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Summaries/Abstracts 

Summary 

The North Sea cod stock, besides being fished down to its lowest level of spawning stock biomass 

in history, is also considered to be threatened by negative effects of climate change. As a stock 

close to the southern limit of the species’ latitudinal range it may particularly suffer from increasing 

temperature. However, climate change would not only entail increasing temperatures, but also 

changes in freshwater inflow, wind stress and large scale changes in current flow. While 

information is accumulating on the environmental effects on the early life stages, there is still 

limited understanding of how effects interact during the early life, from the spawned egg to the 

settled juvenile. 

The primary focus of the present PhD study was to investigate spatial patterns in the planktonic and 

early demersal stages of cod and relate these to biological and physical factors. The ultimate goal 

has been to enhance our understanding of interaction between factors in the light of potentially 

changing conditions due to climate change. Specifically addressed were i) the linkage between 

hydrography and the distributional patterns of cod eggs; ii) the influence of hydrography and the 

distribution of potential prey, on the horizontal and vertical distribution of fish larvae and iii) the 

description of suitable nursery grounds for settling juveniles in hydrographical and biological terms. 

Traditional methods of field sampling and identification based on morphology were combined with 

statistical models for spatial data, using Generalized Additive Models (GAMs), to describe the 

environmental conditions in spawning and nursery areas. While the main focus was on cod, other 

common gadoids and flatfish were also investigated, and the vertical distribution of fish larvae was 

examined in a comparative approach between species.  

During the study period for cod spawning in the North Sea the hydrographical patterns were quite 

stable, also in comparison to earlier studies. Likewise, the distribution of fish eggs and hence 

spawning exhibited only limited variation on the broad scale. This might stem from adults returning 

to the same spawning grounds. Within these grounds, there was some adaptability in spawning 

behaviour, as the centre of egg abundance varied in accordance with prevailing hydrographic 

conditions. Environmental conditions appeared to be more powerful descriptors for the 

presence/absence of fish eggs, while variations in the abundance were better explained by spatial 

dependency (i.e. greater similarity the closer two samples are together). 
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Summaries/Abstracts 

During the study of fish larvae in the northern North Sea, we found aggregations near frontal 

systems. The larvae were concentrated in the upper and middle water column, forming two distinct 

assemblages during the day. Prey was abundant in the upper 40 m of the water column, and fish 

larvae aggregated between 20 and 40 m for foraging. When not foraging, the larvae remained at the 

same relative depth in relation to other species.  

During the 20-year period studied for the settlement distribution of 0-group cod, a strong decline in 

nursery area usage was observed. In later years, 0-group cod were mostly found in relatively 

shallow, warm and medium saline water. Modelling of the 0-group presence in these areas with a 

few temporally stable and temporally variable covariates allowed to predict the distribution in other 

periods to a fairly good level (rs>0.8), but also revealed that for long term predictions the dynamics 

within the population have to be taken into account. 

While the North Sea may have already become warmer, broad scale patterns of hydrography as 

depicted from bottom conditions have not changed substantially yet. However, more extreme 

climate forcing in the future, may change this. Effects of increased temperature and changes in 

Atlantic inflow, current patterns and freshwater influence might be beneficial for some species and 

at some stages during their life, but overall detrimental effects are likely, which may lead to reduced 

recruitment and stock size. 
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Resumé (Summary in Danish) 

Nordsøens torskebestand er, udover at være fisket ned til den mindste gydebestand nogensinde, 

også truet af de negative effekter fra klimaændringer. Da bestanden er tæt på torskens sydligste 

udbredelse kan den tænkes at være særligt sårbare overfor temperaturstigninger. Klimaændringer vil 

dog ikke kun omfatte temperaturstigninger, men også ændringer i ferskvands-tilstrømning, vind 

samt større ændringer i havstrømmene. Mens der bliver mere og mere information tilgængelig om 

miljøets betydning for fiskenes tidligste livstadier, er der stadig begrænset forståelse for hvordan 

påvirkningerne spiller sammen under fiskenes opvækst – fra det gydte æg til den juvenile fisk der 

søger mod bunden. 

Det primære fokus for nærværende Ph.d. har været at klarlægge de rumlige forhold for de 

planktoniske og tidlige demersale stadier af torskens liv, og at sammenholde disse med biologiske 

og fysiske omgivelsesforhold. Det ultimative mål har været at forbedre vores forståelse af 

samspillet mellem specifikke faktorer i lyset af potentielt nye vilkår på grund af klimaændringer. 

Specifikt er der set på: i) sammenhængen mellem hydrografi og fordelingen af torskeæg, ii) 

hydrografiens indflydelse på fordelingen af potentiel føde og fiskelarvers horisontal og vertikal 

fordelinger, og iii) hvorledes egnede opvækststeder for bund-slående juvenile torsk kan beskrives 

ved hydrografi og biologiske faktorer. 

Studiet kombinerede traditionelle metoder for felt-indsamling og arts-identifikation med statistisk 

rumlig modellering, vha. GAM, i en beskrivelse af omgivelsesforholdene for gyde- og 

opvækstområder. Mens hoved-fokus var på torsk, undersøgte vi også andre arter, og fiskelarvernes 

vertikale fordeling blev beskrevet i et sammenlignende studie mellem arterne. 

Gennem perioden hvor torskens gydning i Nordsøen blev undersøgt viste de hydrografiske forhold 

sig at være relativt stabile, også i sammenligning med tidligere perioder. På samme måde varierede 

fordelingen af fiskeæg, og dermed gyde-aktiviteten, ikke meget på den store skala. Det synes at 

have sammenhæng med at de voksne fisk vender tilbage til de samme gydepladser. Indenfor disse 

pladser var der dog en tilpasning af gyde aktiviteten, på den måde at centrum for æg forekomst lå

forskellige steder alt efter den aktuelle hydrografi. Omgivelsesforholdene viste sig at kunne give 

den bedste beskrivelse af hvorvidt der var gydning i et område, mens variationen i den absolutte 

forekomst bedst kunne beskrives ved den rumlige afhængighed (at to forekomster ligger tættere 

eller længere fra hindanen) 
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Under studiet af fiskelarver i den nordlige Nordsø fandt vi larverne i de højeste forekomster tæt ved 

hydrografiske fronter. Larverne var koncentreret i den øverste og den midterste del af vandsøjlen, 

sådan at de om dagen dannede to distinkte grupper. Byttet var fordelt i de øverste 40 m af 

vandsøjlen, og fiskelarverne samledes mellem 20 og 40 m for at fouragere. Når de ikke fouragerede, 

havde de forskellige arter den samme respektive fordeling i forhold til de øvrige arter.   

Gennem den 20-års periode hvor bund-slånings områderne for 0-gruppe torsk blev undersøgt, skete 

der et stærkt fald i forekomsterne. I de senere år forekom 0-gruppe torsk mest i relativt lavvandede, 

med relativt høj temperatur og medium saltholdighed. Ved modellering af 0-gruppernes forekomst i 

disse områder, med anvendelse af nogle få rumligt stabile og tidsmæssigt variable faktorer, kunne 

fremtidig fordeling forudsiges med en vis sikkerhed på kortere sigt (i.e. 5-år). Men for at kunne lave 

forudsigelser for længere perioder (i.e.10 år) skal selve populationsudviklingen sandsynligvis tages 

med i betragtning. 

Mens Nordsøen allerede er blevet varmere, er de overordnede karaktertræk ved hydrografien, som 

de er analysered ved bund-forholdende, ikke ændret markant. Men mere ekstreme ændringer i 

fremtiden kan ændre dette. Effekterne af temperaturstigninger, og ændringer i indtrængning af 

Atlantisk vand, havstrømmene, og ferskvandsindflydelsen kan være positive for nogle arter og 

stadier i deres liv, men sandsynligvis vil mange effekter være negative og lede til faldende 

rekruttering og bestands-størrelser. 
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Abstract 

Due to predictions for future climate change, there are rising concerns about the future of the North 

Sea cod stock. As this is one of the stocks close to the southern limit of the species’ range, it may be 

among those most affected. Direct, as well as indirect effects, of climate forcing may have the 

greatest effects on early life stages. Hence, the present study examined the linkages between 

hydrography and distributional patterns of early life stages of cod as well as of several other gadoids 

and flatfish. Findings indicated that in the egg stage, the environment is more important for the 

probability of occurrence, while abundance is more under the control of spatial dependency. Larvae 

were found to be aggregated in the proximity of frontal structures and on the vertical axis, were 

forming distinct assemblages during the day, while they aggregated during the night. In the recent 

past, most 0-group cod were found in relatively shallow, warm and medium salinity water. Habitat 

models for the 0-group had fairly good predictive power on the sub-decadal scale, but were found 

lacking on a longer time scales. Climate change may have complex impacts on the early life stages, 

potentially detrimental for one stage and beneficial to another. 

Kort Resumé 

På grund af prognoser for fremtidige klimaændringer, er der stigende bekymringer om fremtiden i 

Nordsøens torskebestand. Da denne bestand er på den sydligste grænse af artens udbredelse, kan 

den være blandt de mest påvirkede. Direkte, såvel som indirekte, effekter af klimapåvirkningen kan 

få størst indvirkning på tidlige livsstadier. Derfor undersøgtes sammenhængen mellem hydrografi 

og de fordelingsmæssige mønstre hos de yngste livsstadier af torsk, foruden andre torskefisk og 

fladfisk. Resultaterne viste, at i ægfasen er miljøet vigtigere for sandsynligheden for forekomst, 

mens antallet er kontrolleret af den rumlige afhængighed. Larverne samledes i nærheden af fronter. 

Deres placering i vandsøjlen varierede over døgnet, hvor de i løbet af dagen deltes i to grupper og 

samledes om natten for at fouragere. I de seneste år er de fleste 0-gruppe torsk blev fundet i relativt 

lavt og varmt vand med medium saltholdighed. Habitat modeller for 0-gruppen havde rimelig god 

forudsigende effekt på indenfor årtier, men ikke på længere tidsskalaer. Klimaændringerne kan have 

komplekse indvirkninger på de tidlige livsstadier, hvor de kan være potentielt skadelige for ét 

livsstadie og gavnlige for et andet.
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"There is no great mystery about what happened to the codfish of the North Atlantic. The fishermen 

caught them, and the rest of us ate them." 

Richard Ellis (2003) 

1. King cod 

In spite of the collapse of important stocks (Hutchings and Myers, 1994) and low levels of 

spawning stock biomass (ICES, 2010), cod is still an important food fish. The, one-sided, 

relationship between cod and man goes back a very long time, as cod was already fished in the 

stone age (Enghoff et al., 2007). The abundance of cod off North America has contributed to the 

motivation for exploration, cod fishing rights have been disputed to the brink of war (Kurlansky, 

1998) and cod is still staple in the diet of many coastal communities. The importance of cod as food 

fish, and the variable success in fishing for cod and herring (Clupea harengus), caused an early 

interest of science in the dynamics of fish stocks (e.g. Hjort, 1914; Hjort, 1926) and hence the 

foundation of fisheries science. 

1.1 General description 

Cod (Gadus morhua Linnaeus, 1758) is the largest species in the family of Gadidae, reaching a 

maximum length of around 2 metres (Cohen et al., 1990). Its coloration is variable, but it can be 

easily distinguished from other fish in the family by its light lateral line. Cod can tolerate between -

1°C and over 20°C but prefers waters between 0 and 12°C (Drinkwater 2005). It covers a wider 

range than the other Atlantic Gadidae species. Cod is a demersal fish, preferring depths of no more 

than 200 m but can be found down to depths of 600 m (Cohen et al., 1990). In the adult form the 

fish has no preference for any particular substrate. Settling juveniles may settle onto any given 

substrate (Juanes, 2007), but nurseries with ground cover, like seagrass beds (Gorman et al., 2009) 

promote survival in that stage. Within its range, cod belongs to the top predators and is a keystone 

species, having a large influence on the size distribution and abundance of its prey (Van Leeuwen et 

al., 2008). The diet of cod varies between life stages. Larvae, pelagic and early benthic juveniles 

feed primarily on small crustaceans, especially copepods (Hüssy et al., 1997; Pinnegar and Stafford, 
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2007). As the fish grows, decapods of increasing size and later fish, including younger conspecifics 

(Uzars and Plikshs, 2000), become important prey items (Cohen et al., 1990).

1.2 Reproductive properties and behaviour 

Part of its evolutionary success is based in cod’s high fecundity, with on average 1 million eggs per 

female (Cohen et al., 1990). However, egg production and egg quality are influenced by maternal 

size and condition (Marteinsdottir and Begg, 2002; Marteinsdottir and Steinarsson, 1998) and large 

females can produce a much higher number of eggs. Cod spawns in batches (Murua and Saborido-

Rey, 2003) over an extended spawning season that can begin as early as December and end as late 

as September (Cohen et al., 1990), depending on the stock. In stocks that cover several degrees 

latitude, the spawning peak may occur later the farther north one goes (e.g. in the North Sea; 

Brander, 1994b). In the spawning season, cod aggregates into spawning shoals, returning each year 

to the same spawning grounds. Males claim territory, which they dominate and spawning occurs 

near the surface after elaborate courtship (Brawn, 1961). After spawning the egg drifts in a depth 

determined by buoyancy (Stenevik et al., 2008), passing through a series of development stages in 

the course of 2 to 3 weeks, depending on temperature (Geffen et al., 2006; Thompson and Riley, 

1981). After hatching the larvae take up feeding when their yolk sac is exhausted and later 

metamorphose into pelagic juveniles. When they reach a size between >3.5 cm and ca. 5 cm 

(Andrews et al., 2006; Riley and Parnell, 1984), the juveniles seek proximity to the bottom and take 

up demersal life. After 2-4 years (Munk and Nielsen, 2005) they attain sexual maturity and recruit 

into the spawning stock. However, only very few fish survive to reach that stage. The pelagic stages 

and even the early demersal juveniles can have high mortality rates (McGurk 1986; Serchuck et al.,

1994). McGurk (1986) showed that the mortality rates of fish eggs and larvae are even above those 

for other organisms in their size range.

1.3 Ecological plasticity 

Cod can survive and successfully reproduce in a wide range of temperatures (Drinkwater, 2005) and 

salinities (Cohen et al., 1990). This is also visible from the species’ geographic distribution, in

relationship to temperature ranging from Cape Hatteras and the Bay of Biscay in the South to 

Ungava Bay and the Barents Sea in the North (Cohen et al., 1990) and concerning salinity extremes 

including stocks in truly oceanic water (e.g. Icelandic stock) to the Baltic cod, which can withstand 

low salinities. Depending on definition by ICES/NAFO Divisions or by population, there are 21 

10



King Cod 

 
 

(Mantzouni and MacKenzie, 2010) or 22 cod stocks (Drinkwater, 2005) in the North Atlantic 

(Table 1). 

The differences in environmental conditions have their effects on the stocks. Spawning success of 

Baltic cod is limited by the effects of low salinity on the buoyancy of cod eggs (Nissling et al.,

1994) and by the hypoxic conditions below the halocline (Matthäus and Franck, 1992; Nissling, 

1994).

Table 1: Cod stocks in the North Atlantic as defined in Drinkwater (2005). Stocks are presented in

clockwise order from the Southwest to Southeast. 

Western Stocks Eastern Stocks

Georges Bank East Greenland

Gulf of Maine Iceland

Western Scotian shelf Faroe Plateau

Eastern Scotian shelf Faroe Bank

Southern Gulf of St. Lawrence North East Arctic

Northern Gulf of St. Lawrence White Sea

Southern Newfoundland Baltic Sea

Grand Bank Kattegat

Flemish Cap North Sea-West Scotland-English Channel

Northern Newfoundland/Southern Labrador Irish Sea

West Greenland Celtic Sea

The wide temperature range covered, causes different effects of variation in temperature on growth, 

conditions and recruitment. Brander (1994a; 1995) has shown that greater mean bottom temperature 

accounts for 90% of the difference in growth rates between the stocks. Similarly, Rätz and Lloret 

(2003), examining ten different cod stocks, found those in warmer temperature regimes (e.g. North 

and Irish Seas) in better condition (Fulton’s K), than those in colder temperature regimes (e.g. 

Labrador, Greenland). The rise of Fulton’s K by around 0.02 for each 1°C entailed positive effects 

on the weight at age, the slope (a) of standardized Ricker’s recruitment-SSB relationships and 

estimated biological management reference points (Fmed). However, living in warmer waters has its 

ramifications. Planque and Frédou (1999) found that a meta-analysis across stocks, of the effects of 
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temperature fluctuations, exhibited that recruitment at the extremes of the temperature range is more 

sensitive to these fluctuations, in warm water the relationship was negative and in cold water 

positive. For stocks in the middle of the range, like the Faeroes and the Georges Bank stocks, the

temperature fluctuations were within the tolerance range and no relationship was found. 

Taking long term predictions (until 2100) for changes in ocean temperature into account, 

Drinkwater (2005) predicted that stocks in the Celtic Sea and the English Channel would disappear 

when annual mean bottom temperature would rise above 12°C, while other southern stocks would 

decline (e.g. southern North Sea, Irish Sea). The stocks at the northern end of the range, in the 

Barents Sea, off Greenland and Canada would experience improved recruitment however. Other 

changes would be a range extension to the North, changed migration patterns and possibly an 

increase in overall production. 
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2. The North Sea cod stock 

Figure 1: Overview of the North Sea for the geographic extent 3°W-12°E and 51-62°N. The 50

m isobath is depicted as a red line; the 200 m isobath is depicted as a yellow line. Important 

undersea features and fishing grounds which are named in the Papers are labelled.

2.1 Status and stock structure 

The North Sea cod stock falls into the category of warm water stocks (Rätz and Lloret, 2003) and 

should include fish in good condition and of high fecundity that could sustain high levels of 

exploitation. The real state of the stock is however a very different one, as it is severely depleted. 

SSB was, apart from a good recruitment in 1996, in constant decline (Figure 2a) and reached a 

13



North Sea Cod 

record low of about 30,000 t in 2006 (ICES, 2010), a tenth of peak catches in the early 1970s (Daan

et al., 1994). Likewise, recruitment was low since the mid-1980s (Fig. 1b; Beaugrand et al., 2003).

Figure 2: Spawning Stock Biomass (a) and recruitment at age 1 (b) of cod in the North Sea, Eastern 

Channel and the Skagerrak, from 1963 to 2010. SSB fell under the minimum biomass 

(Blim = 70,000 t) in 1998 and did not recover since (Data: ICES, 2012). 

Although the North Sea cod stock is managed as a single unit, including cod in the Eastern English 

Channel and the Skagerrak, recent studies have found evidence that the stock is a metapopulation, 

consisting of several fairly resident inshore groups and more mobile offshore spawners (Wright et 

al., 2006). These authors found that up to 97% of tagged adults remained within 100 km of their 

spawning grounds, with only a small proportion straying between spawning grounds. Furthermore, 

elemental signature in otoliths indicated that most adults originated from local nurseries. Similarly, 

Hutchinson et al. (2001), using microsatellites from genes, a method which was more sensitive than 

methods available during earlier studies, found four distinct populations in the North Sea around 

Bergen Bank, Moray Firth, Flamborough Head and the Southern Bight. Gene flow to outside the 

North Sea appeared only to occur between the Southern Bight and the Eastern English Channel. 

2.2 Direct and indirect influence of climate  

The history of the North Sea cod stock during the 20th century was marked by two major events. 

First the ‘gadoid outburst’, which for cod may have begun in 1969 (Hislop, 1996) and ended in the 

mid-1980s, followed by a steep decline in SSB in what is sometimes termed a regime shift 
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(Beaugrand, 2004). Both events, the onset as well as the end of the gadoid outburst, have been 

attributed to variations in the abundance and size of Calanus finmarchicus in the North Sea 

(Beaugrand et al., 2003; Cushing, 1984). Beaugrand (2003) additionally identified a reduced 

abundance of Euphausiids later in the year as a possible cause. Alternatives for the hypothesis of 

control by C. finmarchicus have been suggested for both cases. Daan (1994) suggested the collapse 

of pelagic fish stocks and subsequently reduced predation on gadoid eggs and larvae as the cause

for the onset of the gadoid outburst. Brander (1992) re-examined the relationship between cod 

recruitment and the abundance of Calanus finmarchicus and found that Cushing’s approach ignored 

spatial heterogeneity. Pitois and Fox (2008) came to the conclusion that the changes in zooplankton 

community would not so severely inhibit cod recruitment and stock recovery as suggested by 

Beaugrand (2003). 

Sea Surface Temperature (SST) and a persistently positive North Atlantic Oscillation (NAO) are 

other possible drivers (Beaugrand, 2004). This is in agreement with the study by Stige et al. (2006) 

who integrated the NAO into Ricker S/R functions for all 22 cod stocks. Their results corroborated 

those of Brander and Mohn (2004) who found a positive NAO and related higher temperatures 

would negatively affect recruitment in the southernmost cod stocks, particularly on the eastern side 

of the Atlantic. The NAO does not only affect the temperature, but also the availability of C. 

finmarchicus as prey, as it overwinters along the European shelf break and is transported into the 

North Sea with the currents (Backhaus et al., 1994). A positive NAO would hamper this transport 

(Fromentin and Planque, 1996).

Direct effects of climate change may be easier to recognize. Clark et al. (2003) coupled the Hadley 

general circulation model with simulations of the stock development. Even when simulation 

relatively low increases in temperature (0.005°C yr-1) the rate of decline would increase and at an 

increase of 0.026°C yr-1 the stock would be practically gone by 2040. 

The North Sea stock is under heavy fishing pressure and larger, older fish are severely depleted 

(Rindorf and Lewy, 2006). Exploited stocks may be more sensitive to changes in climate (Hsieh et 

al., 2008) and Rindorf and Lewy (2006) hypothesized that the reduced age structure of the stock 

may make a stock recovery in the southern North Sea difficult. While a northward shift of spawning 

and of the population in general may have negative effects for fishing in the southern North Sea, it 

may partially abate the effects of higher temperature on recruitment (Clark et al., 2003).
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2.3 Spawning 

North Sea cod does not undertake long distance spawning migrations, comparable to North East 

Arctic cod, but it does migrate seasonally between spawning and feeding grounds (Daan et al.,

1990) The spawning grounds appear, on the scale of the entire North Sea quite stable in time, and 

spawning has consistently been found in specific areas during studies often decades apart. Brander 

(1994b) subdivided the North Sea into three areas. In the West-central North Sea spawning began in 

early February along the southern edge of the Dogger Bank with egg distributions then spreading in 

NW-SE direction with the spawning period ending close to the coast in late April (data from 1976). 

In the Southern Bight the first eggs were found in early January and spawning peaked in mid-

February. Spawning took place mostly in the central part of the Southern Bight where the water was 

more saline and more transparent. Finally in the German Bight the eggs were more dispersed. These 

findings agree with Daan (1978) who found the main spawning areas along the southern flank of 

Dogger Bank and in the Southern Bight. Other authors identified the area off Flamborough 

(Harding and Nichols, 1987), the eastern flank of Dogger Bank (Heessen and Rijnsdorp, 1989) or 

the area east of the Shetlands and the Moray Firth (Heath et al., 1994; Raitt, 1967) as spawning 

grounds. 

After an extended period with no further surveys for identification of spawning grounds an ICES-

coordinated ichthyoplankton survey was conducted, covering the whole of the North Sea in the first 

quarter of 2004. Employing molecular TaqMan probes, to distinguish gadoid species in the early 

egg stage, Fox et al. (2008) found significant amounts of cod eggs in all of the previously described 

spawning grounds, except for the one off Flamborough Head which appeared defunct. Based on the 

same survey Munk et al. (2009) found that spawning mostly occurred near fronts, while the peak 

egg abundances where at the fronts themselves. These authors concluded that spawning near or at 

fronts may have long-term advantages for the stock, as the increased production at a front enhances 

food availability. Furthermore, the hydrographic conditions around frontal hydrography, like frontal 

jet currents, may promote transport to suitable nursery areas. The downside of such a spawning 

distribution might be that the fronts in late winter/early spring are primarily salinity driven and 

therefore variable by the amount of freshwater runoff from land. Hence the positioning of these 

fronts might be influenced by both annual variability and long term changes in climate. A second 

ichthyoplankton survey carried out in 2009 provided the possibility to study the variation in 

distribution of eggs on a sub-decadal scale. The study covered both, cod eggs and eggs of other 
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common North Sea fishes, and considered temporal variability as well as the potential influence of 

hydrographic conditions (Höffle et al., submitted (a); Höffle et al., submitted (b)).

3. Variability in the distribution of fish eggs and the influence of hydrography –

Paper I & Paper II 

3.1 Motivation and Objectives 

Significant survey resources are necessary to cover the ichthyoplankton distributions in a relatively 

large area as the North Sea. Targeted ichthyoplankton surveys have therefore been relatively few 

and separated in time. Therefore two surveys in 2004 and 2009, coordinated by the ICES working 

group PGEGGS (Planning Group on North Sea Cod and Plaice Egg Surveys in the North Sea), 

afforded unique opportunities for the analysis of spawning distributions. Firstly they were 

conducted at a time when distinguishing early egg stages of Gadidae with molecular techniques was 

sufficiently rapid and affordable to at least verify identification with visual methods (Fox et al.,

2008; Taylor et al., 2002) and thus reducing the risk of misidentification and over- or 

underestimating the contribution of one species to the total number of eggs (Fox et al., 2005).

Secondly, while still being snapshots, the two surveys were sufficiently close together in time, to 

investigate whether the distribution of fish eggs changes in the course of a few years, elucidating 

the potential coupling to prevailing hydrographic conditions or to internal factors, like homing 

behaviour.

The first objective was to examine the stability in time and space of the spawning distribution for a 

number of fish species in the North Sea and whether the spawning occurred at one preferred place 

or in several patches within a spawning ground (Paper I). Secondly, recent developments in the 

field of analysing spatial data were used to construct statistical models, describing the distribution 

of fish eggs in the North Sea (Paper II).  

Apart from cod the other species taken into consideration were haddock (Melanogrammus

aeglefinus), whiting (Merlangius merlangus) and plaice (Pleuronectes platessa). All four species 

are common in the North Sea and are commercially important fishes. In the statistical approach, 

models were constructed using hydrographic data (temperature, salinity, density gradient) for the 

surface/upper water column and for the bottom, aiming to distinguish the influence of bottom 
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hydrography working through the demersal adults, or of surface hydrography directly influencing 

the drifting eggs.

3.2 Main results 

3.2.1 Variation in spawning area usage 

On a broad scale the hydrography in the years 2004 and 2009 was quite similar, showing stable 

hydrographic conditions in winter, even in comparison with data collected in 1962 (Otto and 

Zimmerman, 1990). The winter distribution of water masses in the North Sea is marked by a 

decrease in temperature and salinity from North to South, as the Atlantic water coming from the 

North is warmer and more saline (Otto et al., 1990). While in 2009 the water coming from the 

North was warmer by 0.4°C and extended less far south than in 2004, the main differences in 

hydrography occurred in the southern North Sea. There, the surface temperature in the German 

Bight was more than 1°C colder in 2009 and temperatures <5°C extended farther offshore. In 2004, 

the influence of freshwater extended farther out to sea but density gradients (in g m-3 NM-1) were 

weaker than in 2009. 

The broad scale distribution of fish eggs was similar in both years and also resembled the 

distribution described in the literature (e.g. Daan, 1978; Saville, 1959). However, there were 

regional variations between the years, mostly occurring in the southern North Sea. The Southern 

Bight exhibited the highest egg densities (in nos. m-2) in 2009, higher than observed in the rest of 

the North Sea or in 2004 (Fig. 3). Overall, the eggs of the different species were found in the 

spawning areas which had been described in the literature and species specific differences in the 

relation to hydro- and bathymetry were observed. Analysing the influence of categorical variables 

in a multivariate ANOVA exhibited that the progress of spawning differed between spawning 

grounds (grouped after the ICES defined roundfish areas) as the abundance for a given development 

stage was always significantly different between at least two of these areas. 

The interaction of species and spawning ground showed that for cod and plaice the German Bight 

was significantly different from all other spawning grounds, indicating that this was particularly 

important for the two species. 
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Figure 3: Distribution of fish eggs per ICES square in 2004 (left panel) and 2009 (right panel). 

Abundances are averaged per ICES square and log(N+1) scaled.  

3.2.2 Relation to the environment and the challenges of spatial data 

Since the location of spawning fish is governed by spatially autocorrelated environmental 

conditions, the spawning distribution and subsequently the distribution of eggs itself is under the 

influence of Tobler’s first law of geography (Tobler, 1970), saying: “Invoke the first law of 

geography: everything is related to everything else, but near things are more related than distant 

things.” (as cited in Miller, 2004). Hence, the data violates the assumption of independent 

observations, which is necessary for most statistical procedures. The autocorrelation must be 

accounted for to achieve a meaningful analysis (Legendre, 1993). The method as used in Paper II,
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formerly called Principal Coordinates of Neighbour Matrices (PCNM) and now integrated into the 

broader framework of Moran’s Eigenvector Maps (MEM, Dray et al., 2006) allows to model spatial 

structures on several scales (Borcard et al., 2011). The procedure is explained in great detail in 

Borcard and Legendre (2002) and its output, in the form of eigenvectors which describe the spatial 

structures, can be easily integrated as explanatory variables in statistical analysis. Another problem 

that often occurs with distribution data is that it is severely skewed to low values, so-called ‘zero-

inflation’. To deal with that problem it was chosen to follow the approach of Loots et al. (2010), 

splitting the data into presence/absence and non-zero abundance. For both set, Generalized Additive 

Models (GAMs) were fitted to construct a binomial and a Gaussian model, respectively. 

PCNM analysis found significant spatial structures on four scales (Fig. 4). 

Figure 4: Range in decimal degrees of spatial sub-models for the eggs of cod, haddock, whiting and 

plaice on very fine (0-22 NM), fine (22-32 NM), medium (32-49 NM), and broad (>49 NM) scales. 

The solid lines define the thresholds for the spatial sub-models of the eggs. The boundaries between 

scales are denoted in nautical miles on the top axis. Eigenvalues are non-dimensional and 

proportional to Moran’s I. (reproduced from Paper II).
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When comparing these models, based on Akaike’s Information Criterion (AIC), models for 

abundance, including hydrography for the upper water column were mostly superior and explained 

more of the deviation in the data. The sole exception was haddock, where the model for bottom 

hydrography fit better. For presence/absence the relationships were more equally distributed with 

cod and plaice better explained when using bottom hydrography and haddock and whiting having a 

better fit when using surface hydrography. Variation partitioning showed that combined on all 

scales spatial dependency explained more of the variation in the abundance data than the 

environment, while the environment was superior in explaining the variation in presence/absence. 

Haddock, which, when adult, is limited by its environmental preferences to the northern North Sea 

(Hedger et al., 2004), exhibited a particularly high explanatory power of the environment for the 

abundance. This might be due to the limitation by the environment, as the opposite case (large 

influence of spatial dependency in comparison to environment) has been shown for plaice (Loots et 

al., 2010), which is well within its environmental range in the North Sea. 

In summary, while the spawning distribution of the four species was similar to previous studies, on 

the scale of the single spawning ground it exhibited some adjustment to hydrographic conditions, as 

was apparent in the southern North Sea in relation to the front between freshwater influenced water 

along the continental coast and the oceanic water farther out to sea. Controls on presence/absence 

were primarily environmental, while the abundance relied more on spatial dependency. Exceptions 

from this rule are however the species which are at the edge of their habitat, like haddock in this 

study. Abundance was apparently more under the influence of the surface hydrography indicating 

that the eggs are primarily transported in the upper water column. 

4. Relationships between fish larvae and physics 

As for all pelagic eggs, cod eggs will drift with the prevailing currents. The time to hatching is on 

the order of 2 to 3 weeks, depending on temperature (Geffen et al., 2006; Thompson and Riley, 

1981). After hatching the larva is sustained by the yolk sac but has find prey within a short time in 

order not to starve (Kjorsvik et al., 1991).

Spawning is hypothesized to occur in areas where eggs and larvae are retained or transported to 

water masses with favourable conditions, which in many cases are upwelling and frontal areas. This 

interpretation is influenced by the retention hypothesis which was based on spawning of different 
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herring stocks in the Atlantic (Iles and Sinclair, 1982; Sinclair and Tremblay, 1984). Ocean banks 

appear to promote retention, either by clockwise frontal gyres around large banks (O'Boyle et al.,

1984) or in case of small, low-energy banks in form of frontal currents originating from the 

interactions of spawning locations, geostrophic currents and bathymetric steering (Reiss et al.,

2000). In other regions of the North Atlantic transport of eggs and larvae with currents, may play a 

larger role. An example is given by Townsend & Pettigrew (1996) who observed two patches of 

cod larvae sampled on Georges Bank of which one was advected only over a short distance (25 

km), while the other one was advected 75 km along a frontal boundary. From their observations 

they formulated the hypothesis that clockwise frontal currents around the Georges Bank are highly 

important for the transport of fish larvae and that variations in recruitment can be due to variations 

in intrusions of other water masses causing changes in the frontal current. Lough et al. (2006) 

examined the spawning of cod and haddock on the same offshore bank over several years and 

identified two areas with good retention in different seasons. They came to the conclusion that

retention may become more important with smaller stock size but is otherwise only one factor of 

many. Similar conditions can occur along coasts. Begg and Marteinsdottir (2002) suggested that 

cod recruitment around Iceland depends on a combination of regional spawning components close 

to the nursery areas in the North and inflow to the nursery grounds from the main spawning area in 

the Southwest, with the clockwise coastal current. This would be promoted by larger, more fecund 

cod which spawn closer to the coast as the current is stronger there. Depending on the strength, of 

the Irminger current, the eastern Greenlandic stock can be supplied with Icelandic larvae. 

North Sea cod undertakes only relatively short spawning migrations, hence the spawning grounds 

are close to nursery areas (Daan et al., 1990). Frontal hydrography is also important for the 

retention of fish larvae in the North Sea, which is apparent along the shelf break front in the 

northeastern North Sea where primary production and zooplankton concentrations are high (Munk

et al., 1995). It was also noted that there are spatial and temporal variations between different 

gadoids (Munk et al., 1999) in relation to the frontal zone. A similar gradient, but related to bottom 

depth, was found in the International 0-group Gadoid Survey (Holden, 1981). Hence it is 

hypothesized that the frontal dynamics are important for the spatial separation of gadoid species, 

presenting each with suitable physical and biological regimes and having different effects on each 

(Munk et al. 1999).
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While the swimming ability of fish larvae is limited in relation to the mesoscale horizontal 

variability in hydrography, different vertical environments are within reach of the larvae, as vertical 

hydrographic changes take place within a few metres distance. Through a change of depth fish 

larvae may find suitable abundances of preferred prey and it may influence their horizontal drift, 

because current speed and direction can be different in different depth strata. This is especially 

important for species related to estuaries, where the depth can determine whether the larvae are 

flushed out into the open sea, or transported shoreward to their nursery areas (Fortier and Leggett, 

1982; Fortier and Leggett, 1983; Govoni and Pietrafesa, 1994). The interaction of vertical 

distribution and currents also poses a problem to modelling studies. Larvae are often modelled as 

passive drifters without any vertical migration behaviour (e.g. Christensen et al., 2008; Christensen

et al., 2007). This approach can be problematic, when the larvae depend on being transported with a 

particular current at a particular depth. Sclafani et al. (1993) showed that modelling the buoyancy 

dependent depth distribution of larvae can already improve the representation of the depth 

distribution and differential drift of larvae in good condition and starving larvae. Therefore 

understanding of key spatial processes may be improved by combined information on the horizontal 

and vertical distribution/migration of larvae.

A cruise by R/V G. O. Sars (IMR, Bergen, Norway) in April and May 2010, took depth integrated 

(with GULF VII high speed sampler) samples in two transects across the northern North Sea and 

depth discrete samples (with MOCNESS) east of the Shetland Isles affording to study the horizontal 

distribution in a larger area, combined with the analysis of the vertical distribution on a finer scale, 

in an area that has been found to be particularly species rich (Economou, 1987).

5. Differences in vertical distribution of larval fishes in relation to hydrography 

and prey – Paper III 

5.1 Motivation and Objectives 

Vertical distribution patterns of fish larvae can be classified into three categories. Neilson and Perry 

(1990) identified two types: Type I migrations where the larvae move upward at the beginning of 

night and downward at the beginning of day; type II migrations which are simply the reverse of 

type 1. A third pattern exists, where the larvae are aggregated during the day and disperse at night 

(Gray, 1998; Leis, 1991). Controls governing the vertical distribution of fish larvae can be variable. 
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Several kinds of cues have been discussed, from control by a preferred isolume (Woodhead, 1966), 

hydrographic conditions (Lough and Potter, 1993) or the balance of hunger, satiation and the need 

to avoid predators (Pearre, 2003), to a simple control by the interaction of buoyancy with the 

density of the water mass (Sclafani et al., 1993). 

The objective of the study was to examine how the different species are vertically distributed in 

relation to their prey, hydrography and each other and to elucidate whether the segregation in the 

horizontal plain is resembled by segregation on the vertical axis. The comparative approach should 

reveal the key factors governing the vertical distribution of fish larvae.

5.2 Main results 

The overall trend in the two transects at 59.3°N and 60.75°N was an increased species richness and 

abundance in east-west direction, while mean standard length declined, indicating that larvae in the 

East were older and that the primary nursery was in the West from where the larvae drifted 

southeast, similar to what has been described for Norway pout (Nash et al., submitted). Peak larval 

abundances, together with peak concentrations of zooplankton, were observed in the vicinity of 

frontal hydrography (Fig. 5). Especially on the western margins of the transects, were the area for 

depth discrete sampling was located too. 

The depth discrete sampling was carried out in an area of 5 X 5 NM, located to the Southeast of 

Mainland Shetland. Five depth discrete samples were taken over 18 hours between the evening of 

2nd to the late morning of 3rd May 2010. The hydrography at this station was of little variability in 

time and depth. Salinity changed only by 0.01 over the 120 m of measured water column. 

Temperature was stable at ca. 8°C down to 50 m and at greater depths declined continuously to 

7.6°C. Fluorescence was more variable than either temperature or salinity and peaked at about 40 m 

depth. (Paper III). In depth integrated samples (with GULF VII high speed sampler), 23 fish 

species in 9 families were identified (Paper III). The larvae of ten species were found in sufficient 

numbers to study their vertical distribution. During the day these larvae constituted two 

assemblages. One assemblage consisting of cod, haddock, whiting, pollock (Pollachius pollachius)

was found in the upper water column (0-40 m). The other assemblage contained saithe (Pollachius

virens), Norway pout (Trisopterus esmarkii), poor cod (Trisopterus minutus) and the flatfish witch 

(Glyptocephalus cynoglossus), long rough dab (Hippoglossoides platessoides) and brill 

(Scophthalmus rhombus). This second assemblage was found below 40 m. A similar distinction into 
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different assemblages was found in previous studies (Gray and Kingsford, 2003; Olivar and 

Sabatés, 1997). Based on centre of abundance cod was deeper during the night, hence a type II 

distribution, while all other species were at shallower depth during the night (type I). Most of these 

species ascended between dusk and night, while Norway pout and brill ascended earlier, reaching 

their shallowest centre of mass at dusk. Most species ascended no more than to the 20-40 m 

stratum, probably indicating that they found sufficient prey there. This would support the idea that a 

starving population would not rise farther than necessary to find sufficient prey (Pearre, 2003). 

In relation to each other the different species mostly kept to their position in the water column, 

while they aggregated in one depth stratum when they were foraging (Fig. 6).

The horizontal distribution indicates that, like in the northeastern North Sea, the fish larvae 

aggregate near fronts. Similar to the segregation in the horizontal plain which was observed earlier 

(Munk et al., 1995) the fish larvae appeared to keep to a certain distribution in depth, which was 

probably governed by the interaction of the physical water column with the buoyancy of the larvae 

(Sclafani et al., 1993). However, governing cues seem to change in relation to feeding, as the 

vertical hierarchy broke down during foraging. 
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Figure 5: Profiles of water density (0.5 kg m-3 contours) and abundance of fish larvae along the 

transects at 59.3°N (panel a) and 60.75°N (panel b). Only the most common species are presented. 

Miscellaneous species comprise Clupeidae, Argentinidae, Ammodytidae, Lotidae and Gobidae. 

(Colour reproduction of figure 2, Paper III) 
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Figure 6: Depth of the centre of abundance for gadoid (a) and flatfish larvae (b) during three 

different light environments. Due to the long days at this time of the year, there was only one station 

at dusk (21:52 hours) and night (23:56 hours), while three stations were in daylight (19:14 hours, 

06:20 hours and 08:22 hours). (Reproduction of Figure 6, Paper III).
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6. Settlement of juvenile cod in the North Sea 

During their drift cod larvae feed on increasingly larger food items (Godiksen, 2005; Nielsen and 

Munk, 1998) subsequently they undergo metamorphosis at a length of slightly more than 8 mm 

(Rowlands et al., 2008). The juveniles gain increasing swimming ability and become able to 

influence their location on a larger scale. The threshold at which the swimming ability becomes 

more important than transport with the currents is found to be at about 35 mm (Andrews et al.,

2006). From this size juveniles cod might start the transition from a pelagic to a demersal lifestyle, 

but what determines the settlement of juvenile cod is not fully understood. The availability of 

sufficiently large and nutritious prey may play an important role. Munk (1997) determined a 

preferred prey size of cod larvae to 5.1 % of their standard length, a relationship which stayed more 

or less constant during the larval phase. While the cod larvae consume increasingly older stages of 

increasingly larger sized copepod species (Nielsen and Munk, 1998), Euphausiids and other large 

zooplankters become more prominent in the diet of the pelagic juveniles in the size range of 25-35 

mm (Godiksen, 2005), while the size relationship between prey and predator stays about the same 

as in the larval phase. Fish larvae have been found in the stomachs of juvenile gadoids at lengths of 

only 11 mm (Economou, 1991), but the onset of feeding on fish larvae appears more commonly

when cod is above 30 mm (Bromley et al., 1995). Godiksen (2005) identified sandeel (Ammodytes

spp.) as the primary fish larval prey, which is consistent with later studies (Demain et al., 2011).

The relative size of larval prey in the cod stomachs was substantially larger, on average 44% for 

gadoid larvae and 64% for sandeel larvae and also the weight of stomach contents increased. The 

need to fulfil requirements for prey of larger and larger sizes might be one of the driving forces for 

the initially pelagic juveniles to include the near-bottom in their search for prey.

Another driver could be a search for territory which offers more protection (Tupper and Boutilier, 

1995). Such protection might be advantageous for juveniles when at about 35 mm, the size that is

used in several modelling studies (Andrews et al., 2006; Heath et al., 2008). Settling of cod appears 

not to be selective about the type of bottom (Juanes, 2007), however post-settlement survival 

apparently depends on the complexity of the relief in the habitat (Lough, 2010).
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Dedicated surveys for research on the early juvenile stage of North Sea cod like the International 0-

group Gadoid Survey (IOGS) from the 1970s and early 1980s, gave a comprehensive overview of 

the distribution of late pelagic 0-group cod. These were consistently aggregating off the Danish 

west coast, east of Shetland and east of the Firth of Forth (Holden, 1981). A later survey series, the

3rd quarter surveys of the International Bottom Trawl Survey (IBTS), was initiated in 1991 targeting 

primarily older stages of a range of commercial fish species. However during these surveys also 0-

group stages are caught and hence these surveys afford the opportunity to study the distributional 

patterns of cod when settling to the bottom. This opportunity was used in Paper IV (Höffle and 

Munk, manuscript). 

7. Settlement distribution of 0-group cod – Paper IV 

7.1 Motivation and Objectives 

One reasons for decline in the North Sea cod stock is its low recruitment (Figure 1b). This decline 

in recruitment is also reflected in the catches of 0-group cod during the IBTS 3rd quarter survey 

Similarly, other observations indicated a northward shift of the centre of abundance of juvenile 

(Rindorf and Lewy, 2006) as well as of adult cod (Perry et al., 2005). It is debated whether this shift 

is due to wind driven transport of larvae and subsequent homing of the juveniles that settled in the 

northern North Sea (Rindorf and Lewy, 2006), or whether it is due to increase/decrease in different 

sub-populations (Holmes et al., 2008; Righton et al., 2007). The data collected during the IBTS 

survey in the 3rd quarter, between 1991 and 2010, allows modelling of the potential habitat of newly 

settled 0-group cod with GAMs. This would allow to identify the characteristics of settling sites and 

to make an attempt to elucidate whether changes in the distribution of settled juveniles can be 

explained by changes in the hydrography. 

7.2 Main results 

Averaged for 5-year periods throughout the 20 years covered by the study, the hydrography during 

the 3rd quarter was remarkably stable. The most prominent hydrographic feature was a thermal 

front, roughly along the 50 m depth contour between the northern tip of Jutland and Flamborough 

Head, then extending northwards and around the Shetland Isles. Water of temperatures >10°C was 

south of the front, while cooler water was to the North. Water with salinity >34 entered the North 
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Sea from the North and the South. While the tongue of saline water entering from the English 

Channel and the 34.5 salinity line were relatively variable, the 35 salinity line never came farther 

south than about 56°N. Its extension into the Skagerrak however was variable between the periods 

and appeared to be somewhat reduced in the 2000s. Freshwater influence along the continental 

coast produced a salinity driven front between coastal waters and the central North Sea. 

Between 1991 and 2010, the distribution of 0-group cod changed substantially. Catch Per Unit 

Effort (CPUE) was decreasing, particularly in the offshore areas like the Fisher Banks and East of 

Shetland. In the German Bight CPUE decreased and the centre of abundance shifted northward 

along the coast of Jutland. In the Skagerrak a noticeable decrease only occurred in the last period, 

2006-2010. It is likely that the population of 0-group cod was supported by inflow from the North 

Sea, as was suggested in previous studies (Stenseth et al., 2006; Svedäng and Svenson, 2006). The 

composition of covariates when fitting GAMs to the presence/absence of 0-group cod was very 

similar, whether the model was fitted to a 5-year period (1991-1995 and 2001-2005) or to a 10-year 

period (1991-2000). The best fit was achieved with the covariates: Geographic position, bottom 

depth, interaction of temperature and salinity as well as both as single terms and presence/absence 

of age-2 cod. In the period 2001-2005 the slope of the bottom was additionally included. Predicting 

the following five or ten year period from the fitted GAM, produced fairly good correlation between 

predictions and observations (Fig. 7), although predictions over a shorter time were better (Fig. 8), 

particularly as the prediction for ten years could not fully capture the decline in the probability to 

find cod in the central and western North Sea during the 2000s. 

The stable hydrography over most of the North Sea in the study period indicates that the observed 

changes in CPUE and distribution can only be partially explained by the hydrographic conditions, 

or alternatively by changes in hydrography that have occurred before the study period (c.f. 

Beaugrand, 2004) which influenced the distributional patterns of 0-group cod during the following 

years. Including only external covariates into a model of the juveniles’ habitat appeared useful, as it 

provided good prediction on sub-decadal time scales. Hydrographic variables (temperature, salinity) 

apparently served as modifiers for the influence of time invariable covariates, i.e. geographic 

positions and bottom depth. 
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Figure 7: Taylor diagram, comparing the probability of occurrence predicted from the selected 

GAM models with the observations in 1996-2000, 2006-2010 and 2001-2010. Standard deviation 

for the observed values was normalized to 1 and the Root Mean Square Error (RMSE) normalized 

to 0. Standard deviation of the predictions is depicted on the y-axis, while the radii of the circle 

represent the correlation. The RMSE is plotted on the concentric circles around the normalized 

standard deviation of the observations. Only the segment of the diagram which depicts 
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Figure 8: Interpolated probabilities of the occurrence of 0-group cod. The left column shows the 

probability for the periods GAMs were fitted to, the middle column shows the periods for which 

predictions were made and the right column shows the predictions. Areas deeper than 200 m are 

masked, because of lack of data. (reproduction of figure 11, Paper IV)
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8. Synthesis  

8.1 Rationale and aims 

The primary aim of the present PhD study was to investigate how spatial patterns in the early life of 

cod are influenced by the physical environment and how changes in climate may indirectly, via 

effects on hydrography, influence these distribution patterns. Particular focus was given to i) 

establish a linkage between hydrographic characteristics and the distributional patterns of cod eggs 

and to set it into relation with spawning patterns and the drift of eggs and larva. ii) To examine the 

influence of hydrography and potential zooplankton prey distribution on horizontal and vertical 

distribution of fish larvae. iii) To investigate processes during the change from pelagic to demersal 

life with a particular focus on the description of appropriate nursery grounds in hydrographical and 

biological context. 

8.2 Findings of the PhD study in context 

The distribution of spawning grounds in the North Sea, as observed in the course of this study 

exhibited their persistency over time, as it was similar to earlier studies (Brander, 1994b; Daan, 

1978). Considering that genetically distinct sub-populations were recently identified (Hutchinson et 

al., 2001) it appears that on the broad scale cod are bound to return to a specific spawning ground. 

Locally, within spawning grounds, there is some adaptability. The comparison of the spawning 

seasons, which were only separated by a few years, showed that the centre of egg abundance was 

shifting in accordance with the prevailing hydrographic conditions (Paper I). Such local 

adaptability may partially balance effects of climate change on the position of frontal systems 

through changes in precipitation (Meehl et al., 2007), while it may not entail a shift in the 

population centre, like suggested by Clark et al. (2003). The statistical models (Paper II) exhibited 

that the influence of changes in temperature would likely be larger than that of salinity. An increase 

in temperature may accelerate egg development (Thompson and Riley, 1981), influencing the

location upon hatching and thus may not guarantee that the larvae hatch into favourable conditions. 

Such conditions may occur in frontal zones as indicated from the aggregation of larvae and 

zooplankton close to fronts, found in the present study (Paper III) as it was found in earlier studies 

(e.g. Lochmann et al., 1997).

For the juveniles, salinity appears somewhat more important than temperature (Paper IV). Typical 

settling areas, were relatively shallow, warm and low in salinity. Such conditions which may ensure 
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spatial separation from older, cannibalistic, conspecifics (Riley and Parnell, 1984). The models 

constructed to describe the potential habitat of juveniles were able to predict the probability 

distribution of occurrence on a sub-decadal time scale, but on the longer term knowledge about the 

population dynamics of North Sea sub-stocks is necessary. 

8.3 Perspective 

On the scale of the species’ entire range, cod may be among the benefactors of climate change 

(Drinkwater, 2005), with increased productivity and biomass in the stocks on the northern edge of 

its range. This may be good news on the Lofoten Islands and on Greenland but it is certainly not 

well received in traditional fishing ports of the southern North Sea like Grimsby, Lowestoft or 

Esbjerg. 

Changes in temperature and hydrography may have different effects on different stages of the early 

life or on the same stage in different locations. When temperature influences the time and location 

of hatching, it may therefore also influence if the larvae arrive in an area (e.g. a front) with 

sufficient prey in time to start feeding successfully. Since cod larvae in the northern North Sea feed 

primarily on Calanus spp., which does not occur in high abundance south of the Fisher Bank 

(Krause et al., 1995), effects on the variability in supply of these copepods may affect these larvae 

more. In the South, where cod larvae are more dependent on other species, the effects of 

temperature and changes in hydrography may be more important. 

In the juvenile stage, being in warmer water may have an advantage as the fish grow faster 

(Björnsson and Steinarsson, 2002) and an extended Region Of Freshwater Influence (ROFI) may 

increase the refuge from predation by older conspecifics (Riley and Parnell, 1984). Additionally, 

given that there appears to be competition for suitable habitats (Tupper and Boutilier, 1995),

enhanced mortality in the planktonic stage may reduce density dependent mortality during the 

settled 0-group. 

It has been shown that the velocity of climate change (the movement of isotherms in km/decade) 

north of 45°N is much faster in the ocean than on land and that spring temperatures arrive in the 

North Sea 5-10 days/decade earlier (Burrows et al., 2011). Furthermore, the North Say may be 

particularly vulnerable to change, since it appears to be under the influence of a shifting biome 

boundary in the North Atlantic (Beaugrand et al., 2008) and even with strict management of fishing, 

recruitment of North Sea cod may not return to earlier levels. 
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8.4 Future work 

It must be noted that only the part of this study, covering the first two papers is based on dedicated 

surveys. The samples that were used for Papers III and IV, as valuable as they are, were not 

collected for the specific purpose. Hence, much work can still be done. Time and restrictions on the 

use of research vessels did not allow to conduct a study on the pelagic juvenile phase of cod and 

this, together with the analysis of stomach data collected during the 3rd quarter IBTS in 2009, may 

be the focus of another study which would close the arc from the egg to the settled juvenile 

completely. 

As the area east of the Shetland Isles appears to be a hotspot for the larvae of a wide range of 

species, it may be beneficial to sample this area more often than the snapshots taken in the past 

(Economou, 1987; Höffle et al., submitted (c)). A longer time series would afford the opportunity to 

conduct a thorough statistical analysis of the vertical distribution of fish larvae in the northern North 

Sea (like in Hernandez et al., 2009) and in combination with areas in the southern North Sea may 

inform how different or similar changes in the southern and northern North Sea are. Much of the 

motivation for this study within the framework of the larger project Sustainable fisheries, climate 

change and the North Sea ecosystem (SUNFISH) was to deliver real world information for the 

validation of models or data sets sampled with non-standard methods (e.g. fish larval data from 

CPR). Partially this value is already realized (Lynam et al., in prep.) and it will continue to be 

useful in future publications. 

9. Concluding remarks 

9.1 The king is dead – long live the cod 

Blaming all change in cod stocks on climate may be convenient for some (see reactions to 

Schiermeier, 2004). However, it does nothing for the recovery of depleted stocks. Much of the 

problem with regulating fishing for cod in the North Sea is due to the high fishing mortality the 

stock could sustain in the ‘golden age’ of the gadoid outburst. Fisheries management was slow to 

pick up on the natural decline in the stock and therefore fishing pressure was, and still is, much too 

high. However, fisheries management shows signs of improvement (Brander, 2010). 

Cod persevered through an earlier warm period (Enghoff et al., 2007) and given reasonable 

management, it may continue to be an important species, in a future, warmer North Sea ecosystem. 

Even in the worst case, with unchecked fishing pressure, it would likely not go physically extinct, 
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but would ‘only’ be reduced to commercial extinction. However, like the Canadian seabed which 

“… today feels the scratch and suck of legions of invertebrate feet where fish once dominated.” 

(Roberts, 2007), the North Sea would be a different sea. 
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Abstract 

The location and diversity of spawning areas is a key element in the life strategy of fish. 

Their offspring are under strong environmental influence, hence climate driven changes 

in conditions at the spawning and nursery grounds are likely to affect recruitment to the 

fish stocks. Here we investigate the variability in spawning ground conditions and use, 

comparing the hydrography and egg distribution of common North Sea fishes from 

surveys in 2004 and 2009. The analysis revealed little change in the overall 

hydrographic structure and distributional patterns of early life stages of cod (Gadus
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morhua), haddock (Melanogrammus aeglefinus), whiting (Merlangius merlangus) and 

plaice (Pleuronectes platessa), between the two years of investigation. Likewise 

comparison to earlier studies indicated quite persistent spawning strategies. However, 

overall egg abundance and patchiness varied between the two years, most pronounced 

in the Southern Bight. Observations also illustrated differential progress of spawning 

activity, as the abundance of a given development stage differed significantly between 

the spawning grounds. The observed regional variation in the distribution between 2004 

and 2009 suggested, however, some adjustment of timing of spawning to accommodate 

to prevailing hydrographic conditions.

Keywords: Fish eggs, Gadidae, Pleuronectes platessa, Early life, Geographical 

distribution 

Introduction 

Studies of spawning distributions of important commercial fish species such as cod in

the North Sea generally suggest a persistent use of specific spawning areas over time 

(e.g. Brander, 1994; Daan, 1981; Raitt, 1967). Such stability has likely evolved to 

ensure that on average offspring enter suitable environmental conditions in a sufficient 

number of years to ensure reproductive success, thus promoting survival chances of the 

offspring. Areas where enrichment, concentration and retention in favourable conditions 

co-occur have been termed ‘ocean triads’ (Bakun, 1996). On the scale of the entire 

North Sea, it has been suggested that these areas are spatially stable over years and thus 

revisited by spawning fish (Cushing, 1990; Fox et al., 2008). Primary and secondary 

productivity at ocean fronts is often also enhanced, compared with surrounding waters,

so these areas may provide favourable feeding conditions for fish larvae (Munk, 2007).

The North Sea with a combination of high tidal amplitudes and shallow areas (e.g. 

Dogger Bank) contains many tidal fronts (Pingree and Griffiths, 1978). Compared to 

temperature or salinity fronts, tidal fronts are stable over time. However, the importance 

of tidal fronts is greatest in summer, when these fronts break up the thermal 

stratification (Brown et al., 1999), while many commercially important species spawn 

in late winter and early spring (Munk and Nielsen, 2005). In this period, salinity fronts 

have greater importance, particularly in the Regions Of Freshwater Influence (ROFI; 
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Simpson et al., 1993) where the saline offshore water mixes with the outflows from 

Western Europe’s major river systems. The location and intensity of these fronts might 

be more variable compared with tidal fronts since they are affected by variations in

precipitation. Predictions of the Intergovernmental Panel on Climate Change (IPCC, 

Meehl et al., 2007) suggest that the North Sea may experience both rising temperatures 

and a greater amount of freshwater runoff. Hence environmental conditions of spawning 

grounds might be changing and it is important to monitor the performance of the major 

spawning grounds over time, at least periodically. 

In order to assess the extent of spawning areas in the North Sea and the potential 

linkage to frontal hydrography a North Sea wide international survey under the auspices 

of ICES was conducted in 2004. As well as mapping the distribution of all species 

caught (ICES, 2007), analyses from this survey compared the distribution of stage I cod 

eggs with the historic spawning grounds (Fox et al., 2008) and investigated the relation 

between spawning locations and hydrography (Munk et al., 2009). Spawning was 

shown to occur mostly near fronts while the peak egg abundances were located at the 

fronts themselves. A subsequent survey in 2009 made a second coverage of the North 

Sea, allowing comparison over a shorter period than between previous studies. In the 

present paper we examine the spawning distribution of four common, commercially 

important, species for spatial stability and whether spawning occurs aggregated or in 

several patches within each spawning ground. We describe the distribution of fish eggs 

across the North Sea in the surveys of 2004 and 2009 and compare the distribution with 

historical reports. While the observed hydrography is described, its relationship to egg 

distribution is statistically tested in a sibling study (Höffle et al., submitted). Here we 

test for differences in the non-zero abundance induced by species, development stage,

sampling and spawning ground.

Materials and Methods 

Field sampling and egg identification 

Sampling was conducted by five participating countries either during the annual 

International Bottom Trawl Survey for the first quarter (IBTS 1Q) or in dedicated 
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surveys between the 16th February and 23rd of March 2004 and between the 17th of 

January and 6th of March 2009 (Table 1). 

The samples were taken with Gulf III (Gehringer, 1962; Nellen and Hempel, 1969) and

VII (Nash et al., 1998), BONGO (Posgay and Marak, 1980) and WP2 (Fraser, 1968; 

UNESCO, 1968) nets, covering the entire North Sea from 51.5oN to 62oN. The Gulf and 

BONGO Nets were deployed in double oblique hauls, while the WP2 was deployed in 

vertical trawls, in both cases down to five metres above sea bottom or a maximum of 

100 m depth. Deployment lasted at least 10 minutes with multiple hauls ensuring the 

minimum deployment time in shallow water (ICES, 2008). To determine cod-like eggs 

to species level, single eggs without oil globules and diameters of 1.1-1.75 mm (Fox et 

al., 2008) or 0.97-1.89 mm (Lelièvre et al., 2010) were fixed for later genetic analysis, 

either in 96% ethanol (Fox et al., 2008; Taylor et al., 2002) or in buffered 0.864% 

formalin/seawater Solution (Lelièvre et al., 2010).

Table 1: Survey cruises for this study. For the BONGO nets only the mesh size for the 

samples used in the analysis is given. 

Abbreviations: add. IBTS = Additional IBTS-Sampling, IHLS = International Herring 

Larvae Surveys, PLACES = Plaice and Cod Egg Surveys, PGEGGS = Planning Group 

on North Sea Cod and Plaice Egg Surveys 

Year Country Survey Ship Start

Date

End

Date

Gear Mesh

(μm)

Nos.

Hauls
2004 NL PLACES Tridens II 1.3.04 4.3.04 Gulf VII 270 41

DE PLACES Heinke 16.2.04 23.2.04 BONGO 500 40

UK PLACES Corystes 18.2.04 8.3.04 Gulf VII 270 134

DK PLACES Dana 25.2.04 6.3.04 BONGO 330 92

NO PLACES H. Mosby 8.3.04 23.3.04 Gulf III 330 86

2009 SC PGEGGS Scotia 20.2.09 6.3.09 BONGO 350 53

FR add. IBTS Thalassa 17.1.09 13.2.09 WP2 500 103

NO add. IBTS G. O. Sars 8.2.09 21.2.09 Gulf VII 280 59

NL IHLS Tridens II 19.1.09 22.1.09 Gulf VII 280 83

DK add. IBTS Dana 31.1.09 17.2.09 BONGO 330 68
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In the laboratory, subsamples of at least a 100 eggs in the desired size range (>1.16 mm; 

Russel, 1976) were staged and determined to the lowest possible taxonomic level 

(Ryland et al., 1975; Thompson and Riley, 1981). The preserved eggs were identified 

either with TaqMan probes (Fox et al., 2008 - Taylor et al., 2002) or cytochrome b PCR 

– RFLP (Lelièvre et al., 2010). Accuracy of TaqMan probes is >98% for cod, haddock 

and whiting (Taylor et al., 2002) while compared to visual identification the cytochrome 

b PCR-RFLP was 98% accurate for cod and 71% accurate for whiting (Lelièvre et al., 

2010). The obtained proportion of cod, haddock and whiting was used to apportion the 

visually identified cod-like eggs to the species. In 2004, cod-like eggs in samples for 

which no proportion could be established were apportioned according to a multinomial 

Generalized Additive Model (GAM) over the whole survey area (Fox et al., 2008). In 

2009 a simpler procedure was used by apportioning them according to the average 

proportion for other stations in the same ICES square. Density of fish eggs, in Nos. m-2,

was calculated by dividing the numbers caught by the filtered volume and multiplying 

with the sampled depth and the raising factor. For statistical analysis the non-zero 

abundances were log-transformed. 

Hydrography and Geostatistics 

Hydrographic data was obtained from CTD hauls during the surveys and augmented 

with data from the ICES oceanographic data base (ICES, 2009). Data sets containing 

erroneous pressure measurement, temperatures (<0oC or >11oC) and salinities (<20 or 

>37) were excluded from further analysis, while the retained values were used to 

calculate density as σt (kg m-3-1000) according to UNESCO standards (Millero and 

Poisson, 1981). For each hydrographic variable at three depths (5 m, 20 m and bottom), 

an experimental variogram was calculated in Surfer 8 (Golden Software, 2002), based 

on the equation (Webster and Oliver, 2001): 

(1)
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Where n(h) is the number of pairs of observation for the distance h, z(x) is the observed 

value for the respective hydrographic variable at a given location x, h is the distance 

calculated from latitude and longitude and γ(h) is the resulting experimental variogram. 

A theoretical variogram γ’=F(γ) was fit to the data based on a linear model with least 

square regression. Using that theoretical variogram, the hydrographic data was 

interpolated by ordinary kriging on a regular grid of 0.25 by 0.25 decimal degrees (dec. 

deg.). These grids were used to calculate the horizontal density gradient in g m-3 per 

nautical mile (NM-1, =1.852 km-1) with the formula (Golden Software, 1999): 

(2)

where is the density gradient, ZE and ZW are adjacent grid points in East-West 

direction, ZN and ZS are adjacent grid points in North-South direction, and and 

are the distances in longitudinal and latitudinal direction, respectively. 

To graphically compare the distribution of eggs in 2004 the log(n+1)-transformed 

abundance data, including zero values, was similarly treated in R. The best fitting 

theoretical variograms were chosen between Gaussian, spherical, exponential, linear, 

hole-effect or Bessel models. Coverage in 2009 alone was too poor for sensible kriging 

results. 

Statistical analysis 

The log-transformed non-zero abundance was examined for significant differences in a 

multivariate ANOVA with the factors; species, spawning area, stage, year and sampling 

gear. For the description of larger areas of spawning we used the so-called roundfish 

areas (Fig. 1; ICES, 2010a). The roundfish areas 1, 2 and 6 were kept as such, 

representing the spawning areas east of the Shetland Isles, the northern part of Dogger 

Bank and the German Bight with the southeast of Dogger Bank, while the roundfish 

areas 7, 8 were merged to represent the Skagerrak and the Fisher Banks. The east coast 

of Britain was covered by merging the areas 3, 4 and 5, including the spawning area in 

the Moray Firth and the probably defunct spawning area off Flamborough (Fox et al.,
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2008) as well as the Southwest of Dogger Bank. Although these aggregated areas are 

based on the known spawning areas for cod, they also include the hotspots of spawning 

for plaice (Loots et al., 2010a), whiting (Loots et al., 2011) and haddock (Heath and 

Gallego, 1998). Since, except for the years, all variables had more than two categories, 

Tukey’s test was conducted post-hoc to determine which of the categories were 

significantly different. 

Figure 1: Sampling positions, in 2004 (grey circles) and in 2009 (black triangles). The 

underlying contour map shows the topography of the North. Lines delineate the ICES 

roundfish areas, numbered counter clockwise 1 to 8. The inset map names prominent 

undersea features, which are important fishing and/or spawning grounds. 
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Results 

Hydrography 

Temperature and salinity were generally homogenous throughout the water column and 

decreased from North to South (Fig. 2). In 2004 offshore waters were relatively warm 

(>7oC) with salinities above 34.4, along the eastern margins waters were substantially 

cooler and fresher. In 2009, water in the northern North Sea was slightly warmer 

(0.4oC) and more saline but extended only as far south as Flamborough. The more 

prominent differences between 2004 and 2009 were along the eastern margins of the 

North Sea, where water in the German Bight was more than 1oC colder and more saline 

than in 2004. Temperatures below 5oC extended also further eastwards in 2009. The 

horizontal density gradient (Fig. 2E, F) was mainly driven by salinity. The strongest 

density gradients were along the eastern margins with peak values above 2.3 g m-3 NM-

1. Along the Norwegian coast the density gradient between coastal and oceanic water 

was steeper in 2009 and peaked further offshore than in 2004. Between the German 

Bight and the central North Sea the peak density gradient also occurred further offshore 

in 2009, but it was not as strong as in 2004. 

Egg distribution 

Eggs of all four species (cod, haddock, whiting and plaice) combined showed the 

highest abundance in and adjacent to the German Bight, between the Orkney and 

Shetland Isles and to the East of the Shetland Isles (Figs 4C, D). In 2009 the highest egg 

abundances were found in the Southern Bight in contrast to 2004. While abundances 

averaged over the whole North Sea were similar between years, the distribution in 2009 

was patchier with high densities in more restricted areas. 

Plotted against the latitude (Figs 5A, B), the egg abundances for all stages combined 

exhibited similar patterns between the years, peaks occurred at the latitudes of all the 

major spawning areas, e.g. at 58oN for the Moray Firth or at 60oN reflecting the 

concentration near the Shetland Isles. The most striking difference, were the over 200 

eggs m-2 in the Southern Bight (ca. 53oN) in 2009. 

The distribution patterns of individual species differed. Cod, which was the only gadoid 

fish spawning over the whole North Sea, had egg centres in the Southern Bight and east  
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Figure 2: Hydrography for 
2004 and 2009. Panels A and B 
represent the average surface 
temperature (°C) for the 
respective sampling periods. 
Panels C and D show the 
average salinity at 20 m depth 
and E and F the average density 
gradient (g m-3 NM-1) at 20 m. 
For temperature and salinity 
lighter shades represent higher 
values, while for the gradient 
dark shades represent higher 
values. 
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of the Shetland Isles in 2009 (Fig. 3B), while the southern centre of egg abundance was 

in the German Bight and at the Dogger Bank in 2004 (Fig. 3A). The krigged log(n+1)-

transformed abundances for 2004 exhibited highest abundances for stage I (2.1 m-2) and 

persistent centres in the German Bight and at the Dogger Bank while high abundances 

around the Orkney and Shetland Isles were found mostly for the later stages (Fig. S1). 

Position and size of these abundance centres did not substantially differ between the 

stages, except for stage V where high and medium abundances contracted to small 

areas. Cod egg abundances along the east coast of England, were always low. 

Haddock was hardly ever found south of 56oN and had clear centres of abundance off 

the Orkney and Shetland Isles and the Moray Firth (Figs 3C, D). The maximum log-

abundances were at 2.1 m-2 for stage IV. The extent of centres of abundance was more 

or less stable over all stages, while the medium abundances contracted continuously 

from stage I to V (Fig. S1). Whiting had two centres for all stages, one east of the 

Shetland Isles and the second between the English coast and the Dogger Bank (Figs 3E, 

F; S1). The one in the North was more prominent for the later stages, while it was the 

opposite for the South. The peak abundances were measured for stage I (2.6 m-2).

Plaice spawning was centred on Moray Firth, the German and the Southern Bight in

both years (Figs 4A, B), with very low abundances elsewhere. Plaice eggs in 2004 were 

more dispersed than the eggs of other species, with peak abundances between 1.5 m-2

and 1.9 m-2 which were overall lower than in the other species. While the distribution of 

the early development stages was homogenous, stages IV and V exhibited a distribution 

more similar to the other species, with several patches of high density off the Dutch and 

Danish coasts and otherwise medium or low densities (Fig. S1). 
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Figure 3: Abundance of fish 
eggs (Nos. m-2) for the gadoid 
fishes. The left panels are for 
2004, the right panels for 2009. 
The reference dot in each panel 
represents the next higher 
multiple of ten to the peak 
abundance of both years. Empty 
ICES rectangles were sampled 
without result, while rectangles 
marked with a cross were not 
sampled in the respective year. 

61



Paper I 

Figure 4: Abundance of fish eggs (Nos. m-2) for plaice and all four species combined. 

The left panels are for 2004, the right panels for 2009. The reference dot in each panel 

represents the next higher multiple of ten to the peak abundance of both years. Empty 

ICES rectangles were sampled without result, while rectangles marked with a cross 

were not sampled in the respective year.
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Relation to environmental conditions 

Eggs were primarily found in water less than 200 m deep (Figs 5C, D), with highest 

abundances in areas with bottom depths of 30-40 m in 2009 and around 100 m in 2004.

This difference was mostly due to the high abundances in the Southern Bight in 2009. 

Whiting contributed most to the peak at 30-40 m while haddock was most abundant at 

>80 m bottom depth and cod was abundant in 100-150 m too, more so in 2009 than in 

2004. Similar to whiting, plaice eggs were mostly found in waters of less than 50 m. 

In 2004 highest egg abundances were found in water of 5.5-8.5oC, while in 2009 they 

were mostly between 4 and 6oC, (Figs 6A, B). Whiting exhibited the strongest 

difference between the years with peak abundances at ~8oC in 2004 and in the 4-6oC

range in 2009. Haddock was abundant between 6.5oC and 8.5oC in both years and was 

close to zero densities in lower temperatures. Cod was most abundant between 4 and 

6oC in both years and plaice was restricted to the same range with almost zero 

abundance outside. 

Below a salinity of 32, egg densities were low in both years (Figs 6C, D). Highest 

abundances were between salinities of 34 and above 35. Haddock was at highest 

abundances in salinities above 35 while all the other species peaked in the 34-35 salinity 

range. Distribution over the density gradient was similar between the years with most 

eggs in gradients between 0.5 and 1.5 g m-3 NM-1 (Figs 6E, F), again mostly due to 

whiting, while cod preferred the higher range above 2 g m-3 NM-1 and haddock the 

lowest gradients around 0.25 g m-3 NM-1. Plaice was evenly distributed across the range 

and apart from cod was the only species abundant >2 g m-3 NM-1.

Statistical analysis 

The overall non-zero abundance was significantly (p<0.001 overall) influenced by all of 

the factors and by all 2-factorial interactions (Table 2). In post-hoc Tukey’s test,

significant differences were found between all species and all spawning areas, except 

the area in the central North Sea (round fish area 2) and the east coast of Britain 

(roundfish areas 3, 4 and 5; p=0.986). When examining the interaction of species and 

spawning in roundfish area 6, containing the German Bight, the eastern part of the 

Southern Bight and the Southeast of Dogger Bank, exhibited significantly higher 
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abundances for cod and plaice. No other spawning areas were significantly different for 

these species. Conversely, haddock exhibited significant differences between all 

spawning areas, except the Shetland Isles area (roundfish area 1) and the 

Skagerrak/Fisher Banks area (roundfish areas 7 and 8). Contrary to all other species its 

abundance was the lowest in roundfish area 6. In case of whiting, neighbouring areas 

were never significantly different and the highest abundances were found in roundfish 

area 6. 

Figure 5: Average density of fish eggs (Nos. m-2) compared to latitude (decimal 
degrees) and bottom depth (m). The left column is for 2004, the right column for 2009.
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Figure 6: Average density of fish eggs (Nos. m-2) compared to hydrographic indicators. 
The left column is for 2004, the right column for 2009. 
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The abundances of stages I and II eggs were significantly different to each other and the 

other stages, except II and V (p=0.228). The later stages III-V exhibited no significant 

difference among them in any of the species. The interaction between egg stage and 

spawning area exhibited significant differences between roundfish area 2 and areas 1 

and 6. These differences occurred in all stages. For most development stages the highest 

and lowest abundances were found in the same spawning area than for all stages 

combined. The 3-factorial interaction of species, stage and spawning area was not 

significant (p=0.896). 

Abundances were highly significantly different (p<0.001) between the years and the 

different sampling gears, except BONGO and GULF VII (p=0.082).  

Table 2. Results of multi-factorial ANOVA on the abundance of fish eggs. Asterisks 

denote significant differences. 

Factors Df Sum Sq. Mean Sq. F P

Species 3 334.60 111.52 217.04 <0.001 *

Stage 4 93.10 23.28 45.31 <0.001 *

Spawning area 4 218.20 54.55 106.15 <0.001 *

Year 1 22.00 22.03 42.88 <0.001 *

Gear 3 139.20 46.45 90.31 <0.001 *

Species × Stage 12 21.30 1.78 3.46 <0.001 *

Species × Spawning area 12 324.90 27.07 52.69 <0.001 *

Stage × Spawning area 16 33.80 2.11 4.11 <0.001 *

Year × Gear 1 30.20 30.24 58.86 <0.001 *

Species × Stage × Spawning area 48 18.60 0.39 0.75 0.896

Residuals 6286 3229.9 0.51

Discussion 

Our observations of four species of North Sea fishes, spawning in a few hotspots are 

consistent with historic spawning areas (Coull et al., 1998; Gibb et al., 2004; Heath et 

al., 1994). The present observations of small areas with high egg densities reflect 
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currently lower than maximum population sizes (ICES, 2010b), while the overall extent 

of spawning areas is similar to the extent when population sizes were larger than now 

(Brander, 1994; Daan, 1978). Neither has the hydrographic structure changed much, 

compared to what has been observed earlier (Otto and Zimmerman, 1990). 

Hydrography and egg distribution 

Compared to Otto and Zimmerman (1990) the hydrography in 2009 was remarkably 

similar to the figures shown in their review which were based on data from 1962. The 

marked difference between the two study years was the restriction of fresher water to 

the German Bight in 2004. This was not an effect of different sampling periods, as a 

comparison for the same calendar days showed. Egg densities were highest in the 

historic spawning areas described in Fox et al. (2008) and earlier literature (Brander, 

1994; Daan, 1978). The main difference between 2004 and 2009 was in the Southern 

Bight. There, egg densities were far higher in 2009, and patchiness in all the North Sea 

was higher in that year. The higher patchiness in 2009 may be attributed to the ~3 

weeks earlier sampling period, than in 2004. The difference in egg abundance in the 

Southern Bight correlates with differences in hydrography as in 2009 water below a

salinity of 34 was not confined to the German Bight. Likely, inflow from rivers in 

France, via the English Channel, and the Netherlands was higher in that year. This water 

was colder too, although the difference to 2004 was not so pronounced as was seen in

the salinity. Additional sampling of fish eggs was carried out in the Southern Bight, the 

German Bight and the eastern English Channel (Lelièvre, 2010). Here, high abundances 

were shown for eggs of all species in the Southern Bight, in 2006 and 2008, but in 2007 

to a lesser extent (Lelièvre et al., in press). In 2006 water of low salinity was not 

restricted to the German Bight and the interface between fresh and saline water was well 

offshore, which resembles the situation in 2009. In 2007 the fresher water was similarly 

not restricted to the German Bight but the interface was closer to shore, which is likely 

to have resulted in higher turbidity, which previously has been identified as an 

important factor for cod (Brander, 1994). From the comparison of the years we deduce 

that a more seaward position of the boundary between freshwater influenced areas and 

marine water may attract more spawning fish to the area. 

Our observations on cod egg distribution are consistent with Brander (1994) who

identified the western-central North Sea (2oW-2oE and 52.3-56oN) as a minor 
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contributor to the spawning of cod, and the German and Southern Bights as major 

contributors in alternating periods, 1948-1956 and 1958-1972 respectively. In 2004 and 

2009 the distribution of cod eggs was concentrated to a few patches in the Southern 

Bight, while in the German Bight it was highly dispersed, similar to what Brander 

(1994) described. He attributed the high concentration in the central Southern Bight 

mainly to water transparency, in contrast to other areas where cod seemingly do not 

avoid turbid waters. However, higher turbidity may indicate stronger currents and 

winds, transporting the eggs out of the Southern Bight, which would explain the low 

egg density without a different spawning behaviour of cod in this area. When analysed 

by development stages the areas with high abundance of cod eggs contracted over time, 

as currents in the southern North Sea dispersed the eggs at about 5 km d-1 (Brander, 

1994) resulting in a transport of around a 100 km from spawning to hatching, based on 

temperature dependent egg development (Geffen et al., 2006). Much of the cod fisheries 

in the North Sea currently take place in the northern North Sea, and catches of mature 

females are also high (Fox et al., 2008). Yet, while high egg densities were found 

between the Shetland Isles and 2oE, the egg densities east of that latitude did not match 

with what was predicted from the catches of mature cod. 

For haddock, Thompson (1928) reported that the greatest concentration of spawning 

fish was observed on the plateau between the Orkney-Shetland Isles and Norway in 

depths >100 m, with concentrations east of the Moray Firth, Buchan Deep, Farne Deep, 

The Gut and Fisher Bank. Saville (1959) found widespread distribution of eggs over the 

whole of the northern North Sea from the Scottish coast to the Norwegian Deeps, with 

the exception of the Moray Firth and an area around the Fladen Ground (an exception 

also noted by Damas, 1909). The extent of haddock eggs found by Heath et al. (1994) in

1992 was comparable with that of Saville’s study, although eggs were concentrated 

further north and west (Fig. 5). A model study by Heath and Gallego (1998) estimated 

high egg production from mature fish for the Moray Firth, the Scottish east coast and 

between the Orkney and Shetland Isles, which is well reflected in the results of the two 

surveys. However their model did not exhibit high abundances to the immediate East of 

the Shetland Isles, which were present in 2004, 2009 and past egg surveys. On the other 

hand, high abundances south of the Moray Firth only occurred in 2004. In earlier 

plankton observations Heath et al. (1994) found a spatial segregation of late stage cod 

and haddock eggs, in colder North Sea water and on the warmer outer shelf 

respectively, which would fit with the preferences for different zones of a frontal system 
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for larvae of different gadoid species (Munk et al., 1999). The centres of egg abundance 

were more stable compared to other species, in area as well as in peak abundances. 

Dispersal was low, while the contraction of medium abundances can be explained by 

mortality in the early stages and a combination of mortality and dispersal in the later 

stages. Similarly, mature haddock abundance in first quarter surveys was stable with 

little change between the 1980s and 1990s (Hedger et al., 2004). 

It has been suggested that whiting has two stocks in the North Sea, one east of England 

and one east of the Shetland Isles (Gibb et al., 2004) which would be consistent with 

our findings. Adults of whiting are known to prefer shallow water with temperatures 

between 6-9oC (Loots et al., 2011), which is also consistent with our observations. 

Whiting has a long spawning period lasting from February to June with increasingly 

later spawning at higher latitudes (Hislop, 1984). Assuming that the spawning period 

was not substantially different from 2004, the lack of significant egg densities east of 

the Shetland Isles in 2009 may thus be explained by the earlier sampling. However, 

when looking at the distribution pattern of single stages in 2004, this is not supported, as 

the early stages are more abundant in the South, while stage IV and V are the most 

abundant in the North. As temperatures decreased from North to South it may lead to 

the notion that spawning occurred earlier in the northern spawning area. However, this 

hydrographic situation is not unique to that year and therefore this explanation is in 

contrast to the observations of Hislop (1984) . A more likely explanation is that as 

whiting spawns in batches over a period between 1.5 and 2 months well into late spring 

(Hislop, 1984) we might just be seeing the beginning of a later spawning batch in the

South, while in the North the previous batch is in the later stages.

The relatively homogenous distribution of plaice eggs in the German Bight and along 

the Danish coast, particularly in 2004, is a good representation of this species’ large 

spawning area in the southern North Sea and English Channel (Metcalfe, 2006). Loots 

et al. (2010a) identified also Flamborough Head, Moray Firth and Firth of Forth as 

suitable areas for spawning adults which exhibited some abundance in the 2004 and 

2009 surveys. The decrease in area with high abundance over the course of development 

from stage I to stage V may be due to the typically high mortality of fish eggs (Bunn et 

al., 2000; Mcgurk, 1986; Pepin, 1991) showing its effect primarily on the edge of the 

area and in later stages dispersal may be important too. 
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Effects of species, stage and spawning area 

A consistent result in the ANOVA is that the abundances of the later stages are not

significantly different from each other for any of the species. This is probably due to 

differences in stage durations. For cod and plaice the shortest stages are II and IV with 

around 2 and 2.5 days respectively, (at 6oC; Fox et al., 2003; Geffen et al., 2006), while 

stages I, III and V are on the order of 3.5 to 5.5 days in duration. Longer stage duration 

extends the time during which the egg could be sampled or eaten. Overall the most 

common stage was stage I (IA, IB combined). A significantly lower number of eggs in 

the other stages of similar duration may be due to either the progress of egg 

development, or mortality due to various causes. The absence of significant difference 

between stages II and V may be due to a shorter duration of stage II and thus low 

numbers at any given time, while at stage V numbers might be lower, due to mortality.

The relation between the stages III to V was mostly the same within the separate 

spawning areas, only in roundfish area 2 were the abundances of stages IV and V 

significantly different, while the abundances of any given stage were always 

significantly different between at least two spawning areas. Since abundant spawning 

was not confined to only one area, this result suggests different sub-populations with 

different progress of the spawning seasons, as was previously suggested for cod (Wright

et al., 2006).

The results for the interaction of species and spawning areas, are likewise interesting as 

for cod and plaice, the German Bight clearly stands out as different from all other areas. 

Although in 2009 abundances were higher in the Southern Bight, the abundances in the 

German Bight were high in both years indicating this area as the more important one 

over time, which compares well with literature (Brander, 1994; Harding and Nichols, 

1987; Metcalfe, 2006). As plaice apparently prefers shallow water for spawning 

(Harding et al., 1978; this study) this large shallow area is naturally attractive. 

Inferring the spawning grounds from egg distribution alone unavoidably will include a 

degree of unobserved drift from the spawning site, particularly when including all 

stages. However, mapping the distribution of single stages has not shown substantial 

differences in their distributions. This indicates that drift has no major influence on the 

inference we make, but future work may include a combination with a drift model to 

make identification of spawning grounds even more accurate. 
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Outlook and Conclusions

Spawning locations presumably reflect a long term selection for areas from which 

sufficient offspring survive to sustain the population. The spawning locations of the 

species examined in the present study appear geographically relatively stable, while for 

some other species such as mackerel (Scomber scombrus) location of spawning appears 

quite variable (Beare and Reid, 2002). However, the cues which adult fish use to 

navigate to spawning areas are poorly understood. Arnold (1994) suggested a role of 

selective tidal stream transport in the spawning migration of cod in the southern North 

Sea. Species with relatively fixed spawning locations are more likely to be affected by 

changes in the hydrographic environment compared with a more flexible species such as 

mackerel. For species with fixed spawning locations we might expect climate change to 

lead to gradual changes in larval and juvenile survival at certain spawning locations. 

This can eventually appear as a range shift in the adult population but is the result of 

differential survival between spawning sites rather than re-location of adult fish 

(Andrews et al., 2006). 

Changes in the distribution of several of the North Sea fishes studied here are apparent 

from a number of recent studies. Rindorf and Lewy (2006) as well as Perry et al. (2005) 

have attributed these changes to climate change. Both studies used data from across the 

North Sea and inferred that changes in distribution reflect stock level changes. Such 

conclusions are opposed by other studies that saw evidence for population structuring, 

since apparent northward shifts in stock  distribution could be explained by changes in 

local populations (Heath et al., 2008; Holmes et al., 2008; Neat and Righton, 2007). 

Other studies argued that the actual environmental conditions are rather unimportant 

compared to factors such as population size and geographical attachment (Loots et al.,

2010b). The present study tends to support the studies by Loots et al. (2010b; 2011) as 

it indicates that the distribution of eggs is similar to the spawning distribution in these 

studies and previous literature. While spawning always occurred in the previously 

described spawning areas, the centres of abundance, at least in the southern North Sea, 

varied between the years. Hence, fish may have a limited choice in selecting the 

spawning location, depending on the hydrographic conditions within a given spawning 

ground and year. If the overall hydrography of the North Sea changes due to warming or 

increased precipitation, this might affect spawning success and subsequent recruitment 

to the stock. 
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Abstract 

North Sea fishes tend to return to specific spawning areas every year. These areas have 

been identified during a succession of studies, often many years apart. It remains 

however uncertain to which extent the environment influences the precise spawning 

location in any given year. Two ichthyoplankton surveys, conducted in the North Sea 

2004 and 2009 allow for an examination of early stage distribution in cod (Gadus

morhua), haddock (Melanogrammus aeglefinus), whiting (Merlangius merlangus) and

plaice (Pleuronectes platessa), in relation to environment and spatial dependency. In the 

present paper we investigate the relative influence of bottom or surface hydrography on 

early stage distribution with Generalized Additive Models (GAM). The selected models 

had high explanatory power and explained up to more than half of the variation in the 

data. The results show that abundance for most species could be best explained by 

surface conditions, while for presence/absence surface and bottom conditions explained 

two species, respectively. The environmental factors were more important for the 

presence/absence of eggs than for estimated abundances and explained more of the 
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variation for those species which are close to their southern limit of distribution in the 

North Sea. These species may thus come under greater pressure if the North Sea waters 

become increasingly warmer.

Keywords: Fish eggs, Gadidae, Pleuronectes platessa, Hydrography, Spatial analysis, 

GAM

Introduction 

Recent studies and predictions for the future of the North Sea (Meehl et al., 2007; Perry

et al., 2005) have risen concerns whether the fish are able to adapt to altered conditions 

and change their spawning strategies or if  spawning and offspring survival will be 

severely influenced. To address this question of adaptability, we need to know more 

about the determining factors behind use of spawning areas by these fishes. Cod (Gadus

morhua), haddock (Melanogrammus aeglefinus), whiting (Merlangius merlangus) and

plaice (Pleuronectes platessa) are commercially important and heavily exploited species 

in the North Sea. Although knowledge about spawning patterns is essential for a further 

understanding of the early life history and the subsequent recruitment to the fish stocks, 

targeted studies on the spawning distribution of any of these species are relatively few 

and infrequent (e.g. Daan, 1981; Gibb et al., 2004; Harding et al., 1978). When such

studies, often decades apart, are compared, they show spawning areas with some degree 

of variation, but generally high stability in time. Fronts are important in the spawning 

season for many species which is late winter/early spring (Munk and Nielsen, 2005) and 

are mostly salinity fronts, based on the interaction between runoff from land and the 

oceanic water from the Atlantic (Simpson et al., 1993). Since the precipitation in 

Western Europe, and thus the runoff into the North Sea, is predicted to change (Meehl

et al., 2007), the position of these fronts is likely to change, with potential effects on 

spawning and the survival of offspring from affected areas. The prospect of conditions 

outside the observed range, calls for investigation on how the distribution of fish eggs is 

influenced by their environment.

Modelling the distribution of populations has made great progress in recent years. 

Earlier studies (e.g. Planque et al., 2007) used only the environmental conditions to 

explain the distribution of a population, ignoring the population dynamics and 
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demography. This approach is appropriate for modelling the niche of a species. 

However, for specific population this approach entails the risk to ignore internal 

dynamics of the population and thus create poorly defined models (Loots et al., 2010b).

As a remedy, Planque et al. (2011) suggested a group of hypotheses, external 

(geographic attachment, environmental conditions) and internal (e.g. demographic 

structure, spatial dependency) to the population in question, which should be included 

in modelling the distribution of a specific fish population. Fish eggs are not directly 

influenced by some of the internal hypothesis, as they cannot exhibit different 

behaviours according to development stage (e.g. Chen et al., 1997). However, higher 

spawning stock biomass is likely to increase patch size and density. Spatial dependency, 

inherent to all population distributions has to be taken into account. Pelagic fish eggs 

are often positively or neutrally buoyant and aggregate in the water column, often close 

to the surface (Coombs et al., 1990; Fritsch, 2005), while bottom hydrography has been 

successfully used to describe the spawning distribution of several groundfish species 

(Loots et al., 2010b; Loots et al., 2011). Therefore pelagic fish eggs are likely affected 

by bottom hydrography through the parent population and directly by surface 

hydrography and both have to be considered, when modelling the distribution. 

A targeted international survey in 2004 addressed the extent of current spawning areas 

in the North Sea and potential linkages to frontal hydrography. Fox et al. (2008) found 

that all except one of the previously identified spawning areas for cod are still active. 

Munk et al. (2009) found that spawning mostly occurred near fronts, while the peak egg 

abundances where at the fronts themselves. These findings are important in relation to 

climate change. Following on the 2004 survey, a second survey in 2009 provided an 

additional coverage of the North Sea and allowed the examination of fish egg 

distribution in greater detail. A sibling study (Höffle et al., submitted) indicated that the 

basic hydrographic structure of the North Sea and the distribution of fish eggs exhibit 

little variation on large temporal and spatial scales. Here we examine the hypothesis that 

for all species the hydrographic conditions have an overarching influence on where eggs 

are present and how abundant they are. To do so we statistically investigate the linkages 

between observed distribution, hydrography and the interdependence between locations 

of spawning. 
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Materials and Methods 

Survey design and field sampling 

Sampling was carried out across the North Sea (Fig. 1) by five participating countries 

during dedicated surveys or during the annual International Bottom Trawl Survey for 

the first quarter (IBTS 1Q). Periods of sampling were from 16th February to 23rd of 

March 2004, and from 17th of January to 6th of March 2009 (Table 1). 

Table 1: Survey cruises in this study. For the BONGO nets only the mesh size for the 

samples used in the analysis is given. 

Abbreviations: add. IBTS = Additional IBTS-Sampling, IHLS = International Herring 

Larvae Surveys, PLACES = Plaice and Cod Egg Surveys, PCEGGS = Planning Group 

on North Sea Cod and Plaice Egg Surveys (reproduced from: Höffle et al., submitted) 

Year Country Survey Ship Start
Date

End
Date

Gear Mesh
(μm)

Nos.
Hauls

2004 NL PLACES Tridens II 1.3.04 4.3.04 Gulf VII 270 41

DE PLACES Heinke 16.2.04 23.2.04 BONGO 500 40

UK PLACES Corystes 18.2.04 8.3.04 Gulf VII 270 134

DK PLACES Dana 25.2.04 6.3.04 BONGO 330 92

NO PLACES H. Mosby 8.3.04 23.3.04 Gulf III 330 86

2009 SC PGEGGS Scotia 20.2.09 6.3.09 BONGO 350 53

FR add. IBTS Thalassa 17.1.09 13.2.09 WP2 500 103

NO add. IBTS G. O. Sars 8.2.09 21.2.09 Gulf VII 280 59

NL IHLS Tridens II 19.1.09 22.1.09 Gulf VII 280 83

DK add. IBTS Dana 31.1.09 17.2.09 BONGO 330 68

The samples were taken with Gulf III (Gehringer, 1962; Nellen and Hempel, 1969) and 

VII (Nash et al., 1998), BONGO (Posgay and Marak, 1980) and WP2 (Fraser, 1968; 

UNESCO, 1968) nets, covering the entire North Sea from 51.5°N to 62°N. Nets were 

deployed in either vertical hauls (WP2) or in double oblique hauls (all other nets), down 

to five metres above sea bottom or a maximum of 100 m depth. In shallow water, 

multiple double oblique hauls were carried out (ICES, 2008) to ensure the minimum 

deployment time of 10 minutes. To determine cod-like eggs to species level, single eggs 
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without oil globules and diameters of 1.1-1.75 mm (Fox et al., 2008) or 0.97 – 1.89 mm 

(Lelièvre et al., 2010) were fixed for later genetic analysis, either in 96% ethanol (Fox et 

al., 2008; Taylor et al., 2002) or in buffered 0.864% formalin solution (Lelièvre et al., 

2010). 

Figure 1: Sampling positions, in 2004 (grey circles) and in 2009 (black triangles). The 

underlying contour map shows the topography of the North Sea, in 10 m steps down to 

a 100 m and increasing steps to greater depths. Lines delineate the ICES roundfish 

areas, numbered counter clockwise 1 to 8.
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Egg and larvae identification 

Subsamples of at least a 100 eggs in the desired size range (>1.16 mm; Russel, 1976) 

were staged and visually identified to the lowest possible taxonomic level (Ryland et 

al., 1975; Thompson and Riley, 1981). The preserved eggs were identified either with 

TaqMan probes (Fox et al., 2008) or cytochrome b PCR – RFLP (Lelièvre et al., 2010). 

Accuracy of TaqMan probes is >98% for cod, haddock and whiting (Taylor et al., 2002) 

while compared to visual identification the cytochrome b PCR-RFLP was 98% accurate 

for cod and 71% accurate for whiting (Lelièvre et al., 2010). The identified gadoid eggs 

were assigned to each species according to the proportion obtained from genetic 

analyses, for stations where this was not possible the proportion in 2004 was derived 

from a multinomial Generalized Additive Model (GAM) over the whole survey area 

(Fox et al., 2008) and in 2009 from the average proportion for the other stations in the 

same ICES square. Density of fish eggs was calculated for each sample in numbers per 

m2 as follows: 

(1)

where D is the density, n the egg count, f the raising factor, ds the sampled Depth and V

the sampled volume. For presence/absence the numbers were binary transformed to 0 

and 1, respectively. 

Geostatistics 

Hydrographic data were obtained from CTD hauls during the survey and augmented 

with data from the ICES oceanographic data base (ICES 2009). Data sets containing 

erroneous pressure measurement, temperatures (<0oC or >11oC) and salinities (<20 or 

>37) were excluded from further analysis, while the retained values were used to 

calculate density as σt (kg m-3-1000) according to UNESCO standards (Millero and 

Poisson, 1981). For each hydrographic variable at three depths (5 m, 20 m and bottom), 

an experimental variogram was calculated in Surfer 8 (Golden Software, 2002), based 

on the equation (Webster and Oliver, 2001): 
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(2)

Where n(h) is the number of pairs of observation for the distance between 

measurements h, z(x) is the observed value for the respective hydrographic variable at a 

given location x and γ(h) is the resulting experimental variogram. A theoretical 

variogram γ’=F(γ) was fit to the data based on a linear model with least square 

regression. Using that theoretical variogram the hydrographic data was interpolated on a 

regular grid of 0.25 by 0.25 decimal degrees (dec. deg.) with ordinary kriging. The 

interpolated density was used to calculate the horizontal density gradient in g m-3 per 

nautical mile (NM-1, 1.852 km-1) with the formula (Golden Software, 1999): 

(3)

Where is the density gradient, ZE and ZW are adjacent grid points in East-West 

direction, ZN and ZS are adjacent grid points in North-South direction, and and 

are the distances in longitudinal and latitudinal direction, respectively. 

Modelling the spatial dependency 

Spatial dependency in the biological data was modelled in R (R Development Core 

Team, 2008, packages referenced in the appendix). We took the approach of Principal 

Coordinates of Neighbour Matrices (PCNM), adding the additional benefit of estimating 

the average patch size for each species. The procedure is described in detail in Borcard 

& Legendre (2002) and Blanchet et al. (2008). We took the code for the oribatid mite 

example, given in Borcard et al. (2011), as a template which was modified to suit our 

data. Similar to Loots et al. (2010b) we set the threshold p-value to a low 0.002 to avoid 

building too complex spatial models. The spatial scale was then determined by 

computing a Gaussian variogram model to determine the range of the variogram for the 
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spatial scale of each PCNM (Bellier et al., 2007). Plotting the eigenvalues of the 

selected PCNMs against their range (Fig. 2) we then subdivided them into submodels 

for a broad, medium, fine and very fine scale. 

Selection of explanatory variables 

In order to examine the hydrographic parameters for correlation throughout the water 

column, the values extracted for 5 m, 20 m and bottom depth were plotted on pair plots 

and the variance inflation factors (VIF) calculated. Temperature (oC) was included from 

the measurements at 5 m depth. The values for 20 m depth were well correlated (R2=1)

with the surface, allowing the use of salinities and density gradients (g m-3 NM-1) from 

this stratum to substitute for the surface values, as the conductivity measurements at 20 

m were more reliable. Collinearity between surface and bottom measurements was less 

strong than between surface and 20 m. Therefore the 20m (surface control model) and 

bottom (bottom control model) variables were applied to the otherwise same GAM-

models. The collinearity between temperature, salinity and density gradient was milder,

with VIF values between the critical values given by Zuur (2009) and Borcard (2011). 

As the smoothing splines in the GAM-models did not exhibit any substantial changes,

once one of these covariates was removed, we decided to keep all of them. 

Bottom depth was included as it has been shown to exert a strong influence on the 

spawning distribution of plaice and whiting (Loots et al., 2010b; 2011). The day of the 

year (henceforth ‘Year Day’) was included, since other than with long time series the 

variation in sampling date could not be neglected. The year was included to capture 

several, not individually measured factors like different sampling gears and survey 

designs and variations in the parent population. At last, to examine the spatial 

dependency, sub-models for very fine, fine, medium and broad scales were included. 

GAM Models 

GAM models were constructed in R (R Development Core Team, 2008, packages 

referenced in the appendix) for presence/absence data, using a binomial model with a 

logit link and a Gaussian model with an identity link for the log-transformed non-zero 
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abundances, following the general form (Hastie and Tibshirani, 1990; Loots et al.,

2010a): 

(4)

The link function is g(), Y is the response, β0 is the intercept, f1-n the smoothing 

functions and X1-n the explanatory variables. The approach of modelling for abundances 

and presence/absence apart should allow to cope with zero inflated, log-normal 

distributions (Loots et al., 2011). GAMs were initially constructed with inclusion of 

either surface or bottom hydrography. The choice of the best fitting GAM model within 

either the surface control model or the bottom control model was based on Generalized 

Cross Validation (GCV) or Un-Biased Risk Estimator (UBRE) scores (both: Wood, 

2006) for abundance and presence/absence, respectively. Terms were removed from the 

model based on the degree of freedom, the presence of zero in the confidence interval 

and the rising GCV or UBRE score (Wood, 2001). Variables with estimated degrees of 

freedom close to 1 were retained as linear terms if they still contributed to the 

explanatory power of the model or if the scores increased to a large extent if they were 

dropped. The choice between the two optional control models depended on the Akaike 

Information Criterion (AIC), following the equation (Akaike, 1974; Loots et al.,

2010b): 

 (5)

The final GAM model was validated for normality of residuals and patterns in the 

residuals and the spread and no such patterns were found. Post hoc the amount of 

variation purely explained by each covariate was extracted by variation partitioning 

with RDA-adjusted R2 (Peres-Neto et al., 2006). As this method only allows four 

explanatory matrices the environmental and temporal variables were combined, as well 

as the fine and very fine scale spatial dependency. 

89



Paper II 

Results 

Egg distribution and habitat 

The hydrography in 2004 and in 2009 was characterized by a pool of relatively warm 

(>7oC) and saline (>34.4) water in the centre of the North Sea and colder, fresher water 

along the eastern margins. The position of the boundary between oceanic and coastal 

water was further offshore in 2009 than in 2004 while density gradients were steeper in 

the northern North Sea and shallower in the German and Southern Bights (for details 

see: Höffle et al., submitted; Munk et al., 2009).

Overall, centres of egg abundance were found in the German and Southern Bights and 

around the Orkney and Shetland Isles. The majority of eggs was found in temperatures 

of 5.5-8.5oC in 2004 and in 4-6oC in 2009. The peak abundances occurred in both years 

in salinities between 34 and 36 and at density gradients between 0.5 and 1.5 g m-3 NM-1.

Species specific peaks were not necessarily in these ranges. All gadoids exhibited high 

abundances east of the Shetland Isles. While haddock seldom occurred south of 56oN,

cod and whiting had southern centres of abundance. Cod was abundant in the German 

Bight in 2004 and the Southern Bight in 2009 and whiting between England and the

Dogger Bank. Plaice also had two centres, the German Bight in the South and the 

Moray Firth in the North. 

Spatial structuring 

The threshold for truncating the distance matrix was 0.52 dec. deg. Of the PCNMs, 404

were found to have positive eigenvalues. Of these spatial structures 8 were significant 

for cod, 12 each for whiting and plaice and 15 for haddock. When plotting the 

eigenvalues against the variogram range of each PCNM, four distinct groups were 

discernible (Figs 2, 3), on ranges of 0-22 NM (very fine scale), 22-32 NM (fine scale), 

32-49 NM (medium scale) and above 49 NM (broad scale). 
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Figure 2: Range in decimal degrees of spatial sub-models for the eggs of cod, haddock, 

whiting and plaice on very fine (0-22 NM), fine (22-32 NM), medium (32-49 NM), and 

broad (>49 NM) scales. The solid lines define the thresholds for the spatial sub-models 

of the eggs. The boundaries between scales are denoted in nautical miles on the top axis. 

Eigenvalues are non-dimensional and proportional to Moran’s I.

GAM - fitting 

The best fitting model for the abundance of most species in the study was the surface 

control model with only haddock having a better fit with the bottom control model

(Table 2). For the presence/absence cod and plaice had a better fit with the bottom 

control, while haddock and whiting were best explained by the surface control model. 

Spatial structures were retained on all scales, except for the presence/absence of cod, 

where all PCNMs on the medium scale were dropped during the backfitting process. 

Many PCNMs had degrees of freedom close to 1 but otherwise did not fulfil the criteria

for dropping and were included as linear terms. In the abundance models no 

hydrographic terms were dropped or linearized, except the density gradient for plaice. 

The density gradient was also dropped from the presence/absence models for cod and

whiting. The year was retained, except for the presence/absence of cod and in both 

models for plaice. The relation to the spatial variables took various forms (Figs 4, 5 and 

supplement figures), while for the environmental variables and the year day they were 
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more or less s-shaped (see figure captions and supplement for details). Confidence 

bands widened at the ends of the covariates range because of the low number of 

observations. The explained deviation (Table 2) for the abundance was between 51.8% 

(cod) and 80.3% (haddock) and for presence/absence between 61% and 72.9%.

Figure 3: Representative spatial sub-models for the aggregation of fish eggs on very 

fine (A), fine (B), medium (C) and broad scales (D). Units are non-dimensional. Each 

range is subdivided into 100 intervals, darker shades represent a higher degree of 

aggregation.
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Table 2: Results of GAM models fit to the abundance and presence/absence of fish 

eggs. Smooth terms are in parenthesis with prefix ‘s’, categorical terms have the prefix 

‘factor’ and linear terms have no prefix or parenthesis. 

Abbreviations: yr. = year, very f.sc. = very fine scale, f.sc. = fine scale, m.sc. = 

medium scale, b.sc. = broad scale, b.d. = bottom depth, j.d. = year day, s.t. = surface 

temperature, b.t. = bottom temperature, s.s. = surface salinity, b.s. = bottom salinity, 

s.σt. = surface density gradient, b.σt. = bottom density gradient 

Gaussian models for non zero abundance

Species Model Formula exp. Dev. AIC

Cod s(f.sc.) + f.sc. + s(m.sc.) + s(b.sc.) + s(b.d.) + s(j.d.) + s(s.t.) + s(s.s.) + 
s(s.σt)

51.80% 1123.6

Haddock factor(yr.) + s(f.sc.) + f.sc. + s(m.sc.) + s(b.sc.) + s(b.d.) + s(j.d.) + s(b.t.) 
+ s(b.s.) + s(b.σt)

80.30% 632.6

Whiting factor(yr.) + s(very f.sc.) + s(f.sc.) + f.sc. + s(m.sc.) + m.sc. + s(b.sc.) + 
s(b.d.) + s(j.d.) + s(s.t.) + s(s.s.) + (s.σt)

69.10% 1006.8

Plaice s(f.sc.) + s(m.sc.) + m.sc. + s(b.sc.) + b.sc. + s(b.d.) + s(j.d.) + s(s.t.) +
s(s.s.) + s.σt

57.50% 1586.4

Binomial models for presence/absence

Species Model Formula exp. Dev. AIC

Cod factor(yr.) + s(f.sc.) + f.sc. + s(b.sc.) + s(b.d.) + s(j.d.) + s(b.t.) + s(b.s.) 61.00% 444.4

Haddock factor(yr.) + s(f.sc.) + f.sc. + s(m.sc.) + m.sc. + s(b.sc.) + s(b.d.) + s(j.d.) 
+ s(s.t.) + s(s.s.) + (s.σt)

72.90% 351.2

Whiting factor(yr.) + very f.sc. + s(f.sc.) + f.sc. + s(m.sc.) + m.sc. + s(b.sc.) +
s(b.d.) + s(j.d.) + s(s.t.) + s(s.s.)

62.80% 449.6

Plaice s(f.sc.) + s(m.sc.) + m.sc. + s(b.sc.) + s(b.d.) + s(j.d.) + s(b.t.) + s(b.s.) +
s(b.σt)

69.10% 582.1

Variance partitioning showed that the covariates in the final GAMs explained between 

23% (cod) and 55.6% (haddock) of the variation for the abundance (Table 3) while the 

percentages were 17% (plaice) to 47.9% (haddock) for the presence/absence. In both 

cases the environmental-temporal covariates explained more of the variation than the 

spatial covariates on any single scale. However, they often contained a large shared 
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component, showing that these covariates were themselves spatially structured. All 

unique contributions were significant, except the fine scale structures for the 

presence/absence of plaice which was slightly not significant (p=0.06).

Table 3: Explained variation of the groups of explanatory variables. The group 

‘Environment’ also includes the year (recoded to numerical variables), and the year day. 

The very fine scale spatial structures are included in the fine scale. Shared is the 

contribution of each variable including interactions with other variables, pure is the 

contribution of each variable alone. 

Abundance Cod Haddock Whiting Plaice

Shared Pure Shared Pure Shared Pure Shared Pure

Fine scale 7.0% 4.6% 9.4% 5.9% 6.2% 3.1% 5.6% 3.9%

Medium scale 2.6% 2.2% 30.6% 14.5% 6.7% 5.0% 10.6% 9.2%

Broad scale 9.8% 4.9% 12.3% 8.3% 27.8% 18.6% 19.6% 6.7%

Environment 12.7% 6.8% 37.3% 20.2% 12.3% 4.4% 18.5% 6.7%

Presence/Absence Cod Haddock Whiting Plaice

Shared Pure Shared Pure Shared Pure Shared Pure

Fine scale 2.3% 1.0% 2.3% 0.6% 1.3% 0.5% 0.4% 0.4%

Medium scale - - 6.2% 0.8% 2.7% 2.6% 1.5% 1.4%

Broad scale 1.1% 1.0% 3.7% 2.5% 3.6% 3.4% 8.0% 2.7%

Environment 21.8% 20.1% 44.4% 37.3% 34.7% 34.0% 13.8% 8.6%
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Discussion 

Our observations show that fish eggs can be found almost everywhere in the ‘potential’ 

spawning area, where hydrography appears suitable for spawning (Planque et al., 2007). 

As pelagic fish eggs are dispersed in the upper water column (Coombs et al., 1990;

Fritsch, 2005), the abundance and to a lesser extent the presence/absence information 

were usually better explained with hydrographic data from the surface. The explanatory 

power of the GAM-models was additionally improved, by including spatial 

dependency, particularly on medium and broad scales, where it explained a large part of 

the variation. 

Relation of egg distribution to physical variables 

Cod eggs were more abundant in the lower temperature range (ca. 4oC), hence, are 

generally within the optimal range of 2-10oC determined by Laurence and Rogers 

(1976). These authors also defined a salinity range of 28-36 for cod, which covered the 

salinities measured in the present study. For haddock Laurence and Rogers (1976) 

determined ranges of 4-10oC and salinities of 30-36. The higher salinity range of 

haddock, compared to cod, is apparent in the relationship of presence/absence to salinity 

at 20 m as their probability of occurrence increases at salinities above 34. Cod eggs 

occurred in water much shallower than a 100 m, while haddock eggs were most 

commonly found and were most abundant at bottom depths of ca. 100 m. Similarly 

earlier studies (e.g. Munk et al., 2002) have found cod larvae primarily in shallow 

water, while haddock eggs have been reported for bottom depths >100 m (Thompson, 

1928). While cod eggs were more abundant at high density gradients, haddock 

abundance declined at gradient >0.6 g m-3 NM-1. Munk et al. (1999) similarly observed 

a distribution of haddock larvae offshore of a front, while cod larvae tended to be 

directly at or slightly inshore of a frontal system. 

The probability to find whiting eggs was higher in the upper temperature range, while 

abundance was above average at ca. 4oC and at >7oC. These results would fit with the 

apparent preferred range of the adults (Loots et al., 2011) and in the optimal range of 

egg survival determined by Povoa et al. (2011). Abundance and presence/absence also 

peaked at depths <100 m, likewise the preferred depth range of the adults (Loots et al.,
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2011). Like for cod, abundance and presence/absence were deviating above average at 

higher density gradients, indicating that in this study whiting eggs were more common 

at central parts of the fronts, in contrast to other studies where whiting larvae were 

found inshore of a frontal system (Munk et al., 1999).

Like cod and whiting, plaice egg abundance was above average in shallow water, which 

is consistent with observations of frequent spawning in shallow areas of the North Sea 

(Simpson, 1959). In our study egg abundance was above average at 4-6oC, falling into 

the established temperature range for plaice egg survival of 2-8oC (Wegner et al., 2003). 

However, the probability of occurrence peaked at 7-9oC. This might be due to samples 

with low abundances commonly occurring in the warmer water away from the coasts 

(c.f. Fig. 4, Höffle et al., submitted). While presence/absence did not deviate much from 

the average in relation to bottom salinity, the abundance was lower than average when

salinities at 20 m were above or below 35. Similarly, high salinity in the Southern Bight 

might offer optimal conditions for plaice eggs (Cushing, 1990). The linear relationship 

between egg abundance and density gradient, had a shallow slope (k=0.039), while the 

probability of occurrence was around average below gradients of 2 g m-3 NM-1 and then 

started to deviate above average. 

Explanatory power for variation in the data 

For the abundance, when combined on all scales, the spatial dependency had a greater 

pure contribution to the explained variation than the environment. This was not the case 

for the presence/absence of fish eggs. Like suggested in earlier studies (Loots et al.,

2010b; Loots et al., 2011; Planque et al., 2011) this may indicate that the environmental 

variables are more important for defining the boundaries of a populations habitat, 

analogous to a species distribution model, while the abundance in any given place 

within this area depends on factors such as demographic structure or habitat selection of 

the parent population. The broad scale explained more of the variation in 

presence/absence than the spatial dependency on the other scales. For the variation in 

abundance, the proportion between broad and medium scale was species specific. 

For species that are well within their environmental range, processes other than 

hydrography may be more influential, which was shown for plaice (Loots et al., 2010b). 
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Conversely for populations on the edge of their range, changes in the environment 

might have huge impact. Due to its environmental preferences when mature, haddock is

restricted to the northern North Sea (Hedger et al., 2004), which might be the 

background for the observed high contribution of the environment for the explained 

variation, in the shared as well as in the pure component. The North Sea cod stock is 

one of the more southern stocks within the species’ range (Drinkwater, 2005). As such 

it exhibited strong contributions of the environment to the explained variation of 

presence/absence, but much less for the abundance. Other than haddock, cod is not 

restricted to one part of the North Sea and therefore the environmental influence might 

not be as strong as for haddock. There is also a strong influence of the environment on 

the presence/absence of whiting. For this species the sampling was done in the very 

early phase of the spawning period, and we cannot exclude that this has affected the

possibilities to find its eggs. 

As the environment has a large shared component with the spatial dependency this may 

also explain why in some GAM models the data is best described by the bottom control 

model, as the environment might also have an effect through the spatial structures and 

thus result in a better model fit. This might also be in accordance with the demersal 

habits of the adults. 

Model fitting alone, based on AIC can still be influenced by spatial autocorrelation even 

when it was accounted for by the PCNM analysis. Predicting the distribution of another, 

independent data set was recommended as more appropriate for model evaluation 

(Planque et al., 2011), as long as the covariates are not outside the observed range.

However, splitting two years of data would entail the loss of too much variation, and 

splitting both of them would still cause problems with autocorrelation. Therefore, we 

decided against this procedure, but the data produced by future surveys can be used for 

validation. 

Conclusion

Our results indicate that the effect of long term changes in environmental conditions of 

the North Sea, which is predicted to become warmer and fresher (Meehl et al., 2007), 

might differ among the common species in the area. While increasing temperature 
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would generally increase the probability of occurrence and decrease abundances, other 

effects are indicated for cod and whiting. Decreasing salinity would generally be of less 

importance, with noticeable effects only on plaice and whiting. Future studies might 

integrate hydrographic information already during the field survey.  Our observations of 

a better prediction of egg distribution from hydrographic data measured at the surface, 

point to the feasibility of using satellite derived physical surface information, 

particularly sea surface temperature, to guide field sampling and the subsequent analysis 

of point estimates of egg distribution.  

Acknowledgements 

For the coordination of the surveys, to the Planning Group on North Sea Egg Surveys 

(PGEGGS), ICES. Captains and crews of the participating research vessels from 

Denmark, France, Germany, the Netherlands, Norway, Scotland and England. All the 

scientific staff of the participating institutes who sampled under winter conditions, 

worked for tedious hours in the laboratory, or both. Stéphanie Lelièvre, Christophe 

Loots and Sandrine Vaz received additional financial support from the INTERREG IV 

A France (Channel) – England cross-border European cooperation programme, co-

financed by the European Regional Development Fund as part of the CHannel 

integrated Approach for marine Resource Management (CHARM) Phase 3 project.  

References 

Akaike, H. (1974) A New Look at the Statistical Model Identification. Ieee T. Automat. 
Contr. AC19(6):716-723. 

Bellier, E., Monestiez, P., Durbec, J.P. and Candau, J.N. (2007) Identifying spatial 
relationships at multiple scales: principal coordinates of neighbour matrices 
(PCNM) and geostatistical approaches. Ecography 30(3):385-399. 

Blanchet, F.G., Legendre, P. and Borcard, D. (2008) Forward selection of explanatory 
variables. Ecology 89(9):2623-2632.

Borcard, D., Gillet, F. and Legendre, P. (2011) Numerical Ecology with R. Use R! 
Gentleman, R., Hornik, K., and Parmigiani, G. New York: Springer, 249pp. 

100



Paper II 

 
 

Borcard, D. and Legendre, P. (2002) All-scale spatial analysis of ecological data by 
means of principal coordinates of neighbour matrices. Ecol. Model. 153(1-2):51-68. 

Chen, Y., Liggins, G.W., Graham, K.J. and Kennelly, S.J. (1997) Modelling the length-
dependent offshore distribution of redfish, Centroberyx affinis. Fish. Res. 29(1):39-
54.

Coombs, S.H., Nichols, J.H. and Fosh, C.A. (1990) Plaice Eggs (Pleuronectes platessa 
L.) in the southern North Sea: abundance, spawning area, vertical distribution and 
buoyancy. J. Conseil. 47(2):133-139. 

Cushing, D.H. (1990) Hydrographic Containment of a spawning group of plaice in the 
Southern Bight of the North Sea. Mar. Ecol. Prog. Ser. 58(3):287-297. 

Daan, N. (1981) Comparison of estimates of egg production of the Southern Bight cod 
stock from plankton surveys and market statistics. Rapp. P. -v. Réun. Cons. Int. 
Explor. Mer. 178:242-243. 

Drinkwater, K.F. (2005) The response of Atlantic cod (Gadus morhua) to future climate 
change. Ices. J. Mar. Sci. 62(7):1327-1337. 

Fox, C.J., Taylor, M., Dickey-Collas, M., Fossum, P., Kraus, G., Rohlf, N., Munk, P., 
van Damme, C.J.G., Bolle, L.J., Maxwell, D.L. and Wright, P.J. (2008) Mapping 
the spawning grounds of North Sea cod (Gadus morhua) by direct and indirect 
means. P. Roy. Soc. B-Biol. Sci. 275(1642):1543-1548.

Fritsch, M. (2005) Traits biologiques et exploitation du bar commun Dicentrarchus 
labrax (L.) dans le pêcheries françaises de la Manche et du Golfe de Gascogne. 
Mémoire de thèse. Ifremer 314pp. 

Gibb, F.M., Wright, P.J., Gibb, I.M. and O'Sullivan, M. (2004) Haddock and Whiting 
Spawning Areas in the North Sea and Scottish West Coast. Fishery Research 
Services, Internal Report, 11/04, 11+figures pp. 

Golden Software (2002) Surfer. (Version 8.00) Golden, CO: Golden Software, Inc. 

Golden Software (1999) Grid Operations. In: Surfer 7 User's Guide. Golden: Golden 
Software, Inc., Chap. 16:pp. 361-414.

Harding, D., Nichols, J.H. and Tungate, D.S. (1978) The spawning of plaice 
(Pleuronectes platessa) in the southern North Sea and English Channel. Rapp. P. -v. 
Réun. Cons. Int. Explor. Mer. 172:102-113. 

Hastie, T.J. and Tibshirani, R.J. (1990) Generalized Additive Models. New York: 
Chapman and Hall, 333pp.- 

101



Paper II 

Hedger, R., McKenzie, E., Heath, M., Wright, P., Scott, B., Gallego, A. and Andrews, J. 
(2004) Analysis of the spatial distributions of mature cod (Gadus morhua) and 
haddock (Melanogrammus aeglefinus) abundance in the North Sea (1980-1999) 
using generalised additive models. Fish. Res. 70(1):17-25. 

Höffle, H., Fox, C., Loots, C., Nash, R.D.M., Vaz, S., Wright, P. and Munk, P. 
(submitted (a)) Egg distribution of four common North Sea fishes - Local variation 
in spawning area usage Fish. Oceanogr. 28pp.  

ICES (13-11-2009) ICES Dataset on Ocean Hydrography. http://www.ices.dk/ocean/

Laurence, G.C. and Rogers, C.A. (1976) Effects of Temperature and Salinity on 
Comparative Embryo Development and Mortality of Atlantic Cod (Gadus morhua 
L.) and Haddock (Melanogrammus aeglefinus L.). J. Conseil. 36(3):220-228. 

Lelièvre, S., Verrez-Bagnis, V., Jerome, M. and Vaz, S. (2010) PCR-RFLP analyses of 
formalin-fixed fish eggs for the mapping of spawning areas in the Eastern Channel 
and Southern North Sea. J. Plankton Res. 32(11):1527-1539.

Loots, C., Vaz, S., Koubbi, P., Planque, B., Coppin, F. and Verin, Y. (2010a) Inter-
annual variability of North Sea plaice spawning habitat. J. Sea. Res. 64(4):427-435.

Loots, C., Vaz, S., Planque, B. and Koubbi, P. (2011) Understanding what controls the 
spawning distribution of North Sea whiting (Merlangius merlangus) using a multi-
model approach. Fish. Oceanogr. 20(1):18-31. 

Loots, C., Vaz, S., Planque, B. and Koubbi, P. (2010b) What controls the spatial 
distribution of the North Sea plaice spawning population? Confronting ecological 
hypotheses through a model selection framework. Ices. J. Mar. Sci. 67(2):244-257.

Meehl, G.A., Stocker, T.F., Collins, W.D., Friedlingstein, P., Gaye, A.T., Gregory, 
J.M., Kitoh, A., Knutti, R., Murphy, J.M., Noda, A., Raper, S.C.B., Watterson, I.G., 
Weaver, A.J. and Zhao, Z.-C. (2007) Global Climate Projections. In: Climate 
Change 2007: The Physical Science Basis. Contribution of Working Group I to the 
Fourth Assessment Report of the Intergovernmental Panel on Climate Change. 
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, 
M., and Miller, H.L. (eds) Cambridge, United Kingdom and New York, NY, USA: 
Cambridge University Press, Chap. 10 

Millero, F.J. and Poisson, A. (1981) International One-Atmosphere Equation of State of 
Seawater. Deep-Sea Res. Pt. A 28(6):625-629. 

Munk, P., Fox, C.J., Bolle, L.J., van Damme, C.J.G., Fossum, P. and Kraus, G. (2009) 
Spawning of North Sea fishes linked to hydrographic features. Fish. Oceanogr.
18(6):458-469. 

102



Paper II 

 
 

Munk, P., Larsson, P.O., Danielssen, D.S. and Moksness, E. (1999) Variability in 
frontal zone formation and distribution of gadoid fish larvae at the shelf break in the 
northeastern North Sea. Mar. Ecol. Prog. Ser. 177:221-233. 

Munk, P. and Nielsen, J. (2005) Eggs and Larvae of North Sea Fishes. Frederiksberg: 
Biofolia, 224pp. 

Munk, P., Wright, P.J. and Pihl, N.J. (2002) Distribution of the early larval stages of 
cod, plaice and lesser sandeel across haline fronts in the North Sea. Estuar. Coast. 
Shelf. S. 55(1):139-149. 

Peres-Neto, P.R., Legendre, P., Dray, S. and Borcard, D. (2006) Variation partitioning 
of species data matrices: Estimation and comparison of fractions. Ecology
87(10):2614-2625. 

Perry, A.L., Low, P.J., Ellis, J.R. and Reynolds, J.D. (2005) Climate change and 
distribution shifts in marine fishes. Science 308(5730):1912-1915. 

Planque, B., Loots, C., Petitgas, P., Lindstrom, U. and Vaz, S. (2011) Understanding 
what controls the spatial distribution of fish populations using a multi-model 
approach. Fish. Oceanogr. 20(1):1-17. 

Planque, B., Bellier, E. and Lazure, P. (2007) Modelling potential spawning habitat of 
sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) in the Bay of 
Biscay. Fish. Oceanogr. 16(1):16-30. 

Povoa, I., Davie, A., Treasurer, J. and Migaud, H. (2011) Broodstock spawning and 
larviculture of whiting (Merlangius merlangus L.) reared in captivity. Aquac. Res.
42(3):386-398. 

R Development Core Team (2008) R: A language and environment for statistical 
computing. (Version 2.14.0) Vienna, Austria: R Foundation for Statistical 
Computing, http://www.R-project.org

Russel, F.S. (1976) The Eggs and Planktonic Stages of British Marine Fishes. London: 
Academic Press, 524 pages. 

Ryland, J.S., Nichols, J.H. and Sykes, A.M. (1975) Effect of Temperature on 
Embryonic-Development of Plaice, Pleuronectes platessa L. (Teleostei). J Exp. 
Mar. Biol. Ecol. 18(2):121-137.

Simpson, A.C. (1959) The spawning of the plaice in the North Sea. Fish. Inv. ser. 2, Sea 
Fisher. 22(7):1-111. 

103



Paper II 

Simpson, J.H., Bos, W.G., Schirmer, F., Souza, A.J., Rippeth, T.P., Jones, S.E. and 
Hydes, D. (1993) Periodic Stratification in the Rhine Rofi in the North Sea. 
Oceanol. Acta. 16(1):23-32.

Taylor, M.I., Fox, C., Rico, I. and Rico, C. (2002) Species-specific TaqMan probes for 
simultaneous identification of (Gadus morhua L.), haddock (Melanogrammus 
aeglefinus L.) and whiting (Merlangius merlangus L.). Mol. Ecol. Notes 2(4):599-
601.

Thompson, B.M. and Riley, J.D. (1981) Egg and larval development studies in the 
North Sea cod (Gadus morhua L.). Rapp. P. -v. Réun. Cons. Int. Explor. Mer.
178:553-559. 

Thompson, H.A.R.O. (1928) The haddock of the northwestern North Sea. Cons. Perm. 
Internal. Explor. Met. Rapp. & Proc. Verb. Reunions 52-1927((3)):70 

Webster, R. and Oliver, M.A. (2001) Geostatistics for Environmental Scientists.
Cichester: John Wiley and Sons, 286pp.- 

Wegner, G., Damm, U. and Purps, M. (2003) Physical influences on the stock dynamics 
of plaice and sole in the North Sea. Sci. Mar. 67:219-234.

Wood, S.N. (2001) mgcv: GAMs and generalized ridge regression for R. R News 1:20-
25.

Wood, S.N. (2006) Generalized Additive Models: An Introduction with R. London: 
Chapman & Hall, 410pp. 

Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A. and Smith, G.M. (2009) Mixed 
Effects Models and Extension in Ecology with R. Statistics for Biology and Health. 
Gail, M., Krickeberg, K., Samet, J.M., Tsiatis, A., and Wong, W. New York: 
Springer Science and Business Media, 574pp.- 

104



Paper II 

Appendix 
Table A1: R-packages und purpose they were used for. The table contains only the 

packages for specific purposes which are not included in the basic installation of R. 

Title Application Reference
PCNM Calculation of Principle Coordinates of Neighbour Matrices (Legendre et al., 2010)
packfor Forward selection of PCNMs within the prescribed p-value (Dray et al., 2009)

car Power transformation (Fox and Weisberg, 2011)
AED Calculation of Variance Inflation Factors (VIF) (Zuur, 2009)
mgcv GAM fitting (Wood, 2001)
vegan Functions rda() and varpart() for variation partitioning (Oksanen et al., 2011)
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Abstract

As part of the plankton, fish larvae have little influence on their overall horizontal 

movements, while they are obviously able to control their vertical position in the water 

column. However, the vertical distribution is quite variable. While some factors, such as prey 

and light have an apparent influence on vertical distributions, the effects of other factors are 

more ambiguous. Notably, distributional differences between fish larval species are poorly 

understood. During a survey in the northern North Sea, information on the vertical 

distribution of a range of larval species was assembled, and a comparative analysis between 

species was carried out. The vertical distributions of the ten different species showed 

similarities but also notable differences. During the day the different species aggregated in 

either the upper or the middle of the water column, while they increased in abundance at 

shallower depths during the night. Others were distributed in greater depths during all light 
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conditions. Hence, while there were some differences in migratory behaviour, the different 

larval species generally remained at the same relative position compared to the other species 

of the larval community. 

Keywords: Fish larvae, Gadidae, Flatfish, Vertical distribution, North Sea 

Introduction

Compared to current speeds the swimming ability of fish larvae is of minor importance, 

limiting their capability to influence their location in the horizontal plain. However, on the 

vertical axis larval swimming has far greater importance, influencing also horizontal 

transport, as current speed and direction can change with depth (Fortier & Leggett 1983; 

Sclafani et al. 1993).Vertical distribution patterns of fish larvae can be roughly classified into

three broad categories: i) type I migrations as upward movement at the beginning of night 

and downward movement at the beginning of day; ii) type II as the opposite (Neilson & Perry 

1990) and a pattern of aggregation during the day and dispersal throughout the night (Gray 

1998; Leis 1991; Olivar & Sabatés 1997). Exogenous factors that influence the observed 

patterns are, among others, light, prey and predator distribution, as well as effects of 

temperature and salinity. 

Species and congeners often exhibit similar distribution patterns, regardless of the prevailing 

environmental conditions (Olivar & Sabatés 1997; Röpke 1993; Southward & Barrett 1983). 

Characteristically distinct fish larval assemblages can be found in different depth strata (Gray 

& Kingsford 2003; Olivar & Sabatés 1997). However, taxonomy interacts with development. 

Many species exhibit different vertical behaviours at different stages(c. f. Table 1; Neilson & 

Perry 1990). In the larval stage, size and consequently swimming ability are important for 

determining vertical distribution. Lough & Potter (1993) observed the initiation of vertical 

migration in cod (Gadus morhua Linnaeus, 1758) and haddock (Melanogrammus aeglefinus

Linnaeus, 1758)  at standard lengths (SL) of 6-8 mm, and a firmly established type I 

migration at lengths greater than 9 mm SL. Smaller larvae and particularly those in poor 

condition may be more strongly influenced by buoyancy (Sclafani et al. 1993). However, 

even in their earliest stages, larvae will migrate if unfavourable conditions make it necessary

(Grønkjær & Wieland 1997). The influence in hydrography, in particular the position of the 
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thermocline, is more unclear. Some studies found a connection between larval distributions 

and the thermocline for certain taxa (Olivar & Sabatés 1997) and/or size classes (Lough et al. 

1996; Lough & Potter 1993), while others found the same distributional patterns, both of 

single taxa and larval assemblages, irrespective of water column stratification (Gray 1998; 

Gray & Kingsford 2003). Gray and Kingsford (2003) attributed their failure to find a 

relationship between distributions and the thermocline, to a combination of the gradual and 

ephemeral character of thermoclines in their study region and the lag-phase between the 

occurrence of hydrographic cues and the larvae’s reaction.

The influence of prey and predator distributions was pointed out by Pearre (1973) who, based 

on his studies of Sagitta elegans (Verrill, 1873), introduced the hunger-satiation hypothesis. 

In this case vertical movements were related to the concurrent needs of feeding in the upper 

water column and hiding from visual predators at greater depths. The hypothesis was later 

applied to other planktonic organisms, including fish larvae (Pearre 2003). Visually hunting 

fish larvae can follow different strategies to satisfy these needs. They may rise at night, 

together with their zooplankton prey or may stay deeper and feed on vertically migrating prey

(Lovetskaya 1953). Neilson and Perry (1990) suggested a feeding/avoidance window at dusk 

and dawn, when light conditions are sufficient for feeding but predators may still be at greater 

depths. The influence of light depends on the species. Some seem to seek a certain isolume, 

which primarily governs their vertical distribution (Woodhead 1966). This has been 

suggested as the background for aggregations during the day and diffuse distribution during 

the night while the primary cue would then be missing (Leis 1991). However, the effect of 

light is species specific as has been shown in concurrent studies (Catalán et al. 2011; Vollset 

et al. , submitted), for example some species are shown to be adapted to low illumination

(e.g. Downing & Litvak 2001; Huse 1994; Yoon et al. 2010). 

One factor alone rarely determines the vertical distribution of fish larvae throughout a diel 

cycle. While prey abundance was one controlling factor for mesopelagic larvae in the 

Arabian Sea (Röpke 1993) and Sardinella aurita (Valenciennes, 1847) in the northwestern 

Mediterranean Sea (Sabatés et al. 2008), they were also limited by hydrography. The 

mesopelagic species by a warm mixed layer above, and S. aurita likely by the ca. 15°C cool 

water below the pycnocline. Likewise, food availability, the relationship between 

illumination and prey abundance, has given good correlations with the distribution of Baltic 
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cod larvae (Grønkjær & Wieland 1997). Statistical models for the vertical distribution of 

different taxa have shown the influence of several interacting factors (Hernandez et al. 2009) 

as well as highest predictive power when including only a single factor (Huebert et al. 2010). 

Hydrographic features have a strong influence on horizontal distribution and drift of fish 

larvae. Several studies have shown that fish larvae are aggregated in or near fronts (Kiørboe 

et al. 1988; Munk et al. 2002; Sabatés 1990), often with species specific positions relative to 

the frontal zone (Munk , submitted). The vertical distribution of larvae will, however, also 

influence their horizontal transport, while different currents at different depths might lead to a 

retention within or a displacement out of an area (Fortier & Leggett 1983; Fortier & Leggett 

1982; Govoni & Pietrafesa 1994). 

With the apparent species differences in vertical distributions and migrations, a comparative 

approach might elucidate the factors which are of prime importance. Few studies have 

analysed the distributional patterns of a wider range of species in a comparative way. Such an 

opportunity was available in the northern North Sea in 2010. Here we sampled in areas where 

several fish species spawn in spring, and we were able to describe both the major horizontal 

distributional patterns from transects of stations, and the vertical patterns by vertical stratified 

sampling over an 18 hours period. In this contribution we focus on the distributional patterns 

of larval fish in relation to hydrography and prey distribution, and on the persistency in the 

relative distributional differences among species.

Materials and Methods

Field sampling 

Sampling was undertaken on the R/V G.O. Sars (IMR, Bergen, Norway), between 25th April 

and 5th of May 2010, during a survey covering transects at 59.3 and 60.75oN (Figure 1). Five 

additional stations were sampled with GULF VII and MOCNESS over the course of 18 hours 

in a 5 x 5 nautical miles (NM) sized area (henceforth 18h-station) east of the Shetland

islands. 

Depth integrated samples were taken in double oblique hauls with a 76 cm diameter GULF 

VII high speed sampler (Nash et al. 1998), down to about 100 m depth. The sampler was 

equipped with a mechanical flow meter (General Oceanics, USA) in the mouth of the 
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nosecone. A SCANMAR depth sensor was attached to the sampler and provided both depth 

and temperature measurements. For depth discrete sampling a MOCNESS (Wiebe et al. 

1985) with a 1 m2 opening and 4 nets (180 μm mesh) was deployed to ca. 100 m and then 

hauled to the surface, sampling the water column in strata with nets opening at about 100, 75, 

40 and 20 m. Flow meters and a CTD were attached to the MOCNESS and the filtered 

volume (m3) estimated for each stratum. Larvae were sorted on board G.O. Sars and were 

preserved in borax buffered 4% formaldehyde. Zooplankton was split in two fractions before 

preservation, using a Motoda splitting device. One half was preserved for identification and 

enumeration whilst the other half was size fractioned into <1000 μm, 1000-2000 μm and 

>2000 μm. Each size fraction was dried at 60°C to constant weight in order to obtain dry 

weights, which were converted to milligrams per m3 (mg m-3) based on the volume of water 

filtered. 

Figure 1: CTD, GULF VII and MOCNESS stations sampled during the survey. The 

aggregation of samples in the white rectangle represents the 18 hours station, containing 5 

hauls with each gear in a 5 x 5 NM square. 
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Laboratory procedures 

The preserved larvae were cleaned from formalin under running water for 10-15 minutes. All 

larvae were then identified to the lowest taxonomic level, using either Russell (1976), 

Schmidt (1906) or Munk & Nielsen (2005) as keys. Standard length (SL; tip of the snout to 

the end of the notochord) was measured to the nearest 0.1 mm with an ocular micrometer. To 

correct for shrinking, live SL was calculated with the equation by Bolz and Lough (1984), 

after correcting for formalin shrinkage (Theilacker 1980). 

Data treatment and analysis 

Water density was calculated according to UN standards (Millero & Poisson 1981) from 

temperature and salinity measured during the transects. The vertical profiles of calculated 

densities were interpolated on a regular grid (0.5° x 5 m) with ordinary kriging in Surfer 8 

(Golden Software 2002), while contour plots were constructed in Sigmaplot 12 (Systat 

Software Inc. 2011). The vertical profiles for the five hauls at the 18h-station are given as line 

graphs. 

For each species in the depth integrated hauls, the catch was converted to no. m-2 by dividing 

by the filtered volume and multiplying by the maximum sampler depth. Catch of larvae in the 

depth discrete hauls was converted to no. m-3 by dividing by the filtered volume in a given

stratum and these values were used in calculation of the depth of the centre of abundance 

(Zcm) from

=   ×  × × (1)

Where Dj is the sampled depth, WDj the width of the individual stratum, Aj is the abundance 

of the larvae and j expresses the range of sampling depths. 

Only larvae data for which the maximal abundance in a given stratum reached above 2 per 

100 m3 were used, as was the abundance of Zooplankton <1000 μm. The station sampled at 

06:20 UTC was excluded from calculations for day distributions and Zcm, as it was the first 
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sample after sunrise and considered to be biased by the night distribution. Abundances per 

stratum were compared visually between species and between day and night. Similarly Zcm

was compared among species for day, dusk and night as well as the relationship of species to 

the hydrography in the transects. 

The depth of the centre of abundance was tested for significant differences between species, 

using one-factorial ANOVA for all species together and for Gadidae and flatfish apart. Data 

were tested beforehand with a Shapiro-Wilks and Levene’s test and were found to fulfil the 

requirements for normality and homogeneity of variance. Post hoc Tukey’s HSD was applied 

to discern between which species significant differences occurred.

Results

Hydrography 

Along both transects we observed a cool (<7oC), low saline (<34) surface layer over the 

Norwegian trench, extending to ca. 50 m depth (Figure 2), representing the Norwegian 

Coastal Current (NCC). Coldest temperatures occurred at ca. 30 m, while lowest salinities 

and densities were at about 10 m depth (Figure 2a, b). Beneath the NCC water the 

temperature increased down to 200-300 m, while at greater depths temperatures fell below 

7oC. On the shallow plateau, between 1oW and 3oE, temperature changed markedly with 

depth, while salinity was almost homogenous throughout the water column, except for the 

eastern margins. In the southern transect a thermocline at about 50 m was separating water of 

>7°C from cooler water below. In the northern transect the warmer water reached down to a 

100 m and the thermocline was less strong. On the western margins of the southern transect 

water temperature increased rapidly between 0.5°W and 1°W. Similarly, salinity decreased 

from about 1.7°W westwards and together with temperature formed a frontal structure. In the 

North, temperature increased more gradually, while salinity did not change. Overall the 

highest temperatures were measured at >8°C on the western margins. 
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Figure 2: Profiles of water density (0.5 kg m-3 contours) and abundance of fish larvae along 

the transects at 59.3°N (panel a) and 60.75°N (panel b). Only the most common species are 

given, while gadoids other than Norway pout and whiting, and flatfish other than long rough 

dab and brill are combined. Miscellaneous species comprises Clupeidae, Argentiniade,

Ammodytidae, Lotidae and Gobidae which did not commonly occur. 

The hydrography at the 18h-station exhibited little variability in time or depth (Figure 3). 

Salinity was relatively high and stable, only changing from 35.32 to 35.33 in the sampled 
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water column of 120 m. The temperature likewise varied little, it was about 8oC to 50 m and 

then declined continuously to 7.6°C Fluorescence peaked at 0.12 μg L-1, but estimates varied 

during the period of investigation. 

Figure 3: Temperature, salinity and fluorescence at the 18h-station, averaged over all 5 

hauls. The broken lines depict the boundaries between the sampled depth strata in depth 

discrete hauls. Most changes in hydrography and fluorescence occurred between 50 and 80 

m, mainly in the stratum between 40 and 75 m. Error bars are only show for every ten metres 

of depth. 
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Horizontal distribution - transects

During the survey, a total of 2030 fish larvae of 27 species in 9 families were identified 

(Tables 1, S1). Overall and similar to temperature and salinity, species richness and 

abundance of fish larvae increased from East to West. Abundances in the area of the 

Norwegian trench were mostly <30 m-2 (Figures 2a, b). In this area there were no flatfish, and 

there were only gadoid larvae close to the western slope of the trench. Over the shallow 

plateau abundances were mostly low ( <10 m-2), however long rough dab (Hippoglossoides

platessoides Fabricius, 1780) and Norway pout (Trisopterus esmarkii Nilsson, 1855)

occurred at abundances of ca. 200 and 300 m-2, respectively. Both the stations with these high 

abundances were at the boundary of salinities between 35 and 35.2, where also sharp changes 

in t and high concentrations of zooplankton 180 - 1000 μm (70 mg m-3 and 50 mg m-3) were 

observed. Along the northern transect larval abundance and species diversity increased from 

the western slope of the Norwegian trench westward to ca. 1oE, up to a maximum abundance 

of 500 m-2 (Figure 2b). At the same station the highest concentrations of zooplankton <1000 

μm, 200 mg m-3, was observed. In both transects the dominant species was Norway pout, 

followed by whiting (Merlangius merlangus Linnaeus, 1758). Flatfish of the families

Pleuronectidae and Scophthalmidae were more abundant and species rich in the northern 

transect than at the southern. Notably Ammodytidae of 3 species were limited to the southern 

transect with only lesser sandeel (Ammodytes marinus Raitt, 1934) at >10 m-2. Ling (Molva

molva Linnaeus, 1758) was found in high abundance, (33.3 m-2), at one station of the 

northern transect, but did not occur elsewhere (Table S1a).

At the single location between the two transects whiting was almost twice as abundant as 

Norway pout, while other gadoids were much less abundant (<20 m-2) than either of these. 

Blue ling (Molva dipterygia Pennant, 1784) and northern rockling (Ciliata septentrionalis 

Collett, 1875) were found in abundances over 20 m-2. Flatfish were similarly species rich and 

abundant as in the northern transect. Long rough dab and brill (Scolphthalmus rhombus

Linnaeus, 1758) were most abundant, with 25.2 m-2 and 18.6 m-2, respectively. Clupeidae,

Argentinidae and Gobiidae occurred sporadically along the transects as well as the 18h-

station, in some hauls in high numbers (Table 1). 
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Table 1: Average abundances and standard lengths (±1 SE) for all fish species identified. Numbers 

are based on depth integrated GULF VII hauls during transects and the 18h-station. Species which are 

marked with asterisks have only been found in MOCNESS hauls and the numbers are based on these 

hauls. The column transect indicates during which transects a species was found. The abundances and 

standard lengths for the individual transects are given in the supplement (Table S1).

Abbreviations: S=Southern transect, N=Northern transect, 18h=18h-station

Taxon Abundance Std. Lenght
Family Species Transect (no. m-2) (mm)

Ammodytidae Ammodytes marinus S 15.5 ± 0.0 16.2 ± 0.0
Hyperoplus immaculatus* 18h 1.0 ± 0.0 11.9 ± 0
Hyperoplus lanceolatus S, 18h 3.3 ± 1.3 23.6 ± 13.1
Unidentified S 1.2 ± 1.0 17.5 ± 16.8

Argentinidae Argentina sphyraena S, 18h 20.4 ± 12.9 9.9 ± 1.3
Clupeidae Clupea harengus N, S, 18h 9.5 ± 3.6 17.4 ± 1.4
Gadidae Gadus morhua S, 18h 7.1 ± 3.8 9.3 ± 4.3

Melanogrammus aeglefinus N, S, 18h 7.8 ± 2.2 8.1 ± 2.7
Merlangius merlangus N, S, 18h 81.8 ± 34.2 6.7 ± 1.0
Pollachius pollachius N, S, 18h 8.2 ± 3.6 8.5 ± 1.5
Pollachius virens N, S, 18h 13.2 ± 2.9 8.1 ± 2.4
Trisopterus esmarkii N, S, 18h 74.4 ± 20.1 8.5 ± 2.0
Trisopterus minutus N, S, 18h 11.8 ± 3.9 6.8 ± 1.6
Unidentified N, S, 18h 12.2 ± 3.2 6.2 ± 1.6

Gobiidae Gobius niger 18h 4.1 ± 0.0 5.5 ± 0.0
Gobiusculus flavescens N, 18h 17.3 ± 0.6 6.9 ± 0.1
Unidentified* 18h 0.9 ± 0.0 2.7 ± 0.0

Lotidae Ciliata mustela S 4.4 ± 0.0 5.1 ± 0.0
Ciliata septentrionalis N, 18h 20.2 ± 9.0 5.7 ± 0.5
Molva dipterygia N, 18h 20.7 ± 15.1 7.2 ± 1.0
Molva molva N, 18h 23.0 ± 10.3 6.1 ± 1.2

Pleuronectidae Glyptocephalus cynoglossus N, 18h 7.2 ± 2.6 7.7 ± 1.8
Hippoglossoides platessoides N, S, 18h 15.4 ± 6.6 9.4 ± 2.2
Limanda limanda N, S, 18h 8.2 ± 2.5 7.3 ± 2.9
Platichthys flesus* 18h 2.0 ± 0.0 3.5 ± 0
Pleuronectes platessa N, 18h 7.6 ± 3.5 8.3 ± 2.9
Unidentified N, 18h 2.5 ± 0.7 6.5 ± 1.6

Scophthalmidae Lepidorhombus whiffiagonis N 5.5 ± 0.0 10.6 ± 0.0
Phrynorhombus norvegicus N 1.1 ± 0.3 9.2 ± 2.0
Scophthalmus rhombus N, S, 18h 14.4 ± 6.0 4.6 ± 0.7

Triglidae Eutrigla gurnardus* 18h 1.2 ± 0.2 6.3 ± 0.3
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Vertical distribution – 18 hours station 

In the MOCNESS hauls, the zooplankton <1000 μm exhibited only minor changes in vertical 

distribution during the period. Coinciding with fluorescence, the two topmost strata held the 

highest abundances, slightly more than 30% (Figures 4 and 5). 

The relative abundance of larvae in each stratum was plotted as % of the total abundance for 

day and night apart. Zcm was calculated and plotted for day, dusk, night and for single 

samples. The vertical distribution of ten species, seven gadoids and three flatfish, was used. 

One group of gadoid larvae, constituted by cod (Gadus morhua), haddock (Melanogrammus

aeglefinus), whiting and pollock (Pollachius pollachius Linnaeus, 1758), were distributed in

the upper water column (0 – 40 m) during day and night. Cod (62%) and haddock (52%) 

were most abundant at 0 – 20 m during the day and at 20 – 40 m at night, with 100% and 

69% respectively (Figures 4a, b). For whiting (Figure 4c) and pollock (Figure 4d) the change 

between these strata was reversed, as their abundance increased by 32 and 38 percent points 

at 0 – 20 m during the night. While cod was never found below 40 m depth, the other species 

occurred in the deeper strata and ascended to shallower depths at night, Zcm decreased 

accordingly (Figure 6a). 

Saithe (Pollachius virens Linnaeus, 1758) and the two Trisopterus species (Figures 4e, g) 

were distributed in the strata below 40 m during the day. During the night saithe and poor cod 

(Trisopterus minutus Linnaeus, 1758) were most common in the upper water column, while 

53% of Norway pout larvae remained at 75 – 100 m depth. 
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Figure 4: Vertical distribution of gadoid fish larvae and zooplankton biomass (dw) <1000 

μm, during day and night in % of total abundance or biomass. The y-axis depicts the 

boundaries between sampled strata.
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In daylight all three flatfish species, witch (Glyptocephalus cynoglossus Linnaeus, 1758), 

brill and long rough dab were most abundant at 40 – 75 m depth (Figure 5), varying between 

45% for witch and 57% for brill. During the night, witch and long rough dab were most 

abundant in the upper water column, peaking with 47% at 0 – 20 m and 77% at 20 – 40 m, 

respectively. Brill remained most abundant at 40 – 75 m depth. 

Figure 5: Vertical distribution of flatfish larvae and zooplankton biomass (dw) <1000 μm,

during day and night in % of total abundance or biomass. The y-axis depicts the boundaries 

between sampled strata.
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Differences between depth of the centre of mass of larval species were only significant within 

a single family, Gadidae (F6=2.5; p=0.047), but not for the group of flatfish (F2=0.2; p=0.82) 

or in an analysis of all species together (F9=1.8; p=0.1). The pattern in change of Zcm,

between different light conditions was similar for most species (Figures 6a, b). Except for 

cod, Norway pout and brill Zcm decreased at night. While cod was found at greater depth 

during the night, Norway pout and brill already ascended between day and dusk.

Figure 6: Depth of the centre of mass for gadoid (a) and flatfish larvae (b) during three 

different light environments. Due to the long days at this time of the year, there was only one 

station at dusk (21:52 UTC) and night (23:56 UTC), while three stations were in daylight 

(19:14 UTC, 06:20 UTC and 08:22 UTC).
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Discussion

Our study provides evidence for type I vertical migrations in the species examined, except for 

cod (Gadus morhua). However, in time, the migration patterns were not completely 

consistent, as Norway pout (Trisopterus esmarkii) and Brill (Scophthalmus rhombus)

ascended earlier and pollock (Pollachius pollachius) continued to rise until the early 

morning. With the exception of the two Trisopterus species the centre of abundance of all 

species was within the 20-40 m stratum either at dusk or during the night. In contrast to 

previous studies (Gray 1996; Olivar & Sabatés 1997) we observed distinct assemblages in the 

upper and lower water column only during the day. 

Our hydrographic observations are in accordance with findings described for the Feie-

Shetland section, reported by Hackett (1981). Hydrographic fronts were apparent at the 

western and eastern margins of the transects. Larval abundances and concentrations of 

zooplankton <1000 μm were highest in vicinity of these fronts which might imply that the 

frontal processes aggregate the zoo- and ichthyoplankton (Olson et al. 1994; Olson & Backus 

1985). Larval drift and dispersion from spawning grounds around the Shetland Isles are 

indicated by the general decline in larval abundance and diversity in parallel with an increase 

in larval mean lengths from these areas towards the East. Similar patterns have been 

suggested for Norway pout in other studies (Lambert et al. 2009; Nash et al. , submitted). 

In accordance with such an east-west size gradient, the smallest average standard lengths 

were measured at the westerly positioned 18h-station. Cod and haddock (Melanogrammus

aeglefinus) larvae were in the 6 – 8 mm size range in which Lough & Potter (1993) have 

observed the first appearance of vertical migrations. The lack of cod larvae below 40 m is in 

accordance with other observation of early cod larvae confined to the waters above the 

thermocline (Grønkjær et al. 1997; Grønkjær & Wieland 1997; Huwer et al. 2011; Lough & 

Potter 1993). Our observations of Type II distributions in cod larvae are described earlier for 

both the Atlantic and the Pacific cod (Gadus macrocephalus Tilesius, 1810) (Boehlert et al. 

1985; Munk , submitted). The depth distributions found for haddock, whiting, pollock, 

Norway pout, witch (Glyptocephalus cynoglossus) and long rough dab (Hippoglossoides 

platessoides) was similar to the findings of Economou (1987). Saithe exhibited less variation 

in Zcm in earlier studies (Munk , submitted). Poor cod (Trisopterus minutus) was found 

shallower than in the present study (Olivar & Sabatés 1997). During the day Frank et al. 

(1992) found a shallower distribution of witch and long rough dab than in this study, however 
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bottom depth in their study was at 45 m, which may have constricted the depth distribution. 

The distribution of brill appears not to be described in the literature. In many ways it 

resembled the distribution of Norway pout, concerning the particularly deep Zcm and the 

timing of the ascent. However the extent of the vertical migration was greater, covering 43 m.

Thermoclines have been described to lead either to larval aggregation (Lough & Potter 1993; 

Sabatés et al. 2008) or serve as a boundary for their migrations (Olivar & Sabatés 1997; 

Röpke 1993). Other studies found no apparent influence of thermoclines on larval vertical 

distribution and migration patterns (Conway et al. 1997; Gray & Kingsford 2003). The weak

stratification and gradual thermocline we observed at the 18-hours station is similar to 

conditions in the studies of Gray & Kingsford (2003) and this might be the cause of the 

apparent weak influence of the thermocline in both studies. 

The aggregation in the 20 - 40 m stratum during the night suggests support for the hypotheses 

that a starving population would ascend just far enough to find sufficient food (Pearre 2003). 

Zooplankton of <1000 μm size were higher concentrated in the top 40 m than below, ca. 46 

mg m-3 compared to <=30 mg m-3. Particularly high concentrations of zooplankton <1000 

μm, 57 mg m-3 and 87 mg m-3 respectively, in the upper water column during dusk and the 

early morning may have attracted brill and pollock at these times. However, zooplankton 

concentration in deeper strata should have been sufficient to fulfil food requirements 

(equation from Economou 1987; based on: Jones 1973; Laurence 1985), as was the case for 

average sized Norway pout, for which the shallowest Zcm was at 51 m. The deepest Zcm

observed after the apparent feeding period, could be due to resting in deeper, cooler water to 

save energy (Brett 1971) or less buoyancy due to a full stomach (Sclafani et al. 1993).  

In conclusion, whilst the general observation that most of the larvae occur at depths with high 

concentrations of zooplankton suggests a strong influence from the distribution of potential 

prey, the general vertical displacement of the mean depth of larval species indicates that other 

environmental factors might set a species-specific ‘background-depth’ of distribution.

Therefore the physical water column structure might be the key factor determining the 

distribution rather than the prey distributions. As suggested by Sclafani (1993), the neutral 

buoyancy of fish larvae is influenced by their condition. Farther developed or better fed 

larvae, may be deeper in the water column, due to higher specific weight. As the species 

differ in the proportion of tissue types, the depth of neutral buoyancy may be different even 

when the larvae are in the same condition. We find that the comparative approach used in the 
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present study has the potential for new insight into the drivers behind vertical distribution 

patterns, and we suggest that further comparative community studies are undertaken. 
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Supplement: 

Table S1: Average abundances and standard lengths (±1 SE) for all species identified in the 

northern transect (a), the southern transect (b) and at the 18h-station (c). Numbers are based 

on depth integrated GULF VII, except for species which were only found in MOCNESS 

hauls. These species are denoted with asterisks.

 

a
Taxon Abundance Std. Lenght

Transect Family Species (no. m-2) (mm)
60.75°N Clupeidae Clupea harengus 8.7 ± 2.5 18.2 ± 0.2

Gadidae Melanogrammus aeglefinus 6.9 ± 4.2 8.9 ± 1.2
Merlangius merlangus 28.0 ± 22.2 7.7 ± 0.3
Pollachius pollachius 3.8 ± 0.9 8.4 ± 0.2
Pollachius virens 14.1 ± 7.1 9.2 ± 0.5
Trisopterus esmarkii 64.2 ± 38.1 8.5 ± 0.5
Trisopterus minutus 17.5 ± 15.8 8.7 ± 0.3
Unidentified 7.4 ± 1.9 6.1 ± 0.5

Gobiidae Gobiusculus flavescens 16.6 ± 0.0 6.9 ± 0.0
Lotidae Ciliata septentrionalis 6.0 ± 5.1 5.5 ± 0.3

Molva dipterygia 5.5 ± 0.0 6.5 ± 0.0
Molva molva 33.3 ± 0.0 5.2 ± 0.0

Pleuronectidae Glyptocephalus cynoglossus 6.2 ± 4.9 9.5 ± 0.4
Hippoglossoides platessoides 15.1 ± 7.1 8.5 ± 0.3
Limanda limanda 7.8 ± 4.5 7.3 ± 1.7
Pleuronectes platessa 11.1 ± 0.0 6.3 ± 0.0
Unidentified 1.7 ± 0.9 7.8 ± 0.4

Scophthalmidae Lepidorhombus whiffiagonis 5.5 ± 0.0 10.6 ± 0.0
Phrynorhombus norvegicus 1.1 ± 0.3 9.2 ± 0.7
Scophthalmus rhombus 9.0 ± 7.7 5.3 ± 0.5

 

b
Taxon Abundance Std. Lenght

(mm)Transect Family Species (no. m-2)
59.3°N Ammodytidae Ammodytes marinus 15.5 ± 0.0 16.2 ± 0.0

Hyperoplus lanceolatus 3.0 ± 1.9 18.1 ± 5.3
Unidentified 1.2 ± 1.0 17.5 ± 3.7

Argentinidae Argentina sphyraena 2.2 ± 0.0 10.0 ± 0.0
Clupeidae Clupea harengus 14.6 ± 13.8 17.3 ± 26.3
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b (continued)
Taxon Abundance Std. Lenght

(mm)Transect Family Species (no. m-2)
59.3°N Gadidae Gadus morhua 7.4 ± 5.3 10.5 ± 3.5

Melanogrammus aeglefinus 12.7 ± 5.6 10.1 ± 5.0
Merlangius merlangus 13.1 ± 6.9 5.8 ± 8.2
Pollachius pollachius 5.2 ± 3.1 9.7 ± 6.7
Pollachius virens 6.6 ± 4.5 10.1 ± 10.5
Trisopterus esmarkii 76.1 ± 41.7 10.2 ± 5.0
Trisopterus minutus 11.0 ± 6.8 6.4 ± 7.9
Unidentified 5.5 ± 3.4 9.2 ± 0.0

Lotidae Ciliata mustela 4.4 ± 0.0 5.1 ± 0.0
Pleuronectidae Hippoglossoides platessoides 5.7 ± 2.9 11.1 ± 6.3

Limanda limanda 6.6 ± 4.5 7.6 ± 10.9
Scophthalmidae Scophthalmus rhombus 4.4 ± 0.0 3.8 ± 0.0

c
Taxon Abundance Std. Lenght

Transect Family Species (no. m-2) (mm)
18h-Station Ammodytidae Hyperoplus immaculatus* 1.0 ± 0.0 11.9 ± 0

Hyperoplus lanceolatus 4.1 ± 0.0 40.0 ± 0.0
Argentinidae Argentina sphyraena 25.0 ± 15.6 9.9 ± 0.5
Clupeidae Clupea harengus 2.5 ± 0.0 14.9 ± 0.0
Gadidae Gadus morhua 6.4 ± 0.0 5.8 ± 0.0

Melanogrammus aeglefinus 4.5 ± 0.8 6.3 ± 0.6
Merlangius merlangus 152.3 ± 61.9 6.2 ± 0.2
Pollachius pollachius 15.7 ± 10.0 7.4 ± 0.6
Pollachius virens 15.3 ± 3.8 6.7 ± 0.9
Trisopterus esmarkii 81.2 ± 34.7 7.2 ± 0.1
Trisopterus minutus 9.3 ± 3.6 5.9 ± 0.6
Unidentified 18.0 ± 4.9 5.3 ± 0.2

Gobiidae Gobius niger 4.1 ± 0.0 5.5 ± 0.0
Gobiusculus flavescens 17.9 ± 0.0 6.8 ± 0.0
Unidentified* 0.9 ± 0.0 2.7 ± 0.0

Lotidae Ciliata septentrionalis 29.7 ± 12.1 5.7 ± 0.2
Molva dipterygia 35.8 ± 0.0 7.9 ± 0.0
Molva molva 12.7 ± 0.0 6.9 ± 0.0

Pleuronectidae Glyptocephalus cynoglossus 7.7 ± 3.5 6.9 ± 0.5
Hippoglossoides platessoides 25.2 ± 15.6 8.2 ± 0.7
Limanda limanda 12.5 ± 0.0 6.8 ± 0.0
Platichthys flesus* 2.0 ± 0.0 3.5 ± 0.0
Pleuronectes platessa 4.1 ± 0.0 10.4 ± 0.0
Unidentified 3.3 ± 0.8 5.3 ± 0.2

Scophthalmidae Scophthalmus rhombus 18.6 ± 9.1 4.5 ± 0.2
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Figure S1: Depth of mass for gadoid (a) and flatfish larvae (b) for individual samples taken 

at the 18h-station. Daylight stations were at 19:14 UTC, 06:20 UTC and 08:22 UTC, the 

station at 21:52 UTC was during dusk and the station at 23:56 UTC in the night. 
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Abstract

Settlement to the sea bottom is a crucial event in the early life of demersal fishes. In the North Sea 

juvenile cod (Gadus morhua) settles at traditional nursery grounds on offshore banks or in shallow 

coastal areas. The conditions in these areas are determined by temporally invariable factors like 

bottom depth and dynamic factors like hydrography and by extension climatic variability. In the 

present study we examined the distribution of juvenile North Sea cod from a 20 year period, 1991 to 

2010 with the aim of estimating the relative influence of environmental factors on juvenile cod 

settlement. Samples of juveniles and hydrographic information were available from the 

International Bottom Trawl Survey (IBTS) in the third quarter of the year. During the investigated 

period the observed bottom temperature and salinity showed marked frontal phenomena across the 

central and in the northwestern North Sea, structures that persisted during the two decades. While 

the abundance of juveniles generally declined over the years, the nursery grounds in the 

Skagerrak/Kattegat became relatively more important. Their potential habitat was modelled using 

Generalized Additive Models (GAMs) on presence/absence information of juvenile cod. This 

showed temperature, salinity, bottom depth and geographic position as the core variables for 

describing their habitat. A model fit to five year periods gave an explained deviation up to 51% and 

a good agreement between predicted and observed distributions for the following five year period. 

When using model fit to a longer 10-year period the predictions were however poor; apparently this 
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model fit did not fully capture the declining occurrence of juvenile cod in the central North Sea seen 

during the 2000s. Hence, habitat modelling is useful for analysis and description of juvenile North 

Sea cod distributions on the shorter time scale, while understanding of long-term decadal changes 

necessitates incorporation of population dynamics of the stocks. 

Introduction

During the early juvenile stage cod (Gadus morhua) changes habitat from the planktonic/pelagic of 

the larval life to the demersal of the adults. This change might influence survival as  mortalities 

during this stage have been reported to reach the levels seen in earlier stages (Serchuck et al., 1994; 

Sissenwine, 1984). However, the absence of a check on the otoliths during this period, which would 

mark drastic changes in condition (Bolz and Lough, 1988), as well as the prolonged presence of the 

planktonic copepods in stomachs of settled young cod (Hüssy et al., 1997; Pinnegar and Stafford, 

2007) indicate a gradual change in their choice of habitat. 

The demersal life of the settled juveniles is influenced by the type of substrate at the settling site, 

different types of substrate entail different post-settlement mortality rates (Juanes, 2007), and a 

more complex relief such as on gravel or in seagrass beds may promote survival by providing more 

refuge from predators. (Gotceitas et al., 1997; Lough, 2010; Lough et al., 1989), Juvenile cod might 

start to seek a suitable area for settlement already at sizes of 35 mm (Andrews et al., 2006; Heath et 

al., 2008) and the location of settlement would partially be determined by active swimming and 

partially by passive transport.

The influence of currents on the drift of larvae/juveniles to the settling sites has led to concerns 

about the effect of climate change on the distribution of settling juvenile fish. Rindorf & Lewy 

(2006) proposed a climate related northward shift in the centre of abundance of juvenile 1-group 

North Sea cod. They suggested that a series of warm winters, with predominant winds from the 

south has led to a shift of settling juveniles towards the north, which would subsequently spawn in 

these areas due to homing behaviour. However, using a higher resolution for the population 

structure the observed shift of the population centre can be explained by changes in local sub-

populations alone (Holmes et al., 2008; Righton et al., 2007). Likewise, while homing might be 

important in some cases the separation of some sub-populations in the North Sea can be explained 

by their distance and the effects of oceanography alone (Heath et al., 2008). Distances between 
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spawning areas and settling sites can be substantial, for example settling sites in the southern North 

Sea may receive settling juveniles from across the North Sea (Heath et al., 2008). Similarly, the 

Skagerrak receives a considerable percentage of settling juveniles through influx from the North 

Sea (Stenseth et al., 2006). 

The distributional patterns of juvenile cod in the North Sea were surveyed during the International 

0-group Gadoid Survey (IOGS), conducted in June from 1969 to 1980. During these surveys 

aggregations of pelagic 0-group cod, ranging in mean lengths from 3 to 5 cm (Riley and Parnell, 

1984), were found off the Danish west coast, east of Shetland and of the Firth of Forth (Holden, 

1981). The lower end of the size range for demersal 0-group cod was found to be 6 cm (Riley and 

Parnell, 1984). 

Additional information on distribution of juvenile cod has become available from the onset of the 

third quarter surveys in 1991 during an International Bottom Trawl Survey programme coordinated 

by ICES. While the IOGS were dedicated to the catch of pelagic juveniles, the IBTS is not targeting 

fish in the size range of the early pelagic juveniles. As the name of the program indicates, the gear 

is a bottom trawl (GOV) designed for catching larger juveniles and adults; hence the catch of small 

juveniles is mainly due to the small-meshes in the cod-end part of the trawl. While catches are 

highly variable, 0-group cod were quite frequently caught. From the available time series 1991-

2010 of 5658 hauls, 1260 of these contained some 0-group cod. Hence, due to the large spatial and 

temporal coverage this survey series contains valuable information, and in the present study we will 

use the observations for two purposes: 1) to describe the general distribution of settlements sites and 

changes herein during the 20 year period and 2) to elucidate potential environmental influence on 

distributional patterns of settling sites from general additive models of presence/absence 

information. 

Materials and Methods

Field sampling and data treatment 

Since 1991 the International Bottom Trawl Survey (IBTS) is conducted in the 1st and 3rd quarter of 

each year, and between 1991 and 1996 also quarters two and four were surveyed. Each ICES 

rectangle (1° longitude x 0.5° latitude) is fished twice per survey with a GOV-trawl which is a 
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bottom trawl but with a height of about 4.5 m (GOV = Grande Ouverture Verticale). Duration of 

hauls is standard 30 minutes each (ICES, 2010a). Catches are sorted, identified to species level, 

measured and aged aboard ship and the data stored in the DATRAS data base (ICES, 2012a). For 

the present study, data was extracted from DATRAS and the ICES oceanographic data bases (ICES, 

2012b), covering a geographic area from 3°W to 12°E and 51 – 62°N, including the North Sea 

proper, the Skagerrak and the Kattegat. Fishing data was extracted as Catch Per Unit Effort (CPUE, 

Nos. h-1) for each haul and for each statistical rectangle for the periods 1991-1996 (all quarters) and

1991-2010 (3rd quarter).

Temperature and salinity data was extracted for the 3rd quarter only. CTD casts with missing data, 

in river mouths and fjords were removed and the remainder used in two ways. Firstly neighbouring 

CTD casts and GOV hauls were determined by calculating the great circle distance between fishing 

hauls and the CTD casts in R (package sp; Bivand et al., 2008). Only fishing hauls were considered 

for statistical analysis, where the nearest CTD station was no more than 10 nautical miles (NM) 

away and no more than 7 days earlier or later, reducing the number of stations available for 

statistical analysis from 5658 to 2830. 

Secondly an experimental variogram was calculated for each year’s bottom temperature and bottom 

salinity and a theoretical variogram of spherical type was selected by eye-fitting and least square 

regression. The average bottom temperature and salinity were interpolated by kriging on a regular 

grid of 0.15 by 0.15 degrees. 

Mean CPUE for 0-group cod by statistical rectangle was calculated for five year periods, log(n+1) 

transformed and plotted in R (R Development Core Team, 2008) for all quarters from 1991-1995 

and for the 3rd quarter for the reminder of the years. All fish caught in the GOV-trawl were 

considered as associated to the bottom and therefore settled. Since the GOV-trawl has relatively 

large mesh sizes, (200-50 mm vs. 150-12 mm; Holden, 1981; ICES, 2010a) the CPUE was not 

considered reliable enough for quantitative statistical analysis. Therefore CPUE per haul was binary 

transformed to 1 for values >0 and 0 for hauls without catch of 0-group cod. Similarly to the 

information on hydrography the presence/absence of juveniles for each year was interpolated by 

kriging on a regular grid (0.5 x 0.5 degrees) and the mean probability of occurrence of 0-group cod 

was calculated for periods of five and ten years.
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The potential habitat of settled juvenile cod was fitted to the data in the periods 1991-1995, 2001-

2005 and 1991-2000 using Generalized Additive Models (GAMs). Of the 2830 available stations, 

813 stations fell in the period 1991-1995 and 744 in the period 2001-2005. For the ten year period 

1991-2000 the number of stations was 1352. GAM models were based on the general form (after 

Wood, 2006): 

( ) = + ( ) + ( ) + + ( ) (1)

where g is a known monotonic link function, i) is determined by the explanatory variables 

x1i to xni, fj are smooth functions for these covariates and 0 is a vector of parameters to be 

estimated. For the presence/absence data in this model g was a logit link and the exponential family 

distribution yi was binomial. Covariates for the model were chosen upon a review of the existing 

literature, and could be distinguished into temporally stable variables (e.g. bottom depth) and such 

that are variable in time, like temperature and salinity. Geographic location was included as an 

isotropic bivariate term, as this may be more meaningful than summing up longitude and latitude as 

single terms (Wood and Augustin, 2002). As it influences the availability of prey and refuge, the 

substrate type may be an important factor for the distribution of 0-group cod (Lough, 2010). Hence, 

six categories of substrate, namely coarse sediment, mixed sediment, sand to muddy sand, mud to 

sandy mud, till, rock and other hard substrates (EUSeaMap, 2011) were introduced into the model. 

Bottom depth was included as 0-group cod was shown to be particularly abundant in shallow water 

(Riley and Parnell, 1984). The depth was extracted from a 1 NM grid (Weiergang, 1995) and the 

slope calculated from the same grid in ArcMap (ESRI, 2010) with the formula: 

= tan + × 180
(2)

where  is the slope in degrees, dx the distance in longitudinal direction, dy the distance in 

latitudinal direction and dz is the change in elevation. The constant converts the result from radians 

to degrees.
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Slope was included, since the shelf break and the margins of offshore banks are focal points for the 

occurrence of tidal fronts, which promote the production of food (Otto et al., 1990). Since we were 

interested in the influence of time variable factors on the distribution of settled juvenile cod, we 

included the bottom temperature and bottom salinity as single terms and their tensor product to 

characterize the water mass on the whole. Although it is not part of the abiotic environment, the 

presence/absence of 2-group cod was included, because at this age cod starts to feed on smaller 

gadoids, including younger conspecifics, while the 2-group is at least seasonally in the same area as 

the settled 0-group cod (Riley and Parnell, 1984) and appears not to avoid shallow and low saline 

areas like the older and more cannibalistic individuals. 

Using only environmental data to model the habitat of a species entails the risk that their importance 

is overestimated (Loots et al., 2010), resulting in overly complex models as none of the 

environmental variables is excluded. In the context of constructing the ‘potential habitat’, the 

modelling effort is restricted to the species response to its environment, therefore spatial 

dependency which would depend on the distribution of aggregations was left out of consideration 

(Planque et al., 2011). Forward fitting, i.e. starting out with single variables and then increasing the 

complexity of the model while carefully comparing the performance of the different models (as in 

Planque et al., 2007) can help to keep the number of covariates as low as possible. In the present 

study the model performance was evaluated by %-explained deviation, Un-Biased Risk Estimator 

(UBRE) and Akaike Information Criterion (AIC). In case two models were too similar to decide 

based on these indices we compared them in ANOVA using a Chi-square test.

To validate the fitted GAM models, the probability of occurrence for settled 0-group cod was 

predicted for the following five or ten year period. The number of stations to be predicted was 539 

for 1996-2000, 734 for 2006-2010 and 1478 for 2000-2010. The predictions were interpolated on 

the same spatial grid as the observations and were evaluated graphically by comparing the 

interpolated surfaces for observation and model as well as with a Taylor diagram, with standard 

deviation, Root Mean Square Error (RMSE) and Spearman correlation coefficient (rs) as similarity 

indices.
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Results

Hydrography 

The bottom temperature showed the same general picture for the investigated five-year periods (Fig. 

1). The dominant feature is the bottom front extending through the southern part of Skagerrak and 

then crossing the North Sea towards the Yorkshire coast south of Flamborough Head. The influence 

of the shallow Dogger Bank is obvious while the isotherms follow the bank around most of its 

circumference, and from the Yorkshire coast the front extends north and encircles the Shetland 

Isles. Off the front, in the northeastern and central North Sea, the bottom temperatures is 7-8°C, 

while temperatures in more shallow areas might reach 18°C . Neither the bottom salinity differed 

much between the five-year periods (Fig. 2). Water of Atlantic origin (>35) extends into the North 

Sea, reaching to latitude 56-57°N, and the central areas are influenced by this water and of 

relatively high salinity (>34.7). In shallow coastal areas the river runoff strongly influences the 

salinity patterns, and a salinity related front is apparent along the coasts of Netherlands, Germany 

and Denmark. 

Abundance of 0-group cod 

The catches of cod juveniles during the four quarters of the year illustrate the progression of cod 

settling and respective distribution of juveniles of a given year class during its first year of life (Fig.

5). The earliest settled juvenile cod were found in the 2nd quarter (Fig. 5a), primarily in the area of 

the Great Fisher Bank and off Jutland, while none were found in the rest of the North Sea. In these 

catches the juveniles were in the interval 3-7 cm (Fig. 3). 
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Figure 1: Mean bottom temperature (°C) in the 3rd quarter for periods of five years.

150



Paper IV

 
 

Figure 2: Mean bottom salinity in the 3rd quarter for periods of five years. The southern North Sea 

was mostly covered with bottom water of salinities >=34.5, salinities >=35 were found as far south 

as 56°N. 
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Figure 3: Relative abundance of 0-group cod per length class (mm) in GOV trawls during surveys 

in 1991-1996. Quarter 2 surveys were carried out in May, quarter 3 surveys in August and quarter 4 

surveys in November. 

In the 3rd quarter (Fig. 5b) aggregations of 0-group cod in the size range 5-14 cm in the Skagerrak, 

the German Bight and at the Fisher Banks, while in the 4th quarter sizes have reached 6-21 cm and 

abundances were more broadly distributed between the Great Fisher Bank, the Skagerrak and the 

German Bight (Fig. 5c). In the first quarter of the following years, 1-group cod was similarly 

distributed as 0-group cod in the 4th quarter, but at generally lower abundances (Fig. 5d). Only in 

the Skagerrak and the Kattegat abundances were of similar magnitude as in the 4th quarter, and on 

the western margin of the North Sea the abundances off Flamborough were higher than those of 0-

group cod in the 4th quarter. On the whole, catch per unit effort declined during the period (Fig. 4). 

While a few years in the 1990s yielded CPUE >100 h-1, in the 2000s only one year exceeded a 
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CPUE of 30 h-1. From 2007 on CPUE was constantly declining to 0.8 h-1 in 2010. Similarly, the 

maximum CPUE fell from 2320 h-1 in 1991-1995 to 137 h-1 in 2006-2010. 

Figure 4: Mean catch per unit effort per ICES rectangle (Nos. h-1±1SE) of 0-group cod, for the 3rd

quarter of each year from 1991 to 2010. In most years after 2000 the abundance was significantly 

lower than in the previous decade. 

The distribution in the third quarter exhibited substantial change in the 20 year covered by the study 

(Fig. 6). While in 1991-1995 aggregations of 0-group cod occurred in the Skagerrak, the German 

Bight and at the Fisher Banks (Fig. 6a) offshore abundances declined in the following five years 

(Fig. 6b). Further, the centre of abundance in the German Bight shifted northwards along the Danish  

153



Paper IV

west coast. A noticeable decrease in the Skagerrak/Kattegat area occurred in 2006-2010. In that 

period, highest abundances in the North Sea proper were observed at the Little Fisher Bank and in 

the Southern bight. 

Figure 5: Catch per unit effort per ICES rectangle (log(Nos. h-1+1)) for each quarter, averaged over 

the period 1991 to 1995 and for the 1st quarter 1992 to 1996. The maps for quarters 2-4 depict the 

distribution of 0-group cod, while the map for the 1st quarter depicts the distribution of 1-group cod. 

The reference dot in each panel depicts the next higher multiple of 100 to the peak CPUE over the 

whole period. Rectangles not sampled are marked with a cross.
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Figure 6: Mean catch per unit effort per ICES rectangle (log (Nos. h-1+1)) of 0-group cod, in the 3rd

quarter, for five year periods. The reference dot in each panel depicts the next higher multiple of 

100 to the peak CPUE over the whole 20 years. Rectangles not sampled are marked with a cross.
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Model fitting and validation 

The model fit of presence/absence data showed that the dominant covariates in the best fitting 

models were geographical position and bottom depth as persistent covariates, and the 

presence/absence of 2-group cod, temperature, salinity and their interaction as non-persistent 

covariates. They occurred in all GAMs fitted to the periods 1991-1995 and 2001-2005 as well as in 

that fitted to the ten year period 1991-2000 (Table 1). When testing the single hydrographic 

variables, salinity was usually explaining most of the deviation, between 3.8% for 1991-2000 and 

9.9% for 2001-2005. Density (kg m-3-1000) was only used when fitting single variables, as it 

explained less than either salinity or temperature and the tensor product of the two was a superior 

descriptor of the water mass. Overall, the single variable which explained most of the deviation was 

the bivariate term for the geographic location. It also contributed most to the explained deviation in 

multivariate models. The best fitting model for the periods 1991-1995 (Fig. 7) and 2001-20010 

(Fig. 9) contained the same covariates (Table 1). The model for 2001-2005 (Fig. 8) additionally 

included the slope. AIC and UBRE-scores kept on decreasing when adding further variables, but the 

explained deviation increased only marginally. When comparing the models in ANOVA there were 

no significant differences between the selected model and models including more variables. For the 

period 2001-2005 the difference between the model including the slope and the previous model was 

only near significant (p=0.059). However, the residual deviance was reduced by 3.3 at almost no 

cost in degrees of freedom (0.9). Therefore this model was chosen over the simpler model. The best 

fitting model explained 36.2% of the explained deviation for the ten year period. For the first five 

year period, 1991-1995, the fit was marginally better, at 38.8%, while for the period 2001-2005 the 

explained deviation was at 51.3% and generally model fit with any combination of variables was 

better than the fit of the corresponding models in the other periods.
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Figure 7: Smooth plots for the selected GAM-model for the period 1991-1995. Categorical 

(presence/absence 2-group cod) and linear terms (bottom temperature, bottom salinity) are not 

depicted. Longitude and latitude were used in the model as bivariate term, while the interaction of 

temperature and salinity was included as tensor product. Since it is the product of two linear terms, 

the 95% confidence interval cannot be depicted in this case.

Relationships to single covariates were similar in shape, regardless of the period. The peak 

deviation in the relationship to bottom depth was at ca. 100 m and declined rapidly at greater 

bottom depths. Similarly the relationships to bottom salinity and slope peaked in the lower third of 
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either covariate’s range. The relationship to bottom temperature (not depicted) was linear and 

weakly positively correlated. Settled 0-group cod tended to co-occur with 2-group (not depicted). 

Figure 8: Smooth plots for the selected GAM-model for the period 2001-2005. Categorical 

(presence/absence 2-group cod) and linear terms (bottom temperature) are not depicted. Longitude 

and latitude were used in the model as bivariate term, while the interaction of temperature and 

salinity was included as tensor product. 
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Figure 9: Smooth plots for the selected GAM-model for the period 1991-2000. Categorical 

(presence/absence 2-group cod) and linear terms (bottom temperature, bottom salinity) are not 

depicted. As the temperature and salinity interaction is the tensor product of two linear terms, the 

95% confidence interval is not depicted. Longitude and latitude are included as a bivariate term. 

Model predictions for the two five year periods were closely correlated with the observations (rs >

0.9), while the prediction for 2001-2010 was less well correlated, but the rs was still above 0.8 

(Figure 10).
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Figure 10: Taylor diagram, comparing the probability of occurrence predicted from the selected 

GAM models with the observations in 1996-2000, 2006-2010 and 2001-2010. Standard deviation 

for the observed values was normalized to 1 and the Root Mean Square Error (RMSE) normalized 

to 0. Standard deviation of the predictions is depicted on the y-axis, while the radii of the circle 

represent the correlation. The RMSE is plotted on the concentric circles around the normalized 

standard deviation of the observations. Only the segment of the diagram which depicts the positive 

correlations is shown. 

The interpolated predictions showed that the prediction for the ten year period could not fully 

capture the decline in area of presence of 0-group cod in the central and north-western North Sea 

during the 2000s, as these areas exhibited medium probabilities of occurrence in the 1990s (Figure 

11). The prediction of 2006-2010 from the model fitted to 2001-2005 fared better in that respect, 

although the decline in the central North Sea was still underestimated. Generally the predictions for 

both, the five and the ten year period in the 2000s exhibited some extent of overestimation, while 

the prediction for the second half of the 1990s exhibited a tendency of underestimating the observed 

probabilities.  

162



Paper IV

 
 

Figure 11: Interpolated probabilities of the occurrence of 0-group cod. The left column shows the 

probability for the periods GAMs were fitted to, the middle column shows the periods for which 

predictions were made and the right column shows the predictions. Areas deeper than 200 m are 

masked, since the number of observations at these bottom depths was too low for a sensible 

interpolation. Predictions for the five year periods were accurate, while the prediction for ten years 

could not fully capture the observed decline in the centre of the North Sea. 
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Discussion

The observations of the hydrographic patterns in the North Sea during the 20-year period are in 

accordance with general interpretation of the summer/autumn situation. Pingree and Griffiths

(1978) noted the remarkable frontal structures in the North Sea and were able to predict patterns 

from a model which included bottom topography, position of the thermocline and the tidal mixing 

forces. Their findings have been confirmed during series of later studies (e.g. Otto et al., 1990) and 

it is apparent that the so-called tidal mixing fronts exert strong influence on hydrographical and 

ecological patterns in the North Sea. Beside the temperature related tidal mixing fronts, the change 

of salinity towards the coastal freshwater influences currents and contributes to hydrographic 

variability in the North Sea. As apparent from our observations the fresher water masses are mixed 

into more offshore water masses, and the temperature and salinity based fronts merge to a complex 

frontal system in the southeastern areas (Simpson, 1997).  

Indication of settling areas 

While the GOV is unlikely to allow for quantitative estimation of the abundance of smaller settling 

cod, comparison to catches during the neighbouring quarters 2 and 4 indicates that the 3rd quarter 

catches are useable for identifying areas of high abundances and for a statistical analysis based on 

presence/absence. During the preceding quarter 2 the GOV was able to catch cod juveniles as small 

as 3 cm, hence sizes were below the smallest from the 3rd quarter and substantially smaller than the 

mean size during this quarter (9.5 cm). Distributional patterns in quarter 4, available from the period 

1991-95, were by and large comparable to the patterns apparent in the 3rd quarter. The only major 

discrepancy was the relative abundance in the German Bight which was obviously higher during the 

4th quarter, possibly because of delayed settling.

Model fit and relation to the environment 

Overall, models fitted to the 5-year periods were explaining more of the deviation and predictions 

based on these models had a higher correlation with the observed data than models fitted and 

predicted for the 10-year periods. Likely, this is related to the higher importance of hydrographic 
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variables in these shorter periods, as indicated by the higher percentage of deviation which was 

explained by these variables alone, particularly in the period 2001-2005. 

The strong relationship to geographic position is consistent with the temporal stability of spawning 

distribution (e.g. Brander, 1994; Daan, 1978; Fox et al., 2008) as well as the general circulation 

pattern in the North Sea (Otto and Zimmerman, 1990) on a broad scale, while within spawning 

grounds the centre of abundance of the egg population can be variable (Höffle et al., submitted). 

During the pelagic phase the effects of spawning location and currents are then modified by food 

availability and temperature through their influence on growth until settlement size (Heath et al.,

2008).  

The relationship between presence/absence and bottom depth was the most stable over time, mainly 

driven by the high occurrence of 0-group cod in the Skagerrak along the slopes of the Norwegian 

Trench. A steep decrease in occurrence beyond the 200 m line is not surprising for a shelf dwelling 

species  and the line is often taken as cutoff for successful settlement in modelling studies (Andrews

et al., 2006; Heath et al., 2008). Many studies have shown settled 0-group cod distributed in very 

shallow, coastal water (e.g. Kamenos et al., 2004; Methven and Schneider, 1998; Riley and Parnell, 

1984), which is not sampled in the IBTS survey (Chen et al., 2005). Therefore it cannot be excluded 

that including coastal samples would cause a shift of the peak deviation towards shallower water. 

The high number of occurrences along the slope of the Norwegian trench may also have driven the 

relationship to the slope as a covariate in 2001-2005. 

Björnsson and Steinarsson (2002) have calculated that the optimal growth temperature for juvenile 

cod of 50 g weight is 14.3°C, which is about the same temperature where the deviation from the 

mean was zero. In this life stage energy conservation appears not to be prioritized compared to 

enhanced growth. It has been hypothesized that lower salinity has advantages for development too, 

as it may lower the cost of osmoregulation (Riley and Parnell, 1984) and exposure to low salinities 

does at least not have adverse effects (Magill and Sayer, 2004). However, the main benefit of a 

coastal habitat seems to be that because an increased preference for higher salinities during growth 

of cod (Riley and Parnell, 1984), age-groups might be separated and hence cannibalism reduced. 

Presence/absence of the 2-group apparently had no negative effect on the occurrence of 0-group 

cod, which is consistent with the findings of Riley and Parnell (1984), who found 2-group 
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beginning to feed on younger gadoids, but only at a low rate. When exposed to later age classes 

under experimental conditions, 0-group cod has shown avoidance of 1+-group and 2+-group 

individuals ((Fraser et al., 1996; Laurel and Brown, 2006) but no avoidance of the 1+-group when 

an age 3+ fish was added (Fraser et al., 1996), The authors concluded that some habitat segregation 

should be expected between age 0 and age 1+ cod. This may also have been the case in our study 

between the 0-group and the 2-group cod, but likely at smaller spatial scales than that of our study. 

Several studies emphasize the sediment type as an important factor for the survival of settled 0-

group cod (e.g. Lindholm et al., 1999; 2001) and the lack of improvement in the model performance 

when including this variable may be surprising. However, cod would settle onto any available 

substrate (Juanes, 2007), while differences in abundance and occurrence would develop over time 

with different mortality rates (Lindholm et al., 1999; Lough, 2010). Such differences may not yet 

have been established in the early demersal phase, sampled during the IBTS 3rd quarter cruise.

Decadal variability 

In the 1980s the cod stock was at a high level. The ‘gadoid outburst’ (Cushing, 1984) was ended in 

the 1990s and except for a few years in the mid-1990s the spawning stock biomass has been in

constant decline until a historic low in 2006 (ICES, 2010b) and a subsequent slow recovery. While 

the decline is to some extent reflected in the present series of 0-group catches, the recovery phase is

not. The catch in 2010 is among the lowest during the period. Model predictions for the period 

2001-2010 based on the GAM fitted to 1991-2000 were only partially capable of capturing the 

decline of 0-group cod in the western and central North Sea. Similarly the less pronounced decline 

in the Skagerrak during the second half of the 2000s was not fully captured by the predictions made 

from the model for 2001-2005. Apparently the magnitudes of observed changes were not related to 

the parameters of the model. To explain the decline, other factors have to be taken into account. A 

general displacement of the population to the North, like suggested by Rindorf and Lewy (2006) 

seems rather unlikely however, as there was also a strong decline in the northern North Sea. It may 

be more related to the reduced stock sizes in some areas, like at the Viking Bank and the Dogger 

Bank, and the generally declining trend in recruitment for the North Sea population (Holmes et al.,

2008). 
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The mean annual surface temperature of the North Sea may rise from ca. 10.3°C (1990-1999) to 

11.5°C during the first half of the 21st century (Clark et al., 2003; IPCC (Intergovernmental Panel 

on Climate Change), 2000). In addition, precipitation over western Europe is predicted to increase 

(Meehl et al., 2007), with subsequent increase in river runoff. North Sea cod is already close to the 

warm temperature limit of the species range (Rätz and Lloret, 2003), which makes it vulnerable if 

temperature rises too high. The influence of increased precipitation on settling 0-group cod depends 

on the magnitude of precipitation across seasons. If the increase is restricted to winter, increased 

meltwater runoff would influence the location of salinity fronts and thereby it might affect 

aggregation of eggs and larvae (c.f. Höffle et al., 2012, submitted). On the other hand increased 

river runoff in summer and autumn might positively influence the low salinity refuge of 0-group 

cod (Riley and Parnell, 1984). Hence, climate related factors might affect the early life of cod in a 

complex way during different phases of the first year of life. The present habitat modelling focused 

on the settling phase affords important information for evaluation of the relative importance of 

different variables. It was able to supply good predictions on a sub-decadal time scale, but 

apparently for more long-term predictions the population dynamics of the North Sea sub-stocks 

must be taken into account. 
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”… Da steh ich nun, ich armer Tor! 
Und bin so klug als wie zuvor; ...” 

    Faust I (J. W. v. Goethe, 1808) 


