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The case
A granular sludge SBR performing N removal through nitritation/anammox
— Calibration methodology developed
— Fast model initialization
— Stoichiometric ratio evaluation
Purpose:

— Experiment planning

— Performance prediction for control applications
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Methods

Volume:

Mixing:

Solids concentration:
Ave. gran. size:

Operating time:

Fill:

Reaction:

Settling:
Draw:
Idle:

6-bladed Rushton
impeller at 80 rpm +
bubble aeration

4.2 g VSS/L
50 um
11 months
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Sequencing batch operation:

10 min.

444 min. consisting of three
aerated phases and three non-
aerated phases

6 min.

0 100 200 300 400 500

Time [min]

mFill mAir on © Air off mSettle Draw mlIdle



Methods
Model description

Biofilm mass balance equations — Transport and microbial metabolism

AccumulaMw - Oquaﬁon - Consumption>

ot z2oz\

1. Transport of soluble compounds is governed by diffusion and
of particulate compounds by advection:

. 0S, )

Jsi = Dyio s & Ji =X
2. The granule radius is a function of the growth and decay of
bacteria and a detachment process:

dL_u

dt F,L
Where the advective velocity is a function of the growth of
particulates on the “inside” of a given point k:

1 (e
Ug :A—kjo A, (Z_'l dz

i=1 P

=
=
—

i

Up
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Methods
Model description
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Bulk liquid mass balance equations — Transport and microbial metabolism

Accumula—@eration - Consumptiop>
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Flux in and out of the biofilm:

Soluble species Particulate species

js =k (Si,bulk - Si,L) Jo = —UpXi,
where

D.
k =—

L

The mass transfer coefficient is estimated
from a semi-empirical correlation considering
mixing caused by bubble aeration



“Steady st;

Dynamic

Validation

6

Methods

Methodology development
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2. Synthesize required information
Collect data
Data Treatment + Analysis

ed data
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Results
Steady state calibration

i

e Step 1:
Determine bulk liquid soluble N species concentrations

2. Synthesize required information

e Step 2:
Capturing overall reactor performance through five evaluation criteria:
Three ratios and two efficiencies:

Matching
collected data

ANO;, . ..
1= L — AOB vs. AnAOB + NOB - relative activity 4. Identify parameter subset
ANH4 "1 for dynamic calibration
ANH* - o =) & Collect in-cycle measurement data
R2=—FH! AnAOB vs. AOB - relative activity
ATN 6. Dynamic calibration |
_ ANO;

R3=2Nnm ————— AnAOB vs. NOB - relative activity -

ANH?! o i
El= m 4 =

NH4,in \ . . .o

Absolute microbial activity Y

ATN / .
E2 = = satisfactor 3;‘ o

TN, - }

9. Validated model ready for use
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Results

=
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Steady state calibration ==
=4
e Step 3:
Since oxygen k,a could not be experimentally estimated, this was = ‘“ﬁf“"’m'”“'m
calibrated based on the five evaluation criteria: S vl et i
Collect data
‘ Data Treatment + Analysis
k;a R1 R2 R3 NH," removal TN removal e .
sufficien
d-! ANO,/ANH,* ANH,//ATN ANO,/ATN % % A -
Simulation 524.4 0.000 1.052 0.049 79.25 74.32 %
Experimental - 0.001 1.072 0.071 80.80 71.52 Z
Experimental values were obtained 300 ‘ . ; e st
as an average of one week of S B et Tt HaEn B
"steady state” operation. ol | | : I
: = 5. Collect in-cycle measurement data
| .
initiali H H ! |I - | 1y :'I L |l ]L l' ! 1 6. Dynamic calibration
Model was initialized by simulating I a0t [} 1] ] | ] \ 2 \ ‘ 1 7 | i b i bt ]|
continuous operation for 1000 % \ \ | l \ \ ‘ L]
days, which was then followed by S | | \ \ \ | L I ! -
10 days of SBR operation of which 5" \' alk I W T | L\ |
the results from the last cycle g |\ \ \ ] | \ | \ \ 1]
were used for the steady state §1oo_ \ U { ) \ \ ‘ N \ |
model evaluation. iy 4l [ : J ! L U an
' = . ™ T g " " s " .. F - NH‘FdEtE
sol n J : :z: ::: e 5a1i5§aci&f!li‘:::j““\
:3:3 :::: | 9. Validated model ready for use

Time of operation [days]

9 DTU Kemiteknik, Danmarks Tekniske Universitet



Results
Dynamic calibration

e Step 4: Parameter subset identification
Based on global sensitivity analysis:

Mimax, AOB Ko2.408 baos Himax, AnAOB Ko2.Ana0B Y anaoB

d-! gCOD/m3 d-! d! ¢COD/m> gCOD/gN
Default value 2.050 0.300 0.130 0.073 0.010 0.160
Lower bound 1.538 0.150 0.098 0.055 0.005 0.152
Upper bound 2.563 0.450 0.163 0.091 0.015 0.168

e Step 5: In-cycle data collection

Samples from bulk liquid were manually collected every 15 min.
and analyzed for soluble N species.
Analysis results from three cycles were used for calibration.
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Results
Dynamic calibration

i

e Step 6: Calibration
Based on pragmatic Monte Carlo method, which was evaluated by WSSE:

WSSE = i Zn:( yﬂleaS,k (t) - Ymodel,k (t’ e) jz 2. Sy:ﬁiéjbiét- reguired infonmation
k=t Ok T u:‘j‘jseMv!m&iws;&
HMmax,A0B Koz,a08 baon HMmax,AnAOB Koz,ana08 Y AnaoB
d’! oCOD/m3 d’! d! gCOD/m?> gCOD/gN
Default value 2.050 0.300 0.130 0.073 0.010 0.160
Lower bound 1.538 0.150 0.098 0.055 0.005 0.152 -;
Upper bound 2.563 0.450 0.163 0.091 0.015 0.168
Calibrated value 2.450 0.165 0.136 0.068 0.011 0.166

A dedmmeiFis -
L§ S HGENUY B

Dynamic calibration g for dynamic ca
380 - = for dynamicca
N ——— NH; mods! ) :
ML ——— N mogel However, all MC sims :
. ™ have an offset compared
_om| - Oy dats to the collected data
§ I\IO'3 data
[=2]
E
‘;'QDD
= — Iteration of step 4-6,
g in accordance with the
o methodology
= wiiaigciz_ﬂﬁ‘_ i
801 . vos
:&ae M TN 4 s 9. Validated model ready for use
L2 T m

Time [h]
11 DTU Kemiteknik, Danmarks Tekniske Universitet



Concentrations [mgN/L]

Results
Dynamic calibration

e Step 4-6 - iterated: Parameter subset and sampling space were
Calibrated

Unit Default value Lower bound Upper bound value
M max AOB d! 2.050 1.025 3.075 2.064
K 02,408 gCOD/m? 0.300 0.150 0.450 0.332
bAos d! 0.130 0.065 0.195 0.150
L max NOB d! 1.454 0.727 2.181 0.974
K 02.N0B gCOD/m? 1.100 0.550 1.650 0.752
bros d! 0.061 0.030 0.091 0.069
U max AnAOB d-! 0.073 0.037 0.110 0.088
Ko2.An408 gCOD/m? 0.010 0.005 0.015 0.013
Kino2.4nA0B gN/m3 2.81e-6 1.41e-6 4.22e-6 2.92e-6
Y aoB gCOD/gN 0.210 0.105 0.315 0.292
Y AnaoB gCOD/gN 0.160 0.080 0.240 0.124
Dyoo m?/d 2.60e-4 1.30e-4 3.90e-4 1.70e-4
L, m 1.76e-5 8.80¢e-6 2.64e-5 2.26e-5

Time [h]

N
— NH, model

——— MO, model
NO3 model
*  NH; data
+  NO; data
MO data

Among the new MC sims, the
subset sample giving the smallest
error fitted much better to the
data than the previous.

Concentrations [mghiL]

=
=
—.

i
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Results
Validation

e Step 7: Data collection for validation

Samples were collected during one cycle under slightly different
conditions compared to the calibration cycles. The solids

concentration was 4.4 g VSS/L and average granule size was 35 pur

e Step 8: Validation

The validation was evaluated by the Janus coefficient:

2
1 Ny
7Z(Ymeas,i ~ Yinodel (tl ’e))
J2 — nval i=1
2
J s
7Z(Ymeas,i - ymodel (tl ’e))
ncal i=l1
MAE RMSE Janus coefficient
Model output | Calibration Validation Calibration  Validation
NH," 0.030 0.053 0.039 0.057 1.478
NO, 0.265 0.116 0.366 0.173 0.473
INO,- 0.131 0.080 0.171 0.093 0.544

J is relatively close to 1 for all model outputs, which implies a

good model fit.
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0, load [gO,fm°/d]
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Perspectives

e The validated model will be used for two purposes:

1. Obiective definition

1) design of future lab-scale experiments in the form of perturbations in the operation

2. Synthesize required information

Collect data
2) for predicting the process performance, which is important in future optimization e e
and process control applications and in up-scaling of the system o
- sufficient 7=
Process optimization (based on results from Vangsgaard et al., 2012) | 3."Steady state” calibration
1800 = M removal efficiency [%]‘ I I I | 5‘; —
o0 = ' s
H
H
1600 i
70 1 .| 4. identify parameter subset
a0 "1 for dynamic calibration
L o Analysis on calibrated model =
\omn - 5. Collect in-cycle measurement data
50
6. Dynamic calibration |
1000
e 1.00 x
800 —_
- 1
* & 0.95 7N ;
GO0 > |
: / \ s
B § 0.0 :
400 E
Y]
] 10 [
o 0 e 0 v w0 70 800 e oo g 085 \
N load [gN/m?/d] &
0.80
1.50 1.60 1.70 1.80 1.90 2.00

RO [(mg02/L/d)/(mgN/L/d)]
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Perspectives

2) for predicting the process performance, which is important in future optimization

and process control applications and in up-scaling of the system

Control implementation:

Three different control strategies have been developed
and analyzed on the calibrated model.

1. Feedforward based on oxygen/nitrogen
loading ratio (Vangsgaard et al., 2012)

Rescton | o] e |

2. Feedforward + feedback based on
stoichiometric rules (Mutlu et al., 2012):

15

(e
Effluent 1
|

~ A~
fare "r‘ F ey
1

3. Cascade control as a combination 2
of 1. and 2.
-
! T 1 |
| | 1 |
P e
- (O ! 4_"
] H W’—p REACTOR —.{ Effuent |
| I
i : ! I
I | l
; ettt s - ————n i
i ROsp — |
: +
:Casmde Ma —5 "-]—

As future extension of the current
work, the developed control
strategy will be experimentally
tested in the lab-scale reactors.
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1. Obijective definition

| 2. Synthesize required information
Collect data
Data Treatment + Analysis

B
- sufficiert =
=

| 3. "Steady state” calibration

Matching
data

collacts

4. |dentify parameter subset
for dynamic calibration

-

5. Collect in-cycle measurement data

6. Dynamic calibration |

7. Collect data for validation |

| 8 Validation l
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Conclusions/wrap-up

e The model was successfully calibrated and validated by following a
developed methodology:

— First, k a was calibrated to long term "steady state” data by using novel
evaluation criteria of stoichiometric ratios indicating the relative
activity of the microbial groups.

— Second, a subset of parameters were calibrated through dynamic
calibration to in-cycle data.

— An iteration of the second step was performed before a satisfactory result
was obtained.

e A fast and efficient novel initialization process was developed
— Simulating 1000 days of continuous operation before SBR operation.

e The model is now being used for optimization
and control structure analyses.
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