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ABSTRACT: The aim of this work is to develop group-
contribution+ (GC+) method (combined group-contribution
(GC) method and atom connectivity index (CI) method)
based property models to provide reliable estimations of
environment-related properties of organic chemicals together
with uncertainties of estimated property values. For this
purpose, a systematic methodology for property modeling and
uncertainty analysis is used. The methodology includes a
parameter estimation step to determine parameters of property
models and an uncertainty analysis step to establish statistical
information about the quality of parameter estimation, such as the parameter covariance, the standard errors in predicted
properties, and the confidence intervals. For parameter estimation, large data sets of experimentally measured property values of a
wide range of chemicals (hydrocarbons, oxygenated chemicals, nitrogenated chemicals, poly functional chemicals, etc.) taken
from the database of the US Environmental Protection Agency (EPA) and from the database of USEtox is used. For property
modeling and uncertainty analysis, the Marrero and Gani GC method and atom connectivity index method have been
considered. In total, 22 environment-related properties, which include the fathead minnow 96-h LC50, Daphnia magna 48-h LC50,
oral rat LD50, aqueous solubility, bioconcentration factor, permissible exposure limit (OSHA-TWA), photochemical oxidation
potential, global warming potential, ozone depletion potential, acidification potential, emission to urban air (carcinogenic and
noncarcinogenic), emission to continental rural air (carcinogenic and noncarcinogenic), emission to continental fresh water
(carcinogenic and noncarcinogenic), emission to continental seawater (carcinogenic and noncarcinogenic), emission to
continental natural soil (carcinogenic and noncarcinogenic), and emission to continental agricultural soil (carcinogenic and
noncarcinogenic) have been modeled and analyzed. The application of the developed property models for the estimation of
environment-related properties and uncertainties of the estimated property values is highlighted through an illustrative example.
The developed property models provide reliable estimates of environment-related properties needed to perform process
synthesis, design, and analysis of sustainable chemical processes and allow one to evaluate the effect of uncertainties of estimated
property values on the calculated performance of processes giving useful insights into quality and reliability of the design of
sustainable processes.

■ INTRODUCTION

Currently, there is a great deal of interest in the development of
computer aided methods and tools for the process synthesis,
design, and analysis of sustainable processes. The design of
sustainable processes requires the satisfying of various conditions
(or constraints) such as, increased productivity, minimum energy
consumption, reduction in raw materials, recovery of products,
and minimum generation of pollution.1 This task can be
effectively accomplished by using a chemical process simulator
(to perform mass and energy balances for the concerned

process) together with the waste reduction (WAR) algorithm2,3

to obtain a quantitative measure of the potential environmental
impact (PEI) which, as part of the life cycle assessment (LCA) of
process synthesis and design, contributes to identifying
sustainable processing paths and design alternatives. The PEI is
a relative measure of the potential for a chemical to have an
adverse effect on human health and the environment. Several
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studies in the literature4−6 have reported the application of the
WAR algorithm for generating sustainable process design
alternatives and deciding on sustainable process designs that
are environmentally friendly and economically attractive. In the
WAR algorithm, the total PEI of a process is evaluated based on
the following eight categories of potential impacts: (i) human
toxicity potential by ingestion, calculated using oral rat LD50; (ii)
human toxicity potential by exposure both dermal and inhalation,
calculated using permissible exposure limits (OSHA-TWA); (iii)
terrestrial toxicity potential, calculated using oral rat LD50; (iv)
aquatic toxicity potential, calculated using fathead minnow 96-h
LC50; (v) global warming potential; (vi) ozone depletion
potential; (vii) photochemical oxidation potential; and (viii)
acidification potential. Therefore, the basis for the quantification
of PEI is a set of environment-related properties (such as fathead
minnow 96-h LC50, oral rat LD50, global warming potential, etc.)
of chemical substances involved in the process. The USEtox
model7 is an environment model for characterization of human
and ecotoxicological impacts in life cycle impact assessment
(LCIA), and comparative risk assessment (CRA) and is designed
to describe the fate, exposure, and effects of chemicals.7,8 The
USEtox model calculates characterization factors for carcino-
genic impacts, noncarcinogenic impacts, and total impacts
(carcinogenic + noncarcinogenic) based on the chemical
emissions to urban air, rural air, freshwater, seawater, agricultural
soil, and/or natural soil. The definition of each environment-
related property considered in this work is given in Table 1. For
many chemicals of interest, the experimental data of environ-
ment-related properties is not available since the measurement of
these properties is extremely time-consuming and expensive.
Also, processes that deal with the synthesis of new chemicals
require a suitable property prediction method in order to obtain
reliable estimates of environment-related properties of new
chemicals. A review article by Boethling et al.9 discusses available
experimental data sources and various estimation methods
including group-contribution (GC) methods, methods based on
quantitative structure−property relationships (QSPR), and
correlation equations, to name a few for obtaining values of
environment-related properties of chemicals.
For the estimation of properties of organic chemicals, GC

methods such as those reported by Joback and Reid,13

Lydersen,14 Constantinou and Gani,15 and Marrero and Gani16

have been widely employed to obtain the needed property values
since these methods provide the advantage of quick estimates
without requiring substantial computational work. In GC
methods, the property of a chemical is a function of structurally
dependent parameters, which are determined as a function of the
frequency of the groups representing the chemical and their
contributions. Among GC methods for estimation of properties
of chemicals, the Marrero and Gani (MG) method16 is well-
known. The MG method allows estimation of properties based
exclusively on the molecular structure of the chemical and
exhibits a good accuracy and a wide range of applicability
covering chemical, biochemical, and environment-related
chemicals. Note that for reliable estimation of properties of
chemicals using a GC method, the user needs (i) a property
model; (ii) group definitions (model parameters of the selected
property model) and their contributions; and (iii) a tool to
quantify uncertainties (prediction errors) of estimated property
values in order to check the quality (reliability) of estimation. In
many cases, a user may come across a situation where the selected
GCmodel may not have all the model parameters (that is, groups
describing the structure of a given organic chemical) and/or

parameter values (that is, group contributions) needed for the
estimation of property of that chemical. This issue is due to (i)
lack of necessary experimental data of properties of organic
chemicals in the parameter estimation step and (ii) lack of
necessary group definitions required to describe the complete
structure of wide range of organic chemicals. In such situations
where the molecular structure of a given organic chemical is not
completely described by any of the available groups, the atom
connectivity index (CI) method can be employed to create the
missing groups and/or to predict missing group contributions.
These created missing groups and/or predicted missing group
contributions obtained using the CI method are then used in the
GC method together with other available groups of the GC
method and their group contributions in order to estimate the
property of that organic chemical. This combined approach is
known as the group-contribution+ (GC+) method.17 For
example, let us consider the organic chemical methane,
dimethoxy-. It can be represented by following Marrero and
Gani GC method groups: CH3 and CH3O. Now let us assume
that the user needs to estimate oral rat LD50 for this chemical, and
let us further assume that contribution of the CH3 group is
available but the contribution of CH3O group is not available in
the list of model parameter values for oral rat LD50. In this case,
the user cannot use the Marrero and Gani GC method to
estimate oral rat LD50 of methane, dimethoxy-. To overcome this
limitation, the CI method is used to predict the missing
contribution of the CH3O group. This predicted contribution of
CH3O together with already available contribution of CH3 group
is then used in theMarrero andGani GCmethod to estimate oral
rat LD50 of methane, dimethoxy-. Note that for illustration
purpose, the Marrero and Gani GC method is considered here.
However, the CI method can be combined with any available GC
method for the purpose of creating missing groups and/or
predicting missing group contributions.
There are numerous LCA software tools available (for

example, SimaPro,18 GaBi,19 etc.) for quantification of potential
impact that the processes would have on the environment on
average. Most of these tools have built-in databases containing
properties of chemicals needed for the environmental-impact
analysis. However, for chemicals that are not included in the
database, a suitable property prediction method is necessary to
obtain the needed environment-related property values which
will allow one to perform synthesis, design, and analysis of
sustainable chemical processes. For the estimation of fathead
minnow 96-h LC50 and aqueous solubility, various GC-methods
have been developed. Martin and Young20 developed a GC
method to correlate the acute toxicity (96-h LC50) to the fathead
minnow using 397 organic chemicals based on the multilinear
regression and computational neural networks approach for the
parameter estimation. Casalegno et al.21 used a diatomic
fragment approach based GC method to correlate the acute
toxicity (96-h LC50) of 607 organic chemicals. For the estimation
of aqueous solubility, Marrero and Gani22 developed a GC
method using a three-level parameter estimation approach (with
a data set of 2087 organic chemicals used for the regression
purpose), and this method requires only molecular structural
information for the estimation of aqueous solubility. There are
several other GC methods available for estimation of aqueous
solubility (those of Klopman and Zhu23 and Kühne et al.24). For
the estimation of oral rat LD50 and bioconcentration factor
(BCF), the more common approach has been to employ
correlation equations (for example, bioconcentration factor for a
chemical is estimated using known value of its octanol/water
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partition coefficient). Moreover, Martin et al.25 have developed a
hierarchical clustering technique to predict a variety of end
points, including oral rat LD50, BCF, aqueous solubility, and
fathead minnow LC50 that combines group contributions with
descriptors from graph theory. Software platforms have been
developed both in the U.S. (US EPA 201210,26) and in Europe
(Isitutio Mario Negri 201227) to predict these same end points.
The application range and capability of these estimation
equations is limited by the availability of the required property
values. To the best of our knowledge, there are no GC methods
reported in the literature for the estimation of the following
environment-related properties: permissible exposure limit
(OSHA-TWA), global warming potential, photochemical
oxidation potential, ozone depletion potential, acidification
potential, emission to urban air (carcinogenic and non-
carcinogenic), emission to continental rural air (carcinogenic
and noncarcinogenic), emission to continental fresh water
(carcinogenic and noncarcinogenic), emission to continental
seawater (carcinogenic and noncarcinogenic), emission to
continental natural soil (carcinogenic and noncarcinogenic),
and emission to continental agricultural soil (carcinogenic and
noncarcinogenic). In addition to the accurate estimation of
environment-related properties, it is also important to know the
uncertainties (for example, prediction error in terms of 95%
confidence interval) of the estimated property values that arise
due to uncertainties of the regressed model parameters as well as
due to approximate nature of the selected property model. With
this information, it is possible to evaluate the effect of these
uncertainties on the calculated potential impact that the
processes would have on the environment and to verify the
quality and reliability of the model-based design of sustainable
processes.
Motivated by the preceding literature review and by the need

of reliable estimation of environment-related properties in
synthesis, design, and analysis of sustainable processes, this
work aims to develop property prediction models based on the
GC+ approach (combined GC method and CI method) to
provide reliable estimates of environment-related properties
together with uncertainties of the estimated property values. For
this purpose, a systematic methodology for property modeling
and uncertainty analysis developed by Hukkerikar et al.28 is used.
The methodology includes a parameter estimation step to
determine parameters (group/atom contributions, adjustable
parameters, and a universal parameter) of property models and
an uncertainty analysis step to establish statistical information
about the quality of parameter estimation, such as the parameter
covariance, the standard errors in predicted properties, and the
confidence intervals. For property modeling with a GC method,
the MG method16 has been considered. For property modeling
with a CI method, the models proposed by Gani et al.17 have
been considered. For parameter estimation, large data sets of
experimentally measured property values of wide range of
chemicals taken from the database of US Environmental
Protection Agency (EPA)10 and from the database of USEtox7

is used. In total 22 environment-related properties, which include
the fathead minnow 96-h LC50 (LC50(FM)), Daphnia magna 48-
h LC50 (LC50(DM)), oral rat LD50, aqueous solubility (LogWs),
bioconcentration factor (BCF), permissible exposure limit
(PEL(OSHA-TWA)), photochemical oxidation potential
(PCO), global warming potential (GWP), ozone depletion
potential (ODP), acidification potential (AP), emission to urban
air (carcinogenic (EUAC) and noncarcinogenic (EUANC)),
emission to continental rural air (carcinogenic (ERAC) andT
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noncarcinogenic (ERANC)), emission to continental fresh water
(carcinogenic (EFWC) and noncarcinogenic (EFWNC)), emis-
sion to continental seawater (carcinogenic (ESWC) and
noncarcinogenic (ESWNC)), emission to continental natural
soil (carcinogenic (ENSC) and noncarcinogenic (ENSNC)),
emission to continental agricultural soil (carcinogenic (EASC),
and noncarcinogenic (EASNC)) have been modeled and
analyzed.
The paper first gives a brief overview of the methodology for

property modeling and uncertainty analysis; followed by model
performance statistics; and finally, application of the developed
property models for estimation of environment-related proper-
ties. Tables containing list of property model parameters
together with parameter values, due to their large size, are
provided as Supporting Information.

■ METHODS AND TOOLS FOR PROPERTYMODELING
AND UNCERTAINTY ANALYSIS

MG Group-Contribution Method. In the MG method,16

the property estimation is performed at three levels. The first
level has a large set of simple groups that allow for the
representation of a wide variety of organic chemicals. However,
these groups only partially capture the proximity effects and are
unable to distinguish among isomers. The second level of
estimation involves groups that provide better description of
proximity effects and can differentiate among isomers. Hence,
second level of estimation is intended to deal with polyfunctional,
polar or nonpolar, and cyclic chemicals. The third level
estimation includes groups that provide more structural
information about molecular fragments of chemicals whose
description is insufficient through the first- and second-order
groups; hence, this level allows estimation of complex
heterocyclic and polyfunctional acyclic chemicals. The MG
method includes 220 first-order groups, 130 second-order
groups, and 74 third-order groups to represent the molecular
structure of the organic chemicals. The property prediction
model to estimate the properties of organic chemicals employing
MG method has the form16

∑ ∑ ∑= + +f X NC w M D z E O( )
i

i i
j

j j
k

k k
(1)

The function f(X) is a function of property X, and it may
contain additional adjustable model parameters (universal
constants) depending on the property involved. In eq 1, Ci is
the contribution of the first-order group of type i that occurs Ni
times. Dj is the contribution of the second-order group of type j
that occurs Mj times. Ek is the contribution of the third-order
group of type k that has Ok occurrences in a component.
Equation 1 is a general model for all the properties and the
definition of f(X) is specific for each property X. For
determination of the contributions, Ci, Dj, and Ek, Marrero and
Gani16 suggested a three-step regression procedure.

• Step 1: In this step, the constants w and z are assigned zero
values because only contributions of the first-order groups
are estimated, that is, the first-order groups, Ci and the
additional adjustable parameters of the model.

∑=f X NC( )
i

i i
(2)

• Step 2: In this step, the constants w and z are assigned
unity and zero values, respectively, because only first and

second-order groups are considered. The regression is
performed (by keeping fixed the Ci and the adjustable
parameters obtained from step 1) to determine the
contributions of the second-order groups, Dj.

∑ ∑= +f X NC M D( )
i

i i
j

j j
(3)

• Step 3: In this step, both w and z are set to unity and
regression is performed (by keeping fixed the obtained Ci,
Dj, and the adjustable parameters obtained from steps 1
and 2) to determine the contributions of the third-order
groups, Ek .

∑ ∑ ∑= + +f X NC M D E O( )
i

i i
j

j j
k

k k
(4)

In this way, the contributions of higher levels act as corrections
to the approximations of the lower levels. Hukkerikar et al.28

discussed a new approach for estimating the contributions, Ci,Dj,
and Ek, based on the simultaneous regression method in which
regression is performed by considering all of the terms of eq 1 to
obtain contributions of first-, second-, and third-order groups in a
single regression step.

Atom Connectivity Index (CI) Method. This method
employs the following model for the estimation of properties of
organic chemicals:17

∑ χ χ= + + +f X a A b c d( ) ( ) 2 ( )
i

i i
v 0 v 1

(5)

Where ai is the contribution of the atom of type i that occurs Ai
times in the molecular structure, vχ0 is the zeroth-order (atom)
valence connectivity index, vχ1 is the first-order (bond) valence
connectivity index, b and c are adjustable parameters, and d is a
universal parameter. Please note that f(X) of models in the MG
method16 and in the CI method17 (i.e., left-hand side of eqs 1 and
5) has the same functional form for a particular pure component
property X and the values of universal constants for the CI
models are the same as those for the GC models.

Group-Contribution+ (GC+) Approach. For the purpose of
creating missing groups and/or missing group contributions, the
GC+ approach is followed. The parameters, vχ0 and vχ1 for the
groups as well as for the entire molecule are calculated using the
rules described by Gani et al.17 Once these indices are calculated,
following CI model equations are applied to the missing groups
to compute f (Xm) and f (X*).

∑ χ χ= + +f X a A b c( ) ( ) 2 ( )m
i

m i m i m m, ,
v 0 v 1

(6)

∑* = +f X n f X d( ) ( ( ))
m

m m
(7)

Where m is the number of different missing groups and nm
indicates the number of times a missing group appears in the
molecule. Finally, value of property X is estimated using the
following equation of GC+ method.

∑ ∑ ∑= + * + +f X NC f X M D E O( ) ( )
i

i i
j

j j
k

k k
(8)

Database. For the estimation of property model parameters,
large experimental data sets of organic chemicals of various
classes (hydrocarbons, oxygenated components, nitrogenated
components, poly functional components, etc.) from the
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database of US Environmental Protection Agency (EPA)10 and
from the database of USEtox7 is used. The details of data set of
each property in terms of number of organic chemicals belonging
to various classes are given in Table 2a (data sets from US
Environmental Protection Agency (EPA)) and in Table 2b (data
sets from USEtox).
Parameter Estimation and Uncertainty Analysis (Max-

imum-Likelihood Estimation). The following discussion on
parameter estimation and uncertainty analysis is based on the
methodology discussed by Hukkerikar et al.28 Let the property
prediction model be represented by f and the model parameters
(group/atom contributions, adjustable parameters, and universal
parameter) by P. The minimization of a cost function, S(P),
defined as the sum of the squares of the difference between the
experimental value, Xexp, and evaluated property value, Xpred,
provides the values of unknown parameters P*. This implies that
P* is a set of model parameter values obtained at the minimum
value of the cost function value.

∑= −
=

PS X X( ) min ( )
j

N

j j
1

exp pred 2

(9)

The subscript j indicates the chemical evaluated, and N is the
total number of chemicals included in the evaluation. After the
estimation of the model parameters, uncertainty analysis is
performed to quantify the model prediction errors. In this work,
since the proposed models for environment-related properties
are linear in nature, the following discussion is intended to
provide information on linear least-squares theory. For linear
least-squares, the covariance matrix of the estimated model
parameters, COV(P*), is given by,29

ν
* = −P A ACOV( )

SSE
( )T 1

(10)

Where, SSE is the sum of squared errors obtained from the least-
squares parameter estimation method, ν is the degrees of
freedom (that is, the total number of measurements, n, minus the
number of unknown parameters, m). For the GC model with
linear form of f(X), A is the matrix containing frequencies (or
occurrences) of groups used to represent the chemicals in the
data set used for the regression. For the CI model with linear
form of f(X), A is the matrix containing frequencies of atoms and
zeroth-order and first-order connectivity index for each chemical
included in the data set. The covariance matrix computed using
eq 10 is used for assessing the quality of the parameter
estimation. The diagonal elements of this matrix are the variances
of the errors of the parameter estimates and the off-diagonal
elements are the covariances between the parameter estimation
errors.
The confidence interval of the parameters, P*, at αt

significance level is given as,29,30

ν α* = * ± * ·α−P P P tdiag(COV( )) ( , /2)t1 t (11)

In eq 11, t(ν, αt/2) is the t-distribution value corresponding to
the αt/2 percentile (αt is usually a value of 0.05) and
diag(COV(P*)) represents the diagonal elements of COV(P*).
The t-distribution value is obtained from the probability
distribution function of students' t-distribution,31 Pr(t, ν), and
is given as,

∫ν ν ν ν= + ν
−

−

− +⎜ ⎟
⎛
⎝

⎞
⎠P t B x x( , )

1
2

,
2

(1 / ) dr
t

t1
2 1/2( 1)

(12)

Table 2. Description of the Data Sets Used for Regression Purpose

(a) US EPA

class of chemicals LC50 (FM) LC50 (DM) LD50 Log Ws BCF PCO PEL GWP ODP AP

hydrocarbons 32 19 69 236 79 337 98 0 0 0
oxygenated 238 54 1382 1110 76 244 127 1 0 0
nitogenated 80 24 397 244 57 8 45 0 0 0
chlorinated 48 37 111 274 77 23 41 5 3 5
fluorinated 1 0 3 21 1 5 4 23 0 0
brominated 10 4 14 47 15 5 7 2 1 0
iodinated 1 0 5 17 0 0 1 0 0 0
phosphorus containing 0 0 5 0 0 0 0 0 0 0
sulfonated 9 8 24 19 5 0 15 0 0 0
silicon containing 0 0 1 2 0 0 0 0 0 0
multifunctional 390 174 3984 2711 352 17 87 20 24 5
total number of chemicals 809 320 5995 4681 662 639 425 51 28 10

(b) USEtox

class of chemicals EUAC EUANC ERAC ERANC EFWC EFWNC ESWC ESWNC ENSC ENSNC EASC EASNC

hydrocarbons 25 14 18 16 19 14 19 16 18 16 20 16
oxygenated 107 56 96 60 98 57 101 60 96 58 97 58
nitogenated 29 14 27 14 27 13 26 15 27 15 27 14
chlorinated 46 23 43 26 44 27 45 32 45 30 43 28
fluorinated 4 1 4 1 4 1 4 1 4 1 4 1
brominated 6 2 5 2 4 2 5 2 5 3 5 3
iodinated 0 0 0 0 0 0 0 0 0 0 0 0
phosphorus containing 0 0 0 0 0 0 0 0 0 0 0 0
sulfonated 3 1 3 1 3 1 3 1 3 1 3 1
silicon containing 0 0 0 0 0 0 0 0 0 0 0 0
multifunctional 236 230 274 229 273 230 274 233 262 238 271 231
total number of chemicals 456 341 470 349 472 345 477 360 460 362 470 352
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Where x = ν/(ν + t2) and B (1/2, ν/2) is the beta function. For
95% confidence interval calculation, the value of Pr(t, ν) is 0.95.
The t-distribution value can also be obtained using the “tinv”
function available in MatLab.
The confidence interval of the predicted property value, Xpred,

at αt significance level is given as

ν α

= ± * * *

·

α− P P PX X J J

t

diag( ( )COV( ) ( ) )

( , /2)t

1
pred pred T

t

(13)

Where, the Jacobian matrix J(P*) calculated using ∂f/∂P*
represents the local sensitivity of the property model f to
variations in the estimated parameter values P*. It is to be noted
that the uncertainties of the property data arise mainly due to
accuracy and precision of measurement instruments used,
method of measurement, and purity of samples considered in
the analysis, among others. The model prediction error reported
as 95% confidence interval on calculated properties is a statistical
concept associated with statistical framework used for parameter
estimation. In this study, we use the maximum likelihood theory
as summarized in eqs 9−13, which aims to propagate the
residuals (that is, the difference between the property data and
the calculated property values using the model) obtained after
parameter estimation as first errors on model parameters
(covariance matrix of estimated parameters) and then errors
on the model predictions using linear error propagation
method.29 The model prediction error reported as 95%
confidence interval is useful to assess the reliability of the
prediction (when experimental data is available for the property).
If the experimental value of the property is within the calculated
confidence interval, then the property prediction method is
verified as reliable. When experimental data is unavailable, the
calculated confidence interval provides a measure of the likely
prediction error (uncertainty) of the predicted property value.
This information can be used in the design and analysis of
sustainable processes to take into account the effect of
uncertainties of predicted property values on the calculated
impact that the processes would have on the environment (and
hence on the decision of selection of sustainable process design).

Statistical Performance Indicators. The statistical sig-
nificance of the developed correlations in this work is based on
the following performance indicators.28

• Standard deviation (SD): This parameter measures the

spread of the data about its mean value μ and is given by

∑= −X X NSD ( ) /
j

j j
exp pred 2

(14)

• Average absolute error (AAE): This is the measure of
deviation of predicted property values from the exper-
imentally measured property values and is given by

∑= | − |
N

X XAAE
1

j
j j
exp pred

(15)

• Average relative error (ARE): This provides an average of
relative error calculated with respect to the experimentally
measured property values and is given by

∑= | − | ×
N

X X XARE
1

( )/ 100
j

j j j
exp pred exp

(16)

• Coefficient of determination (R2): This parameter
provides information about the goodness of model fit.
AnR2 close to 1.0 indicates that the experimental data used
in the regression have been fitted to a good accuracy. It is
calculated using,

∑ ∑ μ= − − −R X X X1 [ ( ) / ( ) ]
j

j j
j

j
2 exp pred 2 exp 2

(17)

The indicators SD, AAE, ARE, and R2 provide measures of
quality (reliability) of property prediction models on a global
basis. However, it is important that the information of
uncertainties of estimated values also be made available to the

Figure 1. Plot of molecule types versus their experimental values of −Log LC50(FM).
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Table 3. Performance of MG Method Based Property Models Analysed Using Stepwise Regression Method
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user in order to provide confidence in the estimated property
values and hence in the design of sustainable processes.

■ RESULTS

In this section, the selection of suitable property models for
modeling environment-related properties and the performance
statistics for the developed property models are discussed. The
results are presented for the following models:

• MG method based property models analyzed using
stepwise regression method

• MG method based property models analyzed using
simultaneous regression method

• CI method based property models

Selection of Suitable Property Models for Environ-
ment-Related Properties. In this work, the basis for selecting
an appropriate property model for the environment-related
property has been the study of behavior of that property of
certain class of chemicals with increasing molecular weight. This
is illustrated for the case of LC50(FM). Figure 1 shows plots of
various molecules types (such as alcohols, amines, multifunc-
tional chemicals, etc.) with increasing molecular weight versus
their experimental values of −Log LC50(FM). It can be seen that
these plots are linear in nature suggesting that the property
LC50(FM) can be modeled using a linear model of the form
−Log LC50(FM) + constant = ∑iNiCi + ∑jMjDj + ∑kEkOk.
Similar analyses have been performed (not shown in this paper)
to obtain a suitable form of the property model for other

Table 3. continued

aARE is not defined for Log Ws, BCF, ODP, and AP since these properties have both positive and negative values.
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Table 4. Performance of CI Method Based Property Models
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environment-related properties with the objective of providing
an accurate and reliable property estimation of environment-
related properties.
Model Performance. The model performance statistics for

property models analyzed using the stepwise regression method
are provided in Table 3. The model performance statistics for
properties analyzed using the simultaneous regression method
are given in Table S1 in the Supporting Information. In Table 3,
N is the number of experimental data points considered in the
regression and ν is the degrees of freedom and is obtained by
subtracting the number of estimated model parameters from N.
Prc(±1%), Prc(±5%), and Prc(±10%) represents the percentage of the
experimental data-points (N) found within ±1%, ± 5%, and
±10% relative error range, respectively. For property models
analyzed using stepwise regression method, the results for R2,
SD, AAE, and ARE have been obtained after third-level
estimation; hence, they represent the global results of the three
sequential approximations. The residuals (Xexp − Xpred) for data
points considered in the regression are plotted in the form of

residual distribution plots and are included in Table 3 and Table
S1 (Supporting Information). For most of the property models
(except for ozone depletion potential and acidification
potential), the residuals followed a normal distribution curve
suggesting that the assumption of normal distribution of random
errors is valid behind the followed approach. The user of a
particular property model can decide the selection of stepwise or
simultaneous method based on the performance statistics for that
property given in Table 3 and Table S1. The model performance
statistics for property models analyzed using the CI method are
provided in Table 4. These CI models have been employed
together with the GCmethod for creating themissing groups and
predicting their contributions through the regressed contribu-
tions of connectivity indices as suggested by Gani et al.17 This
feature makes it possible to predict environment-related
properties of organic chemicals for which neither experimental
data nor the GC-property model parameters are available. The
property models developed based on the CI method (see Table
4) have reasonable model performance statistics. High accuracy

Table 4. continued

aARE is not defined for Log Ws, BCF, ODP, and AP since these properties have both positive and negative values.
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in the prediction of environment-related properties cannot be
expected from this model, since only a few parameters are
involved to represent a large data set of chemicals. Greater
accuracy can be obtained by adding higher-order connectivity
indices. However, the main objective of analyzing CI models in
this work is to obtain the missing group contributions, for which
only the first two connectivity indices should be sufficient.17

Hukkerikar et al.28 discussed the effect of quantity of
experimental data on the quality of parameter estimation and

illustrated that by including all of the available experimental data
of the property in the regression it is possible to improve the
predictive capability and application range of the property model.
Therefore, in this work, we have considered all of the available
experimental data of properties of chemicals for modeling
environment-related properties. To illustrate this point, we have
considered here an analysis of property model for oral rat LD50,
fathead minnow 96-h LC50, and emission to continental urban air
(carcinogenic (EUAC) and noncarcinogenic (EUANC)). The

Table 5. Performance of Model for (a) Oral Rat LD50, (b) Fathead Minnow 96-h LC50, (c) Emission to Urban Air (Carcinogenic),
and (d) Emission to Urban Air (Non-Carcinogenic) Based on Different Combinations of Training Sets and Test Sets

(a) Oral Rat LD50

data sets used for model performance statistics for training set

model performance statistics for test set
using the parameters estimated from

regression of the training set

model performance statistics for test set
using the parameters estimated from
regression of the whole data set
(containing 5995 data-points)

training
purpose

testing
purpose MSECV

SD Log
(mol/kg)

AAE Log
(mol/kg) ARE %

SD Log
(mol/kg)

AAE Log
(mol/kg) ARE %

SD Log
(mol/kg)

AAE Log
(mol/kg) ARE %

A, B, C, D E 0.1812 0.4257 0.3479 15.97 0.4628 0.3732 17.32 0.4220 0.3424 15.91
A, B, C, E D 0.1796 0.4238 0.3456 15.90 0.4755 0.3839 17.72 0.4287 0.3506 16.21
A, B, D, E C 0.1805 0.4248 0.3462 15.97 0.4754 0.3823 17.23 0.4251 0.3500 15.90
A, C, D, E B 0.1788 0.4229 0.3449 15.89 0.4677 0.3813 17.20 0.4338 0.3536 16.00
B, C, D, E A 0.1794 0.4236 0.3455 15.86 0.4694 0.3848 17.93 0.4302 0.3532 16.46
average performance 0.1799 0.4241 0.3460 15.91 0.4701 0.3811 17.48 0.4279 0.3499 16.09

(b) Fathead Minnow 96-h LC50

data sets used for model performance statistics for training set

model performance statistics for test set
using the parameters estimated from

regression of the training set

model performance statistics for test set
using the parameters estimated from
regression of the whole data set
(containing 809 data-points)

training
purpose

testing
purpose MSECV

SD Log
(mol/lit)

AAE Log
(mol/lit) ARE %

SD Log
(mol/lit)

AAE Log
(mol/lit) ARE %

SD Log
(mol/lit)

AAE Log
(mol/lit) ARE %

A, B, C, D E 0.3400 0.5831 0.4015 19.68 1.3753 0.8615 27.04 0.6732 0.4786 15.68
A, B, C, E D 0.3339 0.5778 0.3991 19.10 1.3944 0.9325 28.91 0.6854 0.4778 17.65
A, B, D, E C 0.3624 0.6020 0.4237 14.99 1.3517 0.9127 47.19 0.6581 0.4802 33.19
A, C, D, E B 0.3645 0.6037 0.4201 20.39 1.4857 0.9072 28.26 0.6399 0.4654 14.62
B, C, D, E A 0.3453 0.5876 0.4142 17.62 1.5178 0.9710 35.12 0.6722 0.4831 21.19
average performance 0.3492 0.5908 0.4117 18.35 1.4249 0.9169 33.30 0.6657 0.4770 20.47

(c) Emission to Urban Air (Carcinogenic)

data sets used for model performance statistics for training set

model performance statistics for test set
using the parameters estimated from

regression of the training set

model performance statistics for test set
using parameters estimated from
regression of the whole data set
(containing 456 data-points)

training
purpose

testing
purpose MSECV

SD cases/kg
emitted

AAE cases/kg
emitted ARE %

SD cases/kg
emitted

AAE cases/kg
emitted ARE %

SD cases/kg
emitted

AAE cases/kg
emitted ARE %

A, B, C, D E 0.2050 0.4528 0.3024 5.86 1.8293 1.1974 27.82 0.5386 0.4135 9.16
A, B, C, E D 0.2206 0.4697 0.3252 6.55 1.4664 0.9823 17.63 0.4766 0.3534 6.60
A, B, D, E C 0.1675 0.4093 0.2871 5.52 1.6849 1.2268 25.79 0.6160 0.4165 9.52
A, C, D, E B 0.2111 0.4595 0.3052 6.42 2.0921 1.3187 24.12 0.4854 0.3480 6.33
B, C, D, E A 0.2182 0.4671 0.3267 6.63 1.3597 1.0115 19.55 0.4572 0.3478 6.55
average performance 0.2045 0.4517 0.3093 6.19 1.6865 1.1473 22.98 0.4713 0.3479 6.44

(d) Emission to Urban Air (Noncarcinogenic)

data sets used for model performance statistics for training set

model performance statistics for test set
using the parameters estimated from

regression of the training set

model performance statistics for test set
using parameters estimated from
regression of the whole data set
(containing 341 data-points)

training
purpose

testing
purpose MSECV

SD cases/kg
emitted

AAE cases/kg
emitted ARE %

SD cases/kg
emitted

AAE cases/kg
emitted ARE %

SD Cases/kg
emitted

AAE Cases/kg
emitted ARE %

A, B, C, D E 0.0655 0.2560 0.1716 3.14 2.3797 1.4854 26.38 0.3872 0.2801 5.03
A, B, C, E D 0.0997 0.3157 0.2217 4.12 1.7248 1.0980 19.22 0.3693 0.2708 4.89
A, B, D, E C 0.0831 0.2882 0.1894 3.50 2.4662 1.5963 30.72 0.3684 0.2615 5.01
A, C, D, E B 0.0846 0.2909 0.1936 3.51 3.0908 1.6401 29.28 0.3980 0.3007 5.62
B, C, D, E A 0.1097 0.3313 0.2289 4.23 8.7061 3.9458 80.85 0.3096 0.2166 3.80
average performance 0.0885 0.2964 0.2010 3.69 3.6735 1.9531 37.28 0.3665 0.2659 4.87
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whole experimental data sets of these properties (5995 data-
points for oral rat LD50, 809 data-points for fathead minnow 96-h
LC50, 456 data-points for emission to continental urban air
(carcinogenic (EUAC), and 341 data-points for emission to
continental urban air (noncarcinogenic (EUANC))) is divided
randomly in five subsets (A, B, C, D, and E) of equal size. The
property model is trained on four subsets (using simultaneous
regression method) and one subset is used for testing purpose.
This procedure is repeated five times so that all subsets are used
for testing purposes. The results in terms of SD, AAE, and ARE
for training sets and for test sets is presented in Table 5a for oral
rat LD50, Table 5b for fathead minnow 96-h LC50, Table 5c for
emission to continental urban air (carcinogenic (EUAC), and in
Table 5d for emission to continental urban air (noncarcinogenic
(EUANC)). The MSECV, which is mean squared error of cross-
validation,32 calculated using eq 18 is also given in Table 5.

∑ ∑= −
= ∈N

X XMSECV
1

( )
k

K

j L
j j

L 1

exp pred 2

k (18)

Where, NL is the number of data points in the training set, K =
number of subsets (5 in this analysis), and Lk is the number of
data-points in the subsets.
From Table 5a, comparison of the model performance for

training sets and test sets show that the predictive capability of
the model for oral rat LD50 is fairly good. This is mainly due to
the large amount of available experimental data of oral rat LD50
for the training purpose. For test sets, if we compare the SD,
AAE, and ARE values calculated using the parameters obtained
by regressing training set with those that are calculated using the
parameters obtained by regression of the whole data set, we find
that better model performance statistics (lower SD, lower AAE,
and lower ARE) is obtained when we use model parameters that
are estimated using all of the experimental data-points in the
regression.
For fathead minnow 96-h LC50, emission to continental urban

air (carcinogenic (EUAC)), and emission to continental urban air
(noncarcinogenic (EUANC)), it can be seen from Table 5b−d
that the model performance for test sets is poor as compared to
those of training sets, and this is due to the small amount of
available experimental data of these properties for the training
purpose. For these properties, it can be observed that the SD,
AAE, and ARE values for test sets calculated using the model
parameters as obtained by regression of the whole data set are
much better than those that are calculated using the parameters
estimated using the training set indicating the importance of
considering all of the available experimental data-points for the
regression purpose. To sum up, this analysis shows both the
robustness of the approach and the predictive capability of the
developed models for estimating environmental related proper-
ties.
Marrero and Gani22 reported SD, AAE, and R2 values for the

GC model for Log Ws as 0.55, 0.46, and 0.93, respectively. In
their analysis, the number of estimated model parameters
(groups) are 155 first-order groups, 99 second-order groups, and
48 third-order groups (that is, total 302 groups estimated out of
424 groups). Referring to Table 3, it can be seen that the property
model for LogWs has SD, AAE, and R

2 values of 0.99, 0.73, and
0.78 respectively. In this work, the number of estimated groups is
197 first-order groups, 124 second-order groups, and 57 third-
order groups (total 378 groups estimated out of 424 groups). It is
to be noted that in the present work, a much larger data set (4681
data points as compared to 2087 data points used byMarrero and

Gani22) of Log Ws comprising complex and polyfunctional
environment-related chemicals is used in the regression, which
makes it possible to estimate larger number of model parameters
thereby contributing to improved application range of the
property model for Log Ws. A similar note can be made for the
case of property model for LC50(FM). The developed property
model for LC50(FM) has SD, AAE, and R2 values of 0.69, 0.48,
and 0.78, respectively. Martin and Young20 reported SD and R2

values for their GC model for LC50(FM) as 0.37 and 0.91,
respectively. The use of the large data set for LC50(FM) allows
estimation of a large number of model parameters which in turn
allows one to estimate LC50(FM) for a wide range of organic
chemicals. For the property LC50(DM), the model performance
statistics are similar to that of LC50(FM) model. The developed
property model for LD50 (using a data set of 5995 chemicals) has
reasonably good performance statistics with SD, AAE, and R2

values as 0.43, 0.35, and 0.73, respectively. Several estimation
methods based on the QSAR approach have been reported in the
literature that uses other properties such as LC50(DM) as an
input to their estimation method to estimate LD50. Also, these
methods have been developed based on relatively smaller data
sets (with few hundreds of chemicals in the data set) of
chemicals. The application of such methods is restricted by the
availability of the experimental data of the needed input
properties for their estimation. A similar issue is associated
with the estimation methods for BCF requiring additional inputs
such as the octanol/water partition coefficient. In this work, the
developed property model for BCF has SD, AAE, and R2 values
of 0.63, 0.47, and 0.78, respectively. Note that the developed
property models for LD50 and for BCF only require the
molecular structure of the chemical for the property estimation.
For properties GWP, ODP, and AP, the number of experimental
data points used in the regression are smaller as compared to
other properties analyzed in this work. However, it can be noted
that these properties belong to a particular class of chemicals (for
example, global warming potential and ozone depletion potential
properties involve halogenated chemicals, acidification potential
property involves nitrogenated chemicals); hence, even though
the experimental data sets are smaller, the models for these
properties are able to provide estimation of these properties with
good accuracy. The model performance statistics for the
remaining properties namely, EUAC, EUANC, ERAC, ERANC,
EFWC, EFWNC, ESWC, ESWNC, ENSC, ENSNC, EASC, and
EASNC, show that the experimental data have been fitted to a
good degree of accuracy. The estimation of these properties is
based exclusively on the molecular structure of the chemical and
allows the user to calculate human toxicity potential (HTP)8

(which is needed to perform life cycle impact assessment of the
product) thus increasing the application range of the USEtox
model7 to a wide range of chemicals.
The variables FM0, DM0, ALogWs, BLogWs ALD50, BLD50, AEUAC,

AEUANC, AERAC, AERANC, AEFWC, AEFWNC, AESWC, AESWNC, AENSC,
AENSNC, AEASC, AEASNC as defined in the functional forms, f(X),
given in Tables 3 and 4 are additional adjustable parameters of
property prediction models. The values of these parameters are
listed in Table 6. The total list of groups and their contributions
Ci, Dj, and Ek for the 22 environment-related properties analyzed
in this work are given in the Supporting Information (see Tables
S2−S4 for MG method based models analyzed using stepwise
regression method and Tables S5−S7 for MG method based
models analyzed using simultaneous regression method). The
list of atoms, their contributions ai, adjustable model parameters
(b and c), and the universal parameter d for CI method based
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property prediction models are given in the Supporting
Information (see Table S8). The covariance matrix computed
using eq 10 for each property prediction model analyzed using
the MG method (for models with stepwise regression method
and simultaneous regression method) and using the CI method
is available upon request from the authors. The developed
models for environment-related properties have been imple-
mented in ProPred, a property estimation toolbox of ICAS
(Integrated Computer Aided System33) software developed by
CAPEC, DTU.

Application of the Developed Property Models for the
Estimation of Environment-Related Properties. The
application of the developed property models to estimate
environment-related properties and to quantify the uncertainties
of the estimated property values is illustrated by considering
predictions of Log Ws (using model parameters obtained from
simultaneous regression method) for the chemical, benzo[a]-
pyrene, (CAS no. 50-32-8) which is a polycyclic aromatic
hydrocarbon and is highly carcinogenic. The experimentally
measured value of LogWs (mg/L) for benzo[a]pyrene is −2.79.
Table 7 provides information of first-order, second-order, and
third-order groups used to represent benzo[a]pyrene, their
frequency (that is, occurrences in the structure), and the
contributions for each group (LogWs1i, LogWs2j, and LogWs3k)
taken from Tables S5−S7 given in the Supporting Information.
Using this information and the universal constants of the
property model for Log Ws, the value of Log Ws for
benzo[a]pyrene is estimated as −2.64 (with absolute error =
|−2.79 − (−2.64)| = 0.15).
To illustrate the application of the GC+ approach, let us

assume that the contribution of aC fused with aromatic ring
group is not available. In this case, the model user cannot apply
the GC method for predicting Log Ws of benzo[a]pyrene.
However, using the GC+ approach, it is possible to predict the
missing contribution of aC fused with aromatic ring group which
will allow the model user to predict Log Ws of benzo[a]pyrene.
The zeroth-order (atom) connectivity index, vχ0, and the first-
order (bond) connectivity index, vχ1, for aC fused with aromatic
ring group as calculated using the rules given by Gani et al.17 are
2.1380 and 1.7412, respectively. The CImodel constants b, c, and
d for LogWs are−0.2601,−0.0376, and 0, respectively. Using eq
6, we predict the contribution of aC fused with aromatic ring
group as −3.5296. This predicted contribution can now be
substituted in eq 8 together with contributions of other groups
listed in Table 7 to estimate the value of LogWs, and this value is
−1.7378 (the absolute error is therefore, 1.05).

Table 6. Values of Universal Constants (Additional Adjustable
Parameters)a

universal constants value (stepwise method) value (simultaneous method)

FM0 2.1949 2.1841
DM0 2.9717 3.5907
ALogWs 4.5484 4.3098
BLogWs 0.3411 0.3404
ALD50 1.9372 1.9372
BLD50 0.0016 0.0016
AEUAC 5.2801 5.22536
AEUANC 6.8181 7.06605
AERAC 6.5561 6.68611
AERANC 7.5541 9.53269
AEFWC 5.6726 5.0706
AEFWNC 6.4429 7.33378
AESWC 8.3962 9.33319
AESWNC 8.6360 10.0724
AENSC 6.4837 5.93334
AENSNC 7.0265 6.4159
AEASC 6.2913 5.48504
AEASNC 6.9723 6.06003

aValues of universal constants for the CI models are the same as those
based on the stepwise method.

Table 7. Estimation of Log Ws of Benzo[a]pyrene
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As a next step, the uncertainty of the estimated Log Ws is
quantified. For this purpose, information of covariance COV-
(P*) of the involved groups and the universal constants ALogWs
and BLogWs and also the local sensitivity J(P*) of the Log Ws
model is needed. The covariance of the involved groups (as listed
in Table 8) and universal constants ALogWs and BLogWs was noted
from the overall covariance matrix for all the groups of the Log
Ws model analyzed using simultaneous regression method. In
Table 8, only lower triangular elements are shown since the
upper triangular matrix elements are identical to the lower ones.
Table 9 lists the local sensitivity of the LogWs model with respect
to the model parameters (for contributions listed in Table 7 and
universal constants ALogWs and BLogWs).
To calculate the confidence intervals of estimated property

values, say the 95% confidence intervals of the estimated LogWs
value, the covariance matrix COV(P*) given in Table 8 and the
local sensitivity J(P*) given in Table 9 are substituted in eq 13.
For 95% confidence interval calculation, the t-distribution value
corresponding to 0.05/2 percentile (i.e., αt/2 percentile) and
with 4311 degrees of freedom (taken from Table 3) is obtained

by solving eq 12 for t and this value is 1.9604. The predicted value
of the Log Ws is −2.64 (see Table 7). The calculated 95%
confidence intervals of the estimated Log Ws value is therefore

It can be observed that the experimental value of the Log Ws
(−2.79) lies within the predicted confidence intervals indicating
reliability of the developed model for estimating property values
of Log Ws and uncertainties of the estimated values. This, of
course, can only be checked when experimental data is available.
This is further illustrated in Figure 2 by plotting the experimental
values of Log Ws and the calculated 95% confidence intervals
(shown as vertical bars) for the entire experimental data set of
Log Ws used for the regression purpose. About 42% of the
experimental values in the data set (with 4681 data points) of Log
Ws falls within the confidence intervals calculated at 95%
confidence level. For the case where no experimental data is
available, the calculated confidence intervals provide ameasure of

Table 8. Covariance Matrix COV(P*) with Dimensions 7 × 7

ALogWs BLogWs aCH aC arom.fused[2] arom.fused[3] arom.fused[4p]

ALogWs 0.0154
BLogWs −1.28 × 10−7 4.97 × 10−7

aCH −0.0025 −8.1 × 10−6 6.71 × 10−4

aC −0.002 −4.7 × 10−6 −3.7 × 10−4 0.0048
arom.fused[2] 7.7 × 10−5 −4.3 × 10−6 −5.9 × 10−4 −0.0047 0.0113
arom.fused[3] −0.0013 −2.4 × 10−6 −8.9 × 10−6 −0.0084 0.0111 0.0375
arom.fused[4p] −4.5 × 10−4 1.6 × 10−6 8.25 × 10−6 −0.0092 0.009 0.0136 0.0283

Table 9. Local Sensitivity J(P*) with Dimensions (1 × 7) of Log Ws Model with Respect to the Model Parameters

δLog Ws/δALogWs δLog Ws /δBLogWs δLog Ws //δaCH δLogWs //δaC δLog Ws /δ arom.fused[2] δLog Ws /δ arom.fused[3] δLog Ws /δ arom.fused[4p]

1.0 252.31 12 8 1 1 2

Figure 2. Experimental values of Log Ws and the calculated 95% confidence intervals versus data set of Log Ws.
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the likely prediction error (that is, uncertainty) of the predicted
property value. We have considered here the calculation of
confidence intervals of the estimated property values using
models analyzed by simultaneous regression method in order to
simplify the illustration of the application of the developed
property models, since there will be a single covariance matrix
containing covariance of all the listed groups and universal
parameters. The approach discussed in this section is the same
for the case of property models analyzed using the stepwise
regression method. In the case of stepwise regression method,
there will be a covariance matrix for each type of the groups, i.e.,
first-order, second-order, and third-order and, hence, quantifica-
tion of uncertainty in the predicted property value is to be
performed (using these covariance matrices) for each step (that
is step 1, step 2, and step 3) of property estimation.

■ CONCLUSIONS
Property models for environment-related properties based on
the GC+ approach have been developed with the objective of
providing reliable estimation of these properties together with
the uncertainties of the estimated values for their use in the
synthesis, design, and analysis of sustainable processes. The
estimation of environment-related properties using these models
requires only the molecular structure of the organic chemicals.
Large experimental data sets of environment-related properties
taken from the database of US Environmental Protection Agency
(EPA) and from the database of USEtox are used for the
regression purpose in order to achieve good model performance
and large application range of the property models. In total, 22
environment-related properties of organic chemicals have been
modeled and analyzed. The use of the developed property
models to estimate environment-related properties and the
uncertainties of the estimated property values is illustrated
through an application example. The models for some of the
properties analyzed in this work have been implemented in
ProPred, a property estimation toolbox of ICAS (Integrated
Computer Aided System) software. The developed property
models provide reliable estimates of environment-related
properties needed to perform design and analysis of sustainable
processes and allow one to evaluate the effect of uncertainties of
estimated property values on the calculated potential impact that
the processes would have on the environment giving useful
insights into quality and reliability of the design of sustainable
processes. Our current and future work is focused on
quantification of the effect of uncertainties of estimated
properties on the design of sustainable processes.
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