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Abstract-Markov reliability models are widely practiced tools for 
the analysis of repairable systems. Nevertheless, the assumptions 
of the Markov model may appear too restrictive to adequately 
model a real system and the explosion in the number of states as 
the size of the system increases may make it difficult to find a 
solution to the problem. The power of modern computers and 
recent developments in discrete-event simulation (DES) software 
enable to diminish some of the drawbacks of stochastic models. 
In this paper we describe the insights we have gained based on 
using both Markov and DES models for simple systems. By 
contrasting the results of the two models we illuminate their 
advantages and disadvantages as well as we conclude that it is a 
good way of model validation. 
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  INTRODUCTION  I.
Assessing the reliability of systems which are subject to 

certain inspection-repair-replacement policies is a complex 
task. At any instant in time the system can be in one of many 
possible states. The number of distinguished states depends on 
the number and function of the system equipment. To be able 
to model such a system and predict its reliability, the 
deterioration law of the system is usually assumed to be 
Markovian; that is, the future course of the system depends 
only on its state at present time and not on its past history. 
Given this assumption and that each component has 
approximately an exponential failure law and the reliability of 
it is fully restored after repair, the complete system can be 
described approximately by a Markov process. The models of 
this type are widely practiced by reliability analysts and, 
generally, they are regarded powerful tools in reliability, 
maintainability and safety engineering and commonly used to 
study the dependability of complex systems. The advantage of 
the Markov process is that it describes both the failure of an 
item and its subsequent repair and/or preventive maintenance 
and periodic testing. The Markov process can easily describe 
degraded states of operation, where the item has either partially 
failed or is in a degraded state where some functions are 
performed while other are not. (Markov models are extensively 
described in the literature, see, for example, [1]) 
 

All in all, a Markov model is a well-established and widely 
used method to solve stochastic event problems and is perhaps 
the most practiced analytical model of repairable systems and 

its appeal is in being able to derive reliability measures through 
analytical calculations. Nevertheless, as it often is, analytical 
solutions for complex systems are often based on assumptions 
the influence of which on the results may be underestimated 
and not well understood. For example, the Markovian property, 
which is the memoryless property of a stochastic process, 
cannot be regarded adequate in many reliability applications 
and should be employed consciously. Or one more point to 
think over: for the sake of mathematical convenience one often 
has to accept the governance of time between failures and 
repair times by exponential distributions, while available 
failure data may not strongly support such choice. It is clear 
that in this case the computed values may deviate significantly 
from the true probabilistic measures. 
 

The usually stressed major drawback of the Markov method 
is the explosion in the number of states as the size of the 
system increases. The resulting diagrams for relatively 
complex systems are generally extremely large and 
complicated, difficult to construct and computationally 
extensive [2].  

 
However, the rapid increase in computer power and the 

associated development of easy-to-use modelling tools 
promote the use of computer modelling and simulation as a 
standard tool for reliability and risk practitioner. Discrete 
Event Simulation (DES) models appear a competitive 
alternative to the conventional reliability analysis models and 
systems analysis methods [3]-[5]. Systems subjected to certain 
inspection-repair-replacement policies can also be modelled in 
DES environments. This way, the analyst is not confined to any 
specific assumptions that she is not confident to. For example, 
the assumptions of the Markov model can easily be discarded 
and a more adequate solution can be implemented. DES 
models give a great deal of flexibility when striving for 
adequate system presentation and, if properly developed, they 
become an effective system reliability analysis tool, in 
particular, for systems operated under certain inspection-repair-
replacement policies.  

 
In this paper we compare the Markov model and DES 

modeling approach in terms of the results they produce for 
different state probabilities. To do so, we have chosen a rather 
simple set of examples.  
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 EXAMPLE: POWER SUPPLY SYSTEM II.
Consider a simple power supply system the layout of which 

is shown in Figure 1 [7] to see what kind of insights one can 
get by having a DES model. In case of normal operation all 
busbars are fed from the grid. If power supply from the grid 
fails, the main busbar and the emergency busbar are 
disconnected. The diesel generator starts and is switched to the 
emergency busbar. The following system states can be defined: 

State 1: Grid is in operation (A) - Diesel generator is available 
(B) 

State 2: Grid has failed and is under repair (A) - Diesel 
generator is in operation (B) 

State 3: Grid has failed and is under repair (A) - Diesel 
generator has failed and is under repair (B) 

State 4: Grid has been restored (A) - Diesel generator is under  

repair (B) 

 
Figure 1. System layout of the power supply system 

The corresponding state diagram is depicted in Figure 2. 
Special attention is called for the failure-to-start probability, 
QB, of the emergency diesel generator. 

 
In state 1 both busbars are fed from the grid. The diesel 

generator is available but does not run. In state 2 power supply 
from grid is not available but the diesel generator has started 
and is in operation. In state 3 power supply from both the grid 
and the diesel generator is not available. The unavailability of 
the diesel generator can be a result of either a failure to start or 
a failure to run after a successful start. Two repair teams are at 
disposal to restore the subsystems concurrently in case they 
both fail. In state 4 power supply from the grid is restored, 
however the diesel generator is still under repair. 

 

 MARKOV MODEL OF THE POWER SUPPLY SYSTEM  III.
Assume that the failure and repair rates of the grid and 

diesel generator are constant, so the transition rates between the 
different systems states are homogeneous, which means that 
the failure process as well as the repair process is exponentially 
distributed. Then by constructing a transition matrix, we can 

get for each state steady-state solutions which are attained after 
having the system run for a long enough period of time. 
 

 
Figure 2. State diagram of the power supply system 

 
Let 𝜆𝐴 and 𝜆𝐵  be the failure rates for the grid and diesel 

generator, respectively, while 𝜇𝐴 and 𝜇𝐵  be their repair rates. 
The probability of failure to start the diesel generator is 
denoted by QB. The transitions from state to state are shown in 
Figure 2, from which we can construct the transition matrix of 
the system and write Kolmogorov equations for computing the 
state probabilities P1, P2, P3, and P4: 
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It must also hold that  

P1+P2+P3+P4=1. 

For the steady-states, all derivatives 𝑑𝑃𝑖
𝑑𝑡

 are equalized to 
zero and, by doing this, the above system of equations becomes 
the system of algebraic equations that are rather easy to solve. 
With the help of MATLAB the following formulas were 
derived: 
 

𝑃1 =
𝜇𝐴𝜇𝐵2 + 𝜇𝐴2𝜇𝐵 +  𝜆𝐴𝜇𝐴𝜇𝐵 + 𝜆𝐵𝜇𝐴𝜇𝐵

𝐴 + 𝐵
 ,           (1) 

 

𝑃2 =
𝜆𝐴𝜇𝐵2 + 𝜆𝐴

2𝜇𝐵 + 𝜆𝐴𝜇𝐴𝜇𝐵 − 𝜆𝐴𝜇𝐴𝜇𝐵𝑄𝐵
𝐴 + 𝐵

 ,         (2) 
 

𝑃3 =
𝜆𝐴

2𝜆𝐵 + 𝜆𝐴𝜆𝐵𝜇𝐵 + 𝜆𝐴
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𝑃4 =  
𝜆𝐴𝑄𝐵𝜇𝐴2 + 𝜆𝐴𝜆𝐵𝜇𝐴

𝐴 + 𝐵
                           (4) 

 
where 
𝐴 =  𝑄𝐵𝜆𝐴

2𝜇𝐴 + 𝜆𝐴
2𝜇𝐵 + 𝜆𝐵𝜆𝐴

2 + 𝑄𝐵𝜆𝐴𝜇𝐴2 + 2𝜆𝐴𝜇𝐴𝜇𝐵 
 
𝐵 = 𝜆𝐵𝜆𝐴𝜇𝐴 + 𝜆𝐴𝜇𝐵2 + 𝜆𝐵𝜆𝐴𝜇𝐵 + 𝜇𝐴2𝜇𝐵 + 𝜇𝐴𝜇𝐵2 + 𝜆𝐵𝜇𝐴𝜇𝐵 
 
It should be noted that formula (3) is different from that given 
in [7], as we did not neglect any terms, while the other 

formulas for state probabilities P2, P3, and P4 were not 
provided at all in any form in [7]. 

 

 DES MODEL OF THE POWER SUPPLY IV.
The appeal of models developed in a DES environment is 

that their logic follows the natural way the modelled system 
behaves. For example, the model of the power supply system 
works as follows. (See the logic of the model on the diagram 
given in Figure 3. This figure is a screen shot of the model 
buiolt in Arena.) 

 
 

 
Figure 3. The diagram of the DES model of the power supply system as it appears in the Arena model window 

 
At the instatnt of start running the model an entity is created 

in the “Create_A Failure” modul and sent further to the model. 
In the following modul, a time to failure governed by a 
specified probability distribution is generated and the entity is 
held in the “A_Wait TTF” modul for the the generated time. 
Then it moves to the Assign module, where the state of A is 
changed from “active” to “failure” and time to repair is 
generated according to a predefined probability distribution. 
Next, in the IF module it is checked whether the diesel 
generator, B, is in standby. If it is, then in the following IF 
module it is verified whether B fails to start. If it is, then from 
the following Separate module two entities are sent to the 
corresponding modules mimicking the repair of A and B. This 
is done in the modules “A_Under Repair” and “B_Under 
Repair” that simply delay the move of the entities for the 
specified times to repair of the both subsystems. The reader can 
further follow the logic and behaviour of the model on the 
diagram Figure 3. The model is run for a predefined period of 
time mimicking the system operation for thouzands of years. 
While the model is running, the times spent in the different 
states are accumulated and when the model run ends, the 

accumulated times are divided by the simulation time 
providing the state probabilities as an output. 

 
The DES model of the power supply system was validated 

by comparing the values of the state probabilities obtained by 
simulation with those computed by formulas (1) – (4). A very 
high precision agreement was observed for the simulated and 
computed results. In this way, confidence to formulas (1) – (4) 
becomes higher as well. The two-way validation can be of 
utmost importance for the reliability analyst even for a simple 
system like that shown in Figure 2.  

 
For example, let us take state probability P3 as it is given in 

[7]: 
 

𝑃3 ≈
𝜆𝐴 × 𝜆𝐵 + 𝜆𝐴 × 𝜇𝐴 × 𝑄𝐵

𝜇𝐴(𝜇𝐴 + 𝜇𝐵)                       (5)  

 
It may be not straightforward and easy to come to the 

conclusion that formula (5) is an approximation of (3). As well 
as it may be not obvious that (3) is correct. By running the 
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simulation model exemplified in Figure 3 and comparing the 
results with those analytically computed the confidence to the 
both becomes definitely higher. 
 

Another important point in support to mutual benefit for 
both Markov and DES model is a sensitivity or robustness 
analysis that can be rather easily conducted by DES. As soon 
as a DES model has been validated, one can drop the 
assumption of exponentially distributed time between failures 
and time to repair. The results obtained based on other 
distribution laws can be easily generated and by doing this the 
sensitivity of the model to the change of distributions can be 
numerically analysed. 
 

Collecting representative samples of failure observations is 
a real problem reliability analysts face. The assessment of 
mean times between failures (MTBFs) and the variances based 
on a limited number of observations can rarely support the 
definitive conclusion that the times are exponentially 
distributed. Nonetheless, not having another tool except for the 
Markov model, the analyst is compelled to use the exponential 
distributions. How differently the results would be if TBFs 
were governed by other alternative distributions? Answering 
this question is often a requirement of reliability and risk 
analyses. 
 

Besides the exponential distribution we have chosen three 
other (Rayleigh, log-normal and truncated normal) to see how 
the modeling results are sensitive to the change of the 
distribution. The parameters of the probability distributions 
were calculated based on a chosen fixed MTBFs and mean 
time to repair (MTTR). Surprisingly, the results of this exercise 
have demonstrated good model robustness.The highest spread 
in probability was for state 4. Although, even for a rather 
unrealistic ratio between MTBF and MTTR for the grid and 
generator (20 time units for MTBF: 1 time unit for MTTR) the 
range was not noticeably broad. More realistic ratios like 100:1 
or 200:1 show more narrow uncertainty intervals for the state 
probabilities. A plot of the outputted results for the worst 
modeled case is presented in Figure 4. The differences in the 
probability are observed only in the third decimal.  

 
Figure 4. The probability of residing in State 4 obtained by simulation for the 
ration between MTBF and MTTR as 20:1 

 

 DES IN DEFENSE OF MARKOV MODEL  V.
In this section we provide an example of fallacious in our 

opinion statements about some flaws of Markov models. To 
check the validity of the seemingly unquestionable statements, 
we computed the state probabilities by both the analytical 
approach and DES. By comparing the results, the conclusion 
was made in support to adequate modelling by the Markov 
process. 

 
In [8] Markov models of multi-disk fault tolerant systems 

are briefly discussed. It is stated that the accuracy of Markov 
models and their utility decreases as the redundancy in the 
system increases. “For multi-disk fault tolerant systems, both 
rebuild models, the serial and concurrent (Figure 5), are 
incorrect. The rebuild transitions for states 2 through m are 
incorrect: they model the rebuild of the disk that failed most 
recently, whereas reliability is dominated by the rebuild of the 
disk that failed earliest. In essence, traditional Markov models 
reset the rebuild time for all disks being rebuilt whenever 
another disk fails. The traditional serial rebuild Markov model 
thus models a rebuild policy in which each subsequent disk 
failure changes which disk is being rebuilt, and “re-fails” the 
disk currently being rebuilt. The traditional concurrent rebuild 
Markov model thus models a rebuild policy in which each 
subsequent disk failure restarts the rebuild of all failed disks.” 
These assertions appeared to us logical until DES modeling 
proven their invalidity.  
 

We have modelled a system consisting of five disks running 
in parallel and assumed that the system is operational until all 
five disks fail. Failure and repair rates were taken the same for 
the all disks. The both rebuild policies were subject to the 
modeling by the both methods. 

 

 
Figure 5. Traditional Markov models for rebuild policies 

 
The analytical solutions for the state probabilities are given 

by the following formulas (see for example [9]) 
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              (6) 

 
The logics of the DES models are very simple. Figure 6 

exemplifies the one for the concurrent rebuild policy. 
 

 
 

 
 
The computed probabilities (6) of being in each of the six states 
and the results of the simulation have demonstrated very high 
agreement for all states. The expectation of having 
conservative reliability measures has not been supported by the 
modelling results. 
 

 AN EXAMPLE OF EXPLICIT ADVANTAGE OF DES VI.
As stated in the introduction, the usually stressed major 

drawback of the Markov method is the explosion in the number 
of states as the size of the system increases. In fact, this 
drawback can be observed even for very simple systems like 
the ones depicted in Figure 5 with the only difference that each 
component (disk) has a distinctive failure rate. If this is the 
case, we have to enumerate all possible combinations of the 
components’ failure each of which will represent a distinctive 
state. For a system of five components, the number of states 
will amount to 25 with numerous transition intersections on a 
state diagram. Assuming on top of that different repair rates for 
the all components results in a non-overviewable state diagram 
and a very-difficult-to-solve problem. 
 

On contrary, the complexity of the DES model does not 
change at all when assigning different values to MTBFs and 
MTTRs, which enables to conduct nuanced analyses of the 
system 
 

 CONCLUSION VII.
The continuing increase of computer power and growing 

functionality of software tools supporting mathematical and 
reliability computations change the way the analysts tackle the 
problems they face. Analytical reliability models have 
undisputable advantages over numerical computations given 

they adequately count for important features of the system. 
Numerical models, including advanced Monte-Carlo 
simulation, can in turn be easily detached from restrictive 
assumptions of the analytical models, which gives the analyst a 
greater flexibility in building adequate models. In some cases, 
the two modeling approaches can be used to complement and 
validate each other.  

 
Our experience in applying DES models shows one more 

their positive feature. As they simply mimic the behavior of the 
systems in time, they are easily understandable by domain 
experts that are not experienced in abstract mathematical 
modeling. This way the domain experts become collaborators 
in model development and contribute to model validation and 
greater confidence to the outputted results. That is to say, a 
frequently existing gap between the “black boxes” of complex 
mathematical models and a lack of confidence to them from the 
practitioners’ side can be bridged by employing the alternative 
modeling approach.  
 

The advantageous use of the DES models compared to 
Markov models has been stressed in the medical domain. As 
stated in [6], the DES model predicts the course of the HIV 
disease naturally, with few restrictions. This may give the 
model superior face validity with decision makers. 
Furthermore, this model automatically provides a probabilistic 
sensitivity analysis, which is cumbersome to perform with a 
Markov model. DES models allow inclusion of more variables 
without aggregation, which may improve model precision. The 
capacity of DES for additional data capture helps explain why 
this model consistently predicts better survival and thus greater 
savings than the Markov model. The DES model is better than 
the Markov model in isolating long-term implications of small 
but important differences in crucial input data. 
 

A shortcoming of the use of DES consists in dependence on 
a specific simulation environment (software) in which the 
model is built and run. High costs of DES software and 
inability to run DES models in other environments, except for 
the one where they have been built, are the limitations against 
the analytical results obtained on Markov modelling. 
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