulic oil temperature is highlighted on 16.07.2009 by the CMS via the following generic rule:  
 

 
 
This initial generic rule gives no information about the potential root cause and condition 
statement (yellow) is based on multipliers of the standard deviation instead of fixed temperature 
values. The fault can now be investigated and a rule established based on the diagnosed root 
cause. In this specific case, the root cause was a leakage in the rotary joint, causing the oil 
pump to run permanently. The entries in the service report were used to set up two specific 
rules containing the expert knowledge as follows.  
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If Hydraulic oil temp.==high & HV transformer ph.1 temp.==ok & Top controller temp.==ok &  
Generator current ph.1==ok & Nacelle temp.==ok then Diagnosis=Hydraulic oil temp. high; 
Condition=yellow; Pot. root cause=Ambiguous 
 



 
 
The terms high (yellow) and very high (red) of the hydraulic oil temp. prediction error are defined 
with 5°C and 14°C respectively. Reanalyzing the fault gives the results presented in Table 1.    
 
 
Date:  15.7.2009 16.07.2009 01.08.2009 11.08.2009 

Condition: 

    

Diagnosis: 
All components 

working as 
expected 

Hydraulic oil 
temp. too high 

Hydraulic oil 
temp. too high 

All components 
working as 
expected 

Pot. Root 
cause: 

None 
Pump running 
permanently 

leakage possible 

Pump running 
permanently 

leakage possible 
None 

Certainty: 1.00 0.70 0.52 1.00 
 
Table 1: Turbine condition evolution during hydraulic oil leakage occurrence 

The expert knowledge was successfully implemented and the CMS is now able to identify and 
diagnose similar issues on other turbines of the fleet. It is worth noting, that the generic rules 
can be set up before fault occurrence based on general engineering knowledge about the 
system behavior in fault situations. 
 

Example 2 
The second example shows an increase in gearbox oil temperature due to dirty filters of the 
cooling system. Again a 2D waterfall plot is used to emphasize present anomaly patterns that 
establish during fault occurrence (see Figure 6). In this example the expert knowledge was 
implemented with a similar issue experienced earlier with another turbine.   
 

1) If Hydraulic oil temp.==high & HV transformer ph.1 temp.==ok & Top controller 
temp.==ok & Generator current ph.1==ok & Nacelle temp.==ok then 
Diagnosis=Hydraulic oil temp. high; Condition=yellow; Pot. root cause=Pump 
running permanently, leakage possible) 
 

2) If Hydraulic oil temp.==very high & HV transformer ph.1 temp.==ok & Top 
controller  
temp. ==ok & Generator current ph.1==ok & Nacelle temp.==ok then 
Diagnosis=Hydraulic oil temp. high); (Condition=red); (Pot. root cause=Pump 
running permanently, leakage possible) 

 



 

Figure 6: Normalized prediction errors of the gearbox oil temperature and related inputs   

The visible high nacelle temperature is also a result of the dirty cooling system filters. Figure 7 
shows the prediction error amplitudes and the raw time series of the gearbox oil temperature 
during fault occurrence.   
 

  

 
Figure 7: Gear oil temperature prediction error and anomaly limits (left); gear oil temperature raw 
time series (right) 

Although the temperature deviation from normal behavior is up to 11°C  the increase was not 
highlighted by the turbine controller, due to usually high thresholds set in the turbine controller. 
After filter replacement the temperature fell back to the normal operational range. The trend is 
also visible in the raw time series, but the fluctuations due to the different operational modes 
make it more difficult to identify the anomaly. Note that setting simple thresholds to the raw 
signal would make the identification of the increase dependent on the operational mode. A 
partially loaded turbine delays the fault discovery, which shows the effectiveness of the 
proposed method.   
The evolution of the gearbox condition during filter degradation is visualized in Table 2.   
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Date:  19.8.2010 20.08.2010 19.10.2010 20.10.2009 

Condition: 

    

Diagnosis: 
Component 
working as 
expected 

Gearbox oil temp. 
too high 

Gearbox oil temp. 
too high 

All components 
working as 
expected 

Pot. Root 
cause: 

None 
Cooling 

insufficient  
Cooling 

insufficient  
None 

Certainty: 1.00 0.42 0.82 1.00 
 
Table 2: Turbine condition evolution during gearbox oil temperature increase due to dirty filters  

 
Conclusion  
The research work underlines that SCADA data contain useful information about the component 
conditions. The developed CMS is capable of detecting incipient faults at an early stage as 
shown by the two examples in this paper. It works without any input from manufacturers and is 
able to detect anomalies even if they occur the first time. When an anomaly is detected the first 
time generic rules apply and highlight the issue. Fault analysis can take place and the gained 
expert knowledge can be implemented in terms of fuzzy rules in a straight forward manner. The 
research further emphasized that the specific rules implemented are valid for all turbines of the 
same type and thus allows diagnosis of similar faults on other turbines. 
Problems with the approach occur, when no information about performed services is on hand 
and root cause analysis is impossible. In this case only generic rules can be applied and only 
general statements about the component and turbine condition are possible. Furthermore it 
showed that the availability and the quality of SCADA signals is crucial when setting up the 
NBM. The more different SCADA signals are available the higher is the chance of finding 
correlated signals that can be used as input to predict a certain target signal. 
Finally it is important to note that the developed CMS is not aimed to replace vibration 
monitoring systems. In fact it should rather be seen as an additional tool to gain information 
about the turbine condition. The great advantage of the system is that no additional sensors are 
required and that also auxiliary equipment and small components can be monitored provided 
representative signals exist. In a next project step a vibration analysis tool will be developed and 
integrated in the CMS. In addition the fleet of the field test will be extended with turbines of a 
different type and brand.    
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