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ABSTRACT: Fungal laccases are multicopper enzymes of industrial
importance due to their high stability, multifunctionality, and oxidizing
power. This paper reports computational protocols that quantify the
relative stability (ΔΔG of folding) of mutants of high-redox-potential
laccases (TvLIIIb and PM1L) with up to 11 simultaneously mutated
sites with good correlation against experimental stability trends.
Molecular dynamics simulations of the two laccases show that FoldX
is very structure-sensitive, since all mutants and the wild type must
share structural configuration to avoid artifacts of local sampling.
However, using the average of 50 MD snapshots of the equilibrated
trajectories restores correlation (r ∼ 0.7−0.9, r2 ∼ 0.49−0.81) and provides a root-mean-square accuracy of ∼1.2 kcal/mol for
ΔΔG or 3.5 °C for T50, suggesting that the time-average of the crystal structure is recovered. MD-averaged input also reduces the
spread in ΔΔG, suggesting that local FoldX sampling overestimates free energy changes because of neglected protein relaxation.
FoldX can be viewed as a simple “linear interaction energy” method using sampling of the wild type and mutant and a
parametrized relative free energy function: Thus, we show in this work that a substantial “hysteresis” of ∼1 kcal/mol applies to
FoldX, and that an improved protocol that reverses calculations and uses the average obtained ΔΔG enhances correlation with
the experimental data. As glycosylation is ignored in FoldX, its effect on ΔΔG must be additive to the amino acid mutations.
Quantitative structure−property relationships of the FoldX energy components produced a substantially improved laccase
stability predictor with errors of ∼1 °C for T50, vs 3−5 °C for a standard FoldX protocol. The developed model provides insight
into the physical forces governing the high stability of fungal laccases, most notably the hydrophobic and van der Waals
interactions in the folded state, which provide most of the predictive power.

■ INTRODUCTION

Understanding and predicting protein stability at nonphysio-
logical pH, T, solvent, or ionic strength is of substantial interest
in industrial processes where extremophilic enzymes are
increasingly employed for their efficient and environmentally
friendly catalysis.1−3 Industrial conditions often deviate
markedly from those of natural habitats, leading to a need for
prolonged protein lifetime (i.e., reduced cost)4 in nonaqueous
solvents, at extreme pH, or at elevated temperatures that
increase turnover for industrial processes while often reducing
microbial contamination.1,5,6 Also, extremophilic enzymes are
of academic interest in the search for molecular fundamentals
of protein folding and stability.7

Standard laboratory approaches toward enhancing protein
stability include site-directed mutagenesis, directed evolution,
and various semirational approaches such as structure-based
design and phylogenetic methods that induce sequence traits of
known extremophiles or evolutionary ancestors.8 In particular,
directed evolution using random mutagenesis under specific
selection pressures has been used successfully in many studies
to amplify desired properties of proteins.9,10

The development of superior industrial enzymes may be
advanced by rational methods:11,12 Although not widely
appreciated, rational methods may, if they leap beyond single-

point mutations, allow the identification of new desirable
proteins relatively far from the wild type (WT) in sequence
space. Such proteins are experimentally inaccessible due to the
large number of mutant generations required and to the
correlation between amino acids, which render beneficial pair
substitutions extremely unlikely unless directly introduced (the
most simple examples being cystines or salt bridges introduced
in a single generation). These desirable, remote islands are
separated in sequence space by large oceans of less stable and
functional “dead ends”, as e.g. illustrated by the folded but
nonfunctional de novo designed protein only 50% similar to its
Trametes versicolor laccase scaffold,13 a protein studied in this
work. Thus, the future success of rational, computational
protein evolution depends directly on the ability to predict
stability far from the WT in sequence space.
Random errors in state-of-the-art experimental estimates of

in vitro protein stabilities from careful protocols that efficiently
reduce systematic errors have upper limits in correlation
coefficients r of ∼0.86 (r2 ∼ 0.74)14 between experimental and
computed relative free energies of protein folding for mutants
vs WT (called herein ΔΔG), defined as
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with typical experimental standard errors of ΔΔG of ∼0.5 kcal/
mol.15 Here, ΔGM and ΔGWT are the free energies of folding
for the mutant and WT proteins, KM and KWT are the effective
two-state folding equilibrium constants, and [F] or [U] denote
concentrations of folded (F) or unfolded (U) protein at
equilibrium. A substantial systematic error component is
removed by considering only stabilities relative to the WT. A
qualitative benchmark criterion for protein stability prediction
is the percent of stabilizing and destabilizing mutants predicted
correctly, typically at best 80−90%.16 Most protocols do not
probe the protein’s stability in its natural environment and
state, both in terms of pH, T, ionic strength, solvent type, and
post-translational modification, including the possibility of
several resting, active, and redox states. Still, the unmodified,
folded protein stability under well-defined in vitro conditions is
the standard measure of stability that is also investigated here.
Currently, computational screening of protein mutants can

be achieved by software such as, e.g., CUPSAT,17 Dmutant,18

FoldX,19 I Mutant2.0,20 and PoPMuSiC.21 In contrast to
computationally intensive methods such as free energy
perturbation or thermodynamic integration,22,23 these pro-
grams attempt to circumvent the structure-sampling problem
and thus predict stability on a time scale suitable for high-
throughput use. Such programs have been recently eval-
uated.14,24 While r values up to ∼0.90 (r2 ∼ 0.81) are reported
in validations based on single-site mutations in similar proteins
from the original papers,14 a typical r of ∼0.26−0.5914 (r2 of
∼0.07−0.35) or ∼60% qualitative predictability24 was found
upon external validation on more diverse proteins, showing
that, as for other empirical potentials, protein stability
predictors are usually of little use outside their parametrization
range, even for single-point mutations. Also, computational
prediction of single-point mutant stability is hardly useful
considering today’s highly automated experimental mutagenesis
procedures, disregarding a posteriori rationalization of the
experimentally observed structure−function correlations.
Among such programs, FoldX,19 which estimates ΔΔG using

a linear function of physical terms, weighted by empirically
trained weight factors, performs significantly better than
average in external third-party validation,14,24 with a correlation
coefficient r of ∼0.5 (r2 ∼ 0.3) across many types of structural
motifs,14 having the most robust accuracy across all structural
types.24 The original FoldX article reported training on a blind-
test database of 625 single-point mutants in 27 simple proteins
to obtain r ∼ 0.8 (r2 ∼ 0.6) between predicted and
experimental ΔΔG of folding.19 Thus, despite the loss of
accuracy when moving away from small, simple proteins used
for parametrization, FoldX clearly recovers important aspects of
the physics of protein stability.
The question then emerges of whether these methods are at

all helpful in screening more complex proteins with, e.g., metal
ions, several domains, and many (e.g., > 400) residues, and
whether the weight factors must be reparameterized for new
protein classes. The upper limit to r of ∼0.8614 (r2 ∼ 0.74)
deduced from random experimental errors suggests that
computational protocols could approach this limit of r ∼
0.8−0.9 (r2 ∼ 0.6−0.8) if the knowledge-based potential and
the input protein structures are optimal, which is in fact

obtained upon specific parametrization to known high-quality
protein structures, and when using free energy perturbation/
thermodynamic integration.22 Also, as found in this paper, there
are fundamental reasons why methods such as FoldX may have
nearly universal energy functions, suggesting that the stability of
large, complex protein mutants far from the WT in sequence
space can be predicted if the structure- and sampling-problem is
solved, e.g., via Molecular Dynamics (MD) simulations.24

The correlation coefficients r and, hence, the trends in
stability for a series of data points are generally quite well
reproduced by various computational protocols, with r ∼ 0.9 (r2

∼ 0.8) being common, r = 0.70−0.87 (r2 = 0.49−0.76) from
predictors based on the more diverse Protherm database,16 and
r ∼ 0.7−0.8 (r2 ∼ 0.5−0.6) for a recent machine learning
method25), and again with FoldX performing very well with r ∼
0.96 (r2 = 0.92).14 Despite these good trends, average errors
typically exceed 1 kcal/mol for ΔΔG, and qualitative
predictability (more/less stable) rarely exceeds 90%, although
the answer to this simple yes-or-no question is facilitated by the
fact that the average, random mutation in any protein is
destabilizing by ∼1 kcal/mol.26

Laccases are multicopper oxidases27,28 found in plants,
bacteria, and fungi, capable of oxidizing a wide range of
inorganic29 and aromatic substrates.30,31 In fungi, the proteins
are extracellularly secreted and must thus be highly stable.27

Most laccases have three copper sites (T1, T2, and T3) and
three cupredoxin domains and possess very high reduction
potentials at the monocopper T1 site that abstracts electrons
from substrates.29 Due to their reactivity and unusual
robustness, they are increasingly used in industry, e.g., to
degrade lignin for use in second-generation biofuel,32 for
bioremediation of polluted water,28 or for oxidative bleaching,
e.g., of dyes for use in textiles or of pulp in the paper
industry.30,32,33 The important role of laccases motivated us to
investigate whether modified protocols of FoldX can predict
laccase stabilities. In this process, we investigated the sensitivity
of FoldX to variable structural input and whether the FoldX
energy components could be improved for laccases by means of
quantitative structure property relationships (QSPR).
Two recent mutant stability data sets of the high-redox-

potential fungal laccases (HRPL), TvLIIIb, a widely studied
fungal laccase from Trametes versicolor (white-rot fungi),34 and
PM1L,35 have rendered such an investigation possible. The
TvLIIIb data set consists mostly of single-point mutants,36

whereas the PM1L data set contains nine multisite mutants.37

TvLIIIb and PM1L share 80% sequence identity, and both
basidomycete organisms have been associated with ligninolytic
processes. TvLIIIb studied in this work is the most thermo-
stable (Topt = 80 °C, pHopt = 2.3 with ABTS as substrate) of
four isoforms isolated from Trametes versicolor.38 In an assay for
temperature inactivation of ABTS-oxidation, a Trametes
versicolor isoenzyme (UniProt ID Q8TFM1) sharing 99%
identity with TvLIIIb had T50 = 72 °C.37

PM1L was isolated from the fungus PM1 (CECT 2971)
living in wastewater from a paper factory.39 It resembles other
HRPLs from Trametes C30 (99% sequence identity), Trametes
trogii (97% sequence identity), and Coriolopsis gallica (96%
sequence identity). PM1L also has Topt = 80 °C with guaiacol
as a substrate,39 is stable at pH 3−9, and has a standard
reduction potential in excess of 700 mV,37 making it of interest
in biotechnological applications. The TvL mutants were
generated by site-directed mutagenesis to improve oxidation
of bulky phenolic substrates,36 while the PM1L mutants
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resulted from a strategy combining directed evolution with
rational approaches to facilitate yeast expression of highly stable
and active HPRL mutants. The latter approach culminated in
the OB-1 mutant, which possessed a very high kcat/KM for
substrates such as ABTS while preserving a substantial stability
at elevated T, diverse pH, and organic cosolvents.37 These
promising laccases thus possess both high redox potentials and
at the same time exquisite thermostability.
The correlation between the experimental measures of

stability and FoldX ΔΔG was investigated with various
FoldX-protocols and MD simulations, and with a QSPR
analysis of the individual energy terms comprising ΔΔG. If
reasonable correlations and acceptable errors are obtainable, it
suggests a promising tool for laccase optimization, whereas the
most significant energy components may be interpreted as
potential physicochemical drivers of the superior stability of
these laccases.

■ METHODS
Laccase Mutants. The recent thermostability data for the

WT, three single-point mutants, and one double mutant of the
Trametes versicolor laccase TvLIIIb (UniProt ID: Q96UT7)36

and nine multisite mutants37 of the laccase PM1L (UniProt ID:
Q12571)35 were used for benchmarking. The structure of
TvLIIIb has been solved by X-ray diffraction (PDB-ID:
1KYA),40 and PM1L was homologous enough with the
Trametes trogii laccase (PDB-ID: 2HRG) to produce a high-
quality homology model, enabling the structural input for
FoldX. Thermostability for TvLIIIb mutants was reported as
t1/2, the half-life of heat-inactivation of ABTS oxidation at 60 °C
and a pH of ∼5,36 whereas thermostability for PM1L mutants
was reported as T50, the temperature resulting in a 50% loss of
ABTS oxidation activity after 10 min of incubation at pH ∼6.37
Despite these differences, a simple correlation between relative
ΔΔG of folding and both these observables may be expected.
Details of the data sets are presented in Table 1. Only
mutations in the expressed protein sequence were included in
the models.
FoldX Calculations. The relative free energy of folding

(ΔΔG) for laccase WT and mutants was predicted using
FoldX, version 3.0.19 To test the influence of the FoldX repair
procedure, 3D structures were used for the FoldX ΔΔG
prediction before and after preparation with the <RepairPDB>
command. Mutations were performed using the <BuildModel>

command with the <numberOfRuns> option set to 5. All other
options were set to default, including temperature (298 K),
ionic strength (0.05 M), and pH (7), which is not active in
FoldX in the current version. To estimate the uncertainty for
repeated calculations of energy terms, all mutations were
duplicated 10 times in the FoldX input file, and the mean and
standard deviations were calculated. For computing mutations
in reverse, i.e., mutating from a mutant template to WT instead
of from WT to the mutant, each specific mutant sequence was
entered as input, and subsequently the WT was generated by
the <BuildModel> command, and its ΔΔG relative to the
mutant was computed with FoldX.

Preparation of 3D Models. The 2.40 Å crystal structure of
TvLIIIb40 was obtained from the protein data bank (PDB ID:
1KYA). From the four TVLIIIb proteins in the asymmetric
unit, molecule A (chain A) was chosen for further work. The
missing atoms for residues Asp101, Gln363, Arg442, Glu460,
and Gln482 were added using the “Predict side chains” option
of the software Prime, version 3.0.41

The homology model of PM1L available for UniProt entry
Q12571 at the SWISS-MODEL repository42,43 was employed.
The template for this model was the 1.58-Å crystal structure of
Trametes trogii laccase (PDB ID: 2HRG), which shares 97%
sequence identity with PM1L. Copper ions and coordinating
waters are not present in the homology model and were added
manually using coordinates from the template. FoldX does not
recognize carbohydrates, and the N-acetylglucosamine (NAG)
moieties were removed from the structures. Omission of NAG,
while reducing absolute stability, preserves high correlation
between experimental and computational relative stabilities; i.e.,
the glycosylation effect is nearly constant and does not affect
relative stabilities. This is important as it allows an under-
standing of the protein-specific drivers of the relative stability
aside from post-translational modification.
The zero-order bond approach of the Maestro protein

preparation wizard was used to fix bonds and angles involving
copper to the crystal structure geometry. All copper ions were
assigned a charge of +1, and the T2/T3 oxygen species were
modeled as neutral water molecules, consistent with the X-ray
information and preserving a realistic charge state of the
protein. While exact changes in redox, protonation, and charge
states are essentially impossible to model with classical force
fields, for the purposes here, we were interested in the
contribution to overall stability of amino acid side chains not

Table 1. Details of Laccase Mutant Data Sets

thermostability

protein mutant name specific mutations T50 (pH = 6) t1/2 (60 °C, pH = 5)

TvLIIIb YL4WT 143 min
F162A F162A 37 min
F265A F265A 153 min
F332A F332A 21 min
F162A/F332A F162A/F332A 3 min

PM1L 6C8 V162A/H208Y/A239P/S426N/F454S/A461T 68.4 °C
6C8_S454F_REVERT V162A/H208Y/A239P/S426N/A461T 72.2 °C
6C8_P393H V162A/H208Y/A239P/P393H/S426N/F454S/A461T 62.5 °C
6C8_D281E V162A/H208Y/A239P/D281E/S426N/F454S/A461T 66.3 °C
6C8_S224G V162A/H208Y/S224G/A239P/S426N/F454S/A461T 66.3 °C
16B10 V162A/H208Y/A239P/A361T/S426N/F454S/A461T/S482L 71.0 °C
11A2 V162A/A239P/D281E/S426N/A461T 73.1 °C
1D11 H208Y/A239P/S426N/A461T 73.8 °C
OB-1 V162A/H208Y/S224G/A239P/D281E/S426N/A461T 73.1 °C
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directly interacting with copper (at distances >8 Å from any
copper site37), making this study less sensitive to state-specific
issues than studies aiming at understanding metal-site proper-
ties.
Molecular Dynamics Simulations. MD simulations were

performed with Desmond 3.044 in a cubic box of TIP3P water45

providing a minimum layer of 15 Å of water on each side of the
protein. Charge neutrality was achieved by randomly replacing
waters with the required number of sodium ions. MD
simulations were preceded by steepest descent minimization
to a gradient of 1 kcal mol−1 Å−1 followed by the default
presimulation protocol in Desmond consisting of (1)
minimization with restraints on the solute; (2) unrestrained
minimization; (3) Berendsen NVT simulation,46 T = 10 K,
small time steps, restraints on heavy solute atoms; (4)
Berendsen NPT simulation, T = 10 K, restraints on solute
heavy atoms; (5) Berendsen NPT simulation with restraints on
heavy solute atoms; and (6) unrestrained Berendsen NPT
simulation.
Following the relaxation protocol, production-run NPT

simulations were carried out for each system. The temperature
was regulated with the Nose−Hoover chain thermostat47,48

with a relaxation time of 1.0 ps. Pressure was regulated with the
Martyna−Tobias−Klein barostat49 with isotropic coupling and
a relaxation time of 2.0 ps. The RESPA integrator50 was
employed with bonded, near, and far time steps of 2.0 fs, 2.0 fs,
and 6.0 fs, respectively. MD trajectories were saved at 100 ps
intervals.
System details are provided in Table 2. Due to its larger

system size and slow convergence, TvLIIIb was simulated for
40 ns until the trajectory was stable, i.e., did not display
divergence from the initial structure, whereas PM1L was
equilibrated after 20 ns. A 9-Å cutoff was used for nonbonded
interactions with the smooth-particle mesh Ewald method
having a tolerance of 10−9 for long-range Coulomb interactions.
The root-mean-square backbone atomic positional deviation

(RMSD) with respect to the initial structure (crystal or
homology model) was calculated for all MD trajectory frames
using VMD.51 The conservation of hydrogen bonds measured
as presence in percentage of simulation time was calculated

with the VMD “HBonds” plugin for selected donor−acceptor
pairs in the PM1L simulation using as criteria a donor−
acceptor distance cutoff of 3.5 Å and a donor−hydrogen−
acceptor angle cutoff of 30°.
The OPLS-200552,53 force field was employed to describe the

protein. Water and sodium ions were described with the TIP3P
potential45 and the free-energy consistent alkali-ion OPLS
potentials,54 respectively.

QSPR. QSPR for prediction of laccase thermal stability was
computed using MATLAB55 and an in-house implementation
of the NIPALS algorithm56,57 for PLS regression. Stepwise
regression with forward variable selection was employed on the
autoscaled matrix of the FoldX energy terms (excluding ΔΔG).
This resulted in successive inclusion of energy terms yielding
improvements in the root-mean-square error of cross validation
(RMSECV) of the PLS model. To ensure robustness, the
QSPR models were restricted to employ a maximum of three
FoldX ΔΔG component energy terms and two latent variables,
which was found to be enough to describe the stability effects.
Leave-one-out cross validation (LOOCV) was employed unless
otherwise noted, and q2 was evaluated for the models. A
LOOCV q2 value higher than 0.5 is often regarded as a
necessary (but insufficient) criterion for predictive power,58,59

but robustness can only be ascertained by external validation.
The limited number of laccase mutants considered here does
not allow a meaningful division into a calibration and validation
set. Instead, the most promising QSPR model was subject to a
second round of cross-validation based on leaving out two
mutants at a time.

■ RESULTS AND DISCUSSION
MD-Averaged Structures of TvLIIIb and PM1L. The

backbone RMSD plots of the MD simulations are shown in
Figure 1 (TvLIIIb left, PM1L right). TvLIIIb was slower to
converge, and even after 30 ns, the RMSD curve still displayed
a weak declination, although the RMSD fluctuations in the last
part of the trajectory are confined to a relatively narrow range.
The large RMSD and long simulation time for TvLIIIb are due
to the comparatively low resolution (2.4 Å) of the crystal
structure: A substantial contribution to the RMSD comes from

Table 2. System Details for Molecular Dynamics Simulationsa

laccase #HIP, LYS, & ARG #ASP & GLU #TIP3P #Na+ #total atoms box side length; mean (std dev) (Å) simulation time (ns)

PM1L 26 45 27757 16 90645 96.60 (0.05) 20
TvLIIB 21 42 33781 18 108720 103.03 (0.05) 40

aColumns: Laccase, number of positively charged and negatively charged residues, TIP3P waters, Na+ neutralizing counterions, total atoms, average
and standard deviation of the side length of the simulation box (Å), and simulation time (ns).

Figure 1. Backbone RMSD for (a) the 40 ns TvLIIIb MD simulation and (b) the 20 ns PM1L MD simulation.
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structural fluctuations in domain 3 (residues 310−499), as
evident from the RMSD curves for the individual domains
(Supporting Information, Figure S1). Correspondingly, the
largest average crystal-structure B-factors are in domain 3
(Supporting Information, Figure S2). Also, four (Q363, R442,
E460, Q482) of the five residues with missing side chain atoms
in the crystal structure are located in this domain and will
necessarily increase the RMSD of the all-residue MD-simulated
protein against the crystal structure lacking these residues. The
RMSD between the two highly homologous proteins is small
(typically ∼1 Å), showing that the MD averaging produces
protein structures that are comparable for our purposes.
The RMSD curve for the PM1L simulation indicates

convergence after ∼10 ns with only small fluctuations at ∼1.2
Å from 10−20 ns. The fast convergence of PM1L relative to
TvLIIIb in MD simulations probably reflects that the PM1L
homology model was constructed from a highly homologous
(97%) template with a high-resolution (1.58 Å) crystal
structure.
The MD-averaged structures of TvLIIIb and PM1L are

shown in Figure 2, left and right, respectively, with the mutated
sites investigated in this work numbered in red colors and
shown as yellow sticks and balls. Notably, as the mutations in
PM1L are derived from directed evolution, there are both

buried and surface sites located in various parts of the protein,
suggesting that a robust prediction of stability for these
mutations requires a method that performs equally well for all
structural components and domains, such as has been reported
for FoldX.14,24

Structural Sensitivity of FoldX. The correlation between
t1/2 and FoldX ΔΔG calculated at each frame of the trajectory is
plotted in Figure 3 and reveals no simple relationship between
MD structural convergence and predicted ΔΔG. Any particular
MD snapshot is likely to produce low predictability, showing
that the protein dynamics causes occupation of conformations
whose apparent stabilities correlate poorly with the general,
ensemble-averaged stability of the protein. FoldX is extremely
sensitive to input from MD simulations because the probed
phase space includes snapshots far from the statistical average
that is partially preserved in, e.g., a crystal structure. Thus, the
initial crystal structures are better input for stability prediction
than any one MD snapshot, and using single MD snapshots for
stability, property or free energy analysis should be completely
avoided. Instead, it is quite meaningful to compute the average
ΔΔG obtained from a number of MD snapshots (vide inf ra).

Laccase Stabilities Using the Standard FoldX Proto-
col. Typical use of FoldX proceeds as described in the
“examples” section of the documentation, i.e., feeding a 3D

Figure 2.MD-averaged structures of TvLIIIb (left) and PM1L (right), obtained at 30 and 20 ns, respectively. Mutated sites are shown in yellow balls
and sticks. Copper ions are shown as orange spheres. The laccase backbone is shown in cartoon representation, colored red to blue by radial distance
from the center of the enzyme.

Figure 3. Correlations between experimental stability measures and FoldX ΔΔG for mutations, calculated from regularly sampled MD trajectory
snapshots. (a) Correlations between t1/2 (min) for TvLIIIb and FoldX ΔΔG. (b) Correlations between T50 (°C) for PM1L and FoldX ΔΔG. Red
and green curves indicate disabled or enabled FoldX repair function, respectively.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci300398z | J. Chem. Inf. Model. 2012, 52, 3028−30423032

http://pubs.acs.org/action/showImage?doi=10.1021/ci300398z&iName=master.img-002.jpg&w=310&h=185
http://pubs.acs.org/action/showImage?doi=10.1021/ci300398z&iName=master.img-003.jpg&w=449&h=134


structure (i.e., the crystal structure of TvLIIIb or the homology
model of PM1L) of the WT protein to the program, relaxing
this structure (“repair” function) to remove steric clashes, and
introducing new, mutated side chains with the “BuildModel”
method. Additional procedures are described in the Methods
section.
Application of this typical FoldX protocol to generate the

TvLIIIb and PM1L mutants and compute their ΔΔG relative to
the WT input yielded the results depicted in Figure 4a and b,
respectively. ΔΔG has been plotted against t1/2 or T50 for each
set of mutants, and a least-squares line fit was evaluated. The
correlation coefficient, r, between ΔΔG and experimental data

is −0.90 and −0.74 for the TvLIIIb and PM1L data sets,
respectively. As a larger ΔΔG means less stability, correspond-
ing to decreasing t1/2 and T50, this implies a good description of
the stability trends of the overall data sets, despite substantial
individual errors, fully consistent with the previous experience
with FoldX and other predictors. The mainly single-site data set
of TvLIIIb is more accurately reproduced by FoldX, in
particular with maximum errors <1 kcal/mol and all mutants
in qualitatively the right order of stability, except for the two
most stable mutants. Given the fact that most of the PM1L
mutants are multisite mutants differing in up to 11 sites from
the WT, the FoldX correlation is markedly better than an

Figure 4. FoldX prediction of ΔΔG for mutants of the laccases TvLIIIb and PM1L. ΔΔG is plotted against experimental thermostability measures
(t1/2 and T50). For TvLIIIb, the repaired (a) and unrepaired (c) structures of the crystal structure were used, with the statistics of 10 repetitive
calculations on the repaired structure (e) and the unrepaired structure (g), whereas for PM1L, the repaired (b) and unrepaired (d) structures of the
homology model were used, with the statistics of 10 repetitive calculations for the repaired and unrepaired structures shown in f and h, respectively.
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average, blind, external validation,24 although individual errors
are up to ∼4 kcal/mol. The least stable mutant is correctly
predicted, although the most stable mutant is not. Thus, in
general, qualitative ordering of two mutants is not well modeled
for the multisite mutant PM1L data set using the standard
FoldX protocol, but the overall trend of the data set is well
reproduced. These observations are all consistent with the
general conclusions of the FoldX external validation, which
suggested average errors in the ∼1 kcal/mol range for single-
point mutants while discouraging use for multisite mutants.19

Robustness of the Standard Protocol. Repetition of a
mutation sequence in the FoldX input may be done to evaluate
and improve internal statistics of FoldX. We have used this
approach to obtain standard deviations for 10 repetitions for all
the investigated mutations. To test the influence of local
geometry optimization of the template on ΔΔG, the “repair”
function was omitted in a second FoldX run on the same
mutants. The omission had a minor effect for the TvLIIIb set
(Figure 4c) but in fact improved r for the PM1L set from −0.74
to −0.82 (0.55 to 0.67 for r2), as seen in Figure 4d. The
increased correlation was also observed for the majority of the
energy terms constituting ΔΔG (see Supporting Information).
To investigate the negative effect of local optimization, we

recalculated without repair for all mutations using now the
average ΔΔG from 10 repeated FoldX calculations, see Figure
4e−h. For TvLIIIb, the average ΔΔG for 10 FoldX runs
produced a better correlation (r = −0.94, r2 = 0.88) for the
unrepaired structure compared to the repaired (r = −0.89, r2 =
0.79), see Figure 4g and e, respectively, whereas for PM1L, the
average ΔΔG gave similar correlations with experimental data
(r = −0.78, r2 = 0.61) for unrepaired (Figure 4h) and repaired
(Figure 4f) methods. This suggests that, although recom-
mended for proteins inside the parametrization class, the repair
function may not be useful for protein classes not used for
parametrizing FoldX, probably because local template opti-
mization indirectly affected the parametrization and also

provides a bias to the template structure for proteins outside
the parametrization range (vide inf ra).
The results in Figure 4e−h show small (<0.25 kcal/mol)

standard deviations in ΔΔG for the repaired and unrepaired
TvLIIIb data set. However, avoiding the repair procedure leads
to larger statistical variation in calculated, repeated ΔΔG's for
both data sets, and the variation is at the same time
substantially larger in the PM1L data set. Thus, using repair
with PM1L produces a largest deviation of ∼0.5 kcal/mol (for
the 6C8_P393H mutant), whereas the maximum deviation
without repair is ∼1.8 kcal/mol (for the 6C8 mutant). For both
laccases, the standard deviation for the 10 FoldX runs
approximately doubles from repaired to unrepaired, i.e.,
computed ΔΔG's vary much more for unrepaired structures
(are less precise) most likely because the repeated calculations
are better aligned to the same local conformations after
optimization of the template.
However, despite the reduced precision, avoiding local

optimization actually preserves or even improves correlation
to experimental data (r), and error statistics (measured as
distance from the regression line) are also improved, as can be
seen from Table 3. The smallest maximum errors are
consistently found for averages of 10 repetitions without the
repair algorithm. For the PM1L data set, both the repetition
protocol to improve sampling and disabling repair reduce
maximum errors by ∼1/2 kcal/mol. While mean absolute
errors (MAE) are insignificantly affected by repetitive
calculation, using the unrepaired protocol reduces MAE in all
cases, by up to 0.3 kcal/mol.
In conclusion, using repetitive FoldX calculations by adding

the same sequence multiple times to the FoldX input improves
statistics and maximum errors, whereas using unrepaired
protocols improves correlations, MAE, and maximum errors
for both data sets. Both approaches are different from the
standard protocol of FoldX. Thus, laccase ΔΔG prediction is
improved by multiple FoldX runs using unrepaired templates.
Possibly, this is true also for other, complex proteins outside the

Table 3. Mean Absolute, Root-Mean-Square, and Maximum Errors of FoldX Protocols Based on Non-MD-Averaged Input
Structural Templatesa

1-fold TvLIIIb repaired TvLIIIb unrepaired PM1L repaired PM1L unrepaired

ΔΔG (kcal/mol) t1/2 (min) ΔΔG (kcal/mol) t1/2 (min)
ΔΔG

(kcal/mol) T50 (°C)
ΔΔG

(kcal/mol) T50 (°C)

MAE 0.56 29.24 0.38 20.78 1.74 2.81 1.43 1.98
RMSE 0.57 29.95 0.50 27.06 2.08 3.36 1.76 2.42
|MaxE| 0.75 (F162A/

F332A)
39.72 (F162A/
F332A)

0.79 (F162A/
F332A)

42.76 (F162A/
F332A)

3.85 (S224G) 6.22
(S224G)

3.54 (S224G) 4.88
(S224G)

10-fold TvLIIIb repaired TvLIIIb unrepaired PM1L repaired PM1L unrepaired

ΔΔG (kcal/mol) t1/2 (min) ΔΔG (kcal/mol) t1/2 (min)
ΔΔG

(kcal/mol) T50 (°C)
ΔΔG

(kcal/mol) T50 (°C)

MAE 0.58 31.31 0.35 18.64 1.67 2.57 1.63 2.61
RMSE 0.60 32.09 0.42 22.31 1.96 3.01 1.88 3.01
|MaxE| 0.77 (F162A/

F332A)
41.61 (F162A/
F332A)

0.67 (F162A/
F332A)

35.85 (F162A/
F332A)

3.39 (S224G) 5.20
(S224G)

2.80 (0B-1) 4.48 (OB-
1)

FoldX terms (single,
unrepaired runs) TvLIIIb, van der Waals TvLIIIb, solvation hydrophobic PM1L, van der Waals

PM1L, solvation
hydrophobic

ΔΔG
(kcal/mol) t1/2 (min)

ΔΔG
(kcal/mol) t1/2 (min)

ΔΔG
(kcal/mol) T50 (°C)

ΔΔG
(kcal/mol) T50 (°C)

MAE 0.49 28.59 0.74 28.15 0.54 2.11 0.79 1.69
RMSE 0.52 30.09 0.78 29.59 0.71 2.79 0.99 2.11
|MaxE| 0.77 (F162A/

F332A)
44.53 (F162A/
F332A)

1.15 (F162A/
F332A)

43.99 (F162A/
F332A)

1.27
(S224G)

5.02
(S224G)

1.73 (6C8) 3.66
(6C8)

aThe mutants with maximum errors are given in parentheses.
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parametrization range of FoldX: In general, whether local
optimization improves or impairs depends on the quality of the
input structure relative to the local optimization procedure, and
local optimization may in fact produce a bias toward the initial
(usually WT) template, vide inf ra.
FoldX Hysteresis. During this work, we thought that the

standard FoldX protocol may be viewed as a simple form of the
linear interaction free energy method of the type proposed for
protein−ligand binding by Åqvist and Marelius,60 with
sampling of the WT and mutant states combined with an
empirical linear function describing the associated free energy
difference based on energy components (this method can itself
be viewed as an approximation to free energy perturbation
schemes where intermediate coupling states are also computed
and has been used for predicting protein mutant stabilities61).
Because of this view, we investigated whether FoldX, given that
it uses a WT template as a basis for mutant generation, is biased
toward the template due to relative “oversampling” (by the
experimental time average) of this state. The simplest way to
test this is to use a mutant sequence as the input for the
generation of a structural template and compute the WT ΔΔG
from the mutant, i.e., performing the calculation in “reverse”.
The FoldX computations for these reverse mutations for

PM1L are presented in Table 4 and are plotted against

experimental T50 in Figure 5. On average, a reverse mutation is
∼1 kcal/mol less stabilizing than expected from sign reversal of
ΔΔG for the forward mutation. This systematic error is
comparable in magnitude to the maximum error observed for
multiple repetitions of the same (forward) mutation from the
original WT, vide supra. Performing forward mutation again,
using the FoldX WT structure generated from the reverse
mutation, produces a value of ΔΔG that is on average 0.5 kcal/
mol lower than for the initial forward mutation. The only
exception is 6C8_S224G, for which ΔΔG increases with 0.4
kcal/mol. This brings the predicted ΔΔG of 6C8_S224G closer
to 6C8_D281E, which has the same T50 (66.3 °C). Never-
theless, 6C8_S224G still yields the largest error (MaxE = 4.96
°C) in the prediction of T50, see Table 5.
This mutation was generally one of the most difficult to

predict, with its stability repeatedly overestimated. To under-
stand this, the PM1L MD trajectory was inspected around
position 224. The S224 side chain forms a very persistent
hydrogen bond (present for 99% of the 20 ns simulation time)
with R242 (Figure 6a). This intra-β-sheet hydrogen bond
occurred between the turn containing S224 and a neighboring

β-strand. FoldX does not account properly for this favorable
interaction and incorrectly predicts Gly to be more stable.
We subsequently investigated the MD trajectory around

position 281 to explain why the 6C8_D281E mutant was
predicted correctly. The experimental destabilization of
6C8_D281E (T50 = 66.3 °C) relative to 6C8 (T50 = 68.4
°C) can be understood by noting that the short Asp side chain
provides optimal geometry for formation of the hydrogen bond
Asp281···Thr190, creating an interaction between the solvent-
exposed ends of two β strands (Figure 6b). This hydrogen
bond persists for 73% of the 20 ns MD simulation of PM1L.
The additional size of Glu in the 6C8_D281E mutant impairs
this interaction, and the longer Glu side chain may increase the
entropy of the unfolded state and results in a larger penalty for
exposure to solvent. FoldX accounts correctly for these effects,
providing the correct ranking of 6C8_D281E relative to 6C8.
Altogether, these findings demonstrate that the standard

repaired FoldX protocol systematically favors the initial
template (typically the WT structure) over mutants by roughly
1 kcal/mol, and that this bias may be reduced by repeated

Table 4. Influence of Reverse Mutation on FoldX ΔΔG
(PM1L Mutants)

FoldX ΔΔG (kcal/mol)

mutant
WT→MUT
(normal)

MUT→WT
(reverse)

WT→MUT →
WT→MUT

6C8 6.3 −5.2 5.6
6C8_S454F_REVERT 2.1 −1.4 1.6
6C8_P393H 10.9 −9.9 10.0
6C8_D281E 6.2 −5.3 5.6
6C8_S224G 2.7 −2.0 3.1
16B10 6.2 −4.8 5.9
11A2 4.6 −3.1 4.3
1D11 2.3 −1.5 1.9
OB-1 −0.3 1.1 −0.9
correlation coefficient −0.74 0.78 −0.76

Figure 5. Hysteresis in the FoldX prediction of ΔΔG for PM1L
mutants. ΔΔG is plotted against T50 for (a) normal forward mutations
using the PM1L homology model as WT (WTHomo→MUT), (b)
reverse mutations generating WT from mutant (MUT→WTFoldX), and
(c) forward mutations from the FoldX-generated WT (WTHomo→
MUT→WTFoldX→MUT).
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mutation and reverse mutation. Also, relative to the repaired
single PM1L calculation (Figure 4b), the hysteresis protocol
results in slight improvement of the correlation between ΔΔG
and experimental data (r = −0.77 (r2 = 0.60) vs r = −0.74 (r2 =
0.55)) for repaired standard calculation. The errors in T50
prediction are smaller for the hysteresis protocol (MAE = 2.74
°C, RMSE = 3.21 °C) compared to the repaired single
calculation (MAE = 2.81 °C, RMSE = 3.36 °C), see Table 5.
The fact that the majority of protein mutations are generally

destabilizing26 is reflected in the FoldX training set, which
mainly contains destabilizing mutants. This has probably
affected the parametrization to cause a general bias toward
the initial template during parametrization of weight factors
with the repair algorithm applied. This is an additional reason
for the recommendation to use our modified FoldX protocol.

Using MD-Averaged Input Structures for FoldX. We
have seen that the ΔΔG computations for laccases are sensitive
to the FoldX protocol, including the structural input (Figure 3)
and local optimization (the repair function). To investigate the
influence of MD ensemble-averaging on ΔΔG predictions, the
last 50 frames (snapshots) from each MD simulation were used
as input structures for FoldX, and ΔΔG was calculated as the
average of the 50 frames without use of the repair command.
As seen in Figure 7a, while any particular snapshot (Figure 3)

used for input produces poor results, correlation upon 50-
averaging is similar to when a single crystal structure is
employed (Figure 4c; r ∼ −0.91, r2 ∼ 0.83). This is consistent
with MD probing dynamic changes in each frame that are
averaged out in the crystal structure and, in line with the
discussion above, suggests that FoldX’s local optimization
impairs this time-average to some extent. Thus, local structure
optimization for proteins destroys the time-average properties
of the protein, including the determination of accurate ΔΔG.
Restricted MD could possibly change this, as it has yielded
good results in the CASP structure prediction competition.62

However, the results in Figure 7 show that one can avoid
restraints to the simulations and simply calculate the average
ΔΔG for ∼50 equilibrated snapshots to obtain correlations
comparable to the time-averaged crystal structure.
The correlations for PM1L (Figure 7b) are similar to the

single repaired run (Figure 4b) but worse than the unrepaired
run (Figure 4d). A plausible explanation for the better
correlation for the unrepaired run is that neither the FoldX
repair function nor MD averaging can provide the time
averaging afforded by the high quality crystal structure template
on which the PM1L homology model was based.
For both laccases, MD compressed the ΔΔG energy scale

relative to non-MD FoldX runs, especially for PM1L, resulting
in more realistic free energy differences. A consequence of the
energy-scale compression is smaller average errors, see Table 6.
In addition, for TvLIIIb, the average error in prediction of

t1/2 is slightly lower for the MD 50-averaging (MAE = 22.69
min, RMSE = 29.71 min) compared to the single repaired case
(MAE = 29.24 min, RMSE = 29.95 min), while the maximum

Table 5. Mean Absolute, Root-Mean-Square, and Maximum Errors for FoldX Hysteresis Runs on PM1L Mutantsa

WT→MUT (normal) MUT→WT (reverse) WT→MUT →WT→MUT

ΔΔG (kcal/mol) T50 (°C) ΔΔG (kcal/mol) T50 (°C) ΔΔG (kcal/mol) T50 (°C)

MAE 1.76 2.83 1.58 2.53 1.66 2.74
RMSE 2.09 3.37 1.89 3.02 1.94 3.21
|MaxE| 3.88 (S224G) 6.26 (S224G) 3.64 (S224G) 5.83 (S224G) 3.00 (S224G) 4.96 (S224G)

aThe mutants with maximum errors are given in parentheses.

Figure 6. Close-up view of selected mutation sites in the 20 ns MD
simulation of the PM1L homology model. (a) The hydrogen bond
between S224 and R242. (b) The hydrogen bond between the D281
and T190 side chains. (c) The T1 copper (orange ball) and P393
(green sticks) with the associated loop involving residues 383−394
(green cartoon).
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error is larger for the MD-averaged case (MaxE = 49.35 min for
F162A) compared to the single repaired case (MaxE = 39.72
min for F162A/F332A). The maximum error in t1/2 prediction
also increased from the repaired to unrepaired TvLIIIb
structure (see above).
For PM1L, the mean errors of prediction of T50 are increased

by the MD averaging relative to both repaired and unrepaired
single runs (Table 3), while the maximum error (MaxE = 5.33
°C for S224G) is smaller than the repaired (MaxE = 6.22 °C for
S224G) but not the unrepaired (MaxE = 4.88 °C for S224G)
single FoldX run. The larger mean errors in this case reflect the

poorer correlation obtained with MD averaging for PM1L as
discussed above.

Quantitative Structure Property Relationships. As
described in the original FoldX article,19 the energy terms
used to compute ΔΔG from the 3D structure are weighted
during parametrization. Since the training set excluded
multicopper proteins, a substantially reduced performance for
such proteins could be anticipated, as seen from the error
statistics of PM1L using the standard FoldX protocol. However,
the errors for TvLIIIb are comparable to optimized proteins,
and the significant correlations between ΔΔG and experimental
data for both laccases do not suggest a special problem for
laccases, in particular given the possible improvements
discussed above.
A complete overview of correlations between FoldX energy

terms and experimental data is provided in the Supporting
Information. Several energy terms correlate strongly with
experimental stability for both mutants. Notably, high
correlations were found for the hydrophobic desolvation term
(“Solvation Hydrophobic”; r = −0.91 and −0.87 for TvLIIIb
and PM1L, respectively) and for the van der Waals term (r =

Figure 7. FoldX ΔΔG MD average versus (a) t1/2 for TvLIIIb mutants and (b) T50 for PM1L mutants. The average was based on FoldX ΔΔG
calculated for each of the last 50 frames of the MD simulations.

Table 6. Mean Absolute, Root-Mean-Square, and Maximum
Errors of FoldX Protocols Based on Averaging over 50
Unrepaired MD Snapshots

TvLIIIb PM1L

ΔΔG
(kcal/mol) t1/2 (min)

ΔΔG
(kcal/mol) T50 (°C)

MAE 0.37 22.69 1.03 3.10
RMSE 0.49 29.71 1.17 3.53
|MaxE| 0.81 (F162A) 49.35 (F162A) 1.77 (S224G) 5.33 (S224G)

Figure 8. Scatter plots of selected FoldX ΔΔG energy component terms (“van der Waals” and “Solvation Hydrophobic”) versus experimental data.
The FoldX calculations were single runs based on “unrepaired” structures.
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−0.90 and −0.80 for TvLIIIb and PM1L, respectively), as seen
in Figure 8. Single FoldX energy terms were particularly
successful in predicting experimental stability trends for the
PM1L mutants: The hydrophobic desolvation term (i.e., the
difference in aqueous desolvation and protein resolvation of the
residues in the mutant vs WT) produces better trends (r =
−0.87, r2 = 0.76) than the overall energy function (r = −0.82, r2
= 0.67) and substantially reduces mean and maximum T50
errors (MAE = 1.69 °C, RMSE = 2.11 °C, and MaxE = 3.66 °C
(6C8) for hydrophobic desolvation vs MAE = 1.98 °C, RMSE
= 2.42 °C, and MaxE = 4.88 °C (S224G) for the total energy).
In contrast, for TvLIIIb, despite a similar correlation, the

errors for t1/2 are higher when using the single hydrophobic
desolvation term (MAE = 28.15 min, RMSE = 29.59 min,
MaxE = 43.99 min (F162A/F332A)) compared to ΔΔG (MAE
= 20.78 min, RMSE = 27.06 min, MaxE = 42.76 min (F162A/
F332A)). The double mutant, F162A/F332A, is always the
most difficult to predict for the TvLIIIb set, reflecting the
general problem with prediction of multisite mutants.
Several of the FoldX energy terms are also substantially

correlated among themselves. The correlation r between
hydrophobic solvation and van der Waals terms is 0.97 and
0.93 for unrepaired and repaired structures, respectively,
explainable by the fact that most of the studied site mutations
preserve chemical properties (charge, polarity) as the WT (see
Table 1). The electrostatic term is less important in the studied
cases, since for TvLIIIb, all mutations are F to A, i.e., purely
hydrophobic, and most of the mutations of the PM1L data set
are either polar to polar, unipolar to unipolar, or charged to
charged. Thus, the energy terms performing well for the
present mutations are not likely to be optimal for mutations
that markedly change the properties of the site; such mutations
tend to have low probability, low evolution rate, and commonly
lead to unstable or nonfunctional protein.
Since one term can describe most of the correlation and

reduce errors, the FoldX energy function may be compressed
for laccases. This is consistent with more advanced sampling in
linear interaction free energy methods where only a few terms,
usually electrostatic and van der Waals, suffice,60 and with the
fact that from a physical point of view, there are only two
nonbonded energy terms present in standard molecular
modeling force fields, i.e., an electrostatics and a van der
Waals term.
To explore these issues further, QSPR was established to

investigate the room for improvement by a different weighting
of energy terms. Due to its small size, the TvLIIIb data set was
not considered in QSPR analysis. Two descriptor matrices for
the PM1L mutants were employed, comprised by the FoldX
energy terms calculated using the repaired and unrepaired
homology model, respectively.
The least stable mutant, 6C8_P393H (T50 = 62.5 °C) was an

outlier in the first generation of QSPR models, and was
therefore excluded from subsequent models. While not an
outlier in ΔΔG prediction, although the error in ΔΔG is often

large, the QSPR models are restricted to employ a maximum of
three FoldX ΔΔG component energy terms, preventing the
inclusion of noisy descriptors that might otherwise have
reproduced the particular instability of the 6C8_P393H mutant
by overfitting. Inspection of the MD-averaged PM1L structure
(Figure 2 right and Figure 6c) shows that P393 is found at the
proximal end of a loop comprised by residues 383−394
partially covering the T1 site. The P393H mutation likely
impairs the backbone conformation of this loop and increases
its flexibility, consequently lowering the thermostability of the
mutant while increasing its activity due to increased substrate
access (smaller KM). This mechanism of destabilization is
unlikely to be represented by a few FoldX energy terms such as
in the QSPR models below.
The parameters for the QSPR models generated for the eight

remaining PM1L mutants are shown in Table 7, and the
predicted versus measured plots for the models are shown in
Figure 9. Both the QSPR models based on the repaired and the
unrepaired structure consist of two latent variables and three
energy terms. Both models are of high quality, although q2 for
the unrepaired model (q2 = 0.92) is higher than for the repaired
model (q2 = 0.84). This is consistent with our recommendation
of the unrepaired approach for laccases based on overall FoldX
calculations.
As suspected from the individual terms (Figure 8), the most

important terms included into each QSPR model were the van
der Waals term and the hydrophobic solvation term for the
repaired and unrepaired protocols, respectively. In both QSPR
models, the second and third terms are a steric and an entropic
term. For the repaired protocol, van der Waals clashes,
representing inter-residue close contacts, are important,
whereas the steric term for the unrepaired protocol is the
torsional clash, representing intraresidue conformational strain.
These terms are uncorrelated and most likely differ because the
repair protocol relaxes some local strain. Significant correlation
(r = 0.85, r2 = 0.72) exists between the main-chain and side-
chain entropic terms (terms 10 and 9 in the FoldX function)
for the repaired and unrepaired model. Thus, the QSPR models
for both protocols reflect the same physics, with exception of
the descriptor encoding steric clashes due to the difference in
relaxation repair, which is not surprising as the repair function
minimizes steric clashes.
The best QSPR model was obtained from an unrepaired

protocol (Figure 9b): The RMSE for T50 predictions based on
regression to FoldX ΔΔG is 1.98 °C, while the RMSECV of the
QSPR is 0.81 °C for leave-one-out cross validation. Although
the exclusion of the 6C8_P393H mutant from the QSPR
model excludes a strict comparison, we note that the QSPR
model is based on only three energy terms (Table 7, eq 2) and
is robust under cross-validation when leaving two samples out
(Figure 9c) with a leave-two-out-RMSECV of 0.88 °C. Thus,
the physical terms defining this QSPR model are likely to also
define the experimentally observed stability of the laccases. This
insight should be of value in understanding contributions to

Table 7. QSPR from FoldX Energy Components

eq system regression equationa
latent

variables q2 RMSECV

1 PM1L
repaired

T50 = −2.31 × [(04) van der Waals] − 0.52 × [(08) van der Waals clashes] + 0.96 × [(10)
entropy main chain] + 71.39

2 0.84 1.15 °C

2 PM1L
unrepaired

T50 = −1.00 × [(07) solvation hydrophobic] + 4.58 × [(14) torsional clash] + 1.99 × [(09)
entropy side chain] + 64.06

2 0.92
(0.91)b

0.81 °C (0.88
°C)b

aThe FoldX numbering of components is indicated in parentheses before each descriptor. bLeave-two-out cross-validated.
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laccase stability and may be useful in predicting more stable
multisite mutants of fungal laccases relatively far away from the
WT in sequence space.
In experiments, the F454S mutation caused significant

thermal destabilization while at the same time substantially
increasing enzyme activity. This stability-activity trade-off was
explained by noting that Ser in the F454S mutant enables a new
hydrogen bond, probably exerting a pull on the helical segment,
where one of the T1 copper coordinating histidines (His555) is
located. The elongated His−Cu bond distance reduces electron
density and thus increases the electronegativity (i.e., redox
potential) of the T1 copper but reduces enzyme stability.
Experimental reversal of F454S yielded the 6C8_S454F_RE-
VERT mutant with fully restored thermal stability.36 In the
present work, FoldX correctly produces a substantially smaller
value of ΔΔG for the 6C8_S454F_REVERT mutant relative to
6C8. Since FoldX does not explicitly model the ligand−metal
interaction, the qualitatively correct ΔΔG is likely due to
significant stabilizing contributions from Phe to the FoldX

terms “Solvation Hydrophobic” and “van der Waals” as seen
from the scatter plots of these descriptors versus experimental
stability in Figure 8.
The 16B10 mutant was another result of efforts to improve

the thermostability of PM1 laccases.63 16B10 differs from 6C8
by two mutations, A361T and S482L, and is substantially more
thermostable (T50 = 71.0 °C) than 6C8 (T50 = 68.4 °C) with
∼1/3 activity. This is yet another example of the stability−
activity trade-off in laccases that would be of substantial interest
to understand in molecular terms.
Stabilization mechanisms by A361T and S482L differ as one

is a hydrophobic to polar, the other a polar to hydrophobic
mutation: Ala361 is exposed in the loop composed by residues
Thr361−Val370, and the introduced Thr361 hydrogen bonds
to Val370 CO and the Ser372 side chain, stabilizing this
loop. In contrast, Ser482 is located at the beginning of the C-
terminal α-helix. A hydrogen bond between Ser482 and the
backbone CO of Pro478 is observed in the PM1L MD
trajectory (Supporting Information, Figure S3A). Disruption of
the i − fourth (or i + fourth) backbone hydrogen bond in α-
helices is common for serine and is associated with increased
flexibility64 and plausibly destabilization. The S482L mutation is
likely favorable because Leu does not form α-disruptive
interactions. Also, the hydrophobic Leu side chain may have
more favorable hydrophobic interactions,63 which upon
inspection of the MD-averaged structures are the nearby
hydrophobic residues Ala477 and Leu482. The additional Leu
is unfavorable in the unfolded state, where hydrophobic side
chains infer a penalty favoring folding.
FoldX in its standard version assigns similar ΔΔG within the

uncertainty of the method for 6C8 and 16B10 except in the
unrepaired runs, where the correlation agrees well with
measured T50 (Figure 4, data points at 68 and 71 °C). Similar
stability is also obtained by direct comparison of the mutants
using the 6C8 structure as FoldX input to generate 16B10 (the
five-repetition average ΔΔG is 0.1 kcal/mol for the double
mutation). Thus, despite having the correct trends of the two
mutants in the overall data set, FoldX cannot reproduce a
significant stabilizing effect of the double-mutation from 6C8 to
16B10.
To understand the drivers of the experimentally observed

difference, the two single-step mutations were instead studied
individually in FoldX as 6C8_A361T and 6C8_S482L from
6C8. The average ΔΔG for the 6C8_A361T mutant was 2.0
kcal/mol, implying that FoldX does not predict the stabilization
mode of Thr361 discussed above. This is explained by the
FoldX-generated 6C8_A361T structure, where hydrogen
bonding with Ser372 is disallowed by its orientation
(Supporting Information, Figure S3B). However, the average
ΔΔG (−1.9 kcal/mol) for S482L indicates that FoldX captures
the stabilizing effects discussed above for this mutation. When
these mutations are done together, the net result is nearly
neutral in FoldX due to the poor sampling of the hydrogen
bond introduced by A361T. Substantial stabilizing contribu-
tions from “Solvation Hydrophobic” and “van der Waals”
suggest that the principal stabilizing effect is the increased
hydrophobicity of the Leu side chain more than the disruption
itself, which is why FoldX succeeds for this mutation (full
energy components are given in Supporting Information,
Tables S3−S5). When run in reverse, the above mutations
showed no artificial stabilization of the FoldX-generated 6C8
input structure. In summary, the precise ranking of 6C8 or
16B10 depends on the ability to sample well the hydrogen

Figure 9. Predicted versus experimental T50 for QSPR models for
PM1L mutants. Predictions are from the leave-one-out cross-validated
(LOOCV) QSPR model based on (a) the repaired PM1L structure,
(b) the unrepaired PM1L structure, and (c) the leave-two-out cross-
validated (LTOCV) QSPR model based on the unrepaired PM1L
structure.
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bond introduced by A361T, whereas S482L is well-modeled.
While giving some insight into the drivers of the stability of the
two mutations, a more accurate quantification might be
obtained by future optimization of the hydrogen-bond sampling
in FoldX.
The PM1L mutant set, due to its size and considerable

variation in both stability and activity, may be useful for
analyzing the stability/activity trade-off in laccases. However, it
is not meaningful to evaluate the correlation directly, since the
activity is affected by the combined effect of mutations in the α-
factor prepro-leader as well as the mature protein, whereas
stability pertains to the mature expressed protein only. For
example, 7H2 and 6C8 differ only by a single mutation in the
prepro-leader and have total activity increases (TAI) of 24 290
and 43 720, respectively. For mutations with the same prepro-
sequence, the following was found: 6C8 (TAI = 43720),
6C8_S454G (TAI = 21860), 6C8_P393H (TAI = 65580),
6C8_D281E (TAI = 56836), 6C8_S224G (TAI = 56836), and
OB-1 (TAI = 34000).37 As shown in Figure 10a, TAI is nearly
perfectly anticorrelated (r = −0.94, r2 = 0.88) with T50 for these
mutants. Interestingly, the hydrophobic solvation term
correlates significantly with TAI (Figure 10b). These types of
relations may be useful in circumventing the stability-function
trade-off in protein engineering, in this case specifically for
laccases.

■ CONCLUSIONS

In this work, we have examined if it is possible to reproduce
and rationalize the stability of mutations in industrially
important high-redox potential fungal laccases TvLIIIb and
PM1L. A standard FoldX protocol using a single, repaired
crystal structure (TvLIIIb) or homology model (PM1L) as
structural input gave correlation coefficients, r, between ΔΔG
and experimental data of −0.90 and −0.74 (0.81 and 0.55 for
r2) for the TvLIIIb and PM1L data sets, respectively. These
correlations imply that standard FoldX use provides a fair
description of the stability trends of the overall data sets,
although individual errors are in some cases substantial (up to
∼4 kcal/mol). As expected, the multimutant set PM1L was
more difficult to predict than the predominantly single mutant
TvLIIIb set.
Local optimization (the “repair” function) was omitted in a

second FoldX run, surprisingly yielding a better correlation (r =
−0.82, r2 = 0.67) with experimental data for the PM1L set and
a minor improvement for the TvLIIIb set (r = −0.92, r2 = 0.85)
relative to repaired runs. Furthermore, the mean absolute and

root-mean-square errors of prediction of t1/2 and T50 were
lowered relative to the repaired runs. Similar improvements
were observed for the energy components comprising ΔΔG.
Robustness of the predictions was probed by 10-fold

repetition of the FoldX calculations. This resulted in a 10-
average of r = −0.94 (r2 = 0.88) for the unrepaired protocol
compared to r = −0.89 (r2 = 0.79) for the repaired protocol for
TvLIIIb. For PM1L, correlations were similar (r = −0.78, r2 =
0.61) for both methods. Omitting the repair function
approximately doubled the standard deviation (i.e., decreased
the precision) for both data sets but reduced mean errors (i.e.,
improved accuracy) in all cases by up to 0.3 kcal/mol and
universally produced smaller maximum errors. Thus, the FoldX
repair function is less applicable to proteins outside the
parametrization range of FoldX.
A bias toward the input template was identified in a series of

WT to mutant (“forward”) and mutant to WT (“reverse”)
FoldX calculations for the PM1L set, with reverse mutations on
average ∼1 kcal/mol less stabilizing than from sign reversal of
ΔΔG for the forward mutations. The WT bias may originate
from the dominance of destabilizing mutants in the FoldX
training set. A second round of forward mutations using FoldX
generated WT structures as input reduced bias by ∼0.5 kcal/
mol and reduced average errors of T50 (MAE by 0.07 °C,
RMSE by 0.15 °C) relative to the standard protocol. Thus,
successive forward and reverse mutations (or the average of one
forward and one backward calculation) may reduce FoldX’s
template bias to enhance accuracy outside the parametrization
range of FoldX.
A strong dependence of FoldX predictions on protein

conformation was demonstrated using snapshots from the
equilibrated part of the MD trajectories: Protein dynamics
produces conformations whose apparent stabilities correlate
poorly with the ensemble-averaged stability of the protein (i.e.,
> 1 kcal/mol). Thus, single MD snapshots yielded poor
correlations with ΔΔG, whereas the average ΔΔG from 50
individual FoldX calculations on distinct snapshots was
comparable to results from the crystal structure: 50 MD
snapshots restore correlation (r ∼ 0.7−0.9, r2 ∼ 0.5−0.8) and
provide a root-mean-square accuracy of ∼1.2 kcal/mol for
ΔΔG or 3.5 °C for T50 for the PM1L data (Table 6), suggesting
that the time average of the crystal structure is mimicked. In
lieu of a crystal structure, a high quality homology model or an
ensemble average over ca. 50 equilibrated MD snapshots is
expected to provide good results. Analysis of properties from
MD using fewer snapshots will be uninformative.

Figure 10. Scatter plots of Total Activity Improvement (TAI) against (a) experimental T50 and (b) the FoldX energy term “Solvation Hydrophobic”
calculated from a single unrepaired FoldX run. Only PM1 mutants (6C8, 6C8_S454G, 6C8_P393H, 6C8_D281E, 6C8_S224G, and OB-1) with the
same prepro leader sequence are considered.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci300398z | J. Chem. Inf. Model. 2012, 52, 3028−30423040

http://pubs.acs.org/action/showImage?doi=10.1021/ci300398z&iName=master.img-010.png&w=366&h=130


We found that several FoldX components (notably
“Solvation Hydrophobic” and “van der Waals”) correlate
strongly with experimental laccase stabilities, lending promise
of a simplified predictor of laccase stability. Quantitative
structure property relationships gave excellent predictions (q2 =
0.92, RMSECV = 0.81 °C) with a small subset of FoldX energy
terms, demonstrating that FoldX effortlessly can be recalibrated
to predict stabilities for new classes of proteins.
No attempts were made to model the potentially extensive

glycosylation found in the native laccases, yet the correlations
between FoldX predictions and experimental stabilities were
comparable to or better than for random proteins in previous
benchmarks. This suggests that glycosylation may shift a
common stability offset for all the mutants but has a negligible
effect on their relative stabilities.
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