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Abstract: We study the anisotropic nature of the Kerr nonlinear response
in a beta-barium borate (β -BaB2O4, BBO) nonlinear crystal. The focus
is on determining the relevantχ (3) cubic tensor components that affect
interaction of type I cascaded second-harmonic generation. Various exper-
iments in the literature are analyzed and we correct the datafrom some of
the experiments for contributions from cascading as well asfor updated
material parameters. We find that the Kerr nonlinear tensor component
responsible for self-phase modulation in cascading is considerably larger
than what has been used to date. We evaluate the impact of using such a
cubic anisotropic response in ultrafast cascading experiments.
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1. Introduction

Cascaded second-harmonic generation (SHG) describes the case where the frequency-
converted second harmonic (SH) is strongly phase mismatched, and this may create a Kerr-like
nonlinear phase shift on the fundamental wave (FW). Since the early discovery of this cascaded
self-action nonlinearity [1,2], cascaded SHG was for a long time overlooked until DeSalvo et
al. measured a negative nonlinear phase shift from phase-mismatched SHG using the Z-scan
method [3] (for an early comprehensive review on cascading, see [4]). The exciting promise of
cascading nonlinearities is seen directly from the scalingproperties of the Kerr-like nonlinear
index it generates:nI

2,casc∝ −d2
eff/∆k, wheredeff is the effective nonlinearity of the quadratic

interaction. By simply changing the phase mismatch parameter ∆k we therefore have a Kerr-
like nonlinearity that can be tuned in sign and strength. A particularly interesting and attractive
property is that a self-defocusing Kerr-like nonlinearitynI

2,casc< 0 is accessible by having a
positive phase mismatch∆k > 0.

A popular crystal for cascading experiments is beta-barium-borate (β -BaB2O4, BBO), see
e.g. [5–15]. It has a decent quadratic nonlinear coefficient, and because the crystal is anisotropic
it can be birefringence phase-matched for type I (oo → e) SHG. For femtosecond experiments
it has the important properties of a low dispersion, a high damage threshold, and a quite low
Kerr self-focusing nonlinearity; the latter is important for cascading as we discuss later, because
the material Kerr nonlinearity will compete with the induced cascading nonlinearity. The main
goal of this paper is to analyze experiments in the literature where the Kerr nonlinear refractive



index was measured in BBO [13–20], and for the fist time extract all four tensor components
that are relevant to describe the anisotropic nature of the cubic nonlinearity.

While the anisotropy of the quadratic nonlinearity is extensively used for optimizing the
phase-matching properties and maximizing the quadratic nonlinear coefficients in nonlinear
crystals, the case is different when it comes to treating thecubic nonlinearities: the anisotropic
nature has often been neglected when studying self-phase modulation (SPM) effects from the
Kerr nonlinear refractive index, in contrast to the case of third-harmonic generation, as evi-
denced even in early studies [21,22]. Here we show which anisotropic nonlinear susceptibility
components the experimental literature data represent. The experimental data will be analyzed
and we correct the reported values for cascading contributions if necessary. We eventually ob-
tain complete information of all four relevant tensor components for the BBO cubic nonlinear
susceptibility. Our results show that the tensor componentaffecting the SPM of the ordinary

wave,c11 = χ (3)
XXXX = χ (3)

YYYY , is very well documented, and the corrected literature dataagree
extremely well in the near-IR with the popular two-band model [23]. The corrected data we
present shows thatc11 is substantially larger than what has been used so far in simulations in
the literature, and an important consequence for cascaded SHG is that this reduces the range
of phase-mismatch values that give a total defocusing nonlinearity. In contrast experiments
measuring the tensor components that affect the extraordinary wave interaction are more scarce,
so new measurements are necessary in order to get more accurate and reliable values. We also
assess the impact of using the anisotropic Kerr response in simulations of cascaded SHG, and it
turns out that for BBO the optimal interaction angles are such that the anisotropy plays a minor
role in the wave dynamics.

As to analyze the experiments properly and rule out any misunderstandings in the definitions,
the foundation of the paper is a careful formulation of the propagation equations of the FW
and SH waves under slowly-varying envelope approximation,see appendixA. These include
the anisotropic nature of the frequency conversion crystalin formulating the effective cubic
nonlinear coefficients. With this theoretical background,we then analyze experiments from
the literature that report Kerr nonlinearities for BBO. When correcting the experimental data
for cascading contributions it turns out that the most important Kerr tensor component, which
controls the SPM of theo-polarized FW, is considerably higher than what has been reported
and used until now. The analysis presented here should help understanding what exactly has
been measured, and put the results into the context of cascaded quadratic soliton compression.

2. Cascading background

In order to understand the importance of knowing accuratelythe Kerr nonlinear index, let us
explain first how cascading works. The cascaded Kerr-like nonlinearity can intuitively be un-
derstood from investigating the cascade of frequency-conversion steps that occur in a strongly
phase-mismatched medium [4]: After two coherence lengths 2π/|∆k| back-conversion to the
FW is complete, and as∆k 6= 0 the SH has a different phase velocity than the FW. Thus, the
back-converted FW photons has a different phase than the unconverted FW photons, simply be-
cause in the brief passage when they traveled as converted SHphotons the nonzero phase mis-
match implies that their phase velocities are different. For a strong phase mismatch∆kL ≫ 2π ,
this process repeats many times during the nonlinear interaction length, and in this limit the
FW therefore effectively experiences a nonlinear phase shift parameterized by a higher-order
(cubic) nonlinear indexnI

2,cascgiven as [3]

nI
2,casc=− 2ω1d2

eff

c2ε0n2
1n2∆k

(1)



Fig. 1. (a) The definition of the crystal coordinate systemXY Z relative to the beam prop-
agation directionk. This convention is in accordance with the IRE/IEEE standard [27]. (b)
Top view of the optimal crystal cut for type Ioo → e SHG in BBO, which hasφ = −π/2
andθ = θc for perpendicular incidence of ano-polarized FW beam, and thee-polarized
SH is generated through type Ioo → e SHG. The specific value of the cut angleθc depends
on the wavelength and the desired application. Angle-tuning the crystal in the paper plane
will change the interaction angleθ . Capital lettersXY Z are traditionally used to distinguish
the crystal coordinate system from the beam coordinate systemxyz that has its origin in the
k-vector propagation direction.

whereω1 is the FW frequency,n1 and n2 the linear refractive indices of the FW and SH,
∆k = k2 − 2k1, andk j = n jω j/c are the wave vectors. The cascaded cubic nonlinearity will
compete with the material cubic nonlinearity (the Kerr nonlinear indexnI

2,Kerr), and the total
nonlinear refractive index change experienced by the FW canessentially be described as

∆n = nI
2,totI1 = (nI

2,casc+ nI
2,Kerr)I1 (2)

whereI1 is the FW intensity. Due to the competing material Kerr nonlinearity a crucial require-
ment for atotal defocusing nonlinearitynI

2,tot < 0 is that the phase mismatch is low enough so
that |nI

2,casc|> nI
2,Kerr (the so-called Kerr limit). When this happens, cascaded SHGcan gener-

ate strong spectral broadening through SPM on femtosecond pulses, which can be compensated
in a dispersive element. In a pioneering experiment by Wise’s group femtosecond pulse com-
pression was achieved this way [5]. Since the nonlinearity is self-defocusing the pulse energy
is in theory unlimited as self-focusing effects are avoided[5], and it can even be used to heal
small-scale and whole-scale self-focusing effects [6]. Another very attractive feature of the neg-
ative self-defocusing nonlinearity is that temporal solitons can be excited in presence of normal
(positive) group-velocity dispersion, which means anywhere in the visible and near-IR. With
this approach Ashihara et al. [7] achieved soliton compression of longer femtosecond pulses.
Numerous experiments over the past decade have since been motivated by soliton compres-
sion of energetic pulses to few-cycle duration [9,11,24–26]. Since the defocusing limit and the
soliton interaction depend critically on thenI

2,Kerr value, knowing an exact value of thenI
2,Kerr

coefficient is crucial.

3. Anisotropic quadratic and cubic nonlinearities in uniaxial crystals

In a uniaxial crystal, the isotropic base-plane is spanned by the crystalXY axes, and light
polarized in this plane is ordinary (o-polarized) and has the linear refractive indexno. The
optical axis (crystalZ-axis, also called thec-axis) lies perpendicular to this plane, and light
polarized in this plane is extraordinary (e-polarized) and has the linear refractive indexne. In a
negative uniaxial crystal like BBO,no > ne. The propagation vectork in this crystal coordinate
system has the angleθ from theZ-axis and the angleφ relative to theX-axis, cf. Fig.1(a), and
thee-polarized component will therefore experience the refractive indexne(θ ) = [n2

o/cos2 θ +
n2

e/sin2 θ ]−1/2, while theo-polarized light always has the same refractive index.
Degenerate SHG can either be noncritical (type 0) interaction, where the FW and SH fields

are polarized along the same direction, or critical (type I)interaction, where the FW and SH are



cross-polarized along arbitrary directions in the(θ ,φ) parameter space. In type 0 the FW and
SH are usually polarized along the crystal axes (θ = 0 orπ/2) since this turns out to maximize
the nonlinearity, and it is called noncritical because the interaction does not depend critically on
the propagation angles (both nonlinearity and phase matching parameters vary little with angle).
A great advantage of this interaction is that there is littleor no spatial walk off (a consequence
of the choiceθ = 0 orπ/2). In type Iθ andφ values can often be found where phase matching
is achieved. This interaction is very angle-sensitive, which is why it is called critical interaction.

The slowly-varying envelope equations (SVEA) for degenerate SHG are derived in Appendix
A. There the quadratic and cubic ”effective” anisotropic nonlinear coefficients were symboli-
cally introduced. Below we show the expressions for these coefficients relevant for SHG in
BBO, which belongs to the crystal class 3m, and in all cases we consider the reduced numbers
of tensor components that come from adopting Kleinman symmetry (which assumes disper-
sionless nonlinear susceptibilities [28, Ch. 1.5]); thus BBO has 3 independentχ (2) tensor com-
ponents and 4 independentχ (3) tensor components. An excellent overview of the quadratic and
cubic nonlinear coefficients in other anisotropic nonlinear crystal classes is found in [19].

For an arbitrary input (i.e. FW) polarization various SHG processes can come into play (oo→
o, oo → e, oe → e, oe → o, ee → e, andee → o). This includes both type 0, type I and type II
(nondegenerate SHG, where the FW photons are cross-polarized). Their respectivedeff-values
for a crystal in the 3m point group (which also includes lithium niobate) are [19]

dooo
eff =−d22cos3φ (3)

dooe
eff = doeo

eff = d31sinθ − d22cosθ sin3φ (4)

doee
eff = deeo

eff = d22cos2 θ cos3φ (5)

deee
eff = d22cos3 θ sin3φ +3d31sinθ cos2 θ + d33sin3 θ (6)

Note that the correct evaluation of the effective nonlinearity requires to take into account the
spatial walk-off angleρ = arctan[tan(θ )n2

o/n2
e]−θ (for a negative uniaxial crystal) through the

substitutionθ → θ +ρ in the above equations. Even ifρ is not insignificant in BBO (around
2−3◦ for the typical angles used) the difference indeff is below a few percent, so it is ignored in
this paper. BBO is usually pumped witho-polarized light as the quadratic nonlinearity is largest
for this configuration (d22 is the largest tensor component, see App.C), and because theoo → e
interaction can be phase matched by a suitable angleθ . For such an interaction, the crystal is
cut soφ =−π/2 as to optimize the nonlinearity (it is here relevant to mention thatd22 andd31

has opposite signs in BBO). This has the direct consequence thatoo→ o interaction is zero. For
this reason, when studying BBO pumped witho-polarized light in a crystal withφ = −π/2,
Eq. (4) shows thatdeff = d31sinθ − d22cosθ .

Note that BBO has historically been misplaced in the point group 3, and in addition there has
been some confusion about the assignment of the crystal axes(where the mirror plane of the
crystal was taken parallel instead of perpendicular to the crystalX-axis) [29]. Unfortunately this
means that even today crystal company web sites operate withd11 as being the largest tensor
component (in the 3m point groupd11 = 0) and supply crystals apparently cut withφ = 0
(because using the point group 3 combined with a nonstandardcrystal axes definition means
thatd11cos3φ must be maximized, while with the correct point group, 3m, and correct crystal
axes assignments,d22 is the largest tensor component and sin3φ = 1 maximizes the effective
nonlinearity). In order to sort out any confusion, the optimal crystal cut is shown in Fig.1(b),
and we hereby urge crystal companies to follow the standard notation.

In AppendixA the SVEA propagation equations included also an ”effective” third-order

SPM nonlinearity,χ (3)
eff (ω j;ω j), and cross-phase modulation (XPM) nonlinearity,χ (3)

eff (ω j;ωk),
which due to the anisotropy had to be calculated specificallyfor a given crystal class and input



polarization. The SPM and XPM anisotropic cubic nonlinearities for a uniaxial crystal in the
point group 3m were found in Eqs. (B13), (B14) and (B15) in [30]. For a type I interaction
(oo → e), where the FW iso-polarized and the SHe-polarized, they are

χ (3)
eff (ω1;ω1) =c11 (7)

χ (3)
eff (ω2;ω2) =−4c10sinθ cos3 θ sin3φ + c11cos4 θ + 3

2c16sin22θ + c33sin4 θ (8)

χ (3)
eff (ω1;ω2) =

1
3c11cos2 θ + c16sin2 θ + c10sin2θ sin3φ (9)

Instead for a type 0ee → e interaction, as recently considered for cascading quadratic nonlin-
earities in lithium niobate [26] and periodically poled lithium niobate [31,32], we have

χ (3)
eff (ω1;ω1) = χ (3)

eff (ω2;ω2) = χ (3)
eff (ω1;ω2) (10)

=−4c10sinθ cos3 θ sin3φ + c11cos4 θ + 3
2c16sin22θ + c33sin4 θ (11)

We have here used the contracted notationcµm ≡ χ (3)
i jkl , where the indicesi, j,k, l can take the

valuesX ,Y,Z and [33]

for µ : X → 1 Y → 2 Z → 3

for m : XXX → 1 YYY → 2 ZZZ → 3 YZZ → 4 YY Z → 5

XZZ → 6 XXZ → 7 XYY → 8 XXY → 9 XYZ → 0 (12)

Note that by using Kleinman symmetry it is assumed that the chromatic dispersion of the non-

linearities is negligible. However, identities likeχ (3)
eff (ω1;ω1) = χ (3)

eff (ω2;ω2) = χ (3)
eff (ω1;ω2) as

expressed by Eq. (10) have empirically been found not to hold. Specifically, the tensor compo-
nents they are calculated from turn out to obey slight frequency variations that can be predicted
by frequency scaling rules, like Miller’s rule (see [34–36] and also later in Sec.4.4).

If the Kerr nonlinearity is considered isotropic, we haveχ (3)
eff (ω1;ω2) = χ (3)

eff (ω1;ω1)/3 =

χ (3)
eff (ω2;ω2)/3 [type I oo → e interaction, takingθ = 0 in Eqs. (7)-(9)], or χ (3)

eff (ω1;ω1) =

χ (3)
eff (ω2;ω2) = χ (3)

eff (ω1;ω2) [type 0ee → e interaction, cf. Eq. (10)]. These properties underlie
the parameterB that we used in our previous isotropic model [37].

A mistake often seen in the early literature on type I interaction is to takeχ (3)
SPM= χ (3)

XPM, and

this mistake gives a 3 times too large XPM term. As shown abovethe identityχ (3)
SPM = χ (3)

XPM
only holds in the type 0 configuration, where the FW and SH haveidentical polarizations, but
importantly it is not an identity that is restricted to isotropic nonlinearities as it holds for an
anisotropic medium as well. Thus, the error made in the past for type I could either come from
using directly the propagation equations for an isotropic medium and where two pulses with the
same polarization interact, but it could also come from generalizing type 0 SHG propagation
equations to type I, and forgetting the XPM properties for cross-polarized interaction.

4. Measurement of cubic nonlinearities of BBO in the literature

4.1. Remarks concerning the experimental conditions for the measurements

Most experiments aiming to measure the cubic nonlinearities have used the Z-scan method [38],
which uses a Gaussian laser beam in a tight-focus limiting geometry to measure the Kerr non-
linear refractive index. The Z-scan method measures the transmittance of a nonlinear medium
passing through a finite aperture placed in the far field as a function of the sample position (z)
measured with respect to the focal plane. As the sample is Z-scanned (i.e. translated) through



the focus of the beam, the lens effect from the Kerr nonlinearindex change will change the
amount of light recorded by the detector; this gives information about the intensity-induced
nonlinear index change∆n and thus thenI

2 coefficient, defined phenomenologically from the
general expansion

∆n = nI
2I+ nI

4I2+ · · · (13)

The intensity is rarely high enough to allow for any contributions but thenI
2 term. The super-

scriptI underlines that thenI
2 parameter is the intensity-dependent nonlinear index, as one can

also define an electric-field dependent index, typically as∆n = 1
2nE

2 |E|2. In the other sections
of this paper we usenI

2,Kerr to denote the material Kerr nonlinear refractive index andnI
2,casc

the Kerr-like cascading nonlinear index from cascaded SHG;this notation should suffice to
avoid confusion with the linear refractive index of the SH,n2. As the result of a closed-aperture
measurement can be influenced by contributions from multi-photon absorption, the aperture
can be removed (open aperture scan). ThenI

2 contributions then vanish, and only multi-photon
absorption effects remain. Thus it is possible to separate the two contributions.

There are some issues with the Z-scan method that may affect the measured nonlinear re-
fractive index. If the repetition rate is too high, there arecontributions to the measurednI

2 from
thermal effects as well as two-photon excited free carriers[39] (for more on these issues, see
e.g. [40]). Similarly, a long pulse duration can also lead to more contributions to the measured
nI

2,Kerr than just the electronic response that we aim to model, and inparticular the static (DC)
Raman contribution is measured as well. However, for BBO thefraction of the delayed Raman
effects is believed to be quite small, so we will assumte thatit can be neglected so the measured
nonlinearities correspond to the electronic response.

In the following we will analyze measurements in the literature in order to extract the four
BBO cubic tensor components in Eqs. (7)-(9). When converting from the nonlinear susceptibil-
ities cµm to the intensity nonlinear refractive index we can use Eq. (49). There is a small caveat
here, because the nonlinear index is defined for SPM and XPM terms, where only two waves
interact through their intensities, while thecµm coefficients are generally defined for four-wave
mixing. Thus, it does not always make sense to define a nonlinear refractive index (consider
e.g. thec10 component) until the total effective susceptibility is calculated, e.g. through Eqs.
(7)-(11). Thus, it is safer to keep the susceptibility notation as long as possible when calculat-
ing the effective nonlinearities. The exception is when measuring the nonlinear refractive index
of theoooo SPM interaction because the relevant nonlinear tensor component that is measured

is c11, see Eq. (7), and thus the connection betweenc11 (i.e. χ (3)
oooo) andnI

2,Kerr is unambiguous.
In the experiments in the literature the cascaded quadraticcontributions were often forgot-

ten or assumed negligible. The exact relations for the evaluating cascading nonlinearities are
derived in AppendixB. We will address these issues below by in each case calculatewhere
possible the cascading nonlinearity.

4.2. The c11 tensor component

In this section we present measurements usingo-polarized input light, which means that
the c11 tensor component is accessed by measuring the SPM componentof the o-polarized

light χ (3)
eff (ω1;ω1) = χ (3)

oooo(−ω1;ω1,−ω1,ω1). The connection to the Kerr nonlinear index is

nI
2,Kerr(ω1;ω1) = 3χ (3)

eff (ω1;ω1)/4n2
1ε0c = 3c11/4n2

1ε0c.
To our knowledge, the first measurement of any of the cubic susceptibilities was performed

by Tan et al. [13]. They investigated the cascaded nonlinearity in a 10 mm BBOcrystal cut at
θ = 22.8◦ for phase matching at 1064 nm (they claim also that the crystal is cut with φ = 0,
which is probably due to the confusion related to placing BBOin the point group 3 instead of



3m, cf. the discussion on p.6). Pumping with 30 pso-polarized pulses from a Nd:YAG mode-
locked laser, they tuned the BBO crystal around∆k = 0 in a type Ioo → e SHG interaction,
and by recording the impinging and generated pulse energiesvs. angle they found by a fitting

analysis the coefficientg = 220, whereg = χ̄ (3)
int /d2

eff was the only free parameter in the fit.
Using deff = 2.04 pm/V the intrinsic (material) nonlinear susceptibilitycan then be found as

χ̄ (3)
int = 9.2×10−22 m2/V2. Thisdeff-value was calculated usingθ = 22.8◦, φ =−π/2 and the

nonlinear coefficients in App.C at 1064 nm. They also performed a Z-scan measurement, and

the setup was calibrated towards a BK7 glass sample. They found χ̄ (3)
int /χ̄ (3)

BK7 ≃ 1.4. By using the

value they proposēχ (3)
BK7 = 4.5×10−22 m2/V2, one therefore finds̄χ (3)

int = 6.4×10−22 m2/V2.
We report these results with a bar because their definition ofthe cubic susceptibility is different

than what we use: they define the SPM polarization asP
(3)
NL = ε0χ̄ (3)

int E |E |2/2, which replaces

our definition Eq. (43), so the connection between them isχ̄ (3)
int = 3/2χ (3)

eff (ω1;ω1). To check
this, from the literature we find for BK7 the valuenI

2,Kerr = 3.75±0.3 ·10−20 m2/W measured

at 804 nm by Nibbering et al. [41], which corresponds toχ (3) = 3.03× 10−22 m2/V2. This
is precisely a factor 3/2 smaller than the value Tan et al. mentions, and this confirms the re-
lationship between the cubic susceptibilities. We now apply Miller’s rule to the Nibbering et
al. result to get for BK7χ (3) = 2.90×10−22 m2/V2 at 1064 nm, so we get a corrected value

χ̄ (3)
int = 6.08×10−22 m2/V2. In our notation their cascading measurements gave

c11 = 6.12±0.53·10−22 m2/V2, λ = 1.064µm (14)

corresponding tonI
2,Kerr(ω1;ω1) = 6.32±0.55·10−20 m2/W. Their Z-scan measurement gives

c11 = 4.05±0.52·10−22 m2/V2, λ = 1.064µm (15)

corresponding tonI
2,Kerr(ω1;ω1) = 4.18±0.54·10−20 m2/W. The error bars are indicative as

they do not report the errors in their measurements, but we assume 5% error ong and conser-
vatively estimate an error of 10% on the Z-scan result.

Hache et al. [14] used a 1 mm BBO cut atθc = 29.2◦ with 800 nm 100 fs pulses from a MHz-
repetition rate Ti:sapphire oscillator. The pump waso-polarized allowing foroo → e cascading
interaction. They carried out Z-scan measurements both close to the phase-matching pointθc

as well as ”far from SHG phase matching”. In the latter case they found

nI
2,Kerr(ω1;ω1) = 4.5±1.0 ·10−20 m2/W, λ = 0.8 µm (16)

which corresponds toc11= 4.36±0.97·10−22m2/V2. They claim that cascading contributions
did not contribute for this measurement, but whether this istrue cannot be judged with the
information at hand, as they did not specify the angle they used for this measurement.

DeSalvo et al. [16] used the Z-scan method with a single-shot 30 ps pulse at 1064nm, which
had k parallel to the optical axisc, so θ = 0. Thus, (a) the pump is alwayso-polarized no
matter how the input beam is polarized, and (b) the input polarization determines the angle
φ . Since the specific orientation of the crystal with respect to the input polarization was not
reported, we take it as unknown. The relevant Kerr contribution at the pump wavelength is
oooo interaction, which is given by Eq. (7) as simply one tensor componentc11. The experiment
reportednE

2 = 11±2 ·10−14 esu at 1064 nm, where the nonlinear index change is defined as
∆n= 1

2nE
2 |E|2, and using Eq. (C1) in [30] this corresponds toχ (3) = 2.70±0.49·10−22m2/V2.

The cascading contributions are fromoo → e andoo → o processes. Sinceθ = 0 they have the
same phase mismatch values ase-polarized light in this case has the same refractive index as
o-polarized light. At 1064 nm the value is∆kooe = ∆kooo = 234 mm−1. Taking into account



the two cascading channels Eqs. (4) and (3), and using Eq. (51), we get the total contribution

χ (3)
casc= −[sin2(3φ) + cos2(3φ)]1.95· 10−22 m2/V2 = −1.95· 10−22 m2/V2, i.e. independent

on the propagation angleφ . For these calculations we usedd22 = −2.2 pm/V. Thedeff values
are typically reported with a 5% uncertainty [42], giving a 7% uncertainty on the cascading
estimate. This means that when correcting for the cascadingcontributions we get

c11 = 4.65±0.51·10−22 m2/V2, λ = 1.064µm (17)

corresponding tonI
2,Kerr(ω1;ω1) = 4.80±0.53·10−20 m2/W. At 532 nmnE

2 = 21±4 ·10−14

esu was measured, corresponding toχ (3) = 5.22±0.99·10−20m2/V2. The cascading is smaller

here, using∆kooe = ∆kooo = 1,933 mm−1 we getχ (3)
casc=−0.61·10−22 m2/V2 (where we used

d22 = 2.6 pm/V as measured at 532 nm [42]), so

c11 = 5.82±0.99·10−22 m2/V2, λ = 0.532µm (18)

corresponding tonI
2,Kerr(ω1;ω1) = 5.87±1.00·10−20 m2/W. At 355 nmnE

2 = 14±3 ·10−14

esu was measured, corresponding toχ (3) = 3.54±0.67·10−22 m2/V2. The cascading is small,

using ∆kooe = ∆kooo = 11,736 mm−1 we getχ (3)
casc= −0.38· 10−22 m2/V2 (where Miller’s

scaling was used to get the valued22 =−4.4 pm/V), so

c11 = 3.92±0.68·10−22 m2/V2, λ = 0.355µm (19)

corresponding tonI
2,Kerr(ω1;ω1) = 3.81±0.74·10−20 m2/W. We must mention that the cas-

cading value is quite uncertain: the SH wavelength is here 177.5 nm, which is very close to the
UV poles in the Sellmeier equations (the fit in [43] puts the poles at 135 nm and 129 nm foro-
ande-polarized light, respectively). Finally, at 266 nm they measurednE

2 = 1±0.3·10−14 esu.
Here cascading is estimated to be insignificant (certainly we cannot estimate accurately it using
the Sellmeier equations as the SH lies right at the UV pole), so converting to SI we have

c11 = 0.26±0.078·10−22 m2/V2, λ = 0.266µm (20)

corresponding tonI
2,Kerr(ω1;ω1) = 0.24±0.07·10−20 m2/W.

In a similar experiment, Li et al. [18] pumped a 5 mmZ-cut BBO crystal with 150 fs 780
nm pulses from a Ti:sapphire oscillator. The propagation was along the optical axis, implying
θ = 0 and thus that for both cascading and Kerr nonlinearities the angleφ should not matter as
the pump always will beo-polarized. Nonetheless, they measured using the Z-scan method two
different results when flipping the input polarization, namely nI

2 = 4.0±0.5·10−20 m2/W when
polarizing light along the [1 0 0] direction (X-axis, i.e.φ = 0), andnI

2 = 3.2±0.5·10−20 m2/W
when polarizing light along the [0 1 0] direction (Y -axis, i.e.φ = π/2). Cascading was ignored
as it was considered too small, so let us asses whether this istrue. The cascading contributions
are fromoo → e andoo → o, both having the same∆kooe = ∆kooo = 552 mm−1. However,
only one come into play in each case: forφ = 0 the only nonzero nonlinearity isdooo

eff = −d22

while for φ = π/2 the only nonzero nonlinearity isdooe
eff = −d22. Thus, they turn out to have

the same cascading contribution, which from Eq. (1) becomesnI
2,casc= −1.30·10−20 m2/W.

When correcting the measured nonlinearities with this value we get

nI
2,Kerr(ω1;ω1) =5.30±0.51·10−20 m2/W, [1 0 0], λ = 0.78 µm (21)

nI
2,Kerr(ω1;ω1) =4.50±0.51·10−20 m2/W, [0 1 0], λ = 0.78 µm (22)

corresponding toc11= 5.18±0.50·10−22m2/V2 andc11= 4.39±0.50·10−22m2/V2, respec-
tively. When reducing the repetition rate from 76 MHz to 760 kHz they saw similar results.



Ganeev et al. [20] used a 2 Hz 55 ps 1064 nm pump pulse and a BBO crystal withθ = 51◦,
The procedure they used was to calculate the ”critical”∆kc where defocusing cascading exactly
balances the intrinsic focusing Kerr, i.e. where|nI

2,casc| = nI
2,Kerr. By angle tuning well away

from this point (so∆k ≫ ∆kc) they tried to make cascading insignificant. We estimate this to be
true: specifically, the pump waso-polarized and the crystal was cut withφ =−π/2 to optimize
SHG [44]. Then the only cascading channel isoo → e, with ∆kooe = −655 mm−1, and using
Eq. (1) we getnI

2,casc= 0.31· 10−20 m2/W that is therefore self-focusing (as they also note

themselves). Using the Z-scan method they measurednI
2 = 7.4± 2.2 · 10−20 m2/W with the

uncertainty estimated to be 30%, so correcting for cascading

nI
2,Kerr(ω1;ω1) = 7.08±2.22·10−20 m2/W, λ = 1.064µm (23)

corresponding toc11 = 6.87±2.15·10−22 m2/V2. At 532 nm they measurednI
2 = 8.0±2.4 ·

10−20 m2/W. Here cascading is more significant as∆kooe = −194 mm−1, deff = 1.67 pm/V
andnI

2,casc= 2.76·10−20 m2/W. Therefore the Kerr value corrected for cascading becomes

nI
2,Kerr(ω1;ω1) = 5.24±2.41·10−20 m2/W, λ = 0.532µm (24)

which corresponds toc11 = 5.20±2.39·10−22 m2/V2.
Moses et al. [15] pumped a BBO crystal at 800 nm with 110 fso-polarized light from a

Ti:Sapphire regenerative amplifier. By angle-tuning the crystal they achieved zero nonlinear
refraction: this happens when the cascading from theoo → e interaction exactly balances the
Kerr nonlinear refraction, which was found to occur at∆k = 31±5 π/mm for a wide range of
intensities. Using this phase mismatch value and thatnI

2,tot = 0 then a reverse calculation though
Eq. (1) givesnI

2,Kerr =−nI
2,casc. Using the valuedeff = 1.8 pm/V they inferred the valuenI

2,Kerr =

4.6±0.9·10−20 m2/W (the main sources of the uncertainty are determining the precise phase-
mismatch value as well as uncertainty on thedeff used). Sinceo-polarized pump light was used,
this contains only thec11 tensor contribution from anoooo interaction. However, the value
deff = 1.8 pm/V they used to infer this nonlinearity was probably taken too low [45]. Let us
therefore estimate it again using a more accurate value:∆k = 31 π/mm is achieved at 800 nm
with θ = 26.0◦, giving deff = 2.11 pm/V (found usingd22 = −2.2 pm/V andd31 = 0.04 pm/V
at 1064 nm and employing Miller’s rule to convert to 800 nm). With this corrected value we get

nI
2,Kerr(ω1;ω1) = 5.91±1.04·10−20 m2/W, λ = 0.8 µm (25)

which corresponds toc11 = 5.77±1.02·10−22 m2/V2.
This completes thec11 measurements. A summary of the data is shown in Fig.2, together

with the predicted electronic nonlinearity from the two-band model (2BM) [23]. The experi-
mental near-IR data are amazingly well predicted on anabsolute scale by the 2BM; we must
here clarify that for the 2BM we chose the material constantK = 3100 eV3/2cm/GW, which
was found appropriate as a single material parameter for dielectrics [16], and by using the BBO
band-gap valueEg = 6.2 eV [16]. Thus, in practice there are no free parameters in the model,
which underlines the incredible agreement obtained on an absolute scale (and not just the trans-
lation from one wavelength to another). We mention here thatin DeSalvo et al. [16] they pro-
posed to ”rescale” the bandgap do obtain a better fit with the experimental data (mainly because
the two-photon absorption valuesβ were not accurately predicted with 6.2 eV), and eventually
suggested using 6.8 eV instead of 6.2 eV for BBO. This gave a much betterβ agreement at
266 nm, while the 352 nm value was still off. Here we see that the corrected DeSalvonI

2,Kerr

near-IR values actually agree extremely well with the 2BMnI
2,Kerr value when usingEg = 6.2

eV, while the agreement is less accurate withEg = 6.8 eV. A common issue whether one uses
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Fig. 2. Summary of the experimental data fornI
2-values from the literature corresponding

to thec11 nonlinear susceptibility coefficient (nI
2 = 3c11/4n2

1ε0c). The plotted values are
the ones reported in Sec.4.2. References: Tan et al. 1993: [13]; Hache et al. 1995: [14];
DeSalvo et al. 1996 [16]; Li et al. 2001 [18]; Ganeev et al. 2003 [20]; Moses et al. 2007 [15].
The theoretically predicted electronic nonlinearity is calculated with the 2-band model [23].
The average value curve was calculated through a weighted mean of the Miller’s delta from
all data, except the UV measurements below 400 nm, and the shaded areas represent one
and two standard deviations.

6.2 or 6.8 eV is that the predicted strong enhancement just below 400 nm due to two-photon
absorption of the FW is not reflected in the experimental data. This is of little importance for
our purpose, because in cascaded SHG the FW wavelength is usually never below 600 nm. In
order to extract a suitable value for thec11 coefficient, we calculated first the Miller’s delta from
all the data. It is defined as [35,36]

∆i jkl =
χ (3)

i jkl

χ (1)
i χ (1)

j χ (1)
k χ (1)

l

=
χ (3)(−ωi;ω j,ωk,ωl)

χ (1)(ωi)χ (1)(ω j)χ (1)(ωk)χ (1)(ωl)
(26)

whereχ (1)
j (ω0) = n2

j(ω0)− 1 is the linear susceptibility. We here excluded the UV measure-
ments below 400 nm as they obviously are not represented wellby Miller’s scaling. Since
Miller’s delta should be independent of wavelength this should allow us to calculate an average
value based on the measurements at different wavelengths. We confirmed this hypothesis by
checking that that Miller’s delta vs. measurement wavelength could be fitted to a line with a
near-zero slope, before we calculated the weighted average(with a weight given byσ−2

j where
σ j is the estimated error of thejth measurement) as

∆1111= 52.8±8.4×10−24 m2/V2 (27)

where the standard deviation was calculated using an unbiased weighted average. This value
corresponds toc11 = 5.03·10−22 m2/V2 andnI

2,Kerr(ω1;ω1) = 5.15·10−20 m2/W at 800 nm.
We see in Fig.2 that this average is a quite good representative of the experimental data; all
except one are within two standard deviations.



4.3. Other tensor components

Banks et al. [19] measured thec10 tensor component of BBO using third-harmonic generation
(THG) measurements at 1053 nm using 350 fs pulses from a 10 Hz Ti:Sapphire regenerative
amplifier. The propagation angle wasθ = 37.7◦, and from the data recorded whileφ was varied
around zero they extractedC10 = −6 ·10−24 m2/V2 using the quadratic nonlinear coefficients
of Shoji et al. [42]. (They extracted other values as well, but we choose to use this one because
it was calculated from the experimental data using the same effective quadratic nonlinearities
of Shoji et al. as we use.) In fact, Banks et al. reported that this value came with a quite large
uncertainty due to the uncertainty in thed31 – andd15, in absence of Kleinman symmetry –
coefficients in the literature. Since [19] defineCµm = χ (3)/4, we haveCµm = cµm/4, so

c10 =−0.24±0.04·10−22 m2/V2, λ = 1.053µm (28)

The uncertainty of the measurement was not reported, but fora similar fit it was reported to
be 15%, which is what we used above. They also measured a threetimes larger value by using
different quadratic nonlinearities, namelyd15 = 0.16 pm/V (as opposed tod15 = 0.03 pm/V).

Banks et al. [19] also measured the mixture13C11cos2 θm + C16sin2 θm = 4.0± 0.2 ·
10−23 m2/V2 at θm = 47.7◦. If we use the Moses et al. result, appropriately scaled to
1053 nm and forω +ω +ω → 3ω interaction using Miller’s scaling (see Sec.4.4) to give
c11 = 6.07·10−22 m2/V2, then we get

c16 =−1.23±0.36·10−22 m2/V2, λ = 1.053µm (29)

A small caveat must be noted: what they measured was related to theχ (3)(−3ω ;ω ,ω ,ω) coef-
ficients, because they investigated the yield of the third harmonic with respect to the pump,
and decoupled the cascade yield (from multistep SHG mixing,i.e. ω + ω → 2ω followed
by ω + 2ω → 3ω) to get the pure cubic nonlinear contribution. However, it is not sure that
χ (3)(−3ω ;ω ,ω ,ω) = χ (3)(−ω ;ω ,−ω ,ω), i.e. that the THG nonlinearity is the same as the
SPM nonlinearity; this was discussed, e.g., in [46]. Therefore using these values to model the
SPM and XPM effects in BBO is an approximation.

Sheik-Bahae and Ebrahimzadeh [17] used the Z-scan method to measurenI
2 = 3.65±0.6 ·

10−20 m2/W (χ (3) = 3.43±0.56·10−22 m2/V2) using a 76 MHz Ti:Sapphire oscillator giving
120 fs pulses atλ = 0.850 µm. The BBO crystal was cut for phase matching at 800 nm, i.e.
with θ = 29.2◦. We assume the crystal cut is optimized for SHG, soφ = −π/2 (which makes
sin3φ = 1). The pump pulse wase-polarized as to ensure lack of phase matching and thereby no
cascading. We will now assess whether this assumption is fulfilled. The cascading contributions
that might occur areee → o andee → e, however the former has zero nonlinearity whenφ =
−π/2, cf. Eq. (5). The phase mismatch for the latter interaction is∆keee = 396 mm−1 for θ =

29.2◦. The cascading contribution atφ = −π/2 then becomesχ (3)
casc= −0.69· 10−22 m2/V2.

Thus, the choice of usinge-polarized light does make the cascading contribution small, but not
insignificant (it is roughly equal to the reported uncertainty). If we now correct the measured

value with the cascading contributions we getχ (3)
Kerr = 4.08±0.57·10−22 m2/V2. Let us now

understand what tensor components this value represents. By usinge-polarized light several
tensor components come into play for the cubic nonlinearity: the effective Kerr nonlinearity
experienced by the pump is aneeee interaction, which is given by Eq. (11). Forθ = 29.2◦ and
φ =−π/2 the effective nonlinearity is

χ (3)
eff (ω1;ω1) =−1.30c10+0.58c11+1.09c16+0.057c33 (30)

Four tensor components appear, and we note that we here have ameasurement that involves
the c33 component. Let us now use the previous results to extract it:using Eq. (25), (28) and



Table 1. Summary of the literature measurements of the cubicself-action (SPM or XPM)
nonlinearities. The column (A) reports the original data and (B) our updated values, if any.

λ θ φ (c) χ (3)
eff (A) χ (3)

eff (B) χ (3)
eff Rep. rate TFWHM Ref.

[µm] [deg] [deg] [pm2/V2] [pm2/V2]

1.064 22.8 (−90) - 612(a) c11 ? 30 ps [13]
1.064 22.8 (−90) 420 405(a) c11 ? 30 ps [13]
0.800 29.2 (−90) 436 - c11 MHz 100 fs [14]
1.064 0 (−90) 270 465(b) c11 1 shot 30 ps [16]
0.532 0 (−90) 522 582(b) c11 1 shot 30 ps [16]
0.355 0 (−90) 354 392(b) c11 1 shot 30 ps [16]
0.266 0 (−90) 26 - c11 1 shot 30 ps [16]
0.780 0 0 391 518(b) c11 76 MHz(d) 150 fs [18]
0.780 0 90 312 439(b) c11 76 MHz(d) 150 fs [18]
1.064 51.0 (−90) 717 687(b) c11 2 Hz 55 ps [20]
0.532 51.0 (−90) 794 520(b) c11 2 Hz 55 ps [20]
0.800 26.0 (−90) 460 577(a) c11 1 kHz 110 fs [15]
1.053 37.7 0 -72(e, f ) - c10 10 Hz 350 fs [19]
1.053 37.7 0 -24(g, f ) - c10 10 Hz 350 fs [19]
1.053 47.7 0 160( f ) - c11, c16

(h) 10 Hz 350 fs [19]
0.850 29.2 (−90) 343 408(b) Eq. (11) 76 MHz 120 fs [17]
(a)The corrected data used updated nonlinearities.(b)The corrected data adjusted for cascading contributions.(c)The

parenthesis indicates that the angle was not reported, so the value shown was the angle we believe was used.(d)The

repetition rate was lowered to 760 KHz with the same result.(e)Fit using quadratic nonlinearities of [47]. ( f )The THG

tensor component was measured instead of the cubic self-action components.(g)Fit using quadratic nonlinearities

of [42]. (h)The measured mixture was13c11cos2 θ + c16sin2 θ .

(29), all suitably converted to 850 nm with Miller’s rule, we canfrom the corrected value of

χ (3)
Kerr = 4.08±0.57·10−22 m2/V2 and Eq. (30) calculate

c33 =−13.8±15.8 ·10−22 m2/V2, λ = 0.85 µm (31)

An exciting consequence of this result is that it points towards a negative, self-defocusing Kerr
nonlinearity. However, as indicated the particular value is very uncertain (the uncertainty was
calculated using the error propagation rules), which mainly stems from the low prefactor in
front of thec33 term in Eq. (30). A part from that, it also relies on three other separate measure-
ments, making it very sensible to thec11, c10 andc16 values used. Here we mention that the
large uncertainty ofc10 reported in [19] plays a role; with the various possibilities reported
there for thec10 value we always get a negativec33, and its value can vary by a factor of two
from that reported in Eq. (31).

4.4. Summary of experiments

A summary of the data reported in the literature along with our corrected or updated values
is shown in Table1. This table also gives an overview of the crystal angles, pulse duration,
repetition rates, wavelengths and the tensor components accessed in the measurements.

Our analysis of the experiments [14–20] points towards using the Kerr nonlinearities sum-
marized in Table2. Only the susceptibilities are reported in order to minimize the errors when
using the values for composite nonlinear indices. We have there also indicated the Miller’s delta



Table 2. Proposed nonlinear susceptibilities for the BBO anisotropic Kerr nonlinearity.
Note thec16 value is deduced from thec11 andc10 coefficients, and thec33 value is deduced
from thec11, c10 andc16 coefficients. The Miller’s delta∆i jkl are calculated from Eq. (26).

λ χ (3) ∆i jkl Ref.
[µm] [10−22 m2/V2] [10−24 m2/V2]

c11 = χ (3)
XXXX - - 52.8±8.4(a) Eq. (27)

c10 = χ (3)
XXY Z 1.053 −0.24±0.04 -3.04 [19](b)

c16 = χ (3)
XXZZ 1.053 1.46±0.34 23.4 [19](b)

c33 = χ (3)
ZZZZ 0.850 −10.4±14.3 -286 [17]

(a)This value corresponds toc11 = 5.03·10−22 m2/V2 at 800 nm.(b)The THG tensor component was measured

instead of the cubic self-action components.

calculated from Eq. (26). Since the experiments are performed at different wavelengths, using
the∆i jkl values makes it easier to evaluate a linear combination of the nonlinear coefficient at
some particular wavelength. [Another popular model for scaling the cubic nonlinearity is the
Boling-Glass-Owyoung (BGO) model [48], but we did not see a big difference in using that
model compared to Miller’s rule. Besides, extending the BGOmodel to anisotropic nonlinear-
ities is not straightforward, so we prefer to use Miller’s rule for frequency scaling.] The values
are reported with more significant digits than supported by the uncertainties, but this is done on
purpose so it is easier to cross-check the coefficients as well as frequency scaling them.

4.5. Implications for cascaded pulse compression in BBO

In context of cascaded quadratic nonlinearities by far mostimportant component is the FW SPM

coefficientχ (3)
eff (ω1;ω1), and in a type Ioo → e configuration it is given by thec11 component.

Instead in a type 0ee → e interaction it is given by the expression from Eq. (11). In BBO and
other borates this interaction is not so relevant as the quadratic nonlinearities are too small to
support it, but in niobates it is extremely relevant as they are known for a larged33 component:
in this casedeff is maximized withθ = π/2, makingc33 the effective cubic nonlinearity.

In some of our previous work related to BBO [37, 49, 50], we assumed an isotropic Kerr
nonlinearity, and have used the valuenI

2,Kerr(ω1;ω1) = 3.65·10−20 m2/W taken from [17], and
in a later publication, we have used the value given by Eq. (25). An implication of this larger
value is that the ”compression window” [37] becomes smaller. With this we imply a range of
phase-mismatch values, where compression is optimal. We first need∆k to be small enough
so nI

2,tot < 0, i.e. |nI
2,casc| > nI

2,Kerr(ω1;ω1). This is the upper end of the window, also denoted
the Kerr limit. Once below the Kerr limit, decreasing∆k strengthens the total defocusing non-
linearity. However, at a certain point the group-velocity mismatch (GVM) becomes too strong
and the compression quality is strongly reduced. Several things happen: (a) the GVM-induced
self-steepening term [9,51] is increased as it scales asd12/∆k, whered12 is the GVM param-
eter, so the compressed pulse experiences a strong pulse-front shock. (b) When∆k becomes
too low (specified more accurately below) the SH will experience a resonant phase matching
condition of a sideband frequency to the center frequency ofthe FW spectrum [52]. This is
damaging to pulse compression because in the cascading process effectively this is the cas-
cading bandwidth felt by the FW, and in the transition from the nonresonant to the resonant
regime, the bandwidth essentially goes from being octave spanning to becoming resonant and
thereby narrow [26]. The criterion for being in the nonresonant regime, also denoted the sta-
tionary regime, can in the simple case where only second-order dispersion is considered [49]

be expressed asd2
12−2k(2)2 (ω2)∆k < 0, wherek(2)2 (ω2) is the group-velocity dispersion (GVD)
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Fig. 3. (a) Compression diagram for BBO type I cascaded SHG. In order to excite solitons
∆k must be kept below the Kerr limit (red line). Optimal compression occurs when the
cascaded nonlinearities dominate over GVM effects (∆k > ∆ksr, above the black line). Note
that∆ksr is calculated for the full dispersion case, and that forλ1 > 1.49 µm the FW GVD
becomes anomalous. We have also indicated the operation wavelengths of Cr:forsterite,
Yb and Ti:Sapphire based amplifiers. The Kerr limit employs Miller’s rule to calculate the
nonlinear quadratic and cubic susceptibilities at other wavelengths, case (1) corresponds
to the ’old’ Kerr valuenI

2,Kerr(ω1;ω1) = 3.65·10−20 m2/W@850 nm (taken from [17])

and case (2) corresponds to the Kerr value proposed in this work ∆1111= 52.8 m2/V2,
corresponding tonI

2,Kerr(ω1;ω1) = 5.1 ·10−20 m2/W@850 nm. (b) Numerical simulation

of the case marked with ’x’ in (a): a 50 fs@1030 nmIin = 500 GW/cm2 pulse propagating
in a 25 mm BBO crystal withθ = 19.1◦ andφ =−90◦ (∆k = 80 mm−1). The simulations
used the SVEA equations (46)-(47) including full dispersion and extended to include self-
steepening, and case (1) assumes an isotropic Kerr nonlinearity andnI

2,Kerr(ω1;ω1) = 3.65·
10−20 m2/W@850 nm, while (2) uses the anisotropic coefficients of Table 2.

coefficient of the SH. Thus, in the case where the SH GVD is normal (positive) we have the

stationary (nonresonant) regime with broadband cascadingwhen∆k > ∆ksr ≡ d2
12/[2k(2)2 (ω2)].

Below this threshold, in the so-called nonstationary regime, the cascaded nonlinearity is as
mentioned resonant: the poor bandwidth implies that there is no possibility to achieve few-cycle
duration [30]. At the same time the compressed pulse quality is low as there is a strong pulse
shock front: this stems from thed12/∆k ratio being large, and this term controls the cascading-
induced self-steepening, as mentioned above. As a consequence one can only achieve a decent
pulse quality by keeping very low soliton orders (roughly below 2) [30]. The implications of



the larger nonlinear SPM Kerr nonlinearity for the FW is visualized in Fig.3(a). With the
lower value,nI

2,Kerr(ω1;ω1) = 3.65· 10−20 m2/W@850 nm, a large compression window is
predicted, almost even encompassing Ti:Sapphire laser wavelengths. With the new larger value,
∆1111= 52.8 m2/V2 corresponding tonI

2,Kerr(ω1;ω1) = 5.1 ·10−20 m2/W@850 nm, the com-
pression window starts opening around 900 nm. To judge the impact of using this larger Kerr
value, Fig.3(b) shows a simulation at 1030 nm, where the phase mismatch ischosen to lie
inside the compression window using the new larger Kerr value. After 25 mm of propagation
the short (50 fs) and intense (Iin = 500 GW/cm2) input pulse is compressed somewhat due to
the formation of a self-defocusing soliton, and the spectrum shows SPM-like broadening and
even formation of a soliton-induced Cherenkov wave (dispersive wave) around 2900 nm [12].
When instead using the ’old’ lower Kerr value (dashed lines)the result is changed quite a lot:
this is because|n2,tot| is now much larger so the intensity gives a larger effective soliton order
N2

eff ∝ |n2,tot|Iin (the specific numbers areNeff = 3.6 in case (1) andNeff = 1.9 in case (2). The
soliton is therefore compressed more and earlier in case (1), so after 25 mm soliton splitting
has already occurred and in the spectrum the broadening is more pronounced and the dispersive
wave is much stronger. These results clearly show how sensible cascading is to the value of the
FW Kerr SPM parameter.

The experiments [5, 7] carried out at 800 nm were performed well into the nonstationary
region, which was necessary to achieve a defocusing nonlinearity. No few-cycle compressed
solitons were observed in [7], as the intensity had to be kept low in order to avoid severe GVM-
induced self-steepening. (Note that the simulations in [7] usedχ (3) = 5 · 10−22 m2/V2@800
nm, i.e. identical to the value we suggest.) Instead the experiment carried out at 1250 nm [10]
was done in the stationary regime, and indeed a few-cycle soliton was observed.

A question is whether pumping withe-polarized light could give any advantages. As the
ee → o interaction is heavily phase mismatched in a negative uniaxial crystal, the main cas-
cading channel would be theee → e interaction. As expected this interaction can never be
phase matched. The maximumdeff is for θ = 0, and this turns out to give the maximum cas-
cading strength as well. However, our calculations show that it is too small to overcome the
nI

2,Kerr(ω1;ω1) nonlinearity, and the total effective cubic nonlinearity would be focusing. If
θ = π/2 we getdeff = d33, which for BBO is very small (this is typical for borates, while the
niobates instead have very larged33 components). Nevertheless, forθ = π/2 thec33 compo-
nent determines the SPM coefficient, and as we found it could be negative. The total effective
cubic nonlinearity would therefore be de-focusing. Investigating a BBO crystal pumped with
θ = π/2 usinge-polarized light would therefore be an interesting next step to resolve this issue.

We should finally mention that the error made in assuming an isotropic response for the
cascaded soliton compression is not large: most importantly, the crucial parameter is the FW
SPM coefficient, which as we saw is the same in the isotropic and in the anisotropic cases for
this type I interaction. The XPM and SH SPM coefficients change when anisotropy is taken into
account, but they play a minor role and rather tend to perturbthe result more than shape it. In
order to make a more quantitative statement, we calculated theθ -ranges where self-defocusing
solitons can be excited in BBO. A necessary (but not sufficient [37]) criterion for this to happen
is ∆k > 0 as well as∆k low enough for|nI

2,casc| > nI
2,Kerr(ω1;ω1). The range is shown vs. FW

wavelength in Fig.4(a). Inside thisθ range we can now for each wavelength calculate the
anisotropic Kerr nonlinearities. As we know the FW SPM coefficient does not change withθ
(but it does change across the wavelength range shown, whichwe here estimate using Miller’s
rule), so we can normalize the results to this value. We then get the results shown in Fig.4(b).

The XPM term is seen to lie close to the isotropic value 1/3 (found by takingχ (3)
eff (ω1;ω2) =

c11/3, dashed grey line). Instead the SH SPM term lies well below the isotropic value [found

takingχ (3)
eff (ω2;ω2) = c11, dashed blue line]. The main reason for this is the large negative c33
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Fig. 4. Estimating the operating parameters vs. FW wavelength for cascaded SHG in BBO.
(a) Theθ -range for which∆k > 0 is achieved as well as|nI

2,casc|> nI
2,Kerr(ω1;ω1). (b) The

XPM termχ(3)
eff (ω1;ω2) and SH SPM termχ(3)

eff (ω2;ω2), both normalized to the FW SPM

termχ(3)
eff (ω1;ω1). The range indicated corresponds to theθ range in (a). The dashed lines

indicate the isotropic limit. All nonlinear coefficients are scaled to other wavelengths using
Miller’s rule, and we used the SHG nonlinearities at 1064 nm from App.C as well as the
cubic nonlinear parameters listed in Sec.5. We also tookφ =−π/2.

component. In summary, assuming an isotropic response in BBO is a good approximation for
the FW XPM term, mainly because the workingθ range lies close to zero (the isotropic limit).
This result cannot be generalized to other nonlinear crystals, where the working range might lie
closer toπ/2; an example is lithium niobate that operates quite close toθ = π/2 in the type I
configuration, see e.g. [30]. For the SH SPM term its value is quite far from the isotropiccase,
but off all the parameters this is the least important one because the SH SPM is negligible in the
cascading limit compared to FW XPM and in particular FW SPM. To confirm this we checked
that the simulations of case (2) in Fig.3(b) were almost identical results when using isotropic
Kerr nonlinearities. A similar conclusion was drawn in our recent work, where the anisotropy
was also taken into account [51].

5. Summary

We have analyzed the Kerr nonlinear index in BBO from a numberof experiments [14–20],
and we argued that in many of them contributions from cascaded SHG nonlinearities need
to be taken into account. The corrected nonlinear coefficients point towards using the Kerr
nonlinearities summarized in Table2. They encompass all four relevant tensor components for
describing the anisotropic nature of the BBO Kerr nonlinearity under Kleinman symmetry. The
most reliable value is thec11 component, relevant for describing theoooo SPM coefficient,
while the other three are more uncertain: thec16 andc10 values are measured for THG, so using
them for describing SPM and XPM effects is an approximation.Finally, thec33 coefficient is
very uncertain as it was measured in a non-ideal way (since the experiment used a crystal angle
where its importance is very small) and on top of that all the three other coefficients in the
table were used to deduce its value. In all cases the measuredcoefficients had contributions
from both instantaneous electronic and delayed Raman effects, but we assumed that the Raman
contributions to the measured nonlinearities were vanishing.

The proposedc11 value was calculated as a weighted average over 10 differentexperiments
in the 532-1064 nm range, and is therefore expressed as a wavelength-independent Miller’s
delta ∆1111= 52.8± 8.4× 10−24 m2/V2, cf. Eq. (27); at 800 nm this value corresponds to
c11= 5.03×10−22 m2/V2 andnI

2,Kerr = 5.15·10−20 m2/W, which is larger than typical values
used in the literature. When plotting the (corrected) values vs. wavelength, see Fig.2, we came



to a surprisingly goodabsolute agreement with the 2-band model [23], except in the short end
of the visible range.

Finally we showed the predicted consequences for cascaded femtosecond pulse compression
exploiting type I interaction in BBO when using this larger value: the operation range where
few-cycle pulse compression can be achieved will shift to longer wavelengths, roughly above
1.0 µm. We also showed that the anisotropic XPM coefficient of the FW is quite similar to the
isotropic one, but this relies on the particular range of phase-mismatch rotation angles used in
BBO, so this result cannot be generalized to other crystals exploiting type I interaction. Instead
the anisotropic SH SPM coefficient is quite different from the one found assuming an isotropic
Kerr nonlinearity, but since in cascading the SH is weak thisdifference will amount to much in
a simulation of cascaded SHG.
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A. The propagation equations under the slowly-varying envelope approximation

We have previously touched upon the issue of anisotropic cubic nonlinearities in quadratic
nonlinear crystals [30], where we focused on type I interaction and the measurements in the
literature for the lithium niobate crystal. Here we formulate the complete propagation equa-
tions that hold for both type 0 and type I, and discuss the anisotropic cubic tensor components
relevant for the BBO crystal class.

Let us show briefly how to derive the basic slowly-varying envelope equations (SVEA) for
degenerate SHG (i.e. where the FW photons are degenerate), thus describing both type 0 and
type I SHG. We do this in order to avoid confusion about how to define the relation between the
electric field and the susceptibility tensors. Working in mks units, from Maxwell’s equations
and applying the paraxial approximation we immediately getthe time-domain wave equation

∇2E(r , t) = µ0
∂ 2

∂ t2 D(r , t) (32)

whereD = ε0E+P is the displacement field, andP is the induced polarization. In frequency
domain, whereE(r ,ω) =

∫ ∞
−∞ dteiωtE(r , t) and similarly forP(ω), we may separate the linear

and nonlinear polarization response as

P(r ,ω) = ε0χ (1)(ω) ·E(r ,ω)+PNL(r ,ω), (33)

whereχ (1)(ω) is the linear susceptibility tensor. The nonlinear part is usually expanded in a
power series as

ε−1
0 PNL(r ,ω) = χ (2)(ω) : E(r ,ω)E(r ,ω)+ χ(3)(ω)

...E(r ,ω)E(r ,ω)E(r ,ω)+ · · · (34)

The tensor products are calculated by summation over the indicesε−1
0 PNL,i = ∑ jk χ (2)

i jk E jEk +

∑ jkl χ (3)
i jklE jEkEl + · · · . By assuming plane waves (no diffraction), we have∇2 = ∂ 2

∂ z2 so

∂ 2

∂ z2 E(z,ω)+
ω2

c2 ε(ω) ·E(z,ω) =−ω2

c2 ε−1
0 PNL(z,ω) (35)



whereε(ω) = 1+ χ(1)(ω) is the relative permittivity tensor, and we usedε0µ0 = 1/c2.
For SHG we define the electric field envelopesE j for the FW (frequencyω1) and the SH

(frequencyω2 = 2ω1), as well as envelopes for the nonlinear polarization responsePNL, j

E(z, t) =
1
2

[

u1E1(z, t)e
ik1(ω1)z−iω1t +u2E2(z, t)e

ik2(ω2)z−iω2t + c.c.
]

(36)

PNL(z, t) =
1
2

[

u1PNL,1(z, t)e
ik1(ω1)z−iω1t +u2PNL,2(z, t)e

ik2(ω2)z−iω2t + c.c.
]

(37)

where the wave numbers are defined ask2
j (ω) = ω2

c2 ε j(ω) with ε j(ω) = u j ·χ (1)(ω), and where
u is a unit polarization vector. In a lossless mediumε j is real, and the linear refractive index is
given byn j(ω) =

√

ε j(ω). The envelope wave equations are therefore

∂ 2E j(z,ω)

∂ z2 +2ik j(ω j)
∂E j(z,ω)

∂ z
+
[

k2
j (ω)− k2

j(ω j)
]

E j(z,ω) =−ω2

c2 ε−1
0 PNL, j(z,ω). (38)

The SVEA assumes| ∂E j
∂ z | ≪ k j(ω j)|E j| giving

i
∂E j(z,ω)

∂ z
+[k j(ω)− k j(ω j)]E j(z,ω) =− ω j

2n j(ω j)c
ε−1

0 PNL, j(z,ω) (39)

where we used the approximationk2
j (ω)− k2

j (ω j)≃ 2k j(ω j)[k j(ω)− k j(ω j)]. At this time, we
have also used that the assumption of a slow envelope compared to the fast oscillating carrier
term e−iω jt means that the nonlinear polarization term on the right-hand side can be approx-

imated as ω2

2k j(ω j)c2 ε−1
0 PNL, j(ω) ≃ ω2

j

2k j(ω j)c2 ε−1
0 PNL, j(ω). We can now perform the Taylor

expansion of the wave number ask j(ω) = ∑∞
m=0 m!−1k(m)

j (ωm)(ω −ω j), where the dispersion

coefficients are defined ask(m)
j (ω) = dmk j(ω)/dωm. Following this, we multiply both sides

with e−iΩt where the frequency detuning isΩ = ω −ω j, and perform an inverse Fourier trans-
form overΩ to time domain. This gives

[

i
∂
∂ z

+ ik(1)j (ω j)
∂
∂ t

+ D̂ j

]

E j(z, t) =− ω j

2n j(ω j)c
ε−1

0 PNL, j(z, t) (40)

This is the SVEA equations in the stationary laboratory frame, describing a pulse envelope

propagating with group velocity 1/k(1)j (ω j). The time-domain dispersion operator is

D̂ j =
∞

∑
m=2

k(m)
j (ω j)

im

m!
∂ m

∂ tm (41)

and it can be truncated at any order to study effects higher-order dispersion.
Besides a trivial transformation to a suitably chosen co-moving frame, what is left now is

to evaluate the tensorial contributions to the nonlinear coefficients. Due to the vast variety of
tensor combination possibilities for anisotropic nonlinearities it is here convenient to specify
the problem very specifically: we therefore constrict ourselves to SHG in a uniaxial crystal,
i.e. where light can beo-polarized with unit vectoreo or e-polarized with unit vectoree [30,
Eq. (B6)], and we also restrict ourselves to degenerate SHG,where the two FW photons are

indistinguishable. Let us define the quadratic nonlinear polarization response asP(2)
NL(z, t) =

χ (2) : E(r , t)E(r , t), where we have assumed that the quadratic nonlinearity is instantaneous in
time. The procedure is then to insert the field envelope in this nonlinear polarization response



and then calculate the polarization response for a specific field by applying the dot product with

the fields unit vector:ε−1
0 u j ·P(2)

NL(z, t). The only relevant terms are those that oscillate with the
fast carrier frequency oscillations of the fielde−iω jt , as this defines the polarization envelope
P. Doing this we get for the FW and SH fields

ε−1
0 P

(2)
NL,1(z, t) = χ (2)

eff E
∗
1 (z, t)E2(z, t)e

i∆kz, ε−1
0 P

(2)
NL,2(z, t) = χ (2)

eff
1
2E

2
1 (z, t)e

−i∆kz (42)

where the phase mismatch is∆k = k2(ω2)−2k1(ω1). The effective susceptibility is calculated

from the combinationχ (2)
eff = u j ·χ (2) : ukul that appears from isolating thee−iω jt term. Theχ (2)

is a rank 3 tensor with 27 different elements, but due to permutation symmetry in the the crystal
axes indices there are only 18 nonzero elements [33]. Depending on the crystal symmetry class
(point group) many of these are zero. It is therefore fruitful to consider a specific point group,
and perform the calculations. We show in Sec.3 the results for the point group 3m. We note
that the nonlinear polarizations would have been a factor of2 larger had we not used a factor1

2
in front of our envelope definition.

Moving to the cubic nonlinear tensor component, it is done inmuch the same way, and we
refer to [30, App. B] for details. We again consider an instantaneous response, and the cubic
nonlinear polarization response that oscillates withe−iω jt turns out to be related to SPM and
XPM; we could have had contributions from third-harmonic generation here if we had included
such a harmonic fieldE3(z, t)eik3(ω3)z−iω3t in the envelope definition. We then get [30, Eq. (B8)]

ε−1
0 P

(3)
NL, j(z, t) =

1
4

[

3χ (3)
eff (ω j;ω j)|E j(z, t)|2+6χ (3)

eff (ω j;ωk)|Ek(z, t)|2
]

E j(z, t) (43)

The notation of the cubic susceptibilitiesχ (3)
eff (ωi;ω j) implicitly assumes phase-matched SPM

and XPM interaction betweenωi andω j, as opposed to general four-wave mixing. We always

haveχ (3)
eff (ω1;ω2) = χ (3)

eff (ω2;ω1). The factor14 comes from the factor12 in front of our envelope
definitions, Eqs. (36)-(37); if we do not have this factor12, as in e.g. Boyd [28], it is important to

note that theχ (3)
eff values (and consequently also thenI

2,Kerr-values) in the two cases remain the

same. Theχ(3) is a rank 4 tensor with 81 different elements, but due to permutation symmetry
in the the crystal axes indices there are only 30 nonzero elements [33]. The calculations of the

χ (3)
eff specific to a uniaxial crystal in the 3m point group was done in [30, App. B], and in Sec.3

we summarize the results.
We can now express the plane-wave SVEA equations for the electric field envelopes as

[

i
∂
∂ z

+ D̂1

]

E1+
ω1deff

n1c
E

∗
1 E2ei∆kz

+
3ω1

8n1c

[

χ (3)
eff (ω1;ω1)E1|E1|2+2χ (3)

eff (ω1;ω2)E1|E2|2
]

= 0 (44)
[

i
∂
∂ z

− id12
∂

∂τ
+ D̂2

]

E2+
ω2deff

n2c
1
2E

2
1 e−i∆kz

+
3ω2

8n2c

[

χ (3)
eff (ω2;ω2)E2|E2|2+2χ (3)

eff (ω2;ω1)E2|E1|2
]

= 0 (45)

The timeτ follows the FW group-velocity 1/k(1)1 (ω1) by the transformation from the lab time

t asτ = t − zk(1)1 (ω1), which gives the group-velocity mismatch (GVM) termd12= k(1)1 (ω1)−
k(1)2 (ω2). We use the short-hand notationn j ≡ n j(ω j), anddeff = χ (2)

eff /2 is the usual reduced
notation of the effective quadratic nonlinearity. We can convert the electric field to intensity



E j → (2/ε0n jc)1/2A j, so|A j|2 is the intensity in[W/m2], and we get

[

i
∂
∂ z

+ D̂1

]

A1+κ I
SHGA∗

1A2ei∆kz

+
ω1

c

[

nI
2,Kerr(ω1;ω1)A1|A1|2+2nI

2,Kerr(ω1;ω2)A1|A2|2
]

= 0 (46)
[
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− id12
∂

∂τ
+ D̂2

]

A2+κ I
SHGA2

1e−i∆kz

+
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c

[

nI
2,Kerr(ω2;ω2)A2|A2|2+2nI

2,Kerr(ω1;ω2)A2|A1|2
]

= 0 (47)

where the equations now have a common SHG nonlinear parameter

κ I
SHG=

ω1deff

n1c

√

2
n2ε0c

(48)

We can also establish the link between the Kerr nonlinear refractive indices and the cubic non-
linear susceptibilities as

nI
2,Kerr(ωi;ω j) =

3χ (3)
eff (ωi;ω j)

4nin jε0c
(49)

cf. also Eq. (C6) in [30]. Both nI
2,Kerr andχ (3) are in mks (SI) units, while conversion to and

from the esu system is reported in [30].
The SVEA equations can be extended to the slowly-evolving wave equations (SEWA) [9,37]

by including self-steepening effects, and also the non-instantaneous (delayed) Raman effect can
straightforwardly be included [37,51]. For simplicity such effects are neglected here.

B. Reduced nonlinear Schr̈odinger equation in the strong cascading limit

The cascading nonlinear contribution in the strong cascading limit (∆kL ≫ 2π) can quickly
be found by taking assuming an undepleted FW. ThusE1 is taken independent onz in Eq.
(45), and the SH can therefore be solved directly when the Kerr SPM and XPM terms are
neglected (which follows directly from the undepleted FW assumption). In absence of disper-
sion (the effect of dispersion is discussed in Sec.4.5) we get that the SH is slaved to the FW:
E2,casc(z,τ) = −∆k−1 ω2deff

n2c
1
2E 2

1 (z,τ)e
−i∆kz. When inserting this in the FW equation (44) we

arrive at the following nonlinear Schrödinger equation for the FW
[

i
∂
∂ z

+ D̂1

]

E1+
3ω1

8n1c

[

χ (3)
casc+ χ (3)

eff (ω1;ω1)
]

E1|E1|2+
5ω1

16n1c
χ (5)

cascE1|E1|4 = 0 (50)

From these equations we now understand the basis of the nonlinear index change described by
Eq. (2): in the strong cascading limit the FW experiences a cubic Kerr self-action nonlinearity
∝ |E1|2, where both cascading and material Kerr nonlinearities contribute. The cascading Kerr-
like nonlinearity is described by the parameters

χ (3)
casc=−8ω1d2

eff

3cn2∆k
, nI

2,casc=− 2ω1d2
eff

c2ε0n2
1n2∆k

(51)

where the latter is identical to Eq. (1) and it comes from using Eq. (49), or simply performing
the same exercise with the intensity version of the SVEA equations. These will be used in Sec.
4 to estimate the cascading contribution in the various experiments. A practical note: this lowest



order cascading nonlinearity seemingly diverges at∆k = 0, but this is because the assumption of
an undepleted FW breaks down in this limit. To the next order acorrection term 1− sinc(∆kL)
must be applied [53], which resolves the divergence at∆k = 0 and from this the maximum
cascading strength is obtained at∆kL ≃ π .

There is also a quintic nonlinearity from cascading mixed with the XPM term of the FW

χ (5)
casc=

12ω2
1χ (3)

eff (ω1;ω2)d2
eff

5n2
2c2∆k2

, nI
4,casc=

4ω2
1nI

Kerr(ω1;ω2)d2
eff

∆k2n2
1n2ε0c3

(52)

where the latter comes from the relationshipnI
4 = 5χ (5)/(4n3

1ε2
0c2), and the quintic nonlinear

refractive indexnI
4 was defined in Eq. (13). This term gives a nonlinear index change that is

positive and∝ I2, and becomes important for high pulse fluences [37,52]. However, we evaluate
it to be negligible in the experiments treated in Sec.4.

Note that these simple cascading expressions only hold in the strong cascading limit, which
essentially means that the characteristic length for the phase mismatch (i.e. the coherence
length) is much shorter than any other characteristic length scale in the system [49]. This can
be achieved by fulfillment of two criteria: (a) a strong phasemismatch∆kL ≫ 2π (i.e. the many
up- and down-conversion steps must occur inside the interaction length). (b) A phase mismatch
that dominates over the quadratic nonlinearity. To expressthis we introduce the traditional [3]
quadratic nonlinear strength parameterΓ = ω1deff|Ein|/(

√
n1n2c), where|Ein| is the peak input

electric field. Criterion (b) can then be expressed as∆k ≫ Γ (which essentially ensures an un-
depleted FW, see also the discussion in [53]). In all the cases in Sec.4 where we correct for
cascading contributions, we evaluate that the strong cascading limit is fulfilled.

C. BBO crystal parameters

The crystal beta-barium-borate (β -BaB2O4, BBO) is a negative uniaxial crystal of the point
group 3m, which has a transmission range from 189-3500 nm [29, 54]. The Sellmeier equa-
tions were taken from Zhang et al. [43]. We used the quadratic nonlinear tensor components
measured by Shoji et al. [42]: at λ = 1064 nm|d22| = 2.2 pm/V, |d31| = |d22|0.018= 0.04
pm/V, d15 = 0.03 pm/V, andd33 = 0.04 pm/V; atλ = 852 nm|d22| = 2.3 pm/V; atλ = 532
nm |d22| = 2.6 pm/V; atλ = 1313 nm|d22| = 1.9 pm/V. Note that Kleinman symmetry has
d31 = d15, which is only slightly violated at 1064 nm by these measurements; we therefore
throughout this paper assume Kleinman symmetry. The sign ofthe productd31d22 has been
shown to be negative [55], which means that flipping the crystal 180◦ gives a changed effec-
tive nonlinearity (see also discussion for Fig.1). An overview of other measurements is given
in [56]; in particular note that the 1064 nmd22 value is similar in most measurements, but the
d15 value was historically measured to be higher. This stems from the initial measurements
of BBO [54] that gaved15 = 0.07d22 [29], which then with thed22 = 2.2 pm/V value gives
d15≃ 0.15 pm/V. A users note of the Shoji et al. values: the 852 and 1064 nm measurements of
the |d22| value agree well with Miller’s scaling (they have the same Miller’s delta [42]), while
the 1313 nm measurement seems to lie too low. Therefore when calculating the effective non-
linearity at an arbitrary wavelength the safest option generally is to use the 1064 nm values,
where all the nonlinear components were measured, and employ Miller’s scaling to go to other
wavelengths.


