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The transition to chaotic phase synchronization
E. Mosekilde∗, J. L. Laugesen∗ and Zh. T. Zhusubaliyev†

∗Department of Physics, The Technical University of Denmark, 2800 Lyngby, Denmark
†Department of Computer Science, South West State University, 50 Years of October Str., 94, Kursk

305040, Russia

Abstract. The transition to chaotic phase synchronization for a periodically driven spiral-type
chaotic oscillator is known to involve a dense set of saddle-node bifurcations. By following the
synchronization transition through the cascade of period-doubling bifurcations in a forced Rössler
system, this paper describes how these saddle-node bifurcations arise and how their characteristic
cyclic organisation develops. We identify the cycles that are involved in the various saddle-node
bifurcations and descibe how the formation of multi-layered resonance cycles in the synchroniza-
tion domain is related to the torus doubling bifurcations that take place outside this domain. By
examining a physiology-based model of the blood �ow regulation to the individual functional unit
(nephron) of the kidney we demonstrate how a similar bifurcation structure may arise in this system
as a response to a periodically varying arterial blood pressure. The paper �nally discusses how an
alternative transition to chaotic phase synchronization may occur in the mutual synchronization of
two chaotically oscillating period-doubling systems.
Keywords: Chaotic phase synchronization, torus-doubling, multi-layered tori, nephron autoregu-
lation, physiology-based modeling
PACS: 05.45-a, 05.45 xt, 87.19 rh, 87.64 Aa

INTRODUCTION

Chaotic phase synchronization [1, 2, 3] denotes an interesting form of synchronization
in which a chaotic oscillator adjusts the frequencies of its internal dynamics to the
rhythm of an external forcing, or to the dynamics of another chaotic oscillator, while
the amplitudes continue to vary in an irregular fashion. In a numerical experiment one
can observe [4, 5, 6, 7] how the main frequency of a periodically driven chaotic oscillator
varies with some control parameter until the system enters a region of synchronization
where the main frequency remains constant and equal to the forcing frequency. The
width of the mode-locking interval typically increases with the forcing amplitude and,
as the system leaves this interval, its main frequency again starts to change.

Chaotic phase synchronization has been observed in a broad range of different physi-
cal, technical and biological systems, including a plasma discharge tube paced with a low
amplitude wave generator [8], an array of coupled electronic oscillators [9], and a pair
of interacting functional units of the kidney [10]. The transition between phase-locked
and un-locked states represents a signi�cant change in behavior, and we have previously
suggested that transitions between different synchronization states among oscillatory bi-
ological processes may represent an important component in the normal physiological
regulation of the living organism [10].

Over the years, chaotic phase synchronization has been the focus of considerable
theoretical interest [11, 12, 13], and concepts and methods developed through this
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work have been used to interpret mode-locking phenomena in data from many different
sources. Along with changes in the variation of the average frequency, the transition
between phase-locked and un-locked chaos is also re�ected in a speci�c variation of
the Lyapunov exponents, in characteristic changes of the spectrum of the forced chaotic
oscillator, and through changes in the size and form of its Poincaré section [14, 15]. It
is generally known that the edge of the synchronization domain is made up by a dense
set of saddle-node bifurcations [6, 13, 16, 17]. However, several details of how this set
arises, how it is organized, and how the transition to the ergodic torus that exists outside
the resonance zone takes place appear not yet to have been worked out.

A main contribution in this direction is the theory of cyclic (or C-type) criticality
developed by Kuznetsov et al. [18, 19, 20]. In particular these authors have shown that
the period-doubling transition to chaos along the edge of a resonance tongue displays an
unusual scaling behavior that involves pairs of subsequent period-doubling bifurcations.
In order to examine the bifurcation structure in more detail, we have recently performed
a continuation analysis of the involved transitions [21, 22, 23]. This has demonstrated
how the dynamics of the periodically forced Rössler system develops through continued
period-doubling bifurcations of both the node and the saddle cycles in a direction
transverse to the original resonance torus, thus producing a system of so-called multi-
layered resonance tori [21]. To delineate the range of existence of the period-doubled
cycles, a new saddle-node bifurcation emerges on both sides of the resonance zone in
each period-doubling bifurcation. For a particular side of the resonance tongue, these
saddle-node bifurcations alternatingly arise from the stable and the unstable branch of
the period-doubling curve, hence producing the characteristic cyclic structure of the
criticality where the scaling relates to pairs of subsequent period-doubling bifurcations.
Moreover, the new saddle-node bifurcation curves arise close to, but not in the so-called
fold-�ip bifurcation points where the period-doubling curves are tangent to the former
saddle-node bifurcation curves. Additional bifurcations are therefore required to close
the ’holes’ between the saddle-node bifurcation curves.

By following the synchronization transition for the forced Rössler system from the
region where the oscillator displays simple periodic dynamics and all the way up through
the cascades of period-doubling bifurcations to the regime of chaos, the present paper
describes how the saddle-node bifurcations arise and how they are arranged [21, 24].
We explain how the bifurcating modes are organized and determine at which of the
many saddle-node bifurcation curves, the ergodic torus that exists outside the resonance
domain is born. This leads to a discussion of how the torus doubling bifurcations that
take place outside of the resonance zone are related to the transitions that occur in the
synchronization domain.

By examining the bifurcation structure of a physiology-based model of the blood �ow
regulation to the individual functional unit (nephron) of the kidney, we demonstrate how
the same type of critical behavior may occur in the nephron’s response to a periodic vari-
ation in the arterial blood pressure [25]. We �nally discuss a new type of transition from
asynchronous to phase synchronized chaos that, besides the saddle-node bifurcations,
also involves a dense set of torus bifurcation curves. This type of transition, that arises
through interaction between a pair of period-doubling oscillators, has been observed
both for coupled Rössler systems and for pairs of interacting nephrons [26].
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FIGURE 1. Two-dimensional bifurcation diagram for the 1:1 resonance zone of the periodically forced
Rössler oscillator (1). ω and c represent, respectively, the forcing frequency and the nonlinearity parameter
of the unforced Rössler oscillator. PDS and PDU denote period-doubling bifurcation curves for stable
(node) and unstable (saddle) cycles, respectively. SN denotes saddle-node bifurcation curves, and TD
locates torus doubling bifurcations outside the resonance zone. The arrows A, B andC de�ne scan lines to
be examined below. The �gure was constructed by means of conventional continuation methods applying
the software provided by Doedel et al. [27]

CROSSING THE BOUNDARY OF SYNCHRONIZATION

Let us consider the periodically forced Rössler system

�x= −y− z+Asin(ωt); �y= x+ay; �z= b+ z(x− c) (1)

that has also formed the basis for many earlier investigations of chaotic phase synchro-
nization [11, 12, 13]. Here x, y and z are the dynamical variables of the unforced os-
cillator, and Asin(ωt) represents the externally applied forcing. The parameters a and
b and the forcing amplitude A are kept constant at the values a = b = 0.2 and A = 0.1
while the nonlinearity parameter c and the forcing frequency ω are used as bifurcation
parameters.

With the above parameter values, the unforced Rössler system undergoes a Hopf
bifurcation at c = 0.4 and for increasing values of c, the system hereafter exhibits a
Feigenbaum cascade of period-doubling bifurcations. When an external periodic forcing
is applied in the regime of periodic oscillations, the Rössler system displays regions of
quasiperiodic (two-mode) dynamics interrupted by a dense set of resonance zones where
the internally generated periodic oscillations synchronize with the external forcing. The
1:1 resonance domain is by far the most prominent, and the purpose of the present paper
is to examine the structures that arise in and near this tongue as a result of the interplay
between synchronization and period doubling.

Figure 1 provides an overview of the �rst four period-doubling bifurcations in the 1:1
resonance tongue [24]. Below the �rst period-doubling bifurcation PDS1, the resonance
zone is delineated to the left and the right by the saddle-node bifurcation curves SNL1
and SNR1 , respectively. In this region the system displays a stable, synchronized period-
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1 cycle and a corresponding saddle solution, both situated on the closed invariant curve
that represents the resonance torus. Along the lower curve PDS1, the stable period-1 cycle
undergoes its �rst period-doubling bifurcation, while the saddle solution period doubles
at the curve PDU1 . At the edge of the resonance zone the two solutions merge, and
period doubling occurs simultaneously. We notice, however, that the period-doubling
transitions take place in a direction transverse to the closed invariant curve [21, 22]. The
repeated period-doubling process of both the node and saddle resonant cycles in this
way gives rise to the formation of multi-layered resonance tori, i.e., nested structures of
interconnected resonance tori [21, 22].

Above the curve PDU1 , the system displays a pair of period-1 saddle and doubly
unstable node cycles together with a pair of period-2 saddle and stable node cycles. The
region of synchronization for the period-2 cycles is not identical to that of the period-
1 cycles. Hence, while the saddle-node bifurcation curves SNL1 and SNR1 continue up
along the tongue edge in order to delineate the region of resonant period-1 dynamics, a
new set of saddle-node bifurcation curves SNL2 and SNR2 are born to delineate the range
of synchronized period-2 dynamics. These new saddle-node bifurcation curves originate
from the period-doubling curve in which the corresponding mode is born, typically from
points close to the fold-�ip bifurcation points where the period-doubling curve is tangent
to the former set of saddle-node bifurcation curves. However, there is a gap between the
two saddle-node bifurcation curves, and a variety of local and global bifurcations are
called upon to close the hole and complete the border of the resonance zone [24].

The saddle-node bifurcation curves SNL2 and SNR2 are tangent to the next pair of period
doubling curves. The stable period-2 solution undergoes a second period-doubling at
PDS2, and the saddle period-2 solution period doubles at PDU2 . As the value of c continues
to increase, the same process repeats itself until the system undergoes a transition to
phase synchronized chaos. This explains the build-up of a complete set of saddle-node
bifurcation curves along the edges of the synchronization domain: A new pair of saddle-
node bifurcation curves is generated for each pair of period-doubling bifurcations in
order to delineate the region of existence for the newborn cycles. After the next pair
of period-doubling bifurcations, the saddle-node bifurcation curves become curves at
which the produced saddle and doubly unstable node cycles merge and disappear. In
the interior of the resonance tongue, the period-doubling cascade for the node solutions
progresses much faster than the same cascade for the saddle-cycles, and the transition to
phase synchronized chaos takes place before the latter cascade in completed.

As �rst described by Arnéodo et al. [28] and by Kaneko [29], the ergodic torus under-
goes a series of torus-doubling bifurcations along the edge of the resonance zone. More
recently, this line of research has been persued by Sekikawa et al. [30, 31] who demon-
strated a transition to chaos through a series of subsequent torus-doubling bifurcations
both for an electric oscillator system and for a pair of coupled one-dimensional maps.
As illustrated in Fig. 1, where the �rst two torus-doubling bifurcation curves are de-
noted TD1 and TD2, the torus-doubling bifurcations are coupled directly to the period-
doubling bifurcations and, hence, to the formation of multi-layered resonance tori in the
synchronization tongue. In this way, the ergodic torus always displays the same peri-
odicity as the resonance torus it couples to across the synchronization edge. Below the
�rst period-doubling bifurcation, the period-1 ergodic torus ends in a bifurcation (SNL1
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FIGURE 2. Different stages in the transition from 1:1 resonance torus to period-doubled ergodic torus
along the scan A in Fig. 1 (c= −51ω +58). (a) Phase portrait after the period-doubling bifurcation of the
stable node transversely to the 1:1 resonance torus. Here S1 and S are resonant period-1 saddle solutions
and N2 is a stable period-2 node cycle. (b) Double-layered resonance torus that arises through a period-
doubling bifurcation of the original period-1 saddle cycle S1. S0 is a doubly unstable period-1 cycle with
multipliers ρ1 =−1.015, ρ2 = 1.089, ρ3 =−7.61 ·10−8 . (c) Destruction of the period-1 resonance torus.
The two resonance cycles S0 and S continue to exist but their unstable manifolds connect to the stable
period-2 resonance cycle. (d) Period-2 ergodic torus that arises when the system leaves the resonance
tongue along the direction A in Fig. 1.

or SNR1 ) that creates a pair of period-1 node and saddle cycles. Between the �rst and the
second period-doubling bifurcation, the period-2 ergodic torus ends in a pair of period-2
node and saddle cycles along SNL2 (or SNR2 ).

As an illustration to this description, Fig. 2 shows a number of stages in the transition
through which the period-doubled ergodic torus arises from the period-1 resonance
torus as the parameters are scanned along the direction A in Fig. 1. Starting at a point
after the �rst period-doubling curve PDS1, Fig. 2(a) shows how the originally stable 1:1
resonance cycle has undergone a period-doubling bifurcation in a direction transverse to
the synchronization manifold, i.e., the unstable manifold of the 1:1 resonance saddle S1.
While giving birth to the stable 2:2 resonance cycle N2, the period-doubling bifurcation
has left the original 1:1 node as a saddle cycle with its unstable direction transverse
to the synchronization manifold. When crossing the period-doubling bifurcation curve
PDU1 in Fig. 1, the original 1:1 resonance saddle also undergoes a transverse period-
doubling bifurcation, leading to the 2:2 resonance saddle S2 and the doubly unstable
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FIGURE 3. One-dimensional scan along the direction A in Fig. 1. The pair of saddle and doubly
unstable 1:1 resonance cycles merge and disappear in SNL1 . The pair of saddle and stable 2:2 cycles
merge in SNL2 , leading to a period-2 ergodic torus. The ergodic period-2 torus subsequently undergoes a
torus-doubling at TDL2 .

resonance cycle S0 (Fig. 2(b)). This latter transition gives birth to a so-called double-
layered torus [21, 22, 24], i.e. a structure of interconnected layers of stable and unstable
tori. As the scan continues the period-1 resonance torus is destroyed (Fig. 2(c)) and, as
the system crosses through the saddle-node bifurcation curves SNL2 and SNL1 , we observe
�rst how the 2:2 saddle and stable node cycles merge and disappear through the birth
of a period-doubled ergodic torus at SNL2 and, thereafter, how the pair of 1:1 saddle and
doubly unstable node cycles merge and disappear in the saddle-node bifurcation SNL1
leading to a period-2 ergodic torus (Fig. 2(d)).

If the scan is continued one can observe how the ergodic torus undergoes a second
torus doubling at the bifurcation curve TDL2 in Fig. 1. This is illustrated in the one-
dimensional bifurcation diagram of Fig. 3 which again shows the transitions that take
place along the direction A in Fig. 1. Full curves represent stable periodic cycles, dashed
curves saddle cycles, and dotted curves doubly unstable node solutions. Notice how
the stable 1:1 solution that exists in the upper right corner of the �gure undergoes
a period-doubling at PDS1 while the corresponding 1:1 saddle solution suffers its �rst
period doubling at PDU1 . From here we can follow the two solutions (now as a saddle
cycle and a doubly unstable node) to the saddle-node bifurcation SNL1 to the left in the
�gure. This saddle-node bifurcation de�nes the zone edge for the period-1 cycles. The
saddle and stable node 2:2 resonance cycles merge at SNL2 to give birth to a period-
doubled ergodic torus. Finally, when crossing the torus-doubling bifurcation curve TDL2,
the ergodic torus undergoes a new period-doubling transition.

Figure 4 shows a similar one-dimensional bifurcation diagram for the direction B in
Fig. 1. After the �rst period-doubling bifurcations for the 1:1 resonance node and saddle
cycles at PDS1 and PDU1 , the interconnected period-doubling processes continue to the
left in the �gure. Here we can locate the period-doubling bifurcation PDS2 for the stable
period-2 cycle and the bifurcation PDU2 for the corresponding saddle cycle. Each pair of
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FIGURE 4. One-dimensional scan along the direction B in Fig. 1. As the forcing frequency ω is
reduced, the resonant period-4 torus ends in a saddle-node bifurcation that gives birth to a period-4
ergodic torus. The torus-doubling process only occurs in a restricted region on both sides of the resonance
tongue. At the point ETD, this ergodic torus is destroyed, and to the left of ETD the system displays
non-synchronous chaos.

FIGURE 5. The process of ergodic torus destruction. (a) Cross section of the period-4 ergodic torus
that exists to the right of the threshold ETD in Fig. 4. (b) Non-synchronous chaotic attractor to the left of
ETD.

saddle and doubly unstable node cycles born in these bifurcations can subsequently be
followed to the saddle-node bifurcation that demarcates their synchronization zone.

In Fig. 4, the boundary of the resonance zone consists of saddle-node bifurcations
for the period-1, period-2, and period-4 cycles, but only the period-4 node is stable, and
both the 1:1 and the 2:2 resonance tori have been destroyed. Hence, we observe that the
period-4 resonance torus ends in a saddle-node bifurcation in which an ergodic period-4
torus is born. The period-1 saddle and doubly unstable node cycles continue to exist
into the region of the stable period-4 ergodic torus. As the system moves further away
from the resonance zone, the ergodic torus starts to fold and it �nally undergoes torus
destruction at the point ETD where its different layers begin to mix.

Figures 5 (a) and (b) provide an illustration to the ergodic torus destruction process.
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FIGURE 6. Bifurcation diagram along the scan lineC in Fig. 1. Each pair of saddle and doubly unstable
node cycles generated in the period-doubling bifurcations merge in a speci�c saddle-node bifurcation
along the edge of the resonance zone. The �gure also illustrates the transition from phase-locked chaos
(dotted) to non-synchronous chaos (hatched) at the point SNL∞.

Here we have plotted a Poincaré section of the period-4 ergodic torus that exists to
the right of the point ETD in Fig. 4 together with a similar section and of the non-
synchronized chaotic attractor that arises when the threshold of torus destruction is
crossed. As one would expect, the transition from ergodic torus dynamics to non-
synchronous chaos is accompanied by one of the Lyapunov exponents turning positive.

Finally, Fig. 6 shows a one-dimensional bifurcation diagram along the scan line C
in Fig. 1. Here, c = −51ω + 58.75, and the scan takes the system from the region of
period-1 resonance all the way through the regime of phase synchronized chaos and
out across the edge of the resonance zone. With decreasing values of ω , the state of
phase-synchronized chaos is reached when the stable resonance cycles have completed
their period-doubling cascade. In Fig. 6 this region, as obtained from a normal brute-
force bifurcation scan, is shown as a dotted structure. This allows us to also illustrate
the appearance of periodic windows in the region of phase-synchronized chaos. With
further decrease of ω , the doubly unstable modes arising through period-doubling of
the saddle cycles also start to contribute to the chaotic state. Finally, a transition to non-
synchronous chaos occurs at SNL∞. This transition is associated with the abrupt change of
one of the Lyapunov exponents from being negative to becoming zero, hence resembling
a normal saddle-node bifurcation between a resonant and an ergodic torus.

THE CYCLIC BIFURCATION STRUCTURE

Let us examine the above bifurcation scenario in a little more detail, focusing in par-
ticular on the problems that arise near the fold-�ip bifurcation points, i.e., the points
where a saddle-node bifurcation curve is tangent to a period-doubling curve and where
a resonance cycle simultaneously undergoes a saddle-node and a period-doubling bifur-
cation [32].
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FIGURE 7. Bifurcation structure of the 1:1 Arnol’d tongue in the periodically forced Rössler system.
(a) Overview of the �rst four period-doubling and saddle-node bifurcations. Only the �rst two pairs of
saddle-node bifurcations are distinguishable at this scale. (b) Enlargement of the region around PD1 and
SNL1 . The gap between the tangent point for SNL1 and the point of birth for SNL2 is closed by the subcritical
torus-birth bifurcation T2 in conjuction with a torus-fold bifurcation near to G2. (c) Enlargement of the
region around PD1 and SNR1 . SNR2 is born on the stable branch PDS1, and part of the period-doubling curve
is subcritical.

Figure 7(a) provides a slightly redrawn version of Fig. 1 in which the regions of exis-
tence for the stable 1:1, 2:2, 4:4, etc. resonance cycles are illustrated in different colors.
Figures 7(b) and (c) show magni�cations of the regions near the fold-�ip bifurcation
points where the saddle-node bifurcation curves SNL1 , respectively SNR1 , are tangent to
the �rst period-doubling bifurcation curve PD1. Inspection of Fig. 7(b) shows that the
saddle-node bifurcation curve SNL2 initiates from a point Q2 on the unstable branch of
PD1 and close to the point of tangency between PD1 and SNL1 , but not exactly in that
point. Numerical simulations have shown that the distance between the two points de-
crease with increasing forcing amplitude, but it continues to exist as long as the forcing
amplitude is �nite. This creates a hole in the boundary that de�nes the region of exis-
tence for the period-2 resonance cycles, and additional mechanisms are required in order
to close this hole. As discussed in more detail in our recent work [24], these additional
mechanisms involve:

i) a subcritical torus-birth bifurcation (secondary Hopf bifurcation) T2 in which an
unstable two-branch torus arises through destabilization of the stable period-2
resonance cycle (now of focus type).

ii) a torus-fold bifurcation (close to G2 in Fig. 7(b)) in which a pair of stable and
unstable period-doubled ergodic tori arise, and
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FIGURE 8. Heteroclinic bifurcation in which the unstable period-doubled ergodic torus is replaced by
an unstable two-branch torus. (a) Immediately before the heteroclinic bifurcation (c = 2.9841829), the
phase portrait displays a stable period-doubled ergodic torus T2, an unstable period-doubled ergodic torus
(not shown), and a stable period-2 focus cycle. The unstable manifold (green curve) of the period-1 saddle
cycle S connects to F2. (b) After the heteroclinic bifurcation (c = 2.9842), the unstable period-doubled
torus has disappeared. The unstable manifold of S (green curve) now approaches T2, and a new unstable
two-branch torus has been formed around F2. The red curve denoted Γ illustrates a trajectory that starts
inside of the stable manifold of the unstable two-branch torus.

iii) a heteroclinic bifurcation (G2) in which the unstable two-branch torus is trans-
formed into the unstable period-doubled torus.

The combination of these mechanisms represents a way by which the stable period-
2 cycle can be degraded to a doubly unstable period-2 cycle while at the same time a
period-doubled ergodic torus is born. The doubly unstable period-2 cycle subsequently
disappers in the period-doubling bifurcation at PDU1 . In order for this to happen the
period-doubling process takes a subcritical form in the interval from the point of tan-
gency with SN1 to Q2 [24].

Figure 8 shows a couple of phase portraits in order to illustrate the heteroclinic
bifurcation in which the unstable period-doubled torus disappears while at the same time
an unstable two-branch torus is formed around the stable period-2 resonance cycle. Both
phase portraits show the period-1 resonance torus with the original period-1 saddle cycle
S1 and the transversely unstable saddle cycle S produced in the period doubling at PDS1.
Immediately before the heteroclinic bifurcation (Fig.8(a)), the unstable manifold of S
(green curve) connects to the stable period-2 cycle F2 of focus type. Surrounding this
structure on alternating sides we observe the two bands of the period-doubled ergodic
torus. The unstable period-doubled torus is not shown, but the stable manifold to S1
arrives from the stable manifold of this torus.

The heteroclinic bifurcation involves the crossing of the unstable manifold of S and
the stable manifold of S1. This process is known to produce a variety of complex non-
linear phenomena [33]. However, after this range of dynamic complexity, the unstable
period-doubled torus has disappeared, the unstable manifold of S (green curve) con-
nects to the stable period-doubled torus T2, and an unstable two-branch torus has formed
around F2. The red curve denoted Γ illustrates the course of a trajectory that starts im-
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FIGURE 9. Sketch to illustrate the alternation of two different bifurcation scenarios in connection with
the birth of new saddle-node bifurcation curves along the boundary of the resonance zone. The gray
regions represent quasiperiodic dynamics outside the resonance zone.

mediately inside the unstable two-branch torus.
This completes our discussion of the bifurcation structure near the fold-�ip bifurcation

point for the case where the new saddle-node bifurcation curve emerge from the unstable
branch of the period-doubling curve. The alternative situation where the saddle-node
bifurcation emerges from the stable branch of PD1, is observed on the other side of
the resonance tongue. In this case, the new saddle-node bifurcation curve SNR2 does not
leave a gap through which the 2:2 resonance cycles can escape. However, to allow for
that part of SNR2 that falls below the point of intersection with SNR1 (see Fig. 7(c)):

i) the section of the stable branch of PD1 that connects the point in which SNR2 is born
with the point of tangency with SNR1 must give rise to a subcritical period-doubling.

Moreover,

ii) while SNR2 initially falls inside the already existing tongue structure, SNR2 must
intersect with SNR1 and, at least over some distance, proceed outside the original
resonance tongue.

Similar bifurcation phenomena take place near the fold-�ip bifurcation points of the
next period-doubling bifurcation, only the transition that involves a subcritical period-
doubling bifurcation now occurs to the left, and the more complex transition involving
different torus bifurcations occurs at the right hand side of the synchronization tongue.
One would expect this process of alternation between the two sides of the resonance zone
to continue from period-doubling to period-doubling. In a numerical study, Kuznetsov
et al. [18, 19, 20] have shown that this is the case at least up to period-256. Hence, we
may sketch the characteristic cyclic behavior of the bifurcation structure as illustrated in
Fig. 9. Except for the �rst 2-3 bifurcations, saddle-node bifurcation curves emerging
from the unstable branch of a period-doubling curve proceed inside the established
resonance zone while, as argued above, saddle-node bifurcation curves that emerge from
the stable branch of a period-doubling curve cross out of the existing resonance zone.

After this discussion we are left with the important question: Is there a speci�c
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FIGURE 10. Sketch to illustrate the cascade of saddle-node bifurcation curves along the edge of the
resonance zone. The curves denoted 1, 2 ,4, etc., represent the saddle-node bifurcation curves SNL1 , SNL2 ,
SNL4 , etc. Note how the curves after an initial lack of organization begin to converge in an alternating fash-
ion towards the �nal accumulation curve SN∞. The hatched area represents the region of non-synchronous
dynamics outside the resonance zone. PD∞ represents the accumulation curve for the period-doubling
cascade of the node cycles, and ETD is the curve of ergodic torus destruction.

organization of the saddle-node bifurcation curves along the edge of the resonance zone
that continues all the way into the chaotic regime. This question has been answered in
the af�rmative by Kuznetsov et al. [18, 19, 20] through their formulation of a scaling
theory for the transition to chaos via a cascade of period-doubling bifurcations along the
edge of a synchronization tongue.

Figure 10 addresses the same question from a slightly different point of view. Here,
we have plotted the saddle-node bifurcations that occur along the left hand side of the
resonance tongue. While distorting the scales, this sketch strictly maintains the observed
systematics of the variation. The curves denoted 1, 2, 4, 8, etc., represent the saddle-node
bifurcation curves SNL1 , SNL2 , SNL4 , etc.

Inspection of Fig. 10 shows that while the �rst few saddle-node bifurcation curves
follow their own courses, a systematic arrangement is soon established in which the
saddle-node bifurcation curves alternate between the two sides of what at the end
becomes an accumulation curve SN∞ for the saddle-node bifurcation curves. In the
periodic region, i.e., the region below the transition to phase synchronized chaos, the
ergodic torus is found to penetrate the cascade of saddle-node bifurcations along the
edge of the resonance zone until it meets a stable periodic cycle. As illustrated in Fig. 10,
where the region of non-synchronized dynamics to the left of the resonance domain is
hatched, this implies that the transition from non-resonant to resonant dynamics at a
given value of c always occurs along the saddle-node bifurcation curve that produces
cycles with the highest periodicity.

The above bifurcation analysis has provided us with a coherent and more complete
description of the many different phenomena that are involved in the transition to phase
synchronized chaos via the route of C-type criticality. The purpose of the next sections is
to show that similar phenomena can be observed in a detailed, physiology-based model
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of nephron autoregulation.

PERIOD DOUBLING IN NEPHRON AUTOREGULATION

As part of an effort to understand the relation between hypertension and kidney function
we have long been engaged with a study of nephron autoregulation, i.e., of the mech-
anisms by which the individual functional unit of the kidney regulates the incoming
blood �ow in response to variations in the arterial blood pressure [34, 35, 36]. This reg-
ulation involves two different mechanisms: A myogenic mechanism that reacts directly
to changes in the arterial pressure, and a so-called tubuloglomerular feedback (TGF)
mechanism that responds to signals from specialized cells (the macula densa cells) near
the terminal part of the loop of Henle.

The myogenic mechanism depends on an inherent propensity of the smooth muscle
cells in the arteriolar wall to contract in response to an increasing pressure difference
across the wall [37, 38]. This contraction causes the �ow resistance to increase and,
thereby, leads to a lower glomerular pressure and a reduced rate of �ltration. The TGF
mechanism, on the other hand, depends on a response from the macula densa cells to
changes in the salt concentration of the tubular �uid [39]. A high rate of glomerular
�ltration leads to a faster �ow through the loop of Henle, to incomplete reabsorption of
salt from the tubular �uid, rising salt concentrations at the macula densa, and a signal
to the smooth muscle cells in the arteriolar wall to contract, thus causing the rate of
�ltration to decline.

The TGF mechanism is a negative feedback. However, as demonstrated in experi-
ments on rats [40, 41], this mechanism tends to be unstable and to produce large am-
plitude self-sustained oscillations in the tubular pressures and �ows with periods in the
30-40 sec range. The instability in the feedback and the relatively long periodicity of the
oscillations are directly related to the time of 12-15 sec that it takes for the tubular �uid
to pass the loop of Henle.

The myogenic (or vasomotoric) mechanism also produces oscillations in the afferent
arteriolar resistance as the muscular activation increases. In this case, the transition
to self-sustained oscillations takes place through synchronization of cytoplasmic Ca+2

waves among the individual cells [42, 43]. The period of the vasomotoric oscillations
in the afferent arterioles of the kidney is typically 6-8 sec, or approximately a factor 5
shorter than the period of the TGF oscillations.

The two regulatory mechanisms both work through activation of the smooth muscle
cells in the arteriolar wall. This allows the oscillatory modes to interact and to produce
frequency-locking with typical locking ratios of 1:4, 1:5 and 1:6 [44, 45]. Nephron
autoregulation involves a number of additional nonlinear relations that constrain the
amplitudes of the oscillatory modes. Most important are the restrictions imposed by
the limited dynamic range for the arteriolar contractions. This range can be determined
through open loop experiments where the rate of glomerular �ltration is measured as
function of the rate at which arti�cial tubular �uid is infused into the loop of Henle, while
preventing �ow through the proximal tubule by means of a wax seal [39, 46]. The slope
of this feedback characteristic determines the gain factor α for the TGF mechanism. This
gain factor is typically 10-15 for normotensive rats and 30-50% higher for spontaneously
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hypertensive rats. In general the sensitivity of the smooth muscle cells in the arteriolar
wall is enhanced for hypertensive rats, and these rats also show a stronger interaction
between the two oscillatory modes [44, 45].

Another important nonlinearity is represented by the static strain-stress relationship
for the arteriolar wall. This relationship involves both a static component and an active
vascular component. The static component increases almost exponentially with rising
blood pressure and increasing arteriolar radius. The active component, on the other side,
is most signi�cant in a region around the normal arteriolar radius. By virtue of these and
other nonlinearities, a range of different nonlinear dynamic phenomena are observed in
the nephron pressures and �ows. Period-2 dynamics for instance, is seen in about 50% of
the experimental time traces for the proximal tubular pressure in normotensize rats and
for hypertensive rats chaotic pressure and �ow variations are typically observed [44, 45].

One this background, the purpose of the present section is to examine how the
autoregulation of the blood �ow to the individual nephron reacts to a periodic variation in
the arteriolar blood pressure. In particular we want to show how the stable and unstable
resonance cycles generated by such a forcing undergo interconnected cascades of period-
doubling bifurcations and how each period doubling leads to the formation of a new pair
of saddle-node bifurcation curves, in accordance with the bifurcation scenario for C-type
criticality outlined in previous sections.

The ability of the renal autoregulation to handle external pressure �uctuations can be
investigated by applying a forcing signal to the arterial pressure while simultaneously
recording the variations observed in this pressure and in the renal blood �ow. In practice,
the experiment can be performed [47] by connecting a computer-operated pump that
generates broadband �uctuations at the distal end of the abdominal aorta through a
blood-�lled cannula. The frequency characteristics observed in such an experiment
clearly shows the damping of the pressure oscillations in the nephron blood �ow at
frequencies lower than 20 mHz.

Also revealed are the resonances characteristic of the autoregulatory system: the
relatively slow TGF mode at about 40 mHz and the faster myogenic mode around 150
mHz. We conclude that the nephron autoregulation functions as a mechanical high-pass
�lter that protects the nephron against more long-term variations in the arterial pressure.
Fluctuations above the range of the myogenic oscillations are likely to be damped out
by various dissipative processes including those associated with the �uid �ow through
the loop of Henle. The TGF mechanism is unique to the nephrons and serves as a
reinforcement of the myogenic mechanism in order to control the large blood �ow that
the kidney have to handle. The frequency response of the TGF mechanism is restricted,
though, by the delay in the loop of Henle and, while reduced in amplitude by a factor of
the order of two, the TGF oscillations are still present in the distal tubular pressure and
salt concentration.

Over the years we have developed a number of different models of the regulation of
the afferent blood �ow by the individual nephron, each emphasizing a speci�c aspect of
the problem such as the absorption of water and salts along the loop of Henle [48] or the
interaction between the macula densa cells and the smooth muscle cells in the arteriolar
wall [36]. In the present survey we will consider the model described by Barfred et
al. [49]. This model integrates the most essential aspects of nephron autoregulation into a
consistent picture and is, due to its simplicity, particularly useful for detailed bifurcation
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FIGURE 11. Two-dimensional bifurcation diagram for the unforced nephron model. The control pa-
rameters are the delay T and the gain factor α in the TGF regulation. The dotted curves delineate the
regions of existence for different modes of entrainment between the fast myogenic and slower TGF-
mediated oscillations. Fully drawn curves are period-doubling bifurcation curves and dashed curves are
saddle-node bifurcation curves. The horizontal curve at α ≈ 10 is the Hopf bifurcation in which the TGF
oscillations are born. The point O is the point of operation considered in the following investigation of the
periodically forced nephron.

studies. The model involves six coupled differential equations and 20-30 experimentally
determined parameters.

The �rst component in the model is a conservation equation that relates the changes in
proximal tubular pressure to the rate of glomerular �ltration, to the absorption that takes
place in the proximal tubule, and to the �ow into the loop of Henle. This is supported
by an algebraic equation that determines the glomerular �ltration in terms of the arterial
pressure, the afferent arteriolar �ow resistance, and the protein osmotic pressure of the
incomming blod �ow. The �ow into the loop of Henle is determined by the pressure
difference between the proximal and distal ends of this loop and the associated �ow
resistance, while the rate of reabsorption in the proximal tubule is treated as a constant.

The TGF mediated variation in the afferent arteriolar resistance is represented by the
aforementioned open-loop feedback characteristic [39, 46]. A smooth delay is used to
represent the time it takes for the nephron �uid to pass the loop of Henle, and a couple
of �rst order differential equations are used to simulate the fast myogenic oscillations. In
the form we use the model here these oscillations are damped, but continuously excited
through the variations in the afferent arteriolar resistance caused by the TGF mechanism.

Figure 11 shows a two-dimensional bifurcation diagram for the unforced nephron
model in a parameter plane spanned by the delay time T in the loop of Henle and the
gain factor α for the TGF mechanism. Normal values for the feedback delay are about
T = 15 sec and, as mentioned above, the feedback gain factor is typically α = 10−15
for normotensive rats and some 30 − 50% larger for spontaneously hypertensive rats.
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However, other parameters also differ between the two strains of rats and it is, therefore,
of interest to consider higher values of α where excitation of the myogenic oscillations
becomes stronger.

The horizontal curve H at α ≈ 10 represents the Hopf bifurcation at which the
onset of the TGF-mediated oscillations takes place. Below this curve, the nephron
autoregulation displays a stable equilibrium point, and TGF-mediated oscillations do
not occur. Experimentally, nephrons in normotensive rats are typically found to operate
above, but relatively close to this threshold. The regions delineated by the dotted curves
and denoted as 1:1, 1:2, 1:3, 1:4 and 1:5 represent the different regions of entrainment of
the myogenic oscillations by the TGF-mediated oscillations. For small values of α , the
myogenic dynamics lock directly into a 1:1 mode as one expects for a periodically driven
oscillator at low amplitudes. As the gain factor increases, the excitation of the myogenic
dynamics becomes stronger, and a shift to higher and higher excitation frequencies
occurs. Double-wavelet analysis of the experimental data has con�rmed that the most
common frequency ratios under realistic conditions are 1:4 and 1:5 [44, 45], i.e. the
myogenic mode completes four or �ve oscillations each time the slower TGF-mediated
mode completes one full period.

The fully drawn curves in Fig. 11 represent period-doubling bifurcations. In the mid-
dle of the �gure, for instance, we observe two cascades of period-doubling bifurcations
denoted PD1:5

1 , PD1:5
2a , PD1:5

2b , etc., for the 1:5 mode-locked solution. At the curve PD1:5
1 ,

for instance, the synchronized 1:5 mode is replaced by a 2:10 mode in which the dynam-
ics repeats itself only after two full TGF oscillations and 10 myogenic oscillations. We
notice that mode-locking is maintained between the two oscillatory components during
the period-doubling process. For slightly smaller values of the TGF delay, the 1:4 mode-
locked solution is found to undergo similar cascades of period-doubling bifurcations.
The dashed curve denoted SN4:5

1 is a saddle-node bifurcation curve that delineates the
region of coexistence between the 1:4 and 1:5 mode-locked solutions. In this region, de-
pending on the initial conditions, the undisturbed model will approach a dynamics with
either four myogenic oscillations per TGF oscillation or �ve myogenic oscillations per
full cycle of the TGF oscillation.

The arterial pressure is a main determinant of the blood �ow to the individual nephron
and, as explained above, both the myogenic and the TGF-mediated regulation serve to
reduce the impact of variations in the arterial blood pressure on the operation conditions
of the nephron. It is therefore of interest to examine the response of our nephron model
to a periodic variation in the arterial pressure:

Pa(t) = Pa,0(1+Asin(ωt)) (2)

Pa,0 = 13.3 kPa is the mean arterial blood used to calculate the bifurcation diagram in
Fig. 11. A denotes the relative amplitude of the applied forcing, and ω is the angular
frequency.

At the chosen point of operation (T = 16 s and α = 25, see Fig.11), the TGF gen-
erated self-sustained oscillations have a period of about 40 sec. This implies that only
�uctuations in the arterial blood pressure that last for more than 80-100 sec can be effec-
tively damped. Moreover, with the assumed values for T and α , the nephron operates in
a regime where 1:5 and 2:8 mode-locking between the two internally generated frequen-
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FIGURE 12. Two-dimensional bifurcation diagram for the forced nephron. Control parameters are the
angular frequency ω of the forcing signal and the equilibrium value of the afferent arteriolar resistance
Ra,0. White regions denote synchronized periodic dynamics, light grey regions phase-synchronized chaos,
and dark grey regions represent non-synchronous chaos. The region where quasiperiodic dynamics occurs
is hatched.

cies co-exist, the 2:8 solution being a period-doubled version of the 1:4 resonance cycle.
To avoid mixing between the co-existing modes, or breaking up of the intra-nephron
mode locking, we are restricted to use a fairly small forcing amplitude. In the following
analysis, the forcing frequency is assumed to be close to the TGF frequency, and the con-
stant forcing amplitude is A= 0.0075. Bifurcation parameters are the forcing frequency
ω and the average arteriolar �ow resistance Ra,0.

Figure 12 provides an overview of the bifurcation structure observed for the forced
nephron model. We immediately notice that the diagram involves dynamic states deriv-
ing from both the 1:4 and the 1:5 states of intra-nephron synchronization. Moreover, both
sets of dynamical states display synchronization with the applied forcing signal (white
regions), period-doubling bifurcations, as well as transition to quasiperiodic dynamics
(in the hatched regions). The 1:5 modes also display a transition to phase synchronized
chaos (light gray region), and both modes display transitions to non-synchronous chaos
(black regions).

As before period-doubling and saddle-node bifurcation curves are denoted PD and
SN, respectively. For the period-doubling curves a superscript S denotes period-doubling
of a stable (node) cycle and superscript U denotes period-doubling of an unstable (sad-
dle) cycle. Bifurcations relating to 1:4 resonance modes have an additional superscript
1:4. This superscript has been omitted for the 1:5 modes. Torus bifurcation curves are
denoted T .

The synchronized 1:4 resonance modes are observed in the lower right corner of the
diagram. Here we notice the characteristic closed form of the �rst period-doubling curve
PD1:4

1 at which the synchronized 1:4 resonance node and saddle cycles undergo their
�rst period-doubling bifurcation. This period-doubling curve is tangent on both sides
to the saddle-node bifurcation curves SN1:4

1 that delineate the range of existence for the
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FIGURE 13. Close-up of the lower parts of the bifurcation structure in Fig. 12 for the forced nephron
model. As usual gray and white regions denote respectively non-resonant and resonant dynamics. Like for
the forced Rössler system the cascade of saddle-node bifurcation birth emerge alternatingly on the stable
and unstable branch of the period-doubling curves.

1:4 resonance modes. As closer inspection shows, new saddle-node bifurcation curves
emerge from the period-doubling curves in order to delineate the range of existence of
the 2:8 resonance modes.

In the middle of Fig. 12, the large white area delineated along its right hand side by
the saddle-node bifurcation curve SN1 represents the area in which the 1:5 resonance
modes produced by the nephron synchronize with the externally applied forcing signal.
In the center of this area we �nd the region (denoted 3:15) where period-3 solutions to
the original 1:5 resonance mode are observed. This region is surrounded by a light gray
region with phase synchronized chaotic solutions, and this region is again surrounded
by a cascade of period-doubling bifurcation curves. It is obvious that this structure is
folded like a horse shoe such that period-doubling transitions to chaos take place along
the left hand side of the resonance zone from both the top and the bottom.

A more detailed examination of the upper part of the 1:5 resonance zone shows how
the stable 1:5 solution undergoes a period-doubling at PDS1 while the corresponding
saddle solution period doubles at PDU1 . The two branches of this �rst period-doubling
curve are tangent to the saddle-node bifurcation SN1 in the upper left corner of the
�gure. A new saddle-node bifurcation curve SN2 arises close to the point of tangency
with PD1, and this curve becomes tangent to the next period-doubling curve PD2. Close
to this point of tangency, a third saddle-node bifurcation curve SN4 emerges, and the
bifurcation structure continues in the same way as for the forced Rössler oscillator.

Figure 13 shows a close-up of the initial bifurcations for the lower period-doubling
structure. Here, we can �rst identify the saddle-node bifurcation curve SN1 that is tangent
to the �rst period-doubling curve PD1. The next saddle-node bifurcation curve SN2
emerges from a point on the stable branch of PD1, and the period-doubling associated
with this branch becomes subcritical in the interval between the point of tangency with
SN1 and the point of birth for SN2. The saddle-node bifurcation curve SN2 is tangent
to the next period-doubling curve PD2. In this case, however, the new saddle-node
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bifurcation curve SN4 starts from a point on the unstable branch of PD2. As a result,
the gap between SN2 and SN4 is closed by a combination of a subcritical torus-birth
bifurcation, a torus-fold bifurcation, and a variety of torus destruction processes.

CONCLUSIONS

Synchronization and other nonlinear dynamic phenomena play an essential role in the
regulation of normal physiological systems. Regulation of the blood �ow to the individ-
ual functional unit (nephron) of the kidney, for instance, involves both period-doubling
bifurcations and intra-nephron synchronization of a fast (myogenic) and a slower (TGF-
mediated) oscillation. Together these mechanisms serve as a mechanical �lter that pro-
tects the delicate nephronic processes from the effect of more long term changes in the
arterial blood pressure.

The purpose of the present paper has been to establish a more complete picture of
the complex nonlinear dynamic phenomena that occur in connection with the transition
to chaotic phase synchronization when a period-doubling oscillator of spiral type is
subjected to a periodic forcing. Considering an externally forced Rössler oscillator
we have �rst illustrated how the period-doubling transitions take place in a direction
transverse to the synchronization manifold and how the period-doubling process leads
to the formation of so-called multi-layered resonance tori, i.e., interconnected structures
of stable and unstable tori of different periodicity.

It is well-known that the edge of the synchronization regime for a forced period-
doubling oscillator consists of a large number of saddle-node bifurcation curves. By fol-
lowing the period-doubling transition step by step we have shown how these saddle-node
bifurcation curves are arranged and how they emerge from points on the period-doubling
curves close to the points where these curves are tangent to the saddle node bifurca-
tion curves produced in the previous period-doubling process. Moreover, depending on
whether the saddle-node bifurcation curves originate in the stable or the unstable branch
of the period-doubling curve, different bifurcation scenarios are involved in closing the
gap between the two saddle-node bifurcation curves. This explains the characteristic
alternating (or cyclic) structure associated with C-type criticality.

We have also described how the period-doubling process in the resonance zone plays
together with the period-doubling of the ergodic torus that takes place outside the
resonance zone in order that the bifurcation at the zone edge always involves stable
resonant and non-resonant tori of the same periodicity and form. This requires, for
instance, that all unstable resonance tori are destructed before they reach the edge of
the synchronization regime. However it also involves an interesting process by which:

i) A period-2 resonance cycle of focus type is destabilized in a subcritical torus-birth
bifurcation and gives rise to an unstable two-branched ergodic torus,

ii) The unstable two-branched ergodic torus is transformed into an unstable period-
doubled ergodic torus in a heteroclinic bifurcation, and

iii) The unstable period-doubled ergodic torus undergoes a torus-fold bifurcation and
gives birth to a stable period-doubled torus.
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We have hereafter demonstrated how a similar bifurcation structure occurs in the
response of an individual nephron to a periodic variation in the arterial blood pressure.
These results have recently been extended [26] by considering the bifurcation structure
associated with the synchronization of two similar, but not identical period-doubling
oscillators. Besides the formation in certain cases of new pairs of saddle-node bifurcation
curves in each period-doubling bifurcation we have observed that this transition also
involves the formation of torus bifurcation curves that continue up along the boundary
of the resonance zone and accumulate in the region of phase synchronized chaos. Again,
the �ndings from a system of two coupled Rössler oscillators are consistent with those
of a pair of nephrons coupled through signals that travel along the connecting blood
vessels (vascular propagated coupling).
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